北师大版数学八上第七章平行线的证明测试题教学提纲

合集下载

(北师大版)天津市八年级数学上册第七单元《平行线的证明》测试题(答案解析)

(北师大版)天津市八年级数学上册第七单元《平行线的证明》测试题(答案解析)

一、选择题1.下列四个命题中,假命题有( )(1)两条直线被第三条直线所截,内错角相等.(2)如果1∠和2∠是对顶角,那么12∠=∠.(3)一个锐角的余角一定小于这个锐角的补角.(4)如果1∠和3∠互余,2∠与3∠的余角互补,那么1∠和2∠互补.A .1个B .2个C .3个D .4个 2.下列命题的逆命题是真命题的是( ). A .3的平方根是3B .5是无理数C .1的立方根是1D .全等三角形的周长相等 3.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线 4.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A .40°B .45°C .50°D .60°5.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于06.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是( ) A .5B .12C .14D .16 7.下列命题中,假命题是( )A .负数没有平方根B .两条平行直线被第三条直线所截,同位角相等C .对顶角相等D .内错角相等 8.下列命题是真命题的是( )A .相等的角是对顶角B .内错角相等C .任何非负数的算术平方根是非负数D .直线外一点到这条直线的垂线段叫做点到直线的距离9.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠1=∠3B .∠2=∠4C .∠EAD=∠BD .∠D=∠DCF 10.下列说法错误的是( )A .过任意一点P 可作已知直线m 的一条平行线B .同一平面内的两条不相交的直线是平行线C .过直线外一点只能画一条直线与已知直线平行D .平行于同一条直线的两条直线平行11.下列命题中,真命题的个数为( )(1)如果22a b >,那么a>b ; (2)对顶角相等;(3)四边形的内角和为360︒; (4)平行于同一条直线的两条直线平行;A .1个B .2个C .3个D .4个 12.在ABC 中,若+,A B C ∠=∠∠那么这个三角形的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .钝角三角形 二、填空题13.下列命题,①对顶角相等;②两直线平行,同位角相等;③全等三角形的对应角相等.其中逆命题是真命题的命题共有_________个.14.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).15.如图,ABC ∆中,60B ∠=︒,55C ∠=︒,点D 为BC 边上一动点.分别作点D 关于AB ,AC 的对称点E ,F ,连接AE ,AF .则EAF ∠的度数等于_______.16.如图,木工师傅用角尺画平行线的依据是_________________________.17.如图,将一副三角板叠放在一起,使含45°的直角三角板的一个锐角顶点E 恰好落在另一个含30°的直角三角板的斜边AB 上,DE 与AC 交于点G .如果110BEF ∠=︒,∠=__________度.那么AGE18.下列命题中,其逆命题成立的是_____.(填上正确的序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在角的内部,到角的两边距离相等的点在角的平分线上;⑤等边三角形是锐角三角形.19.如图,已知△ABC,∠B 的角平分线与∠C 的外角角平分线交于点 D,∠B 的外角角平分线与∠C 的外角角平分线交于点 E,则∠E+∠D=_____.20.如图,在ΔABC中,E、F分别是AB、AC上的两点,∠1+∠2=235°,则∠A=____度.三、解答题∠=∠,ABC的角平分线BE交AD 21.如图,ABC中,D为BC上一点,C BAD于点F.∠=∠;(1)求证:AEF AFE(2)G 为BC 上一点,当FE 平分AFG ∠且30C ∠=︒时,求CGF ∠的度数. 22.已知,//AB CD ,点P 在AB 、CD 之间,连结AP 、CP .(1)如图1,求A C P ∠+∠+∠的度数(提供两种作辅助线的方法:方法一:过点P 作AB 的平行线;方法二:连结AC );(2)已知100APC ∠=︒,PAB ∠和PCD ∠的角平分线AO 、CO 交于点0,请你画出草图,并直接写出AOC ∠的度数.23.已知:△ABC 和平面内一点D .(1)如图1,点D 在BC 边上,过D 点作DE//BA 交AC 于点E ,作DF//CA 交AB 于点F ,判断∠EDF 与∠A 的数量关系,并说明理由.(2)如图2,点D 在BC 的延长线上,DF//CA ,∠EDF =∠A ,请你判断DE 与BA 的位置关系.并说明理由.(3)如图3,点D 在△ABC 的外部,若作DE//BA ,DF//CA ,请直接写出∠EDF 与∠A 数量关系.24.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.25.如图,AD BC ⊥于点D ,EG BC ⊥于点G ,若1E ∠=∠,试说明:23∠∠=.下面是推理过程,请将推理过程补充完整.∵AD BC ⊥于点D ,EG BC ⊥于点G (已知),∴90ADC EGC ∠=∠=︒∴//AD EG ( )∴12∠=∠( )∵1E ∠=∠(已知),∴E ∠=_______(等量代换)又∵//AD EG (已证),∴______3=∠( )∴23∠∠=(等量代换).26.如图,CD AB ⊥于D ,点F 是BC 上任意一点,FE AB ⊥于E ,且12∠=∠,380∠=︒.(1)证明://BC DG ;(2)若AD AG =,求ABC ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】按照命题的条件,结论,进行推理计算,或与定理,定义,法则对照,进行判断即可.【详解】∵两条平行直线被第三条直线所截,内错角相等,∴(1)是假命题;∵对顶角相等,∴(2)是真命题;设锐角为x,则其余角为90°-x,补角为180°-x,∴(90-x)-(180-x)=90°-x-180°+x=-90<0,∴(3)是真命题;∵1∠和3∠互余,2∠与3∠的余角互补,∴1∠+3∠=90,2∠+(90-3∠)=180,∴2∠+1∠=180,∴(4)是真命题;故选A.【点睛】本题考查了对命题的真伪的甄别,解答时,熟练掌握数学的基本概念,基本定理,基本法则,基本性质是解题的关键.2.C解析:C【分析】根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可.【详解】A3的逆命题是:3的平方根,是假命题;BC、1的立方根是1的逆命题是:1是1的立方根,是真命题;D、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题;故选:C.【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.3.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.解析:D【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF , ∴31∠=∠, ∵AD CE , ∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.5.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题;B 、内错角不一定相等,所以B 选项为真命题;C 、平行于同一直线的两条直线平行,所以C 选项为真命题;D 、若数a 使得|a|>-a ,则a 为不等于0的实数,所以D 选项为假命题.故选:D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.解析:C【详解】∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例,故A错误;∵12是偶数,且是4的倍数,∴不能作为假命题的反例,故B错误;∵14是偶数但不是4的倍数,∴可以用来说明命题“任何偶数都是4的倍数”是假命题的反例,故C正确;∵16是偶数,且也是4的倍数,∴不能作为假命题的反例,故D错误.故选C.7.D解析:D【分析】根据平方根的概念、平行线的性质、对顶角相等判断即可.【详解】A、负数没有平方根,本选项说法是真命题;B、两条平行直线被第三条直线所截,同位角相等,本选项说法是真命题;C、对顶角相等,本选项说法是真命题;D、两直线平行,内错角相等,本选项说法是假命题;故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.C解析:C【分析】根据对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义逐一分析即可.【详解】解:A.对顶角相等,但是相等的角不一定是对顶角,该项为假命题;B.两直线平行,内错角相等,该项为假命题;C.任何非负数的算术平方根是非负数,该项为真命题;D.直线外一点到这条直线的垂线段的长度叫做点到直线的距离,该项为假命题;故选:C.【点睛】本题考查判断命题的真假,掌握对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义是解题的关键.9.B解析:B【分析】根据各选项中各角的关系及利用平行线的判定定理,分别分析判断AD 、BC 是否平行即可.【详解】解:A 、∵∠1=∠3,∴AD ∥BC (内错角相等,两直线平行);B 、∵∠2=∠4,∴AB ∥CD (内错角相等,两直线平行),但不能判定AD ∥BC ; C 、∵∠EAD=∠B ,∴AD ∥BC (同位角相等,两直线平行);D 、∵∠D=∠DCF ,∴AD ∥BC (内错角相等,两直线平行);故选:B .【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.10.A解析:A【分析】根据平行线的定义及平行公理进行判断.【详解】解:选项A :当点P 在直线m 上时则不可以作出已知直线的平行线,而是与已知直线重合,故选项A 错误,选项B 、C 、D 显然正确,故选:A .【点睛】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键. 11.C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果22a b ,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.C解析:C【分析】根据三角形内角和定理得到180A B C ∠+∠+∠=︒,则180B C A ∠+∠=︒-∠,变形得180A A ︒-∠=∠,解得90A ∠=︒,即可判断△ABC 的形状.【详解】解:∵180A B C ∠+∠+∠=︒,∴180B C A ∠+∠=︒-∠,又∵+A B C ∠=∠∠,∴180A A ︒-∠=∠,解得:90A ∠=︒,∴△ABC 为直角三角形.故选:C .【点睛】本题考察了三角形内角和定理:三角形的内角和为180°.二、填空题13.1【分析】根据逆命题对顶角平行线全等三角形的性质对各个选项逐个分析即可得到答案【详解】对顶角相等的逆命题为:相等的角是对顶角故①错误;两直线平行同位角相等的逆命题为:同位角相等两直线平行故②正确;全 解析:1【分析】根据逆命题、对顶角、平行线、全等三角形的性质,对各个选项逐个分析,即可得到答案.【详解】对顶角相等的逆命题为:相等的角是对顶角,故①错误;两直线平行,同位角相等的逆命题为:同位角相等,两直线平行,故②正确;全等三角形的对应角相等的逆命题为:对应角相等的三角形为全等三角形,故③错误; 逆命题是真命题的命题共有:1个故答案为:1.【点睛】本题考查了逆命题、对顶角、平行线、全等三角形的知识;解题的关键是熟练掌握对顶角、平行线、全等三角形的性质,从而完成求解.14.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.15.130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ∠FAC =∠CAD 再求出∠BAC 的度数即可求解【详解】连接AD ∵D 点分别以ABAC 为对称轴的对称点为EF ∴∠EAB =∠BAD ∠FAC =∠CAD解析:130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ,∠FAC =∠CAD ,再求出∠BAC 的度数,即可求解.【详解】连接AD ,∵D 点分别以AB 、AC 为对称轴的对称点为E 、F ,∴∠EAB =∠BAD ,∠FAC =∠CAD ,∵60B ∠=︒,55C ∠=︒,∴∠BAC =∠BAD +∠DAC =180°−60°−55°=65°,∴∠EAF =2∠BAC =130°,故答案是:130°.【点睛】此题考查轴对称的性质,关键是利用轴对称的性质解答.16.在同一平面内垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【分析】在同一平面内垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【详解】解:在同一平面内垂直于同一条直线的两条直线平行 解析:在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【分析】在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【详解】解:在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.故答案为在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【点睛】本题考查的是平行线的判定,熟知平行线的判定方法是解答此题的关键17.125【分析】先求得∠AED的度数然后在△AEG中依据三角形的内角和定理求解即可【详解】解:∵∠BEF=110°∠BEF+∠AEF=180°∴∠AEF=70°∵∠FED=45°∠FED+∠AEG=∠解析:125【分析】先求得∠AED的度数,然后在△AEG中依据三角形的内角和定理求解即可.【详解】解:∵∠BEF=110°,∠BEF+∠AEF=180°,∴∠AEF=70°,∵∠FED=45°,∠FED+∠AEG=∠AEF,∴∠AEG=70°-45°=25°,∵∠A=30°,∴∠AGE=180°-∠AEG -∠A=125°,故答案为:125.【点睛】本题考查了平角定义三角形的内角和定理,解答本题的关键是明确题意,利用数形结合的思想解答.18.①④【分析】分别写出原命题的逆命题然后判断正误即可【详解】①同旁内角互补两直线平行的逆命题是两直线平行同旁内角互补成立符合题意;②如果两个角是直角那么它们相等的逆命题为相等的两个角都是直角不成立不符解析:①④【分析】分别写出原命题的逆命题,然后判断正误即可.【详解】①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,成立,符合题意;②如果两个角是直角,那么它们相等的逆命题为相等的两个角都是直角,不成立,不符合题意;③如果两个实数相等,那么它们的平方相等的逆命题为平方相等的两个实数相等,不成立,不符合题意;④在角的内部,到角的两边距离相等的点在角的平分线上的逆命题为角平分线上的点到角的两边的距离相等,成立,符合题意;⑤等边三角形是锐角三角形的逆命题为锐角三角形是等边三角形,不成立,不符合题意;成立的有①④,故答案为:①④.【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.19.90°【分析】利用角平分线的性质和三角形的内角和定理解答即可【详解】解:∵BDBE分别是∠B的角平分线和外角平分线∴∠DBE=×180°=90°∴∠D+∠E=180°-∠DBE=180°-90°=9解析:90°.【分析】利用角平分线的性质和三角形的内角和定理解答即可.【详解】解:∵BD,BE分别是∠B的角平分线和外角平分线,∴∠DBE=1×180°=90°,2∴∠D+∠E=180°-∠DBE=180°-90°=90°.故答案为:90°.【点睛】本题主要考查了角平分线的性质和三角形的内角和定理,熟练掌握定理是解答此题的关键.20.55【分析】根据三角形内角和定理可知要求∠A只要求出∠AEF+∠AFE的度数即可【详解】∵∠1+∠AEF=180°∠2+∠AFE=180°∴∠1+∠AEF+∠2+∠AFE=360°∵∠1+∠2=23解析:55【分析】根据三角形内角和定理可知,要求∠A只要求出∠AEF+∠AFE的度数即可.【详解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°−235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形内角和定理)∴∠A=180°−125°=55°,故答案为:55°【点睛】本题是有关三角形角的计算问题.主要考察三角形内角和定理的应用和计算,找到∠A所在的三角形是关键.三、解答题21.(1)证明见解析;(2)150°.【分析】(1)由角平分线定义得∠ABE=∠CBE,再根据三角形的外角性质得∠AEF=∠AFE;(2)由角平分线定义得∠AFE=∠GFE ,进而得∠AEF=∠GFE ,由平行线的判定得FG ∥AC ,再根据平行线的性质求得结果.【详解】解:(1)BE 平分ABC ∠,ABE CBE ∴∠=∠∠=∠C BAD∴∠+∠=∠+∠ABF BAD CBE CAFE ABF BAD ∠=∠+∠,AEF CBE C ∠=∠+∠AEF AFE ∴∠=∠(2)FE 平分AFG ∠,∴∠=∠AFE GFE∵AEF AFE ∠=∠∴∠=∠AEF GFE//∴AC GF180∴∠+∠=︒C FGC30C ∠=︒180150∴∠=︒-∠=︒CGF C .【点睛】本题主要考查了三角形的外角性质,角平分线的定义,关键是综合应用这些性质解决问题.22.(1)360︒;(2)130AOC ∠=︒或50︒【分析】(1)连结AC ,根据三角形的内角和定理可得∠P+∠PAC+∠PCA=180°,再根据AB//CD 得到∠BAC+∠DCA=180°即可求得.(2)分两种情况,点P 在AC 的左侧,点P 在AC 的右侧,由(1)中的得到的结论,∠P+∠PAB+∠PCD=360°,再由平行线的性质和角平分线的定理,可以得到∠AOC 的度数.【详解】(1)连结AC∴180P PAC PCA ∠+∠+∠=︒,∵//AB CD∴180BAC DCA ∠+∠=︒,∴360PAB PCD P ∠+∠+∠=︒,(2)如图a ,点P 在AC 的左侧,130AOC ∠=︒,∵∠P+∠PAB+∠PCD=360° ,又∠APC=100° ,∴∠PAB+∠PAC=260° ,又AO 、CO 是∠PAB 和 ∠PCD 的角平分线,∴∠PAO+∠PCO=12×260° =130° , ∴∠AOC=360° -100° -130° =130° , 如图b ,点P 在AC 的右侧,50AOC ∠=︒,过点P 作MN ∥AB ,∵MN ∥AB ,CD ∥AB ,∴MN ∥CD ,∵MN ∥AB ,∴∠APM=∠BAP ,∵MN ∥CD ,∴∠CPM=∠PCD , ∴∠BAP+∠PCD=∠APM+∠CPM=∠APC=100°,又AO 、CO 是∠PAB 和 ∠PCD 的角平分线,∴∠BAO+∠DCO=12×100° =50°, ∴∠AOC=∠BAO+∠DCO=50° ,∴∠AOC=130° 或50°.【点睛】 此题考查了平行线的性质和判定,以及角平分线定理,三角形的内角和定理,解题的关键是灵活运用平行线的性质和角的平分线的定理求角的度数.23.(1)相等,理由见解析;(2)平行,理由见解析;(3)相等或互补【分析】(1)根据平行线的性质,即可得到∠A=∠EDF ;(2)延长BA 交DF 于G .根据平行线的性质以及判定进行推导即可;(3)分两种情况讨论,即可得到∠EDF与∠A的数量关系:∠EDF=∠A,∠EDF+∠A=180°.【详解】解:(1)∠EDF=∠A.理由:∵DE∥BA,DF∥CA,∴∠A=∠DEC,∠DEC=∠EDF,∴∠A=∠EDF;(2)DE∥BA.证明:如图,延长BA交DF于G.∵DF∥CA,∴∠2=∠3.又∵∠1=∠2,∴∠1=∠3.∴DE∥BA.(3)∠EDF=∠A,∠EDF+∠A=180°.理由:①如图,∵DE∥BA,DF∥CA,∴∠D+∠E=180°,∠E+∠EAF=180°,∴∠EDF=∠EAF=∠BAC;②如图,∵DE∥BA,DF∥CA,∴∠D+∠F=180°,∠F=∠CAB,∴∠EDF+∠BAC=180°.综上,∠EDF 与∠A 相等或互补【点睛】本题主要考查了平行线的性质以及判定的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系. 24.(1)72︒;(2)40︒.【分析】(1)根据角平分线的定义可得∠ADP=12ADC ∠ ,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF ,∠CBP=∠PBA ,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,所以∠A+∠C=2∠P ,即可得解.【详解】解:(1)∵DP 平分∠ADC ,∴∠ADP=∠PDF=12ADC ∠, ∵60ADC ∠=︒,∴30ADP ∠=︒,∴304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠ADP=∠PDF ,∠CBP=∠PBA ,∵∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,∴∠A+∠C=2∠P ,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°. 【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.25.见解析【分析】根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD ∥EG ,由平行线的性质得到∠1=∠2,等量代换得到∠E=∠2,由平行线的性质得到∠E=∠3,等量代换即可得到结论.【详解】∵AD ⊥BC 于点D ,EG ⊥BC 于点G (已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD ∥EG (同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∵∠E=∠1(已知)∴∠E=∠2(等量代换)∵AD ∥EG ,∴∠E=∠3(两直线平行,同位角相等).∴∠2=∠3(等量代换).【点睛】考查了平行线的性质、垂直的定义,解题关键是熟练掌握平行线的性质.26.(1)证明见解析;(2)80︒【分析】(1)先根据CD ⊥AB 于D ,FE ⊥AB 得出CD ∥EF ,故可得出∠2=∠DCB ;由∠2=∠DCB ,∠1=∠2得出DG ∥BC ,由此可得出结论;(2)由(1)得B ADG ∠=∠,再证明380ADG ∠=∠=︒,最后由平行线的性质可得结论.【详解】(1)证明:∵CD AB ⊥,FE AB ⊥∴//CD EF∴2BCD ∠=∠.∵12∠=∠,∴1BCD ∠=∠,∴//BC DG(2) 由(1)得B ADG ∠=∠∵AD AG =∴380ADG ∠=∠=︒∵//DG BC∴80ABC ADG ∠=∠=︒【点睛】本题考查的是平行线的判定与性质,用到的知识点为:内错角相等,两直线平行.。

