激光跟踪仪讲解
激光跟踪仪航空应用PPT课件
5
1.激光跟踪仪系统
1.2激光跟踪仪系统的组成 (5) 反射器(靶标):是激光跟踪测量系统的关键部件之一。
靶标有3种不同型号(见表一)
6
1.激光跟踪仪系统
1.2激光跟踪仪系统的组成 (6) 气象站:记录空气压力和温度。这些数据需要用来在计
算激光反射时是必需的,并通过串行接口被传送给联机的计 算机应用程序。 7) 测量附件:包括三角支架、手推服务小车等。支架用来固 定激光跟踪仪,调整高度,保证各种测量模式的稳定性,且 三角支架底座带轮子,可方便地移动激光跟踪仪。手推服务 小车则可装载控制器等设备,运送方便快捷。
15
2.激光跟踪仪系统航空领域的应用
2.4激光跟踪仪在航空制造领域的应用事例
图8 奥地利MCE科技设备制造公司的装配车间,工程师正在装配空中客车的内外部连接组件
16
2.激光跟踪仪系统航空领域的应用
2.4激光跟踪仪在航空制造领域的应用事例
图9 MCE的工程师在使用API激光跟踪仪对飞机机身零部件进行检测,
雷达工业:雷达表面形状的检测,雷达安装位置的检测。 重型机械行业:重要的大型部件的尺寸检测,逆向工程的应用。
随着科技的飞速发展,激光跟踪仪发展将更加广泛
19
激光跟踪仪原理
激光跟踪仪原理
激光跟踪仪是一种使用激光束来跟踪目标物体的仪器。
它的工作原理基于激光的特性以及光的传播规律。
激光跟踪仪的主要组成部分包括激光发射器、接收器和信号处理器。
激光发射器发射一束激光光束,经过透镜成为平行光束,并照射到目标物体上。
当激光光束碰撞到目标物体上时,会产生反射或散射。
这些反射或散射的光被接收器接收,并转换成电信号。
接收器将电信号传输给信号处理器进行处理。
在信号处理器中,会对接收到的电信号进行分析和处理,以确定目标物体的位置、方向和运动状态。
通过计算出目标物体相对于激光跟踪仪的偏移角度和距离,可以实现对目标物体的精确定位和跟踪。
激光跟踪仪的工作原理基于三角测量原理和光的传播速度。
通过测量激光光束从激光发射器到目标物体再到接收器的时间差,可以计算出目标物体与激光跟踪仪之间的距离。
结合光束在空间中的角度信息,可以计算出目标物体的具体位置。
激光跟踪仪具有精确度高、反应速度快、适用于远距离测量等优点,在工业、航空航天等领域有着广泛的应用。
通过激光跟踪仪可以实现目标物体的检测、定位、跟踪和测量等功能,为各种应用提供了可靠的技术支持。
激光跟踪仪工作原理 -回复
激光跟踪仪工作原理-回复激光跟踪仪(Laser Tracker)是一种广泛应用于精密测量和三维坐标测量领域的仪器。
它能够通过激光光束实时跟踪目标并测量其位置和姿态,具有高精度和高稳定性的特点。
在本文中,我们将介绍激光跟踪仪的工作原理,并逐步解释其实现精密测量的过程。
一、激光测距原理激光跟踪仪的工作原理基于激光测距技术。
激光是一种特殊的光源,具有高度的方向性、单色性和相干性,能够通过空气以及一些物质的透明介质传输。
激光跟踪仪利用激光束与目标表面的交互作用,通过测量激光束的入射角度和反射角度的差异来计算目标与仪器之间的距离。
二、测量系统结构激光跟踪仪的测量系统主要由激光发射器、探测器和相关器组成。
激光发射器负责发出激光光束,探测器用于接收反射光,并将其转换为电信号。
相关器用于测量入射光束和反射光束之间的相位差异,然后根据相位差计算目标与仪器之间的距离。
三、基准准直激光跟踪仪的准确性和稳定性依赖于其基准准直的精度。
在使用激光跟踪仪进行测量之前,需要进行基准准直操作,即将仪器的坐标系与实际的坐标系进行匹配。
这通常通过测量一系列已知位置的参考点来实现,然后根据这些测量结果进行坐标系的校正和校准。
四、目标反射激光跟踪仪通过测量激光束与目标表面的交互作用来确定目标的位置和姿态。
目标通常需要具备一定的反射性能,以便激光光束能够被有效地反射回探测器。
反射性能可以通过目标表面的材料和涂层来控制和改善。
五、跟踪和测量一旦目标反射激光光束被探测器接收到,相关器就会开始测量入射光束和反射光束之间的相位差异。
相位差可以通过不同的技术进行测量,例如在时间上测量或频率上测量。
根据相位差,激光跟踪仪能够计算目标与仪器之间的距离,并通过其他的测量和计算方法来确定目标的位置和姿态。
六、误差校正和数据处理激光跟踪仪的测量过程中会存在一些误差,例如仪器自身的误差、环境影响等。
为了提高测量精度,需要对这些误差进行校正和补偿。
误差校正和数据处理通常采用一些数学模型和算法,根据测量结果进行拟合和计算,以得到最终的测量结果。
T3激光跟踪仪使用手册
目录第一章:坐标系介绍 (2)1.笛卡儿坐标系 (2)2.球坐标系 (4)3.柱坐标系 (4)第二章:API 激光跟踪仪III介绍 (6)1.API激光跟踪仪参数 (6)2.API激光跟踪仪组成 (8)3.激光跟踪仪的安全规程 (12)4.安装API 激光跟踪仪III (12)5.API激光跟踪仪原理 (14)第三章:TrackerCalib的使用 (17)1.TrackerClib软件介绍 (17)2.TrackerCalib软件的应用 (18)第四章:Spatial Analyzer的应用 (29)1.Spatial Analyzer介绍 (29)2.SA的安装 (29)3.SA连接激光跟踪仪 (33)4.SA跟踪仪界面介绍 (37)5.测量设置及点坐标采集 (52)6.跟踪仪一般设置 (56)第五单元:远程家点和配置反射镜及探针 (61)1.远程复位点 (61)2.在软件界面中添加SMR和探针 (63)第六单元:良好的测量原则 (68)第七章:创建特征形体 (70)1.构造点 (71)2.构造平面 (73)3.构造圆 (75)第八章:建立本地坐标系 (79)第九章:跟踪仪转站测量 (83)第十章:应用查询和组合 (86)1.查询单点或多个点之间的位置关系 (86)2.查询多个点到单点或对象 (88)第十一章:用关联比较组 (93)第十二章:比例补偿 (97)第十三章:测量报告 (99)1.快速报告 (99)2.GD&T报告 (101)3.HTML报告 (108)4.自定义报告模板 (109)第十四章:测量点与三维CAD模型最佳拟合 (113)第十五章:智能测头(I-Probe) (116)第十六章:智能扫描仪(I-Scan) (124)第一章:坐标系介绍理解坐标系是很重要的。
同样重要的是要熟悉三维空间的几何元素如线、面、圆和圆柱体以及每个实体是如何分解成简单几何元素的。
1.笛卡儿坐标系笛卡儿坐标系是有空间几何特征在相互正交的三个平面上投影而产生的,其特征如下:1.在二维几何中有X轴和Y轴;2.在三维几何中有X轴、Y轴和Z轴;3.各个轴是垂直相交的;4.各个轴上使用相同的距离单位。
激光跟踪仪原理
激光跟踪仪原理激光跟踪仪是一种常用于测量和追踪目标运动的仪器。
它利用激光束的特性,通过发射、接收和处理光信号来实现对目标的跟踪。
本文将介绍激光跟踪仪的原理和工作过程。
激光跟踪仪的原理基于激光的特性。
激光是一种特殊的光束,具有单色、单行波、高亮度和相干性等特点。