(北师大版)武汉市八年级数学上册第七单元《平行线的证明》测试题(包含答案解析)

(北师大版)武汉市八年级数学上册第七单元《平行线的证明》测试题(包含答案解析)

一、选择题1.如图,△ABC 中,∠BAC =58°,∠C =82°,∠BAC 的平分线AD 交BC 于点D ,点E 是AC 上一点,且∠ADE =∠B ,则∠CDE 的度数是( )A .29°B .39°C .42°D .52° 2.如图,//AB CD ,点E 在AC 上,110A ∠=︒,15D ∠=︒,则下列结论正确的个数是( ) (1)AE EC =;(2)85AED ∠=︒;(3)A CED D ∠=∠+∠;(4)45BED ∠=︒A .1个B .2个C .3个D .4个3.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等4.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 5.用反证法证明“m 为正数”时,应先假设( ). A .m 为负数B .m 为整数C .m 为负数或零D .m 为非负数 6.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠ D .12180B ∠+∠+∠=︒7.下列命题是真命题的是( )A .两直线平行,同位角相等B .面积相等的两个三角形全等C .同旁内角互补D .相等的两个角是对顶角8.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)9.如图,A B C D E F ∠+∠+∠+∠+∠+∠则等于( )A .90︒B .180︒C .270︒D .360︒ 10.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .6811.如图,已知点E ,D 分别在△ABC 边BA 和CA 的延长线上,CF 和EF 分别平分∠ACB 和∠AED .如果∠B =70°,∠D =50°,则∠F 的度数是( )A .50°B .55°C .60°D .65°12.下列语句中,不是命题的是( )A .过一点作已知直线的垂线B .两点确定一条直线C .钝角大于90度D .平角都相等二、填空题13.如图所示,在ABC 中,80A ∠=︒,延长BC 到D ,ABC ∠与ACD ∠的平分线相交于1A 点,1A BC ∠与1A CD ∠的平分线相交于A 点,依此类推,4A BC ∠与4A CD ∠的平分线相交于5A 点,则5A ∠的度数是_________.14.如图,在ABC 中,A β∠=度,ABC ∠与ACD ∠的平分线交于点1A ,则1A ∠=______度;1A BC ∠与1A CD ∠的平分线交于点2A ,得2A ∠;…2018∠A BC 与2018A CD ∠的平分线交于点2019A ,得2019A ∠.则2019A ∠=______度.15.若△ABC 中,AD 是BC 边上的高线,AE 平分∠BAC ,∠B =40°,∠C =50°,则∠EAD=_____°.16.如图,△ABC 中,∠B=60°,∠C=80°,点D,E 分别在线段AB ,BC 上, 将△BDE 沿直线DE 翻折,使B 落在B′ 处, B′ D, B′E 分别交AC 于F,G. 若∠ADF=70°,则∠CGE 的度数为______.17.在△ABC 中,∠A=60°,∠B=∠C ,则∠B=______.18.已知直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为___________.19.在四边形ABCD 中,ADC ∠与BCD ∠的角平分线交于点E ,115DEC ∠=︒,过点B 作//BF AD 交CE 于点F ,2CE BF =,54CBF BCE ∠=∠,连接BE ,254BCE S ∆=,则CE =___.20.如图,BD =BC ,BE =CA ,∠DBE =∠C =60°,∠BDE =75°,则∠AFE 的度数等于_____.三、解答题21.(1)如图1,若AB //CD ,AD //BC ,∠B 与∠D 有何关系?请说明理由;(2)若BE 平分∠ABC 交AD 于点E ,DF 平分∠ADC 交BC 于点F ,其它条件不变(如图2),BE ,DF 是何位置关系?请说明理由.(本大题可不写依据)22.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,点A 、B 、P 均在格点上.(请利用网格作图,画出的线用铅笔描粗描黑)(1)过点P 画直线AB 的平行线;(2)连接PA 、PB ,则三角形PAB 的面积= ;(3)若三角形QAB 面积与三角形PAB 的面积相等,且格点Q 与P 不重合,则格点Q 有 个.23.如图,AD 平分∠BAC ,点E ,F 分别在边BC ,AB 上,且∠BFE =∠DAC ,延长EF ,CA 交于点G ,求证:∠G =∠AFG .24.定义:一个三位数,如果它的各个数位上的数字互不相等且都不为0,同时满足十位上的数字为百位与个位数字之和,则称这个三位数为“西西数”.A 是一个“西西数”,从A 各数位上的数字中任选两个组成一个两位数,由此我们可以得到6个不同的两位数.我们把这6个数之和与44的商记为()h A ,如:132A =,133112212332(132)344h +++++==. (1)求()187h ,()693h 的值.(2)若A ,B 为两个“西西数”,且()()35h A h B =,求B A的最大值. 25.已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE//CF .完善下面的解答过程,并填写理由或数学式.解:∠3=∠4(),∴AE//________(____________________________),∴∠EDC=__________ (____________________________).∠5=∠A(已知),∴∠EDC=________(________________________),∴DC//AB(____________________________),∴∠5+∠ABC=180°(____________________________),即∠5+∠2+∠3=180°.∠1=∠2(已知),∴∠5+∠1+∠3=180°(________________________),即∠BCF+∠3=180°.∴BE//________(________________________)26.如图,已知直线AB//CD,∠A=∠C=100°,E、F在CD上,且满足∠DBF=∠ABD,BE 平分∠CBF.(1)直线AD与BC有何位置关系?请说明理由.(2)求∠DBE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形的内角和得到∠B=180︒-∠BAC-∠C=40︒,根据角平分线的定义得到∠BAC=29︒,根据三角形的外角的性质即可得到结论.∠BAD=12【详解】解:∵在△ABC中,∠BAC=58︒,∠C=82︒,∴∠B=180︒-∠BAC-∠C=180︒-58︒-82︒=40︒,∵AD平分∠BAC,∴∠BAD=1∠BAC=29︒,2∴∠ADC=∠B+∠BAD=69︒,∵∠ADE =∠B =40︒,∴∠CDE =29︒,故选:A .【点睛】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解题的关键. 2.B解析:B【分析】过点E 做直线EF 平行于直线AB ,然后根据同位角和同旁内角即可判断(2)和(3),其中(1)和(4)无法判断.【详解】过点E 做直线EF 平行于直线AB ,如下图所示,(1)无法判断;(2)∵AB//CD ,AB//EF∴EF//CD∴70AEF ∠=︒,15DEF ∠=︒∴85AED ∠=︒故(2)正确;(3)由(2)得A CEF CED DEF ∠=∠=∠+∠,DEF D ∠=∠∴A CED D ∠=∠+∠故(3)正确;(4)无法判断;故选B .【点睛】本题考查了平行线的性质和判定,重点是做出辅助线,然后利用平行线的性质进行求解. 3.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A 、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B 、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.5.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m为正数”时,应先假设m为负数或零故选:C.【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解.6.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB ∥CD(内错角相等,两直线平行);∴B 可以;C 、D 不可以;∵∠B=∠D,不能得出AB ∥CD ;∵∠1+∠2+∠B=180°,∴AD ∥BC(同旁内角互补,两直线平行),不能得出AB ∥BC ;∴C 、D 不可以;故选B.7.A解析:A【分析】根据平行线的性质,全等三角形的性质,对顶角的性质等逐一对选项进行分析即可.【详解】A 选项中,两直线平行,同位角相等,说法正确,是真命题;B 选项中,一个三角形底为3,高为4,另一个三角形底为6,高为2,面积相等但不全等,是假命题;C 选项中,只有两直线平行时,同旁内角才互补,是假命题;D 选项中,相等的两个角不一定是对顶角,也可能是同位角,内错角等,是假命题. 故选:A.【点睛】本题主要考查真命题,会判断命题的真假是解题的关键.8.D解析:D【解析】因为∠DAM 和∠CBM 是直线AD 和BC 被直线AB 的同位角,因为∠DAM =∠CBM 根据同位角相等,两直线平行可得AD ∥BC ,所以D 选项错误,故选D.9.D解析:D【分析】这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可得出结论.【详解】解:180A E C ∠+∠+∠=︒,180D B F ∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故选:D .【点睛】 本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键. 10.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.11.C解析:C【分析】由角平分线定义得∠BCF =∠ACF ,∠DEF =∠AEF ,由三角形内角和定理得∠BCF +∠B =∠AEF +∠F ;∠BCF +∠ACF +∠B =∠DEF +∠AEF +∠D ,即2∠BCF +∠B =2∠AEF +∠D ,则∠BCF +70°=∠AEF +∠F①,2∠BCF +70°=2∠AEF +50°②,进而得出答案.【详解】解:如图,设AB 交CF 于点G ,∵CF 、EF 分别平分∠ACB 和∠AED ,∴∠BCF =∠ACF ,∠DEF =∠AEF ,∵∠BCF +∠B =∠AEF +∠F ;∠BCF +∠ACF +∠B =∠DEF +∠AEF +∠D ,即2∠BCF +∠B =2∠AEF +∠D ,又∵∠B =70°,∠D =50°,∴∠BCF +70°=∠AEF +∠F①,2∠BCF +70°=2∠AEF +50°②,①×2﹣②得,70°=2∠F ﹣50°,解得∠F =60°.故选:C .【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.同时考查了角平分线的性质. 12.A解析:A【分析】根据命题的定义:判断一件事情的语句叫命题,进行选择.【详解】解:A 、没判断一件事情,只是叙述一件事情,故不是命题;B、两点确定一条直线,判断一件事情,故是命题;C、钝角大于90°,判断一件事情,故是命题;D、平角都相等,判断一件事情,故是命题;故选:A.【点睛】本题考查命题的概念,解题关键是熟练掌握并灵活运用概念.二、填空题13.5度【分析】由∠A1CD=∠A1+∠A1BC∠ACD=∠ABC+∠A而A1BA1C分别平分∠ABC和∠ACD得到∠ACD=2∠A1CD∠ABC=2∠A1BC于是有∠A=2∠A1同理可得∠A1=2∠A解析:5度【分析】由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此推出∠A=25∠A5,而∠A=80°,即可求出∠A5.【详解】解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,∵∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1同理可得∠A1=2∠A2,即∠A=22∠A2,…,∴∠A=25∠A5,∵∠A=80°,∴∠A5=80°÷32=2.5°.故答案为:2.5°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质.14.ββ【分析】已知∠A求∠A1利用外角定理可得∠ACD=∠A+∠ABC∠A1CD=∠A1+∠A1BC把∠ACD利用角平分线转成2∠A1CD∠ABC转成2∠A1BC消去∠A1BC∠A1CD即可再用类似的解析:12β,201912β【分析】已知∠A,求∠A1,利用外角定理可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,把∠ACD 利用角平分线转成2∠A1CD,∠ABC转成2∠A1BC,消去∠A1BC,∠A1CD即可,再用类似的办法求∠A 2,以此类推即可【详解】∵BA 1平分∠ABC ,CA 1平分∠A 1CD ,∴∠AB A 1=∠A 1BC=12∠ABC ,∠AC A 1=∠A 1CD=12∠ACD , 由三角形的外角得∴∠A 1CD=∠A 1+∠A 1BC ,∴∠A 1CD=∠A 1+∠A 1BC①∴2∠A 1CD=∠A+2∠A 1BC②把①代入②得∠A 1=12∠A=12β CA 2平分∠A 2CD ,∠A 2C A 1=∠A 2CD=12∠A 1CD , 由三角形的外角得∴∠A 1CD=∠A 1+∠A 1BC ,∴∠A 2CD=∠A 2+∠A 2BC③∴2∠A 2CD=∠A 1+2∠A 2BC④解得∠A 2=12∠A 1, ∠A 2=12∠A 114∠A=14β=212β 同理∠A 3=12∠A 2=18∠A=18β=312β …∠A 2019= 201912β故答案为:①12β,②201912β【点睛】本题考查(第二内角的)外角平分线与(第一)内角平分线所夹的角问题,找到两平分线的夹角与第三个角的关系是解决问题关键15.5【分析】由三角形的高得出求出由三角形内角和定理求出由角平分线求出即可得出的度数【详解】解:中是边上的高平分故答案为:5【点睛】本题考查了三角形内角和定理角平分线的定义角的和差计算;熟练掌握三角形内 解析:5【分析】由三角形的高得出90ADC ∠=︒,求出DAC ∠,由三角形内角和定理求出 BAC ∠,由角平分线求出EAC ∠,即可得出EAD ∠的度数.【详解】解:ABC ∆中,AD 是BC 边上的高,90ADC ∴∠=︒,90905040DAC C ,180180405090BAC B C , AE ∵平分BAC ∠, 11904522EAC BAC ,45405EAD EAC DAC .故答案为:5.【点睛】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.16.500【分析】连接BB 由翻折变换的性质得:∠ABC=∠DBE=60°再根据三角形外角性质即可得到∠ADF+∠CEG=60°+60°=120°进而得出∠CEG=50°再根据三角形内角和定理即可得到△C解析:500【分析】连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,再根据三角形外角性质,即可得到∠ADF+∠CEG=60°+60°=120°,进而得出∠CEG=50°,再根据三角形内角和定理,即可得到△CEG 中,∠CGE=180°-50°-80°=50°.【详解】如图,连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,∵∠ADF 是△BDB'的外角,∠CEG 是△BEB'的外角,∴∠ADF+∠CEG=60°+60°=120°,又∵∠ADF=70°,∴∠CEG=50°,又∵∠C=80°,∴△CEG中,∠CGE=180°-50°-80°=50°,故答案为50°.【点睛】本题考查了翻折变换的性质、三角形外角的性质以及三角形内角和定理的运用;熟练掌握翻折变换的性质,并能进行推理计算是解决问题的关键.17.60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°∠B=∠C进而得到∠B的度数【详解】解:∵∠A∠B∠C是△ABC的三个内角∴∠A+∠B+∠C=180°∵∠A解析:60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°,∠B=∠C,进而得到∠B的度数.【详解】解:∵∠A、∠B、∠C是△ABC的三个内角,∴∠A+∠B+∠C=180°.∵∠A=60°,∠B=∠C,∴∠B=60°,故答案为:60°.【点睛】本题主要考查了三角形内角和定理的运用,解题时注意三角形内角和等于180°.18.40°【分析】如图过E作EF∥AB则AB∥EF∥CD根据平行线的性质和三角形的内角和定理即可求得答案【详解】解:如图过E作EF∥AB则AB∥EF∥CD∴∠1=∠3∠2=∠4∵∠3+∠4=180°-9解析:40°【分析】如图,过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质和三角形的内角和定理即可求得答案.【详解】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=180°-90°-30°=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°.故答案为:40°.【点睛】本题以三角板为载体,主要考查了平行线的性质和三角形的内角和定理,正确添加辅助线、熟练掌握平行线的性质是解题的关键.19.5【分析】设∠BCE=4x ∠CBF=5x 设∠ADE=∠EDC=y 构建方程组求出xy 证明∠CFB=90°再利用三角形的面积公式构建方程即可解决问题【详解】解:∵∴可以假设∠BCE=4x 则∠CBF=5x解析:5【分析】设∠BCE=4x ,∠CBF=5x ,设∠ADE=∠EDC=y ,构建方程组求出x ,y ,证明∠CFB=90°,再利用三角形的面积公式构建方程即可解决问题.【详解】解:∵54CBF BCE ∠=∠, ∴可以假设∠BCE=4x ,则∠CBF=5x ,∵DE 平分∠ADC ,CE 平分∠DCB ,∴∠ADE=∠EDC ,∠ECD=∠ECB=4x ,设∠ADE=∠EDC=y ,∵AD ∥BF ,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65° ②,联立①②解得x=10°,y=25°,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF ⊥EC ,∴CE=2BF ,设BF=m ,则CE=2m ,12524∆=⨯⨯=BCE S EC BF , ∴125224⨯⨯=m m , 解得52m =(负值舍去), ∴CE=2m =5,故答案为5.【点睛】本题考查了角平分线的性质,平行线的性质,三角形内角和定理,二元一次方程组等知识,解题的关键是学会利用参数构建方程或方程组组解决问题.20.150°【分析】由三角形内角和定理可得∠E=45°由SAS可证△ABC≌△EDB 可得∠A=∠E=45°由三角形的外角性质可求∠AFD=30°即可求解【详解】解:∵∠DBE=60°∠BDE=75°∴∠解析:150°【分析】由三角形内角和定理可得∠E=45°,由“SAS”可证△ABC≌△EDB,可得∠A=∠E=45°,由三角形的外角性质可求∠AFD=30°,即可求解.【详解】解:∵∠DBE=60°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=45°,∵BD=BC,BE=CA,∠DBE=∠C=60°,∴△ABC≌△EDB(SAS),∴∠A=∠E=45°,∵∠BDE=∠A+∠AFD=75°,∴∠AFD=30°,∴∠AFE=150°,故答案为:150°.【点睛】本题考查了三角形内角和定理,全等三角形的判定和性质,三角形外角的性质,证明△ABC≌△EDB是解题关键.三、解答题21.(1)相等,理由见解析;(2)平行,理由见解析【分析】(1)连接BD,根据两直线平行,内错角相等和角的和差即可证明∠B=∠D;(2)根据角平分线的定义可得∠AEB=∠EBC=12∠ABC,根据(1)中的结论即可得出∠AEB=∠ADF,从而证明BE∥DF.【详解】解:(1)连接BD,∵AB∥CD,∴∠1=∠3,∵AD∥BC,∴∠4=∠2,∴∠ABC=∠1+∠2=∠3+∠4=∠ADC;(2)BE∥DF.理由如下:∵BE平分∠ABC,DF平分∠ADC,∴∠EBC=12∠ABC,∠ADF=12∠ADC,∵AD∥CB,∴∠AEB=∠EBC=12∠ABC,由(1)知∠ABC=∠ADC,∴∠AEB=∠ADF,∴BE∥DF.【点睛】本题考查平行线的性质和判定,角平分线的有关证明.熟练掌握平行线的性质和判定定理并能正确识图是解题关键.22.(1)见解析;(2)6.5;(3)3【分析】(1)连结AP,过点P作∠APQ=∠PAB,利用内错角相等,两直线平行可得PQ∥AB即可;(2)连PB,割补法利用网格正方形面积减去三个三角形面积即可;(3)由三角形QAB面积与三角形PAB的面积相等,在AB的平行线PQ上,截取PQ=AB 或PQ1=AB,连结AQ,延长QA,在QA的延长线上截取AQ2=AQ即可.【详解】(1)连结AP,过点P作∠APQ=∠PAB,∴PQ∥AB,则PQ为所求;(2)连PB,S△PAB=4×4-12×4×3-12×1×3-12×4×1=16-6-1.5-2=6.5,故答案为:6.5;(3)三角形QAB面积与三角形PAB的面积相等,在AB 的平行线PQ 上,截取PQ=AB 或PQ 1=AB ,连结AQ ,延长QA ,在QA 的延长线上截取AQ 2=AQ ,则Q 、Q 1、Q 2三点为所求,则格点Q 有3个,故答案为:3.【点睛】本题考查平行线的作法,网格三角形面积,面积相等的三角形格点问题,掌握平行线的作法,网格三角形面积求法,面积相等的三角形格点确定方法是解题关键.23.见解析【分析】先利用角平分线的定义得到∠BAD =∠DAC ,结合已知条件∠BFE =∠DAC ,可得∠BFE =∠BAD ,根据平行线的判定可证EG ∥AD ,再由平行线的性质得∠G =∠DAC ,∠AFG =∠BAD ,则利用等量代换即可证得结论.【详解】证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵∠BFE =∠DAC ,∴∠BFE =∠BAD ,∴EG ∥AD ,∴∠G =∠DAC ,∠AFG =∠BAD ,∴∠G =∠AFG .【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.24.(1)8,9;(2)671.154B A 【分析】(1)根据新定义的法则进行运算即可得到答案;(2)先由(1)的运算发现并总结规律,可得()h A 的值等于A 的十位数字,再运用规律结合()()35h A h B =进行合理的分类讨论,分4种情况:()()5,7h A h B ==或()()7,5,h A h B == ()()35,1h A h B ==或()()1,35h A h B ==,再根据新定义可得答案.【详解】解:(1)由定义可得:()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++== (2)探究: 133112212332(132)344h +++++==, ()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++==发现并总结规律:()h A 的值等于A 的十位数字,A ,B 为两个“西西数”,且()()35h A h B =, ()()5,7h A h B ∴==或()()7,5,h A h B ==而()()35,1h A h B ==或()()1,35h A h B ==不合题意舍去, B A的值最大,则B 最大,A 最小, ()()5,7,h A h B ∴==当()5h A =时,154A =或451A =或253A =或352A =,当()7h B =时,671B =或176B =或572B =或275B =或374B =或473.B =A ∴最小为154,B 最大为671, 此时B A 的值最大为 671.154B A 【点睛】本题考查的是新定义运算,同时考查了规律探究,弄懂新定义的运算法则,理解并运用规律,掌握合理的分类讨论是解题的关键.25.已知;BC ;内错角相等,两直线平行;∠5 ;两直线平行,内错角相等;∠A ;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补;等量代换;CF ;同旁内角互补,两直线平行【分析】根据平行线的性质及判定解答.【详解】∠3=∠4(已知),∴AE//BC(内错角相等,两直线平行),∴∠EDC=∠5 (两直线平行,内错角相等).∠5=∠A(已知),∴∠EDC=∠A(等量代换),∴DC//AB(同位角相等,两直线平行),∴∠5+∠ABC=180°(两直线平行,同旁内角互补),即∠5+∠2+∠3=180°.∠1=∠2(已知),∴∠5+∠1+∠3=180°(等量代换),即∠BCF+∠3=180°.∴BE//CF(同旁内角互补,两直线平行)故答案为:已知;BC;内错角相等,两直线平行;∠5 ;两直线平行,内错角相等;∠A;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补;等量代换;CF;同旁内角互补,两直线平行.【点睛】此题考查平行线的判定及性质定理,熟记定理并熟练应用解决问题是解题的关键.26.(1)直线AD//BC,见解析;(2)∠DBE=40°【分析】(1)根据平行线的性质,以及等量代换证明∠ADC+∠C=180°,即可证得AD//BC;(2)由直线AB//CD,根据两直线平行,同旁内角互补,即可求得∠ABC的度数,又由∠ABC,即可求得∠DBE的度数.∠DBE=12【详解】解:(1)直线AD//BC,理由如下:∵AB//CD,∴∠A+∠ADC=180°,又∵∠A=∠C∴∠ADC+∠C=180°,∴AD//BC;(2)∵AB//CD,∴∠ABC=180°﹣∠C=80°,∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBE=12∠ABF+12∠CBF=12∠ABC=40°.【点睛】此题主要考查了平行线的判定与性质、角平分线定义.熟练掌握平行线的判定与性质是解题的关键.。