这些特性使得激光在目标跟踪中具有很大的优势。
激光跟踪仪首先通过激光发射器产生一束激光束,然后将其发射到目标上。
当激光束照射到目标表面时,部分光束被目标表面反射回来,称为反射光。
这些反射光中包含了目标的信息,如目标的形状、大小和位置等。
接下来,激光跟踪仪通过接收器接收反射光,并将其转换为电信号。
接收器通常由光电二极管或光电倍增管等光电器件组成。
光电器件可以将光信号转换为电信号,以便进一步处理和分析。
接收到的电信号经过放大和滤波等处理后,被送入信号处理器进行处理。
信号处理器根据接收到的信号,可以计算出目标的距离、角度和速度等信息。
这些信息可以用来描述目标的位置和运动状态。
在信号处理的过程中,激光跟踪仪通常采用一些特殊的算法和技术来提高跟踪的精度和稳定性。
例如,自适应滤波、卡尔曼滤波等算法可以用来抑制噪声和滤除干扰,从而提高跟踪的准确性。
激光跟踪仪的工作过程可以分为三个主要步骤:发射、接收和处理。
在发射阶段,激光跟踪仪通过激光发射器产生激光束,并将其发射到目标上。
在接收阶段,激光跟踪仪通过接收器接收目标反射回来的光信号,并将其转换为电信号。
在处理阶段,激光跟踪仪通过信号处理器对接收到的电信号进行处理和分析,从而得到目标的位置和运动状态。
激光跟踪仪在许多领域中都有广泛的应用。
例如,它可以用于航天、航空、船舶、汽车和机器人等领域中的目标跟踪和定位。
通过激光跟踪仪,可以实时监测目标的位置和运动状态,从而提高系统的安全性和可靠性。
激光跟踪仪是一种利用激光束进行目标跟踪的仪器。
它通过发射、接收和处理光信号,可以实现对目标的跟踪和定位。
激光跟踪仪在许多领域中都有广泛的应用,对提高系统的安全性和可靠性起着重要的作用。
T-Probe激光跟踪仪工作原理
T-Probe激光跟踪仪工作原理由于激光发散性很小,测距精度高,人们在几十年前就开始用激光干涉仪来测距离。
进而用它测直线度和角度,特别在较长距离的测量中发挥了它的优势。
但是激光干涉仪使用时要求找好准直,如果干涉镜或反射镜偏离了激光光轴,那么就出错,而且不能断光再续,必须重新再来,甚至中间有东西当一下光也是如此。
这些限制了它在空间坐标测量中的应用,另一方面激光终究是一个测长的工具,要用来做空间测量则必须寻求其他的定位装置。
激光跟踪仪产品中文名:激光跟踪仪外文名:Laser Tracker System类别:大尺寸测量仪器适用领域:工业测量系统基本内容激光跟踪测量系统(Laser Tracker System)是工业测量系统中一种高精度的大尺寸测量仪器。
它集合了激光干涉测距技术、光电探测技术、精密机械技术、计算机及控制技术、现代数值计算理论等各种先进技术,对空间运动目标进行跟踪并实时测量目标的空间三维坐标。
它具有高精度、高效率、实时跟踪测量、安装快捷、操作简便等特点,适合于大尺寸工件配装测量。
激光跟踪测量系统基本都是由激光跟踪头(跟踪仪)、控制器、用户计算机、反射器(靶镜)及测量附件等组成。
激光跟踪仪原理激光跟踪测量系统的工作基本原理是在目标点上安置一个反射器,跟踪头发出的激光射到反射器上,又返回到跟踪头,当目标移动时,跟踪头调整光束方向来对准目标。
同时,返回光束为检测系统所接收,用来测算目标的空间位置。
简单的说,激光跟踪测量系统的所要解决的问题是静态或动态地跟踪一个在空间中运动的点,同时确定目标点的空间坐标。
激光跟踪仪结构图激光跟踪仪原理图T-Probe在测头中心放置了反射镜,同时按一定的阵列分布了10个红外发光二极管,这样就反映了T-Probe的6个位置参数,进而根据给定的参数给出测头探针针头中心的坐标。
这就可以用此探针来对被测对象进行测量。
T-Probe的发明使隐蔽处测量成为可能,尤其是对方向姿态的测量大大扩展了激光跟踪仪的应用,例如可以用于机器人姿态的动态测量。
激光跟踪仪介绍资料讲解
激光跟踪仪的外观
激光跟踪系统坐标
x
如图,设P(x,y,z)为被测空间点, 假设点P 到点O 的距离为L,OP与z轴 夹角及x轴夹角已知,则有如下关系:
x L sin cos y L sin sin z L cos
测等
角度测量部分
包括方位角和高度角的角度编码器。 其工作原理类似于电子经纬仪、马达驱 动式全站仪的角度测量装置,包括水平 度盘、垂直度盘、步进马达及读数系统, 由于具有跟踪测量技术,它的动态性能 较好。
激光跟踪控制部分
由光电探测器(PSD)来完成。反 射器反射回的光经过分光镜,有一部分 光直接进入光电探测器,当反射器移动 时,这部分光将会在光电探测器上产生 一个偏移值,光电探测器根据偏移值会 自动控制马达转动直到偏移值为零,实 现跟踪反射器的目的。因此当逆反射器 在空间运动时,激光跟踪头能一直跟踪 逆反射器。
测量电路部分
该部分用于读出距离变化量和两个编码器的输出 脉冲数。与计算机之间进行大量的数据交换,计算机 进行数据处理,实时显示运动目标的三维位置。激光 跟踪器头围绕着两根正交轴旋转。每根轴具有一个编 码器用于角度测量和一只直接供电的DC电动机来进行 遥控移动。传感器头包含了一个测量距离差的单频激 光干涉测距仪(IFM),还有一个绝对距离测量的装 置(ADM)。激光束通过安装在倾斜轴和旋转轴交叉 处的一面镜子直指反射器。激光束也用作为仪器的平 行瞄正轴。挨着激光干涉仪的光电探测器(PSD)接 收部分反射光束,使跟踪器跟随反射器。
其中角度值由安装在跟踪头上的两个 编码器给出,距离值由跟踪头中的激 光干涉仪给出
激光跟踪仪工作原理
目标靶镜原理
入射靶镜的光束将沿原路返回
激光跟踪仪测量原理
激光跟踪仪测量原理
激光跟踪仪是一种光学测量仪器,可以实现对移动物体的实时测量和跟踪,支持千兆
米的精准定位,在工业自动化测量中有着广泛的应用。
1、激光发射一束恒定的光线,激光发射器由激光二极管(LD)、光学元件、电源控
制器等组成。
将光源聚焦成一束点聚焦在物体表面上,形成一个可视的小点,用于测量移
动物体的位置和距离。
2、当移动物体出现在小点上时,会反射回一个亮点。
准直镜片将反射回来的光线准直,然后投射到近处的接收仪上。
接收仪上装有探测器,将光信号转换成电信号,然后获
取移动物体的位置信息。
3、激光跟踪仪发射的光线亮度分为定点和移动。
当物体表面发生变化时,它会发出
光波,将反射回来的光波传递到接收仪,然后检测移动物体的位置,实现跟踪。
4、激光跟踪仪经过显示器将信息传输到中央处理器,实时记录和处理移动物体的位置。
由于它可以实时跟踪,所以拥有良好的测量精准性,这又是一种非常有效的测量工具。
总之激光跟踪仪可以实时记录和处理物体的位置信息,具有高精度、实时性和可靠性
等特点,在工业自动化测量中有着广泛的应用。
激光跟踪仪原理
激光跟踪仪原理
激光跟踪仪是一种利用激光技术进行目标跟踪的设备,它在军事、航空航天、船舶、地质勘探等领域都有着重要的应用价值。
激光跟踪仪的原理是基于激光束的发射、接收和信号处理,通过测量目标与仪器之间的距离和方向,实现对目标的精确定位和跟踪。