平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册

平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册
∵∠EFC=142°,∴∠FCB+∠EFC=180°.
∴EF∥BC(同旁内角互补,两直线平行).
又 ∵AD∥BC,
∴EF∥AD(平行于同一条直线的两条直线平行);
7.4 平行线的性质






返回目录
(2)由(1)知∠FCB=38°,又 CE 平分∠FCB,
∴∠BCE=


∠FCB=19°(角平分线的定义).
在同一平面内,垂直于
同一条直线的两条直线
如图,∵b⊥a,c⊥a,
∴b∥c
平行
其他
方法
如 图 ,∵a ∥b,a ∥c,
平行于同一条直线的
两条直线平行
∴b∥c
7.3 平行线的判定
返回目录
归纳总结


要判断两条直线是否平行,首先要观察图形中与要判断

单 的两条直线有关的同位角、内错角、同旁内角的关系,这是
7.3 平行线的判定
返回目录
[解析]汽车行驶的方向不变,则汽车拐弯前与拐弯后


题 的行驶路线互相平行,如图所示.先右转后左转的两个角是
型 同位角,根据同位角相等,两直线平行,可知选项 D 正确

破 .
[答案] D
7.3 平行线的判定
返回目录
变式衍生 如图,已知∠1=90°,为保证两条铁轨平


∵∠1=60°(已知),∠ABC=∠1(对顶角相等),
∴∠ABC=60°(等量代换).
∵∠2=120°(已知),
∴∠ABC+∠2=180°,
∴AB∥CD(同旁内角互补,两直线平行).
∵∠2+∠BCD=180°(平角的定义),

新北师大版八年级数学上册第七章平行线的证明知识点复习

新北师大版八年级数学上册第七章平行线的证明知识点复习

平行线的证明知识点以及试题7.1为什么要证明、7.2定义与命题知识点1:1、判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.2、公认的真命题称为____________,经过证明的真命题称为_____________.练习1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角. ③.同位角相等,两直线平行. (4).一个角的邻补角大于这个角.(5).两个负数的差一定是负数.专题 推理在实际中的应用1.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁7.3平行线的判定知识点2:平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.专题 平行线的判定的实际应用2、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD3.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。

4、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?5.如图,某湖上风景区有两个观望点A ,C 和两个度假村B ,D .度 假村D 在C 的正西方向,度假村B 在C的南偏东A B E P D C F30°方向,度假村B 到两个观望点的距离都等于2km .(1)求道路CD 与CB 的夹角;(2)如果度假村D 到C 是直公路,长为1km ,D 到A 是环湖路,度假村B 到两个观望点的总路程等于度假村D 到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC ∥AB 吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC ∥AB .7.4平行线的性质知识点3:平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.练习:6、已知:如图,AB//CD ,BC//DE ,∠B=70°, 求∠D 的度数。

八年级数学上册北师大版 第七章 平行线的证明 综合提升(2024年版)

八年级数学上册北师大版  第七章  平行线的证明  综合提升(2024年版)