首先,激光跟踪仪通过激光器发射一束激光束,这个激光束经过光学系统的聚焦和调整后,形成一个细小的光斑,然后照射到目标物体上。
目标物体表面的反射光被接收器接收后,经过光电探测器转换成电信号,再经过信号处理系统进行放大和滤波处理,最终得到目标物体的位置信息。
其次,激光跟踪仪的原理还涉及到光电探测器的工作原理。
光电探测器是将接收到的光信号转换成电信号的装置,它通常由光电二极管、光电倍增管或光电二极管阵列等组成。
当激光束照射到目标物体上并反射回来时,光电探测器会将接收到的光信号转换成电信号,并传输给信号处理系统进行进一步处理。
另外,激光跟踪仪的原理还包括信号处理系统的工作原理。
信号处理系统是将接收到的电信号进行放大、滤波、数字化等处理的
装置,它可以有效地提取出目标物体的位置信息,并进行数据处理和分析。
通过信号处理系统,激光跟踪仪可以实现对目标物体的精确定位和跟踪,为后续的应用提供了可靠的数据支持。
总的来说,激光跟踪仪的原理是基于激光技术和光电技术相结合的成果,它通过激光束的发射、接收和信号处理,实现了对目标物体的精确定位和跟踪。
激光跟踪仪在军事、航空航天、船舶、地质勘探等领域都有着重要的应用前景,它为相关领域的研究和应用提供了重要的技术支持,具有着广阔的发展前景。
FARO三坐标仪
FARO三坐标测量机(激光跟踪仪)Faro空间测量激光跟踪仪通过内置激光干涉器、红外线激光发射器、光靶反射球测量长度、光栅编码器测量水平和仰视角度来实现三维大体积现场测量。
它具有70米的测量范围,超级绝对测量模式(X系列)/ 干涉和绝对测量模式(Xi系列)使测量过程更精确、更灵活,XtremeADM(绝对距离测量、断电续接)功能可保证系统的稳定精确性,是实现您三维大体积测量最先进最方便的仪器。
FARO 空间测量激光跟踪仪系列主机工作原理及特点:使用此测量系统,操作人员只须用三脚架支起激光跟踪仪,并用标靶反光镜接触或沿着测量工件表面移动。
激光跟踪仪投射光束,反光镜将其反射回接收器,计算并记录70米范围内的每个点的位置。
如果激光跟踪仪及靶球之间的光束被意外阻挡,超级绝对测量功能允许在任意位置重新获取光束立即测量,而无需返回参考点。
⌝激光器放在主机体内而非放置在跟踪头上;XtremeADM是全封闭、平衡的设计,光束通过光纤传送 (无反射镜),聚光性稳定性好,无干涉,稳定性好,使用寿命长。
此种设计, 使得垂直和水平的两个主轴安装工艺更合理和可靠。
⌝ XtremeADM功能:具有GPS校准的绝对距离测量、断电续接功能 (反映时间为1/10秒),达到世界上最高的扫描速度,是世界上最快、最先进的ADM系统。
快速芯轴安装可在几秒内完成。
⌝⌝配置智能热键遥控器,语音控制系统可实现单人远程操作。
⌝环境监测传感器和自动环境补偿系统:适时监测环境的变化,修正激光参数,可对主机内及主机附近的大气湿度,空气压力和温度变化自动进行补偿,提高测量系统的精度稳定性,适应更复杂的外部环境。
⌝主机具有3个基准零点,可同时放置3个 (大、中、小) 反射镜标靶,可同时放置3个(大,中,小)反射镜标靶,起到光粑更换架的效果。
实际使用时更方便,提高测量效率。
⌝主机内置的电子水平仪提供精确的水平基准面,可实现主机水平、垂直、倒置、心轴安装等摆放,以实现不同场合的测量要求。
激光跟踪仪-应用介绍
Etalon激光跟踪仪产品介绍背景:数控机床由于其本身的运动比较复杂,因此其运动过程中产生的各种误差相对来说也比较复杂。