第七章平行线的证明综合提升一、选择题1. 如图所示,一束光线以与水平面成60°的角度照射地面,现在地面AB 上支放一个平面镜 CD,使这束光线经过平面镜反射后成水平光线,则平面镜CD与地面AB所成角∠DCB的度数等于( )A. 30°B. 45°C. 50°D. 60°2. 如图所示,△ABC 内有三个点D, E, F, 分别以 A, B, C, D, E, F这六个点为顶点画三角形,如果每个三角形的顶点都不在另一个三角形的内部,那么,这些三角形的所有内角之和为( )A. 360°B. 900°C. 1260°D. 1440°3. 如图所示, 若AB∥CD, 则∠B, ∠C, ∠E三者之间的关系是( )A. ∠B+∠C+∠E=180°B. ∠B+∠E-∠C=180°C. ∠B+∠C--∠E=180°D. ∠C+∠E--∠B=180°4. 已知: 直线l₁∥l₂, 一块含30°角的直角三角形如图所示放置, ∠1=25°,则∠2等于 ( )A. 30°B. 35°C. 40°D. 45°5. 三个等边三角形随意摆放的图形如图所示,则∠1+∠2+∠3= ( )A. 120°B. 135°C. 150°D. 180°6. 如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平, A与A'重合, 若∠A=75°, 则∠1+∠2= ( )A. 150°B. 210°C. 105°D. 75°7. 如图所示,ABCD与BEFG是并列放在一起的两个正方形,O是BF与EG的交点,如果正方形ABCD的面积是(9cm², CG=2cm,则△DEO 的面积是( ) cm².A. 6.25B. 5.75C. 4.50D. 3.758. 如图所示, 已知△ABC中, ∠BAC=40°, ∠ABC=76°, ∠ABC的平分线与∠ACB的外角平分线交于点D, 连接AD, 则∠ADB的度数为( )A. 30°B. 32°C. 34°D. 36°9. 如图所示, ∠ACD 是△ABC的外角, ∠ABC 的平分线与.∠ACD的平分线交于点A₁,∠A₁BC的平分线BC的平分线与∠Aₙ₁CD的平分线交于点Aₙ,点E为BA延长线上一与∠A₁CD的平分线交于点.A2,⋯,∠A n1动点,连接EC,∠AEC的平分线与∠ACE的平分线交于点 M,设∠A=α. 下列结论正确的是( )A.∠A n=α2n−1B.∠A n=α2n−1C.∠M+∠A₁的值为定值D.∠M−∠A₁的值为定值10. 如图所示, 在△ABC中, ∠ABC的平分线与∠ACB的外角平分线相交于D,连接AD,下列结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;∠BAC.④∠BDC=12其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题11. 如图所示, 已知∠G=∠E+∠F, 那么∠A+∠B+∠C+∠D= .12. 如图所示, 在△ABC中, AB=AC, ∠BAC=54°, ∠BAC的平分线与AB的垂直平分线交于点O,点E,F分别在 BC, AC上, 将∠C沿EF折叠, 点C与点O恰好重合, 则∠OEC为度.13. 如图所示,两个正五边形有公共的顶点 D,连接EI,FC 交于点 O,则.∠COI=°.14. 如图所示, 在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE, 在 BC, DE上分别找一点M, N, 使得△AMN周长最小, 则∠AMN+∠ANM的度数为 .15. 已知, 如图①所示, 在△ABC中, ∠ABC, ∠ACB的角平分线交于点O, 则∠BOC=90∘+12∠A=1 2×180∘+12∠A.如图②所示,在△ABC中,∠ABC,∠ACB的两条三等分线分别对应交于O₁,O₂,则∠BO1C=23×180∘+13∠A,∠BO2C=13×180∘+23∠A,根据以上阅读理解,你能猜想(n等分时,内部有n-1个点) (用n的代数式表示).∠BOₙ₋₁C等于 .三、解答题16. 如图所示,.AD‖BC,∠A=∠C=50°,线段AD上从左到右依次有两点E,F(不与A,D重合).(1) 判断AB 与 CD 的位置关系, 并说明理由;(2)若∠FBD:∠CBD=1:4,BE平分∠ABF, 且∠1=∠BDC,求∠FBD的度数,并判断BE与AD的位置关系?17. 在平面直角坐标系中, 已知D(0, -3), M(4, -3), Rt△ABC的边与x轴分别交于O, G两点,与直线DM分别交于E,F两点.(1) 把直角三角形按如图①位置摆放, 求证: ∠CEF—∠AOG=90°;(2) 把直角三角形按如图②位置摆放, N为AC上一点, ∠NED+∠CEF=180°, 试探索∠NEF与∠AOG 的数量关系.18. 平面内两条直线有相交和平行两种位置关系.(1) AB平行于 CD. 如图①, 点P在AB, CD外部时, 由AB∥CD, 有∠B=∠BOD.又因∠BOD是△POD的外角, 故∠BOD=∠BPD+∠D, 得∠BPD=∠B--∠D.如图②,将点P移到AB, CD内部, 以上结论是否成立? 若不成立, 则∠BPD, ∠B, ∠D 之间有何数量关系? 请证明你的结论.(2) 在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B, ∠D, ∠BQD之间有何数量关系? (不需要证明)(3) 根据(2)的结论求图④中∠A+∠B+∠C+∠D+∠E+∠F的度数.19. 已知直线MN与直线PQ垂直于点O,点A 在射线OP 上运动,点 B在射线OM上运动.(1) 如图①所示, 已知AE, BE分别是.∠BAO,∠ABO的平分线,点A,B在运动过程中,∠AEB的大小是否发生变化? 若发生变化,请说明理由:若不发生变化,试求出其值:(2) 如图②所示, 延长BA至点G, 已知∠BAO,∠OAG的平分线与∠BOQ的平分线及其延长线分别相交于点E,F,求.∠EAF的度数;在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.20. (1) 如图①所示, 把△ABC纸片沿DE 折叠,使点 A落在四边形BCED 内部点 A'的位置,试写出∠A与∠1,∠2之间的关系,并说明理由;(2)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED外部点A'的位置,如图②所示,此时∠A与∠1,∠2之间存在什么样的关系,并说明理由;(3) 如果把四边形 ABCD 沿EF折叠,使点A, D分别落在四边形BCFE 内部点 A', D'的位置, 如图③所示,写出.∠A′,∠D′,∠1与∠2之间的关系,并说明理由.20221. 如图①所示, BP, CP 分别是△ABC的外角∠CBD,∠BCE的平分线, BQ, CQ分别是∠PBC,∠PCB的平分线, BM, CN分别是.∠PBD,∠PCE的平分线,∠BAC=α.(1) 当α=40°时,求∠BPC和∠BQC的度数;(2) 求当α等于多少度时,BM‖CN;(3) 如图②, 当(α=120°°时, BM, CN所在直线交于点 O, 求.∠BOC的度数;(4) 在α>60°的条件下,试写出∠BPC,∠BQC,∠BOC之间的数量关系.22. 如图①所示,在平面直角坐标系中,A(a,0) 是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0, b), 且((1)求点C的坐标;(2) 如图②所示,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(3) 如图③所示,当点D在线段OB上运动时,作.DM⊥AD交BC于点M,∠BMD,∠DAO的平分线交于点 N,则点 D 在运动过程中,∠N 的大小是否变化? 若不变,求出其值;若变化,说明理由.。

(2023年最新)北师大版八年级上册数学第七章 平行线的证明含答案

(2023年最新)北师大版八年级上册数学第七章 平行线的证明含答案

北师大版八年级上册数学第七章平行线的证明含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,点D、E分别在边AB、AC上,如果∠A=50°,那么∠1+∠2的大小为()A.130°B.180°C.230°D.260°2、如图,点C在AD上,CA=CB,∠A=20°,则∠BCD=( )A.20°B.40°C.50°D.140°3、如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转角(0°< <180°)至△A′B′C,使得点A′恰好落在AB边上,则等于().A.150°B.90°C.60°D.30°4、已知一个等腰三角形两内角的度数之比为,则这个等腰三角形顶角的度数为()A.20ºB.120ºC.20º或120ºD.36º5、在等腰三角形ABC中,与的度数之比为,则的度数是()A. B. C. D. 或6、中,已知:,,则中按角分类是().A.锐角三角形B.直角三角形C.钝角三角形D.斜三角形7、如图,△CEF中,∠E=70°,∠F=50°,且AB∥CF ,AD∥CE,连接BC,CD,则∠A的度数是()A.40°B.45°C.50°D.60°8、如图,一把直尺的边缘经过一块三角板的直角顶点B,交斜边于点A,直尺的边缘分别交,于点E,F,若,,则的度数为()A.35°B.45°C.50°D.55°9、如图,△ABC沿AB向下翻折得到△ABD,若∠ABC=30°,∠ADB=100°,则∠BAC的度数是().A.30°B.100°C.50°D.80°10、下列命题中,假命题的是()A.在△ABC中,若∠B+∠C=∠A,则△ABC是直角三角形B.在△ABC中,若a 2=(b+c)(b﹣c),则△ABC是直角三角形C.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形 D.在△ABC中,若a=3 2, b=4 2, c=5 2,则△ABC是直角三角形11、已知一个三角形三个内角度数的比是l:5:6,则其最大内角的度数为()A.60°B.75°C.90°D.120°12、在△ABC中,∠C=60°.两条角平分线AD,BE所在直线所成的角的度数是( )A.60°B.120°C.150°D.60°或120°13、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④AB=2AC.A.1B.2C.3D.414、如图,△ABC中,AB=AC,分别在AB,BC的延长线上截取点G,H,使BG=BH,延长AC交GH于点K,且AK=KG,则∠BAC的大小等于()A. B. C. D.15、如图,已知D为BC上一点,∠B=∠1,∠BAC=78°,则∠2=()A.78°B.80°C.50°D.60°二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC证明:∵AB=AC∴∠ABC=∠C(________)∵∠A=36°又∵∠A+∠ABC+∠C=180°(________)∴∠ABC=________°∵BD平分∠ABC∴∠1=∠2=________°∴∠C=∠________=72°∴AD=________,BC=________(________)∴AD=BC17、如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB=________ °.18、如图,已知AB∥ED,∠ECF=72°,则∠BAF的大小是________度.19、在△ABC中,∠A+∠B=150°,∠C=2∠A,则∠A=________.20、已知□ABCD中,AB=4,与的角平分线交AD边于点E,F,且EF=3,则边AD的长为________.21、下列说法:① 三角形的三条内角平分线都在三角形内,且相交于一点,正确;②在中,若,则一定是直角三角形;③三角形的一个外角大于任何一个内角;④若等腰三角形的两边长分别是3和5,则周长是13或11;⑤如果一个正多边形的每一个内角都比其外角多,那么该正多边形的边数是10,其中正确的说法有________个.22、如图,在△ABC中,∠C=∠ABC=2∠A,BD是边AC上的高,则∠DBC的大小等于________度.23、已知,一个含角的直角三角板按如图所示放置,,则________.24、如图,已知,,点C在BO上,点E在OD的延长线上,若,,则的度数是________25、将一条长方形纸带如图折叠,若∠1=58°,则∠2=________.三、解答题(共5题,共计25分)26、观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积1×(-1)×2=-2(-3)×(-4)×(-5)=-60三个角上三个数的和1+(-1)+2=2(-3)+(-4)+(-5)=-12积与和的商-2÷2=-1(2)请用你发现的规律求出图④中的数y和图⑤中的数x.27、如图,AB∥CD,BE平分∠ABC,∠DCB=140°,求∠ABD和∠EDC的度数.28、如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.29、如图,在△ABC中,BE是AC边上的高,DE//BC,∠ADE=48°,∠C=62°,求∠ABE的度数.30、已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE 和BF的位置关系和数量关系,并加以证明.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、C5、D6、C7、D8、B9、C10、D11、C12、D13、D14、B15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

北师大版八年级数学上册第七章《平行线的判定》课时练习题(含答案)

北师大版八年级数学上册第七章《平行线的判定》课时练习题(含答案)

北师大版八年级数学上册第七章《3.平行线的判定》课时练习题(含答案)一、选择题1.如图,直线a 、b 被直线c 所截.若∠1=55°,则∠2的度数是( )时能判定a ∥b .A .35°B .45°C .125°D .145° 2.如图,给下列四个条件:①12∠=∠;②3=4∠∠;③5B ∠=∠;④180B BAD ∠+∠=°.其中能使//AB CD 的共有( )A .1个B .2个C .3个D .4个 3.如图,直线a b ,且直线a ,b 被直线c ,d 所截,则下列条件不能..判定直线c d ∥的是( )A .3=4∠∠B .15180∠+∠=︒C .12∠=∠D .14∠=∠4.如图,下列条件中,能判断直线a ∥b 的有( )个.①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°A .1B .2C .3D .45.如图,要使AD BC ∥,则需要添加的条件是( )A .A CBE ∠=∠B .AC ∠=∠ C .C CBE ∠=∠D .180A D ︒∠+∠= 6.如图,把一副直角三角板如图那样摆放在平行直线AB ,CD 之间,∠EFG =30°,∠MNP =45°.则:①EG PM ∥;②∠AEG =45°;③∠BEF =75°;④∠CMP =∠EFN .其中正确的个数是( )A .1B .2C .3D .47.如图,在下列条件中,不能判定直线a 与b 平行的是( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°8.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.则回答正确的是( )A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB二、填空题9.如图,请填写一个条件,使结论成立:∵__________,∴//a b.10.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是____________________11.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中假命题的是___.(填写序号)12.如图,点E是CD上的一点,Rt△ACD≌Rt△EBC,则下结论:①AC=BC,②AD∥BE,③∠ACB=90°,④AD+DE=BE,成立的有_____个.13.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)14.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),下列条件①∠BAD =30°;②∠BAD =60°;③∠BAD =120°;④∠BAD =150°中,能得到的CD ∥AB 的有__________.(填序号)三、解答题15.如图,利用尺规,在ABC 的边AC 上方作CAE ACB ∠=∠,若AB BC ⊥,证明:AB AE ⊥(尺规作图要求保留作图痕迹,不写作法).16.如图,已知∠1=∠3,AC 平分∠DAB ,你能推断出哪两条直线平行?请说明理由.17.如图,已知∠1=∠2,∠3+∠4=180°,请说明AB //EF 的理由.18.如图,已知AGF ABC ∠=∠,12180∠+∠=︒.(1)试判断BF 与DE 的位置关系,并说明理由;(2)若BF AC ⊥,2140∠=︒,求AFG ∠的度数.19.如图,在ABC 中,90C ∠=︒,顶点B 在直线PQ 上,顶点A 在直线MN 上,BC 平分PBA ∠,AC 平分MAB ∠.(1)求证:PQ //MN ;(2)求QBC NAC ∠+∠的度数.20.已知:如图,A、F、C、D在同一直线上,AB∥DE,AB=DE,AF=CD,求证:(1)BC=EF;(2)BC∥EF参考答案1.C2.B3.C4.C5.A6.C7.C8.C9.∠1=∠4(答案不唯一)10.①④11.③12.113.∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)14.①④.15.解:如图,证明:∠CAE= ∠ACB,∥,BC AE180∴∠+∠=︒,EAB B⊥,即90AB BCB,∴∠=︒-∠=︒-︒=︒,EAB B1801809090∴⊥.AB AE16.解:可以推断出DC∥AB,理由如下:∵AC平分∠DAB,∴∠1=∠2(角平分线的定义),又∵∠1=∠3,∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行). 17.解:12∠∠=,AB CD∴,//∠+∠︒=,34180∴,CD EF//∴.AB EF//BF DE,18.解:()1//理由如下:AGF ABC∠=∠,∴,GF BC//∴∠=∠,13∠+∠=︒,1218032180∴∠+∠=︒,∴;//BF DE()2//BF DE,BF AC⊥,DE AC∴⊥,∠=︒,12180∠+∠=︒,2140∴∠=︒,140∴∠=︒-︒=︒.904050AFG19(1)证明:∵BC 平分PBA ∠,∴2PBA ABC ∠=∠,∵AC 平分MAB ∠,∴2MAB CAB ∠=∠,∵90C ∠=︒,∴90ABC CAB ∠+∠=︒,∴∠P AB +∠MAB =2∠ABC +2∠CAB =2(∠ABC +∠CAB )=2×90°=180°, ∴PQ MN ∥;(2)解:由(1)知:PQ MN ∥,∴180ABQ NAB ∠+∠=︒,∵90C ∠=︒,∴90ABC CAB ∠+∠=︒,∴18090270QBC NAC ABQ NAB ABC CAB ∠+∠=∠+∠+∠+∠=︒+︒=︒.20.(1)证明:(1)//AB DE ,A D ∴∠∠=,AF CD =,AC DF ∴=,在ABC 与DEF 中AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,ABC DEF SAS ∴≅(), BC EF ∴=.(2)(2)ABC DEF ≅,BCA EFD ∴∠∠= ,//BC EF ∴ .。