现以三轴加工中心为例,其共有21项误差元素,包括3个线性误差,6个直线度误差,3个垂直度误差,3个俯仰角误差,3个偏摆角误差以及3个旋转角误差(见图1所示)。
传统的测量仪器没有考虑俯仰角、偏摆角和旋转角的误差,精度不高,并且机床的体积定位精度的完整检测非常复杂耗时。
Etalon激光跟踪仪的开发成功解决了这一问题,一台三轴机床所有21个误差都能被快速高效的捕捉.线性位移误差:Dx(x)、Dy(y)和Dz(z)水平平面内直线度误差:Dy(x)、Dx(y)和Dx(z)垂直平面内直线度误差:Dz(x)、Dz(y)和Dy(z)旋转角度误差:Ax(x)、Ay(y)和Az(z)俯仰角度误差:Ay(x)、Ax(y)和Ax(z)偏摆角度误差:Az(x)、Ax(y)和Ay(z)垂直度误差:Φxy、Φyz和Φxz图1:3轴数控机床的全部21个误差测量原理:Etalon激光跟踪仪与传统激光干涉仪测量原理最大不同在于,它采用多步法体积定位测量方法对所有21个误差进行测量和捕捉。
按国际标准化组织定义,沿体对角线测得的位移误差是机床21项误差的综合反映,我们可以将沿体对角线方向测得的位移误差看成三个运动轴分别运动时产生的位置误差在体对角线方向的投影,沿每个轴的位移误差有三项,沿X轴的误差为:Dx(x)、Dy(x)、Dz(x),沿Y和Z分别为:Dx(y)、Dy(y)、Dz(y)、Dx(z)、Dy(z)、Dz(z)(如图1所示)。
上述9项位置误差中实际上包含了三个轴运动时产生的所有21项误差(线性位移误差、直线度误差、转角误差、垂直度误差,甚至其它一些非刚体运动误差),因此9项位置误差反映了机床的空间位置精度。
从误差补偿的角度看,对于具有空间位置误差补偿功能的数控系统来说,只要补偿该9项位置误差就相当于补偿了机床的所有几何误差元素对机床位置精度的影响,如补偿X轴的运动误差时,Dx(x)由X轴补偿,Dy(x)、Dz(x) 可分别通过Y、Z轴补偿,因此只要将九项位置误差数据经处理按补偿格式传入数控系统即可实现机床的几何误差补偿,来提高机床体积定位精度。
激光跟踪仪的使用方法及精度评定
激光跟踪仪的使用方法及精度评定激光跟踪仪是一种用于测量物体运动的高精度设备。
它利用激光束对目标进行跟踪和测量,可以广泛应用于工业、医疗、科研等领域。
本文将介绍激光跟踪仪的使用方法及精度评定。
一、激光跟踪仪的使用方法1. 设置仪器:首先,将激光跟踪仪安装在稳固的支架上,并调整好仪器的角度和高度,以确保激光束能够准确照射到目标上。
2. 校准仪器:使用仪器自带的校准装置对激光跟踪仪进行校准,以保证测量结果的准确性。
3. 瞄准目标:将激光束对准需要跟踪的目标,确保激光束能够准确照射到目标上,并调整仪器的焦距,以获得清晰的图像。
4. 开始测量:启动激光跟踪仪,并开始对目标进行跟踪和测量。
仪器会记录下目标的运动轨迹和相关数据。
5. 数据处理与分析:将测量得到的数据导入计算机,利用专业的软件对数据进行处理和分析,得出目标的运动参数和轨迹。
二、激光跟踪仪的精度评定1. 测量精度:激光跟踪仪的测量精度是评估其性能的重要指标。
一般来说,测量精度是指测量结果与真实值之间的偏差。
通过与其他高精度设备的对比测量,可以评定激光跟踪仪的测量精度。
2. 稳定性:激光跟踪仪的稳定性是指在长时间测量过程中,仪器的测量结果是否稳定不变。
通过连续测量同一目标的运动轨迹,并分析测量结果的稳定性,可以评定激光跟踪仪的稳定性。
3. 重复性:激光跟踪仪的重复性是指在多次测量同一目标时,测量结果的一致性程度。
通过多次测量同一目标,对比测量结果的差异,可以评定激光跟踪仪的重复性。