北师大版八年级数学上册第七章平行线的证明综合测评含答案

北师大版八年级数学上册第七章平行线的证明综合测评含答案

第七章 平行线的证明综合测评时间90分钟 满分120分班级:_________姓名:__________得分:________一、精心选一选(每小题3分,共24分) 1.下列命题是真命题的是( ) A.若a 2=b 2,则a=bB.若∠1+∠2=90º,则∠1与∠2互余C.若∠α与∠β是同位角,则∠α=∠βD.若a ⊥b ,b ⊥c ,则a ⊥c2.下列命题中,是公理的是( )A.等角的补角相等B.内错角相等,两直线平行C.两点之间线段最短D.三角形的内角和等于180º 3.如图1,下列条件能判定AB ∥CD 的是( )A.∠1+∠2=180ºB.∠3=∠2C.∠2=∠1D.∠1+∠3=180º4.如图2,已知AB ∥CD ,能得到∠1=∠2的依据是( )A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行5.已知在△ABC 中,∠A ,∠B 的外角分别是120º,150º,则∠C 等于( ) A.60º B.90º C.120º D.150º6.下列选项中,可以用来证明命题“若a 2>1,则a >1”是假命题的反例是( ) A.a=-3 B.a=-1 C.a=1 D.a=37.如图3,已知∠2是△ABC 的一个外角,那么∠2与∠B+∠1的大小关系是( ) A.∠2>∠B+∠1 B.∠2=∠B+∠1 C.∠2<∠B+∠1 D.无法确定8.现有甲、乙、丙、丁、戊五个同学,他们分别来自一中、二中、三中.已知:①每所学校至少有他们中的一名学生;②在二中联欢会上,甲、乙、戊作为被邀请的客人演奏了小提琴;③乙过去曾在三中学习,后来转学了,现在同丁在同一个班学习;④丁、戊是同一所学校的三好学生.根据以上叙述可以断定甲所在的学校为( )A.三中B.二中C.一中D.不能确定 二、细心填一填(每小题4分,共32分)9.把命题“直角三角形的两锐角互余”改写成“如果……那么……”的形式是________. 10.如图4所示,添加一个条件______,可使AC ∥DE.图1 3 2D C BA 1B A1 2 图2 CD E A BCD 21 图311.如图5,已知直线a ∥b ,小杜把直角三角尺的直角顶点放在直线b 上,若∠1=18°,则∠3的度数为____________.12.如图6,点D 为BC 延长线上的一点,∠A=∠ACB ,∠A=2∠B ,则∠ACD 的度数为________.13.下列几个命题:①若两个实数相等,则它们的平方相等;②若三角形的三边长a ,b ,c 满足(a -b)(a+b)+c 2=0;则这个三角形是直角三角形;③有两边和一角分别相等的两个三角形全等.其中是假命题的有_________(填序号). 14.如图7,把一个长方形ABCD 纸片沿EF 折叠后,点D ,C 分别落在D ',C '的位置,若∠AED '=30º, 则∠CFE=_____________°.15. 如图8,把一块含有30°角(∠A=30°)的直角三角尺ABC 的直角顶点放在长方形桌面CDEF (CD ∥EF )的一个顶点C 处,桌面的另一个顶点F 与三角尺斜边相交于点F ,如果∠1=40°,那么∠AFE=________°.16.小明同学连续观察了太原市2014年8月份某几天的天气情况,他的观察结果是:①共有5个下午是晴天;②共有7个上午是晴天;③共有8个半天是雨天;④下午下雨的那天上午是晴天,则该学生观察的天数为_________.三、耐心做一做(共64分) 17.(8分)读句画图:如图9,直线CD 与直线AB 相交于点C ,根据下列语句画图:(1)过点P 作PQ ∥CD ,交AB 于点Q ; (2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB =120°,猜想∠PQC 是多少度?并说明理由.18.(10分)如图10,已知点B ,D ,G 在同一条直线上,AB ∥CD ,∠1=∠2,请问BE 与DF 平行吗?为什么?A B C D E F 图4 2 b 1 a 3图5A B C 图6 D 图7A B CD E F D 'C '图9 1 2A BCD E F 图10G19.(10分)已知:如图11,在△ABC 中,D 为BC 上一点,∠1=∠2,∠3=∠4,∠BAC =120°,求∠DAC 的度数.20.(10分)阅读理解:如果三角形满足一个角α是另一个角β的3倍时,那么我们称这个三角形为“智慧三角形”.其中α称为“智慧角”.解答问题:⑵ 一个角为60º的直角三角形______(填“是”或“不是”)“智慧三角形”,若是,“智慧角”是_____.⑵已知一个“智慧三角形”的“智慧角”为108°,求这个“智慧三角形”各个角的度数.21.(12分) 如图12已知四边形ABCD 中,BC ⊥AB ,CF 平分∠DCB ,∠DCF +∠BAE =90°,试判断AE 与CF 的位置关系,并说明理由.22.(14分)数学活动课上,老师提出了一个问题:我们知道,三角形的一个外角等于和它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系?(1)独立思考,请你完成老师提出的问题:如图13所示,已知∠DBC 和∠BCE 分别为△ABC 的两个外角,试探究∠A 和∠DBC ,∠BCE 之间的数量关系. 解:⑵合作交流,“创新小组”受此问题的启发:分别作外角∠CBD 和∠BCE 的平分线BF 和CF ,交于点F (如图14所示),那么∠A 与∠F 之间有何数量关系?请写出解答过程.(拟题张华)A B D E C 图13 A B D EC 图14 F 图11 图12第七章平行线的证明综合测评(一)一、1.B 2.C 3.C 4.C 5.B 6.A 7.A 8.A二、9.如果一个三角形是直角三角形,那么这个三角形的两锐角互余10.答案不唯一,如∠A=∠BDE11.72º12.108º13. ③14.105 15.1016.10天提示:由题意知,小明同学每天测两次,共测的次数为7+5+8=20.因此他共测了20÷2=10(天).三、17.解:(1)(2)如图所示.(3)∠PQC=60°.理由:因为PQ∥CD,所以∠DCB+∠PQC=180°.因为∠DCB=120°,所以∠PQC=180°-120°=60°.18.解:BE∥DF.理由:因为AB∥CD,所以∠ABG=∠CDG .因为∠1=∠2,所以∠ABG-∠2=∠CDG-∠1,即∠EBG=∠FDG.所以BE∥DF.19.解:因为∠BAC=120°,所以∠2+∠3=60°.①因为∠1=∠2,所以∠4=∠3=∠1+∠2=2∠2.②把②代入①,得3∠2=60°,所以∠2=20°. 所以∠1=∠2=20°.所以∠DAC=∠BAC-∠1=120°-20°=100°.20.解:⑴是90º⑵因为这个“智慧三角形”的“智慧角”为108°,所以另一个角为108º÷3=36º,第三个内角为180º-108º-36º=36º.即这个“智慧三角形”各个角的度数分别为108°,36°,36°.21.调北八13~14学年第一学期20期3版22题答案.。

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试(有答案解析)(1)

(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试(有答案解析)(1)

一、选择题1.小明和小亮在研究一道数学题,如图EF AB ⊥,CD AB ⊥,垂足分别为E 、D ,G 在AC 上.小明说:“如果CDG BFE ∠=∠,则能得到AGD ACB ∠=∠”;小亮说:“连接FG ,如果//FG AB ,则能得到GFC ADG ∠=∠”.则下列判断正确的是( )A .小明说法正确,小亮说法错误B .小明说法正确,小亮说法正确C .小明说法错误,小亮说法正确D .小明说法错误,小亮说法错误2.下列命题的逆命题是真命题的是( )A .两个全等三角形的对应角相等B .若一个三角形的两个内角分别为30和60︒,则这个三角形是直角三角形C .两个全等三角形的面积相等D .如果一个数是无限不循环小数,那么这个数是无理数3.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .54.下列命题中真命题有( )①周长相等的两个三角形是全等三角形;②一组数据中,出现次数最多的数据为这组数据的众数;③同位角相等;④方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大. A .1个 B .2个 C .3个 D .4个5.下列命题中的假命题是( )A .三角形的一个外角大于内角B .同旁内角互补,两直线平行C .21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解 D .方差是刻画数据离散程度的量6.如图,DE 经过点A ,DE ∥BC ,下列说法错误的是( )A .∠DAB =∠EACB .∠EAC =∠C C .∠EAB+∠B =180°D .∠DAB =∠B7.如图,已知四边形ABCD 中,98B ∠=︒,62D ∠=︒,点E 、F 分别在边BC 、CD 上.将CEF △沿EF 翻折得到GEF △,若GE AB ∥,GF AD ∥,则C ∠的度数为( )A .80︒B .90︒C .100︒D .110︒8.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)9.如图,60A ∠=,70B ∠=,将纸片的一角折叠,使点C 落在ABC 外.若218∠=,则1∠的度数为( )A .50B .118C .75D .8010.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个11.如图,A B C D E F ∠+∠+∠+∠+∠+∠则等于( )A .90︒B .180︒C .270︒D .360︒ 12.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .68二、填空题13.如图,Rt △ABC 中,∠ACB =90°,∠A =52°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB 为_____.14.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).15.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度.16.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.17.如图,AB ∥CD ,EF 交AB 、CD 于点G 、H ,GM 、HM 分别平分∠BGH 、∠GHD ,GM 、HM 交于点M ,则∠GMH =_________.18.命题“若11a b=,则a b =”,这个命题是_____命题.(填“真”或“假”) 19.如图,下列条件:①∠1=∠2;②∠BAD+∠ADC =180°;③∠ABC =∠ADC ;④∠3=∠4;其中能判定AB ∥CD 的是_____(填序号).20.如图,△ABC 中,∠C =50°,AD 是∠CAB 的平分线,BD 是△ABC 的外角平分线,AD 与BD 交于点D ,那么∠D =____°.三、解答题21.推理填空:如图,AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠,可得AD 平分BAC ∠. 理由如下:∵AD BC ⊥于D ,EG BC ⊥于G ,(已知)∴90ADC EGC ∠=∠=︒,(____________________)∴//AD EG ,(____________________)∴1∠=__________,(____________________)3E ∠=∠,(____________________)又∵1E ∠=∠,(____________________)∴3∠=___________,(____________________)∴AD 平分BAC ∠.(____________________)22.如图,已知点E 在直线DC 上,射线EF 平分AED ∠,过E 点作EB EF ⊥,G 为射线EC 上一点,连接BG ,且90EBG BEG ︒∠+∠=.(1)求证:DEF EBG ∠=∠;(2)若EBG A ∠=∠,求证://AB EF .23.如图,在五边形ABCDE 中,∠A+∠B+∠E=310°,CF 平分∠DCB ,FC 的延长线与五边形ABCDE 外角平分线相交于点P ,求∠P 的度数24.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.25.填空:(将下面的推理过程及依据补充完整)如图,已知:CD 平分ACB ∠,//AC DE ,//CD EF ,求证:EF 平分DEB ∠.证明:∵CD 平分ACB ∠(已知),DCA DCE ∴∠=∠(角平分线的定义),//AC DE (已知),DCA ∴∠=____(两直线平行,内错角相等)DCA CDE ∴∠==∠(等量代换),//CD EF (已知),∴_____CDE =∠(_________);DCE BEF ∠=∠(__________),∴__________=__________(等量代换),EF ∴平分DEB ∠(______________).26.如图,已知,,,12DG BC AC BC EF AB ⊥⊥⊥∠=∠.试说明//EF CD 的理由,请把空填写完整.解:∵,DG BC AC BC ⊥⊥(已知)∴DGB ∠=∠_____90=︒(垂直的定义)∴//DG _____(同位角相等,两直线平行)∴2DCA ∠=∠( )∵12∠=∠( )∴1∠=∠________( )∴//EF ______( )【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由EF ⊥AB ,CD ⊥AB ,知CD ∥EF ,然后根据平行线的性质与判定即可得出答案.【详解】解:∵EF ⊥AB ,CD ⊥AB ,∴CD ∥EF ,若∠CDG=∠BFE ,∵∠BCD=∠BFE ,∴∠BCD=∠CDG,∴DG∥BC,∴∠AGD=∠ACB,故小明说法正确;∵FG∥AB,∴∠B=∠GFC,故得不到∠GFC=∠ADG,故小亮说法错误,故选:A.【点睛】本题考查了平行线的判定与性质,属于基础题,关键是掌握平行线的性质与判定.2.D解析:D【分析】根据原命题分别写出逆命题,然后再判断真假即可.【详解】A、两个全等三角形的对应角相等,逆命题是:对应角相等的两个三角形全等,是假命题;B、若一个三角形的两个内角分别为 30°和 60°,则这个三角形是直角三角形,逆命题是:如果一个三角形是直角三角形,那么它的两个内角分别为 30°和 60°,是假命题;C、两个全等三角形的面积相等,逆命题是:面积相等的两个三角形全等,是假命题;D、如果一个数是无限不循环小数,那么这个数是无理数,逆命题是:如果一个数是无理数,那么这个数是无限不循环小数,是真命题.故选:D【点睛】本题考查了命题与定理,解决本题的关键是掌握真命题.3.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.4.A解析:A【分析】根据题意对四个命题作出判断即可求解.【详解】解:①周长相等的两个三角形是全等三角形,是假命题;②一组数据中,出现次数最多的数据为这组数据的众数,是真命题;③同位角相等,是假命题;④方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大,是假命题.真命题有1个.故选:A【点睛】本题考查全等三角形的判定,众数,方差等知识,熟知相关知识是解题关键. 5.A解析:A【分析】根据三角形的外角、平行线的判断、二元一次方程的解以及方差即可判断出结果.【详解】解:在三角形内角中大于90°角的外角是一个锐角,故A 选项符合题目要求;同旁内角互补,两直线平行,故B 选项不符合题目要求;21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解,故C 选项不符合题目要求; 方差是刻画数据离散程度的量,故D 选项不符合题目要求.故选:A【点睛】本题主要考查的是命题与定理的知识,正确的掌握这些知识点是解题的关键. 6.A解析:A【分析】根据两直线平行,内错角相等、同旁内角互补逐一判断可得.【详解】解:∵DE ∥BC ,∴∠DAB =∠ABC (两直线平行,内错角相等),A 选项错误、D 选项正确;∠EAC =∠C (两直线平行,内错角相等),B 选项正确;∠EAB+∠B =180°(两直线平行,同旁内角互补),C 选项正确;故选A .【点睛】本题考查平行线的性质,解题关键是掌握两直线平行,内错角相等、同旁内角互补. 7.C解析:C【分析】已知GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,根据平行线的性质可得98B GEC ∠=∠=︒,62D GFC ∠=∠=︒;因CEF △沿EF 翻折得到GEF △,由折叠的性质可得1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒;在△EFC 中,由三角形的内角和定理即可求得∠C=00°.【详解】∵GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,∴98B GEC ∠=∠=︒,62D GFC ∠=∠=︒,∵CEF △沿EF 翻折得到GEF △, ∴1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒, 在△EFC 中,由三角形的内角和定理可得,∠C=180°-∠FEC-∠CFE=180°-49°-31°=100°.故选C.【点睛】本题考查了平行线的性质、折叠的性质及三角形的内角和定理,熟练运用相关知识是解决问题的关键.8.D解析:D【解析】因为∠DAM 和∠CBM 是直线AD 和BC 被直线AB 的同位角,因为∠DAM =∠CBM 根据同位角相等,两直线平行可得AD ∥BC ,所以D 选项错误,故选D.9.B解析:B【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-60°-70°=50°;再根据折叠的性质得到∠C′=∠C=50°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+50°,即可得到∠3+∠4=62°,然后利用平角的定义即可求出∠1.【详解】∵∠A=60°,∠B=70°,∴∠C=180°-∠A-∠B=180°-60°-70°=50°;又∵将三角形纸片的一角折叠,使点C 落在△ABC 外,∴∠C′=∠C=50°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+50°,∠2=18°,∴∠3+18°+∠4+50°+50°=180°,∴∠3+∠4=62°,∴∠1=180°-62°=118°.故选:B .【点睛】本题综合考查了三角形内角和定理、外角定理以及翻折变换的问题,而翻折变换实际上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.明确各个角之间的等量关系,是解决本题的关键.10.D解析:D【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断.【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠∴EAC ∠=∠1,∴//AE CD ,②正确;∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB ,∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确;∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确;故选D【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.11.D解析:D【分析】这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可得出结论.【详解】解:180A E C ∠+∠+∠=︒,180D B F ∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故选:D .【点睛】 本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键. 12.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.二、填空题13.14°【分析】根据∠A =52°可求∠B 由折叠可知∠DA′C=52°利用外角性质可求【详解】解:∵∠ACB =90°∠A =52°∴∠B=90°-52°=38°由折叠可知∠DA′C=∠A =52°∠A′DB解析:14°【分析】根据∠A =52°,可求∠B ,由折叠可知∠D A′C=52°,利用外角性质可求.【详解】解:∵∠ACB =90°,∠A =52°,∴∠B=90°-52°=38°,由折叠可知∠D A′C=∠A =52°,∠A′DB=∠D A′C -∠B=52°-38°=14°,故答案为:14°.【点睛】本题考查了直角三角形的性质、轴对称的性质、三角形外角的性质,解题关键是灵活运用三角形的性质和轴对称性质建立角之间的联系.14.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.15.66【分析】在线段CD上取点E使CE=BD再证明△ADB≅△AEC即可求出【详解】在线段DC取点ECE=BD连接AE∵CE=BD∴BE=CD∵AB=CD∴AB=BE∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD上取点E使CE=BD,再证明△ADB≅△AEC即可求出.【详解】在线段DC取点E,CE=BD,连接AE,∵CE=BD,∴BE=CD,∵AB=CD,∴AB=BE,∠BAE=∠BEA=(180°-48°)÷2=66°,∴∠DAE=48°,∠AED=66°,∴△ADB≅△AEC,∴∠BAD =∠CAE =18°,∴∠CAD =∠DAE +∠CAE =66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.16.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相 解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.17.90°【分析】由平行线性质可得到再由角平分线定义可得到【详解】解:∵AB ∥CD ∴∠BGH+∠GHD=180(两直线平行同旁内角互补)又GMHM 分别平分∠BGH ∠GHD ∴∠MGH+∠GHM=90(角平解析:90°【分析】由平行线性质可得到180BGH GHD ∠+∠=︒,再由角平分线定义可得到90GMH ∠=︒.【详解】解:∵AB ∥CD∴∠BGH+∠GHD=180︒(两直线平行,同旁内角互补)又GM 、HM 分别平分∠BGH 、∠GHD ,∴∠MGH+∠GHM=90︒(角平分线的定义)∴ ∠GMH=180︒-(∠MGH+∠GHM )=180︒-90︒=90︒(三角形内角和定理). 故答案为 90°.【点睛】本题考查三角形内角和、角平分线及平行线的综合应用,熟练掌握有关性质、定义和定理是解题关键.18.真【分析】根据题意判断正误即可确定是真假命题【详解】解:命题若则a=b 这个命题是真命题故答案为:真【点睛】本题考查了命题与定理的知识解题的关键是当判断一个命题为假命题时可以举出反例难度不大解析:真【分析】根据题意判断正误即可确定是真、假命题.【详解】解:命题“若11a b,则a=b”,这个命题是真命题,故答案为:真.【点睛】本题考查了命题与定理的知识,解题的关键是当判断一个命题为假命题时可以举出反例,难度不大.19.①②【分析】根据平行线的判定定理逐一判断即可得答案【详解】∵∠1=∠2∴AB∥CD;故①符合题意∵∠BAD+∠ADC=180°∴AB∥CD;故②符合题意∠ABC=∠ADC不能判定AB∥CD故③不符合解析:①②.【分析】根据平行线的判定定理逐一判断即可得答案.【详解】∵∠1=∠2,∴AB∥CD;故①符合题意,∵∠BAD+∠ADC=180°,∴AB∥CD;故②符合题意,∠ABC=∠ADC,不能判定AB∥CD,故③不符合题意,∵∠3=∠4,∴AD∥BC;不能判定AB∥CD,故④不符合题意,故答案为:①②【点睛】本题考查平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;熟练掌握平行线的判定定理是解题关键.20.25°【分析】根据角平分线的定义得到∠DBE=∠CBE∠DAE=∠CAE根据三角形的外角的性质计算即可【详解】解:∵AD是∠CAB的平分线BD是△ABC的外角平分线∴∠DBE=∠CBE∠DAE=∠C解析:25°【分析】根据角平分线的定义得到∠DBE=12∠CBE,∠DAE=12∠CAE,根据三角形的外角的性质计算即可.【详解】解:∵AD 是∠CAB 的平分线,BD 是△ABC 的外角平分线,∴∠DBE=12∠CBE ,∠DAE=12∠CAE , ∴∠D=∠DBE-∠DAE=12(∠CBE-∠CAE )=12∠C=25°, 故答案为:25°.【点睛】本题考查的是三角形的外角的性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.三、解答题21.垂直的定义;同位角相等,两直线平行;∠2;两直线平行,内错角相等;两直线平行,同位角相等;已知;∠2;等量代换;角平分线的定义.【分析】根据证明的前后联系填写理由或结论即可.【详解】解:∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC =∠EGC =90°,(垂直的定义)∴AD ∥EG ,(同位角相等,两直线平行)∴∠1=∠2,(两直线平行,内错角相等)∠E =∠3,(两直线平行,同位角相等)又∵∠E =∠1(已知)∴∠3=∠2(等量代换)∴AD 平分∠BAC (角平分线的定义).故答案为:垂直的定义;同位角相等,两直线平行;∠2;两直线平行,内错角相等;两直线平行,同位角相等;已知;∠2;等量代换;角平分线的定义.【点睛】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角,明确每步说理的原因是正确答题的关键.22.(1)见解析;(2)见解析【分析】(1)根据题意得到90FEB ∠=︒,再根据等量代换的方法求解即可;(2)通过已知条件证明A AEF ∠=∠,即可得到结果;【详解】(1)∵EB EF ⊥,∴90FEB ∠=︒,∴1809090DEF BEG ∠+∠=︒-︒=︒.又∵90EBG BEG ︒∠+∠=,∴DEF EBG ∠=∠.(2)∵EF平分AED∠,∴AEF DEF∠=∠.∵EBG A∠=∠,DEF EBG∠=∠,∴A DEF∠=∠.又∵DEF AEF∠=∠,∴A AEF∠=∠,∴//AB EF.【点睛】本题主要考查了平行线的判定,结合角平分线的性质和垂直的性质证明是解题的关键.23.∠P=25°.【分析】延长ED,BC相交于点G.由四边形内角和可求∠G=50°,由三角形外角性质可求∠P度数.【详解】解:延长ED,BC相交于点G.在四边形ABGE中,∵∠G=360°-(∠A+∠B+∠E)=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG)=12∠G=12×50°=25°.【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.24.(1)72︒;(2)40︒.【分析】(1)根据角平分线的定义可得∠ADP=12ADC∠,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,所以∠A+∠C=2∠P,即可得解.解:(1)∵DP 平分∠ADC ,∴∠ADP=∠PDF=12ADC ∠, ∵60ADC ∠=︒,∴30ADP ∠=︒,∴304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠ADP=∠PDF ,∠CBP=∠PBA ,∵∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,∴∠A+∠C=2∠P ,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°. 【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.25.∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【分析】根据平行线的性质和平行线的判定及等量代换等来完成解答即可.【详解】解:证明:∵CD 平分∠ACB (已知),∴∠DCA=∠DCE (角平分线的定义),∵AC ∥DE (已知),∴∠DCA=∠CDE (两直线平行,内错角相等),∴∠DCE=∠CDE ( 等量代换),∵CD ∥EF ( 已知 ),∴∠DEF=∠CDE (两直线平行,内错角相等),∠DCE=∠FEB (两直线平行,同位角相等),∴∠DEF=∠FEB (等量代换),∴EF 平分∠DEB ( 角平分线的定义 ).故答案为:∠CDE ;∠DEF ;两直线平行,内错角相等;两直线平行,同位角相等;∠DEF ;∠FEB ;角平分线的定义.【点睛】本题考查了平行线的性质和平行线的判定在几何证明中的应用,明确相关性质及定理是解题的关键.26.见解析由垂直定义得∠DGB=∠ACB=90°,由平行线的判定定理得DG∥AC,由平行线的性质得∠2=∠ACD,由等量代换得∠1=∠ACD,由平行线的判定定理得EF∥CD.【详解】解:∵DG⊥BC,AC⊥BC(已知),∴∠DGB=∠ACB=90°(垂直的定义).∴DG∥AC(同位角相等,两直线平行).∴∠2=∠DCA.(两直线平行,内错角相等)∵∠1=∠2(已知),∴∠1=∠ACD(等量代换).∴EF∥CD(同位角相等,两直线平行).【点睛】本题考查了平行线的判定与性质等知识;熟练掌握平行线的判定与性质是解题的关键.。

北师大版八年级数学上册第七章 平行线的证明综合测评(Word版 含答案)

北师大版八年级数学上册第七章   平行线的证明综合测评(Word版 含答案)

第七章平行线的证明综合测评(本试卷满分100分)一、选择题(每小题3分,共30分)1.下列语句中,是命题的是()A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行D.连接A,B两点2.下列命题:①等腰三角形同一边上的角平分线、中线和高重合;②周长相等的两个钝角三角形都等;③等腰三角形的底边一定比腰长;④直角都相等.其中是真命题的有()A.1个B.2个C.3个D.4个3.如图1,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的度数是()A.25°B.35°C.50°D.65°图1 图2 图3 图4 4.如图2,在△ABC中,点D在AC上,延长BC至点E,连接DE,则下列结论不成立的是()A.∠DCE>∠ADB B.∠ADB>∠DBC C.∠ADB>∠ACB D.∠ADB>∠DEC5.如图3,已知直线AB∥CD,BE平分∠ABC,交CD于点D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°6.如图4,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是()A.84°B.106°C.96°D.104°7.已知直线l1∥l2,一块含30°角的直角三角尺如图5所示放置,∠1=25°,则∠2的度数为()A.30°B.35°C.40°D.45°图5 图6 图7 图8 8.如图6,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2的度数为()A.150°B.210°C.105°D.75°9.(2019年青岛)如图7,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°10.如图8,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下列说法:①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④∠HBC=∠HCB.其中正确的是()A.①②③④B.仅①②③C.仅②④D.仅①③二、填空题(本大题共8个小题,每小题3分,共24分)11.命题“如果两条平行线被第三条直线所截,那么同位角相等”的条件是,结论是.12.如图9,点D,A,E在一条直线上,要使DE∥BC,则x=.图9 图10 图11 图1213.如图10,已知AB∥CD,∠DEF=50°,∠D=80°,∠B的度数是.14.如图11,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100°,则∠BAC=.15.如图12,下列说法:①若AB∥CD,则∠3=∠4;②若∠1=∠BEG,则EF∥GH;③若∠FGH+∠3=180°,则EF∥GH;④若AB∥CD,∠4=62°,EG平分∠BEF,则∠1=59°.其中正确的有.(填序号)16.如图13,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A的度数为.三、解答题(共52分)17.(6分)先把下列两个命题分别改写成“如果……那么……”的形式,再判断该命题是真命题还是假命题,如果是假命题,举出一个反例.(1)绝对值相等的两个数互为相反数;(2)一个角的补角一定是钝角.18.(6分)请把下列证明过程补充完整(括号内填写相应的理由)已知:如图14,点E在BC的延长线上,AE交CD于点F,AD∥BC,∠1=∠2,且∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠CAD=∠1().∵∠1=∠2(已知),∴∠2= (等量代换).∵∠3=∠4(已知),∴∠3+∠CAF=∠4+∠CAF(等式的性质),即=∠CAD.∴∠2= (等量代换)∴AB∥CD().19.(8分)如图15,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC.求∠4的度数.图13图14图1520.(10分)如图16,在△ABC中,∠BAC=90°,∠ABC=∠ACB,∠D=∠BCD,∠1=∠2,求∠D 的度数.图1621.(10分)如图17,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.图1722.(12分)(1)如图18-①,已知AB∥CD,求证:∠EGF=∠AEG+∠CFG;(2)如图18-②,已知AB∥CD,∠AEF与∠CFE的平分线交于点G.猜想∠G的度数,并证明你的猜想;(3)如图18-③,已知AB∥CD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∠G=95°,求∠H的度数.图18附加题(20分,不计入总分)23.(1)探究与发现:如图19-①所示的图形,像我们常见的学习用品——圆规.我们不妨把这种图形叫做“规形图”,那么在这个简单的图形中,到底隐藏了哪些数学知识呢?请解决以下问题:观察“规形图”,试探究∠BPC与∠A,∠B,∠C之间的关系,并说明理由;(2)迁移运用:请你直接利用以上结论,解决以下问题:①如图19-②,已知△ABC,BP平分∠ABC,CP平分∠ACB,直接写出∠BPC与∠A之间存在的等量关系为.②如图19-③,在△ABC中,∠A=80°,点O是∠ABC,∠ACB平分线的交点,点P是∠BOC,∠OCB 平分线的交点,若∠OPC=100°,则∠ACB的度数为.③如图19-④,若点D是△ABC内任意一点,BP平分∠ABD,CP平分∠ACD.写出∠BDC,∠BPC,∠A之间的等量关系,并说明理由.图19第七章平行线的证明综合测评一、1.C 2.A 3.A 4.A 5.C 6.C 7.B 8.A 9.C10.B提示:根据等底等高的三角形的面积相等可判断①正确;由∠ABD+∠BAD=90°,∠BAD+∠CAD=90°,可得∠ABD=∠CAD,由∠AFG=∠ABD+∠BCF,∠AGF=∠CAD+∠ACG,∠BCF=∠ACG,得∠AFG=∠AGF,即②正确;由∠FAG+∠ABD=90°,∠ACD+∠CAD=90°,∠ABD=∠CAD,得∠FAG=∠ACD.又∠ACD=2∠ACF,所以∠FAG=2∠ACF,即③正确;根据条件无法判断出④正确.二、11.两条平行线被第三条直线所截同位角相等12.64°13.50°14.120 15. ①③④16.10三、17.解:(1)条件是如果两个数的绝对值相等,那么这两个数互为相反数.是假命题;反例:如2与2的绝对值相等,但2与2相等,不是互为相反数.(2)如果一个角是另一个角的补角,那么这个角一定是钝角.是假命题;反例:设∠1=60°,∠2=120°,∠1是∠2的补角,但∠1不是钝角.18.两直线平行,内错角相等∠CAD ∠BAE ∠BAE 同位角相等,两直线平行19.解:因为∠1=∠3+∠C,∠1=100°,∠C=80°,所以∠3=20°.因为∠2=12∠3,所以∠2=10°.所以∠ABC=180°-100°-10°=70°.因为BE平分∠ABC,所以∠ABE=35°.因为∠4=∠2+∠ABE,所以∠4=45°.20.解:因为∠BAC=90°,∠ABC=∠ACB,所以∠ACB=45°.因为∠D=∠BCD,∠BCD=∠ACB+∠2,所以∠D=∠BCD=45°+∠2.因为∠1=∠2,所以∠D=45°+∠1.因为∠D+∠BCD+∠1=180°,所以2(45°+∠1)+∠1=180°,解得∠1=30°. 所以∠D=45°+30°=75°.21.证明:因为∠1+∠4=180°(补角的定义),∠1+∠2=180°(已知),所以∠2=∠4(同角的补角相等).所以EF∥AB(内错角相等,两直线平行).所以∠3=∠ADE(两直线平行,内错角相等).又因为∠B=∠3(已知),所以∠ADE=∠B(等量代换).所以DE∥BC(同位角相等,两直线平行)所以∠AED=∠C(两直线平行,同位角相等).22.(1)证明:如图1,过点G作GH∥AB.所以∠EGH=∠AEG.因为AB∥CD,所以GH∥CD.所以∠FGH=∠CFG.所以∠EGH+∠FGH=∠AEG+∠CFG,即∠EGF=∠AEG+∠CFG;(2)解:猜想:∠G=90°.证明:由(1)中的结论得∠G=∠AEG+∠CFG.因为EG,FG分别平分∠AEF和∠CFE,所以∠AEF=2∠AEG,∠CFE=2∠CFG.因为AB∥CD,所以∠AEF+∠CFE=180°.所以2∠AEG+2∠CFG=180°.所以∠AEG+∠CFG=90°.所以∠G=90°.(3)解:因为EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,所以∠AEG=∠GEH=∠HEF=13∠AEF,∠CFH=∠HFG=∠EFG=13∠CFE.由(1)可知,∠G=∠AEG+∠CFG,∠H=∠AEH+∠CFH.所以∠G=13∠AEF+23∠CFE=95°.因为AB∥CD,所以∠AEF+∠CFE=180°.所以13(∠AEF+∠CFE)+13∠CFE=95°.所以∠CFE=105°.所以∠AEF=75°.所以∠H=23∠AEF+13∠CFE=23×75°+13×105°=85°.24.解:(1)∠BPC=∠BAC+∠B+∠C.理由:如图2,连接AP并延长至点F.根据三角形内角和定理的推论,得∠BPF=∠BAP+∠B,∠CPF=∠C+∠CAP.又因为∠BPC=∠BPF+∠CPF,∠BAC=∠BAP+∠CAP,所以∠BPC=∠BAC+∠B+∠C.(2)①∠BPC=90°+12∠A.提示:因为BP平分∠ABC,CP平分∠ACB,所以∠PBC=12∠ABC,∠PCB=12∠ACB.所以∠BPC=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A.②60°提示:设∠BCP=∠PCO=x,∠BOP=∠COP=y.因为∠P=100°,所以x+y=80°.所以2x+2y=160°.所以∠OBC=180°-160°=20°.因为BO平分∠ABC,所以∠ABC=40°.因为∠A=80°,所以∠ACB=180°-40°-80°=60°.③2∠BPC=∠BDC+∠A.理由:由(1)的结论可知∠BDC=∠A+∠ABD+∠ACD①,∠BPC=∠A+∠ABP+∠ACP.因为BP平分∠ABD,CP平分∠ACD,所以∠ABP=12∠ABD,∠ACP=12∠ACD.所以∠BPC=∠A+12∠ABD+12∠ACD②.②×2,得2∠BPC=2∠A+∠ABD+∠ACD.③③-①,得2∠BPC-∠BDC=∠A,即2∠BPC=∠BDC+∠A.。