4. 环境适应性:激光跟踪仪在不同环境条件下的测量性能也需要评定。
例如,在强光干扰下或者震动环境下的测量精度是否受到影响等。
激光跟踪仪的使用方法包括设置仪器、校准仪器、瞄准目标、开始测量和数据处理与分析。
而其精度评定则包括测量精度、稳定性、重复性和环境适应性等方面的考量。
通过合理使用和评估激光跟踪仪的性能,可以提高测量的准确性和稳定性,确保其在各个领域的应用效果。
激光跟踪仪靶球原理
激光跟踪仪靶球原理嗨,朋友们!今天咱们来聊一聊激光跟踪仪靶球的原理,这可真是个超级有趣又特别有用的东西呢!我有个朋友叫小李,他在一家精密制造工厂工作。
有一次我去他那儿参观,看到那些工人们用激光跟踪仪来测量一些超精密的零件,那个小小的靶球在整个测量过程中可起着关键的作用。
我当时就特别好奇,这小靶球到底是怎么工作的呢?这就像我们看到一个魔术,急于知道背后的秘密一样。
那咱们就先来了解一下激光跟踪仪吧。
激光跟踪仪就像是一个超级精确的眼睛,它发射出激光束,然后追踪这个靶球的位置。
这个靶球啊,别看它小小的,就像一个神秘的小星球一样,有着独特的结构和原理。
这个靶球的表面是特制的。
你可以把它想象成一个镜子,但又不是普通的镜子哦。
它就像一个特别善于反射光线的小精灵,当激光束照射到它上面的时候,它能够把激光束准确地反射回去。
这就好比是你在山谷里大喊一声,然后山谷准确地把你的声音传回来一样神奇。
那它为什么能这么准确地反射呢?这是因为它的表面是经过特殊设计和处理的,这种处理让它能够和激光完美地配合。
靶球里面也有着大学问呢。
它内部的结构就像是一个精心设计的小迷宫,不过这个迷宫是为了光线而设计的。
光线在里面经过一些特殊的路径反射和折射,最后准确地把信息传递出去。
我当时就想,这是谁这么聪明想出的办法呀?这简直是天才的设计!再来说说这个靶球和激光跟踪仪之间的互动。
激光跟踪仪发射出的激光束就像一根无形的线,而靶球就是线上的小珠子。
激光束不断地在寻找靶球的位置,一旦找到,就紧紧地“抓住”它。
当靶球移动的时候,激光束也会跟着它的移动而改变方向。
这就好像是你拿着一个手电筒,然后去追踪一个会移动的小昆虫一样。
你得时刻调整手电筒的方向,让光一直照在小昆虫身上。
我又问小李,那这个靶球的精度是怎么保证的呢?小李笑着说,这可就复杂了。
他说就像我们建房子,每一块砖都得严丝合缝一样,靶球的每一个部件,每一个设计细节都是为了保证它的高精度。
从它的材料选择,到制作工艺,再到最后的检测,就像一场严格的马拉松比赛,每一个环节都不能出错。
激光跟踪仪工作原理
激光跟踪仪工作原理
激光跟踪仪是一种用于实时跟踪运动物体的设备。
它的工作原理主要包括以下几个步骤:
1. 发射激光:激光跟踪仪内部装有激光发射器,通过控制电路向外发射一束红激光束。
这束激光经过透镜系统后形成一条细长的光线。
2. 照射物体:将激光光线照射到需要跟踪的物体上。
物体表面被激光照射后会反射部分光线,形成一个光斑。
3. 接收光线:激光跟踪仪内部配有接收器,用于接收物体反射回来的光线。
4. 光信号处理:接收器将接收到的光信号转换为电信号,经过一系列信号处理电路进行放大、滤波等处理,以提高信号质量和稳定性。
5. 光斑分析:对接收到的光信号进行分析,从中提取出物体位置信息。
这一过程可以通过计算光线在像平面上的位置或通过计算光斑在图像上的位置来实现。
6. 数据输出:经过计算分析后,激光跟踪仪将跟踪到的物体位置数据输出给用户。