北师大新版八年级数学上册 第七章 平行线的证明 单元练习卷 含解析

北师大新版八年级数学上册 第七章 平行线的证明 单元练习卷   含解析

第七章平行线的证明一.选择题(共10小题)1.下列说法中正确的是()A.不相交的两条直线叫做平行线B.相等的角是对顶角C.过一点有且只有一条直线与已知直线平行D.在平面中过一点有且只有一条直线与已知直线垂直2.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直3.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠B D.∠B+∠BDC=180°4.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°5.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为()A.62°B.152°C.208°D.236°6.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.360°D.258°7.给出下列命题:①两边及一边上的中线对应相等的两个三角形全等;②底边和顶角对应相等的两个等腰三角形全等;③斜边和斜边上的高线对应相等的两个直角三角形全等,其中属于真命题的是()A.①②B.②③C.①③D.①②③8.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁9.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC 外的点C′处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°10.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.24°B.25°C.30°D.36°二.填空题(共7小题)11.如图,当风车的一片叶子AB旋转到与地面MN平行时,叶子CD与地面MN,理由是.12.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是.13.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有(填写所有正确的序号).14.如图,若∠1=∠D,∠C=72°,则∠B=.15.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC=.16.如图,在△ABC中,∠A=80°,∠B=60°,将△ABC沿EF对折,点C落在C′处.如果∠1=50°,那么∠2=.17.夏洛特去山里寻宝,来到藏有宝藏的地方,发现这里有编号分为一,二,三,四,五的五扇大门,每扇门上都写有一句话:一,宝藏在五号大门的后面;二,宝藏或者在三号大门的后面,或者在五号的后面;三,宝藏不在五号大门的后面;四,宝藏不在此门后面;五,宝藏在二号大门的后面,夏洛特从当地人得到,五句话中只有一句是真的,那么夏洛特应该去号大门后面寻找宝藏.三.解答题(共5小题)18.如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥CD.19.如图,已知直线AB,CD被直线EF所截,∠1+∠2=180°.证明:AB∥CD.20.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.21.如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.22.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.参考答案与试题解析一.选择题(共10小题)1.下列说法中正确的是()A.不相交的两条直线叫做平行线B.相等的角是对顶角C.过一点有且只有一条直线与已知直线平行D.在平面中过一点有且只有一条直线与已知直线垂直【分析】利用平行线的定义及公理,对顶角的性质和垂直的概念分析.【解答】解:A、在同一平面内永不相交的两条直线叫做平行线,故选项错误;B、两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角,故选项错误;C、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故选项错误;D、正确.故选:D.2.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直【分析】根据平行公理和相交线、垂线的定义利用排除法求解.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;B、应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项错误;C、两条直线相交,有且只有一个交点,故本选项正确;D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,故本选项正确.故选:B.3.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠B D.∠B+∠BDC=180°【分析】根据平行线的判定方法直接判定.【解答】解:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),所以正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A错误.故选:A.4.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°【分析】根据三角形内角和定理求出∠1,根据三角形外角的性质求出∠2,根据邻补角的概念计算即可.【解答】解:∠1=90°﹣30°﹣60°,∴∠2=∠1﹣45°=15°,∴∠α=180°﹣15°=165°,故选:A.5.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为()A.62°B.152°C.208°D.236°【分析】首先求出∠F+∠B=∠D+∠EGD,然后证明出∠C+∠A+∠F+∠B﹣∠D=180°,最后结合题干∠D=28°求出∠A+∠B+∠C+∠F的度数.【解答】解:∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,故选:C.6.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.360°D.258°【分析】根据三角形内角和定理求出∠3+∠4,根据邻补角的概念计算即可.【解答】解:∵∠C=78°,∴∠3+∠4=180°﹣78°=102°,∴∠1+∠2=360°﹣(∠3+∠4)=258°,故选:D.7.给出下列命题:①两边及一边上的中线对应相等的两个三角形全等;②底边和顶角对应相等的两个等腰三角形全等;③斜边和斜边上的高线对应相等的两个直角三角形全等,其中属于真命题的是()A.①②B.②③C.①③D.①②③【分析】根据全等三角形的判定定理进行判断即可.【解答】解:①两边及一边上的中线对应相等的两个三角形全等是真命题;②底边和顶角对应相等的两个等腰三角形全等是真命题;③斜边和斜边上的高线对应相等的两个直角三角形全等是真命题,故选:D.8.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁【分析】直接利用已知得出甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,进而得出答案.【解答】解:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,∵甲、乙都没有输球,∴甲一定与乙平,∵丙得分3分,1胜0平,乙得分5分,1胜2平,∴与乙打平的球队是甲与丁.故选:B.9.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC 外的点C′处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°【分析】根据三角形内角和定理求出∠C,根据折叠的性质求出∠C′,根据三角形的外角的性质计算,得到答案.【解答】解:∵∠A=65°,∠B=75°,∴∠C=180°﹣65°﹣75°=40°,由折叠的性质可知,∠C′=∠C=40°,∴∠3=∠1+∠C′=60°,∴∠2=∠C+∠3=100°,故选:C.10.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.24°B.25°C.30°D.36°【分析】根据∠A=20°,求出∠ABC+∠ACB的度数,根据题意依次求出∠D1BC+∠D1CB…∠D5BC+∠D5CB的度数,得到答案.【解答】解:∵∠A=20°,∴∠ABC+∠ACB=180°﹣20°=160°,∵∠ABC与∠ACB的角平分线交于D1,∴∠D1BC+∠D1CB=80°,由题意得,∴∠D2BC+∠D2CB=80°+40°=120°,∴∠D3BC+∠D3CB=120°+20°=140°,∴∠D4BC+∠D4CB=140°+10°=150°,∴∠D5BC+∠D5CB=150°+5°=155°,∴∠BD5C=180°﹣155°=25°.故选:B.二.填空题(共7小题)11.如图,当风车的一片叶子AB旋转到与地面MN平行时,叶子CD与地面MN垂直,理由是在同一平面内,垂直于平行线中的一条则必垂直于另一条.【分析】根据AB⊥CD,AB∥MN来判定CD与MN的关系.【解答】解:∵AB⊥CD,AB∥MN,∴CD⊥MN(在同一平面内,垂直于平行线中的一条则必垂直于另一条).故答案是:垂直;在同一平面内,垂直于平行线中的一条则必垂直于另一条.12.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是经过直线外一点,有且只有一条直线与这条直线平行.【分析】直接利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,得出即可.【解答】解:∵MC∥AB,NC∥AB,∴点M,C,N在同一条直线上,理由是:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.13.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有①③④(填写所有正确的序号).【分析】根据平行线的判定方法:同旁内角互补,两直线平行可得①能判定AB∥CD;根据内错角相等,两直线平行可得③能判定AB∥CD;根据同位角相等,两直线平行可得④能判定AB∥CD.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥CB;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD,故答案为:①③④.14.如图,若∠1=∠D,∠C=72°,则∠B=108°.【分析】先依据∠1=∠D,判定AB∥CD,再根据平行线的性质,即可得到∠B的度数.【解答】解:∵∠1=∠D,∴AB∥CD,∴∠B+∠C=180°,又∵∠C=72°,∴∠B=108°,故答案为:108°.15.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC=110°.【分析】根据∠BAC=40°的条件,求出∠ACB+∠ABC的度数,再根据∠ACB=∠ABC,∠ACP=∠CBP,求出∠PBA=∠PCB,于是可求出∠ACP+∠ABP=∠PCB+∠PBC,然后根据三角形的内角和定理求出∠BPC的度数.【解答】解:∵∠BAC=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ACB=∠ABC,∠ACP=∠CBP,∴∠PBA=∠PCB,∴∠ACP+∠ABP=∠PCB+∠PBC=140°×=70°,∴∠BPC=180°﹣70°=110°.故答案为110°.16.如图,在△ABC中,∠A=80°,∠B=60°,将△ABC沿EF对折,点C落在C′处.如果∠1=50°,那么∠2=30°.【分析】根据三角形的内角和定理求出∠CEF+∠CFE=∠A+∠B,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠A+∠B+∠C=180°,∠CEF+∠CFE+C=180°,∴∠CEF+∠CFE=∠A+∠B=80°+60°=140°,由翻折的性质得,2(∠CEF+∠CFE)+∠1+∠2=180°×2,∴2×140°+50°+∠2=360°,解得∠2=30°.故答案为:30°.17.夏洛特去山里寻宝,来到藏有宝藏的地方,发现这里有编号分为一,二,三,四,五的五扇大门,每扇门上都写有一句话:一,宝藏在五号大门的后面;二,宝藏或者在三号大门的后面,或者在五号的后面;三,宝藏不在五号大门的后面;四,宝藏不在此门后面;五,宝藏在二号大门的后面,夏洛特从当地人得到,五句话中只有一句是真的,那么夏洛特应该去四号大门后面寻找宝藏.【分析】利用五句话中只有一句是真的,利用已知可得一号门和三号门上的话必有一个正确的,而另一个是不正确的,进而分析得出即可.【解答】解:由只有一句话正确可知,一号门和三号门上的话必有一个正确的,而另一个是不正确的.假设一号门上的话正确,则四号门上的话也是正确的,假设不成立;假设三号门的话是正确的,因为四号门上的话不正确,可知宝藏在四号门后,证明其它门上的话也是不正确的,假设成立;所以三号门上的话是正确的,宝藏在四号门后面.故答案为:四.三.解答题(共5小题)18.如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥CD.【分析】先利用等腰三角形的性质得到∠E=∠C=25°,再根据三角形外角性质计算出∠DOE=50°,则有∠A=∠DOE,然后根据平行线的判定方法得到结论.【解答】证明:∵OC=OE,∴∠E=∠C=25°,∴∠DOE=∠C+∠E=50°,∵∠A=50°,∴∠A=∠DOE,∴AB∥CD.19.如图,已知直线AB,CD被直线EF所截,∠1+∠2=180°.证明:AB∥CD.【分析】根据∠1+∠2=180°,∠2+∠3=180°,可知∠1=∠3,根据平行线的判定定理即可求解.【解答】证明:∵∠1+∠2=180°,∠2+∠3=180°,∴∠1=∠3(等量代换),∴AB∥CD(同位角相等,两直线平行).20.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.【分析】由∠A=∠F,根据内错角相等,两直线平行,即可求得AC∥DF,即可得∠C=∠FEC,又由∠C=∠D,则可根据同位角相等,两直线平行,证得BD∥CE.【解答】证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.21.如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.【分析】首先根据∠1=∠2,可得AD∥BF,进而得到∠D=∠DBF,再由∠3=∠D,可以推出∠3=∠DBF,进而根据平行线的判定可得DB∥CF.【解答】解:BD∥CF,理由如下:∵∠1=∠2,∴AD∥BF,∴∠D=∠DBF,∵∠3=∠D,∴∠3=∠DBF,∴BD∥CF.22.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.【分析】(1)根据AC∥BD,可得∠DAE=∠C,再根据∠C=∠D,即可得到∠DAE=∠D,则结论得证;(2)根据∠CGB是△ADG是外角,即可得到∠CGB=∠D+∠DAE,再根据△BCG中,∠CGB+∠C=90°,即可得到∠D+∠DAE+∠C=90°,进而得出2∠C+∠DAE=90°;(3)设∠DAE=α,则∠DFE=8α,∠AFD=180°﹣8α,根据DF∥BC,即可得到∠C=∠AFD=180°﹣8α,再根据2∠C+∠DAE=90°,即可得到2(180°﹣8α)+α=90°,求得α的值,由三角形内角和定理得到∠BAD的度数.【解答】解:(1)如图1,∵AD∥BC,∴∠DAE=∠C,又∵∠C=∠D,∴∠DAE=∠D,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.。

初中数学北师大版八年级上册第七章 平行线的证明2 定义与命题-章节测试习题

初中数学北师大版八年级上册第七章 平行线的证明2 定义与命题-章节测试习题

章节测试题1.【答题】命题“垂直于同一条直线的两条直线互相平行”的条件是()A.如果两条直线垂直于同一条直线B.两条直线互相平行C.两条直线互相垂直D.两条直线垂直于同一条直线【答案】D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【解答】命题“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.选D.2.【答题】下列命题的逆命题是真命题的是()A.直角都相等B.钝角都小于180°C.如果x2+y2=0,那么x=y=0D.对顶角相等【答案】C【分析】根据逆命题是否为真命题逐一进行判断即可.【解答】相等的角不都是直角,故A选项不符合题意,小于180°的角不都是钝角,故B选项不符合题意,如果x=y=0,那么x2+y2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D选项不符合题意,选C.3.【答题】把命题”对顶角相等”写成“如果……那么……”的形式是______.【答案】如果两个角是对顶角,那么这两个角相等【分析】对顶角相等的条件是两个角是对顶角,结论是两角相等,据此即可改写成“如果…,那么…”的形式.【解答】∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”,故答案为:如果两个角是对顶角,那么两个角相等.4.【答题】命题“两个锐角的和是直角”是______命题(填“真”或“假”).【答案】假【分析】根据真、假命题的定义判断即可。

【解答】两个锐角的和可能是锐角,直角或钝角,即两个锐角的和是直角是假命题.5.【题文】判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例.(1)如果一个数是偶数,那么这个数是4的倍数.(2)两个负数的差一定是负数.【答案】(1)假命题(2)假命题【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,假命题举出反例即可.【解答】解:(1)假命题.反例:6是偶数,但6不是4的倍数.(2)假命题.反例:(-5)-(-8)=+3.6.【题文】把命题改写成“如果……那么……”的形式.(1)对顶角相等.(2)两直线平行,同位角相等.(3)等角的余角相等.【答案】见解答【分析】根据命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.由此可得结论.【解答】解:(1)如果两个角是对顶角,那么这两个角相等.(2)如果两条直线平行,那么同位角相等.(3)如果两个角同为等角的余角,那么这两个角相等.7.【题文】指出下列命题的条件和结论.(1)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3.(3)锐角小于它的余角.【答案】见解析【分析】根据命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.由此可得结论.【解答】解:(1)条件:两条直线被第三条直线所截,同旁内角互补;结论:这两条直线平行.(2)条件:∠1=∠2,∠2=∠3;结论:∠1=∠3.(3)条件:一个角是锐角;结论:这个角小于它的余角.8.【答题】下列句子中,不是命题的是()A. 两点之间,线段最短B. 对顶角相等C. 同位角相等D. 连结A.B两点【答案】D【分析】判断一件事情的语句叫做命题.【解答】解:A、B、C都符合命题的概念,故正确;D、没有作出判断,故错误.选D.9.【答题】下列语句不是命题的()A. 鲸鱼是哺乳动物B. 植物都需要水C. 你必须完成作业D. 实数包括零【答案】C【分析】可以判定真假的语句是命题,根据其定义对各个选项进行分析,从而得到答案.【解答】解:A,是,因为可以判定这是个真命题;B,是,因为可以判定其是真命题;C,不是,因为这是一个陈述句,无法判断其真假;D,是,可以判定其是真命题;选C.10.【答题】“两条直线相交只有一个交点”的题设是()A. 两条直线B. 相交C. 只有一个交点D. 两条直线相交【答案】D【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【解答】解:“两条直线相交只有一个交点”的题设是两条直线相交.选D.11.【答题】命题“同位角相等,两直线平行”中,条件是______,结论是A. 同位角相等;两直线平行B. 同位角不相等;两直线平行C. 同位角不相等;两直线不平行D. 同位角相等;两直线不平行【答案】A【分析】由命题的题设和结论的定义进行解答.【解答】解:命题中,已知的事项是“同位角相等”,由已知事项推出的事项是“两直线平行”,所以“同位角相等”是命题的题设部分,“两直线平行”是命题的结论部分.故空中填:同位角相等;两直线平行,选A.12.【答题】如果两条直线相交,那么它们只有一个交点.这个命题的条件是______,结论是______.A. 两条直线不相交;它们不只有一个交点B. 两条直线不相交;它们只有一个交点C. 两条直线相交;它们只有一个交点D. 两条直线相交;它们不只有一个交点【答案】C【分析】命题分为题设和结论两部分,题设是如果后面的部分,结论是那么后面的部分.【解答】解:这个命题的条件是两条直线相交,结论是它们只有一个交点,选C.13.【答题】命题:“内错角相等,两直线平行”的题设是______,结论是______.A. 内错角相等;两直线平行B. 内错角相等;两直线不平行C. 内错角不相等;两直线平行D. 内错角不相等;两直线不平行【答案】A【分析】根据题设与结论的定义即可判断.【解答】解:内错角相等,两直线平行”的题设是:内错角相等,结论是:两直线平行.故答案是: A.14.【答题】命题“直角三角形两个锐角互余”的条件是______,结论是______.A. 两个锐角互余,则这两个锐角不在一个直角三角形中B. 一个直角三角形中的两个锐角;这两个锐角互余C. 一个直角三角形中的两个锐角;这两个锐角互补D. 两个锐角互补,则这两个锐角在一个直角三角形中【答案】B【分析】命题有条件和结论两部分组成,条件是已知的,结论是结果.【解答】解:“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余,选B.15.【答题】把命题“等角的补角相等”改写成“如果…那么…”的形式是(______ )A. 如果两个角相等,那么它们是等角的补角B. 如果两个角是补角,那么它们相等C. 如果两个角是等角的补角,那么它们相等D. 如果两个角相等,那么它们是等角的余角【答案】C【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为: C.16.【答题】命题“等角的余角相等”写成“如果…,那么…”的形式(______)A. 如果两个角的补角相等,那么这两个角相等B. 如果两个角的余角相等,那么这两个角相等C. 如果两个角相等,那么这两个角的余角相等D. 如果两个角相等,那么这两个角的补角相等【答案】C【分析】任何一个命题都可以写成“如果…,那么…”的形式如果后面是题设,那么后面是结论.【解答】解:命题“等角的余角相等”的题设是“两个角相等”,结论是“这两个角的余角相等”.故命题“等角的余角相等”写成“如果…,那么…”的形式是:如果两个角相等,那么这两个角的余角相等,选C.17.【答题】下列语句中不是命题的是()A. 两点之间线段最短B. 连接A,B两点C. 两条直线相交有且只有一个交点D. 对顶角不相等【答案】B【分析】找到不是判断一件事情的语句的选项即可.【解答】解:A、判断出两点之间,线段最短,是命题,不符合题意;B、没有做出任何判断,不是命题,符合题意;C、由两条直线相交可得只有一个交点,是命题,不符合题意;D、判断是对顶角不相等,是命题,不符合题意;选B.18.【答题】下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①对顶角相等,是真命题,②只有在两直线平行时,同位角才相等,假命题,③等角的余角相等,是真命题,④直角都等于90°,是真命题,真命题有3个,选C.19.【答题】对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A. ∠1=50°,∠2=40°B. ∠1=50°,∠2=50°C. ∠1=∠2=45°D. ∠1=40°,∠2=40°【答案】C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A,满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故错误;B、不满足条件,故错误;C、满足条件,不满足结论,故正确;D、不满足条件,也不满足结论.选C.20.【答题】a、b是实数,下列命题是真命题的是()A. a≠b,则a2≠b2B. 若a2>b2,则a>bC. 若|a|>|b|,则a>bD. 若|a|>|b|,则a2>b2【答案】D【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、假命题,反例:2≠-2,但2 2 =(-2)2;B、假命题,反例:-3 2>0 2,但-3<0;C、假命题,反例:|-9|>|0|,则-9<0;D、真命题,|a|>|b|,则a 2>b 2.选D.。

(完整word版)北师版八年级上第七章平行线证明知识点总结及习题,文档

(完整word版)北师版八年级上第七章平行线证明知识点总结及习题,文档

八年级上册第七章平行线的证明【要点梳理】要点一、定义、命题及证明1. 定义:一般地,用来说明一个名词也许一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题.要点讲解:.〔1〕每个命题都由题设、结论两局部组成,题设是事项,结论是由事项推出的事项〔2〕正确的命题称为真命题,不正确的命题称为假命题.〔3〕公认的真命题叫做公义.(4) 经过证明的真命题称为定理.3. 证明 :在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明.要点讲解:(1〕实验、观察、操作所得出的结论不用然都正确,必定推理论证后才能得出正确的结论.(2〕证明中的每一步推理都要有依照,不能够“想自然〞,这些依照能够是条件,学过的定义、根本领实、定理等 .(3〕判断一个命题是正确的,必定经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点二、平行线的判断与性质1.平行线的判断判断方法1:同位角相等,两直线平行.判断方法2:内错角相等,两直线平行.判断方法3:同旁内角互补,两直线平行.要点讲解:依照平行线的定义和平行公义的推论,平行线的判断方法还有:〔1〕平行线的定义:在同一平面内,若是两条直线没有交点〔不订交〕,那么两直线平行.〔2〕若是两条直线都平行于第三条直线,那么这两条直线平行〔平行线的传达性〕.(3〕在同一平面内,垂直于同素来线的两条直线平行.(4〕平行公义:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质 1:两直线平行,同位角相等;性质 2:两直线平行,内错角相等;性质 3:两直线平行,同旁内角互补 .要点讲解:依照平行线的定义和平行公义的推论,平行线的性质还有:(1〕假设两条直线平行,那么这两条直线在同一平面内,且没有公共点.(2〕若是一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于 180°.推论:〔 1〕三角形的一个外角等于和它不相邻的两个内角的和.(2〕三角形的一个外角大于任何一个和它不相邻的内角.要点讲解:〔1〕由一个公义或定理直接推出的真命题,叫做这个公义或定理的推论. 〔 2〕推论能够当作定理使用.基础训练一、选择题1. 以下语句中,是命题的是 ( ). A. 作线段 AB=CD B.在线段 AB 上任取一点C. 作∠ A 的均分线 AMD.两个锐角的和大于直角2. 以下命题中,属于定义的是 ( ). A. 两点确定一条直线 B. 点到直线的距离是该点到这条直线的垂线段的长度C. 两直线平行,内错角相等D. 同角或等角的余角相等3. 以下命题中,是真命题的是 ( ). A. 同位角相等 B.同位角相等,两直线平行C. 互补的两角必然有一条公共边D. 一个角的余角大于这个角4. 以下命题中,假命题是 ( ).A. 两条直线被第三条直线所截,假好像位角相等,那么这两条直线平行B. 两条直线被第三条直线所截,假好像旁内角互补,那么这两条直线平行C. 两条直线被第三条直线所截,若是内错角互补,那么这两条直线平行D. 若是两条直线都和第三条直线平行,那么这两条直线也互相平行5. 如图 1,能够获取 DE ∥BC 的条件是 ( ).图 1 图 2 图 3图 4 A. ∠ ACB ∠ BAC B.∠ ABC ∠ BAE ° = ; + =180C. ∠ ACB ∠ BADD. ∠ ACB ∠ BAD + =180; =6. 如图 2,若是∠ 1=∠2,那么下面结论正确的选项是 ( ).A. AD ∥BCB. AB ∥CDC. ∠ ∠ 4D. ∠ A ∠C3==7. 如图B °,∠ DEC°,∠ EDB °,那么∠C 等于().3,∠ =75=100=105°°°°8. 如图4, AB ∥CD ,∠ A°,∠ C°,那么∠ E 的度数是( ).=25 =45° ° °°9. 如图 5,直线 l 1∥l 2 ,AF ∶ FB=2∶ 3, BC ∶CD=2∶1,那么 AE ∶EC 是 图 5〔〕.∶2∶ 1∶ 1∶2AE10. 如图,在矩形 ABCD 中,对角线 AC 、BD 订交于点 G ,ED为 AD 的中点,连接 BE 交 AC 于点 F ,连接 FD ,假设∠ BFAF=90°,那么以下四对三角形:①△ BEA 与△ ACD ;②△ FEDG与△ DEB ;③△ CFD 与△ ABC ;④△ ADF 与△ CFB 。

北师大版八年级数学上第七章 平行线的证明

北师大版八年级数学上第七章   平行线的证明

初中数学试卷
第七章 平行线的证明
7.1 为什么要证明
一、选择题
1.通过观察你能肯定的是( )
A .图形中线段是否相等
B .图形中线段是否平行
C .图形中线段是否相交
D .图形中线段是否垂直
2.下列问题你不能肯定的是( )
A .一支铅笔和一瓶矿泉水的体积大小问题
B .三角形与矩形的面积关系
C .三角形的内角和
D .n 边形的外角和
3.下列说法中正确的是( )
A .经验、观察或实验完全可以判断一个数学结论的正确与否
B .推理是科学家的事,与我们没有多大的关系
C .对于自然数n ,372
++n n 一定是质数 D .有10个苹果,将它们放入9个筐中, 则至少有一个筐中的苹果树不少于2个
二、解答题
4.先观察再验证:(如图)
(1)图(1)中黑色的边是直的还是弯曲的?
(2)图(2)中两条线a与b哪一条更长?
(3)图(3)中的直线AB与直线CD平行吗?
5.判断下列说法是否正确,并说明理由.
(1)小红的数学成绩一向很好,因而后天的竞赛考试中她必然能获一等奖.
(2)因为阴天,所以今天一定会下雨.
(3)小李买“天天彩”中了奖.大家纷纷劝说小李最近千万不要再买了,因为“天天彩”的中奖率是千分之一,他已经中了一次,最近是不可能中奖的.
第七章平行线的证明7.1 为什么要证明
1.C 2.B 3.D
4.(1)图(1)中黑色的边是直的
(2)图(2)中两条线a与b一样长
(3)图(3)中的直线AB与直线CD平行
5.(1)错误,理由略(2)错误,理由略(3)错误,理由略。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学八上第七章平行线的证明测试题
一、填空题
1.把“同旁内角互补,两直线平行”写成“如果________,那么________”.
2.如图1,直线AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是_____. 3.“两点之间线段最短”是_________(填“定义”或“公理”或“定理”).
4.如图2,若l1∥l2,∠1=45°,则∠2=_____.
图1 图2 图3 图4
5.如图3,已知直线a∥b,c∥d,∠1=115°,则∠2=_____,∠3=_____.
6.“一次函数y=kx-2,当k>0时,y随x的增大而增大”是一个_______命题(填“真”或“假”).
7.如图4,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=_____.
图5 图6 图7 图8
8.如图5,∠1=82°,∠2=98°,∠3=80°,则∠4的度数为_____.
9.如图6,AD∥BC,AC与BD相交于O,则图中相等的角有_____对.
10.如图7,已知AB∥CD,∠1=100°,∠2=120°,则∠α=_____.
11.如图8,DAE是一条直线,DE∥BC,则∠BAC=_____.
12.如图9,AB∥CD,AD∥BC,则图中与∠A相等的角有_____个.
图9 图10 图11
13.如图10,标有角号的7个角中共有_____对内错角,_____对同位角,_____对同旁内角.
14.如图11,(1)∵∠A=_____(已知),
∴AC∥ED( )
(2)∵∠2=_____(已知),
∴AC∥ED( )
(3)∵∠A+_____=180°(已知),
∴AB∥FD( )
(4)∵AB∥_____(已知),
∴∠2+∠AED=180°( )
(5)∵AC∥_____(已知),
∴∠C=∠1( )
二、选择题
15.下列语句错误的是( )
A.锐角的补角一定是钝角
B.一个锐角和一个钝角一定互补
C.互补的两角不能都是钝角
D.互余且相等的两角都是45°
16.下列命题正确的是( )
A.内错角相等
B.相等的角是对顶角
C.三条直线相交,必产生同位角、内错角、同旁内角
D.同位角相等,两直线平行
17.两平行直线被第三条直线所截,同位角的平分线( )
A.互相重合
B.互相平行
C.互相垂直
D.相交
18.下列句子中,不是命题的是( )
A.三角形的内角和等于180度;
B.对顶角相等;
C.过一点作已知直线的平行线;
D.两点确定一条直线.
19.如图12,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )
图12 图13 图14
A.AD ∥BC
B.∠B=∠C
C.∠2+∠B=180°
D.AB ∥CD
20.如图13,直线AB 、CD 相交于点O ,EF ⊥AB 于O ,且∠COE=50°,则∠BOD 等于(
)
A.40°
B.45°
C.55°
D.65°
21.如图14,若AB ∥CD ,则∠A 、∠E 、∠D 之间的关系是( )
A.∠A+∠E+∠D=180°
B.∠A -∠E+∠D=180°
C.∠A+∠E -∠D=180°
D.∠A+∠E+∠D=270°
三、解答题
22.如图15,CD 平分∠ACB ,DE ∥BC ,∠AED=80°,求∠EDC 的度数. 图15
23.如图16,已知AB ∥CD ,∠B=65°,CM 平分∠BCE ,∠MCN=90°,求∠DCN 的度数.
图16
24.如图17,∠1=2
1∠2,∠1+∠2=162°,求∠3与∠4的度数. 图17
25.如图18,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?
图18
26.如图19,AB∥CD,HP平分∠DHF,若∠AGH=80°,求∠DHP的度数.
图19 27.根据下列证明过程填空:
如图20,BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C
图20
证明:∵BD⊥AC,EF⊥AC( )
∴∠2=∠3=90°
∴BD∥EF( )
∴∠4=_____( )
∵∠1=∠4( )
∴∠1=_____( )
∴DG∥BC( )
∴∠ADG=∠C( )
28.阅读下面的证明过程,指出其错误.
图21
已知△ABC
求证:∠A+∠B+∠C=180°
证明:过A作DE∥BC,且使∠1=∠C
∵DE∥BC(画图)
∴∠2=∠B(两直线平行,内错角相等)
∵∠1=∠C(画图)
∴∠B+∠C+∠3=∠2+∠1+∠3=180°
即∠BAC+∠B+∠C=180°。

相关文档
最新文档