可以通过数字接口(如USB)或模拟接口(如电压输出)将数据传输给计算机或其他设备。
通过不断地发射、照射、接收和分析光信号,激光跟踪仪可以
实时准确地跟踪物体的位置和运动轨迹。
这种技术在虚拟现实、运动分析、工业自动化等领域有着广泛的应用。
激光跟踪仪培训报告
激光跟踪仪培训总结报告培训参加人:所属部门:培训时间:培训报告总结一、激光跟踪仪的基本工作原理、组成、安全注意事项1、激光跟踪仪的基本工作原理激光跟踪测量系统的工作基本原理是在目标点上安置一个反射器,跟踪头发出的激光射到反射器上,又返回到跟踪头,当目标移动时,跟踪头调整光束方向来对准目标.同时,返回光束为检测系统所接收,用来测算目标的空间位置.简单的说,激光跟踪测量系统的所要解决的问题是静态或动态地跟踪一个在空间中运动的点,同时确定目标点的空间坐标2、激光跟踪仪的组成及安全注意事项1、激光跟踪仪的组成1、跟踪头和控制箱2、5M连接电缆用于连接跟踪头与控制箱3、气象站一根1.5米连接线,一个空气温度传感器,一个材料温度传感器,一个大气压传感器4、网线5、球头6、电缆包8、靶球清洁套装9、防尘盖3激光跟踪仪的安全注意事项二、学习激光跟踪仪检验软件和测量软件1.开机之前的方案1.设计测量方案2.跟踪仪校验:前后视、1点QVC、4点QVC等3.使用SpatialAnalyzer 采集测量4.根据测量点集拟合形状5.根据测量和拟合结果使用图形来评价2.激光跟踪仪安装好后校核软件的使用、测量软件的使用1校验软件Trackercal的使用1.开机必须设置计算机IP,否则程序不认同,IP地址设置为2.点击Trackercal软件图标打开软件,选择仪器,点击连接跟踪仪.3.运用前后视检查功能Ctrl+F,检测跟踪仪的前后视偏差,将靶球放置在3M以外的地方固定住,单击前后置检查,若偏差在大于0.0001小于0.0004则需要采用1点QVC,将靶球放置在5M外,单击补偿,若水平和垂直角度偏差大于0.002则需要进行4点QVC误差补偿,补偿方法如下4.QVC实现误差补偿,4点QVC进行全方位补偿,将靶球放回鸟巢后点击fullQVC,根据软件向导进行操作完成补偿,选择四个点ABCD,A点将靶球固定在距离跟踪仪0.5M左右,在0度左右的俯仰角上点击PICKUPTHISPOINT;B点将靶球固定在距离跟踪仪3M左右的范围,在0度左右的俯仰角范围内,点击PICKUPTHISPOINT;C点将靶球固定在距离跟踪仪1M左右,在55°正负5°的俯仰角范围内,I点击PICKUPTHISPOINT;D点将靶球固定在距离跟踪仪1M左右,在负55°正负5°的俯仰角范围内,I点击PICKUPTHISPOINT,保存补偿结果5.补偿操作完成之后再次用前后视检查功能检测结果.2、测量软件SpatialAnalyzer的使用,我们主要学习单点测量、稳定点测量和空间扫描1.打开SA软件并与跟踪仪联机,确定绿灯常亮.2.选中1.5英寸靶球,选择测量,测量有单点测量1把SMR放进跟踪器上标有“0”的磁座里.2点击测量按钮Measure.测量对话框会显示之前输入的参数并报告测量的经过.这个对话框一般会在任何类型的测量中显示.3然后依次把SMR放进编号“1”“2”等的磁座里,至少依次放进4个磁座,这个步骤对以后的测量中很重要.4这样就用单点测量模式完成了单独点集的测量.请注意软件SA中的点,稳定点测量,空间扫描测量,选择其中一种测量模式,配合靶球底座,平稳放置在测量物平面之上,选择合适位置进行测量.如单点测量的话就要一点一点分别点击测量,选择几个点就要点击几次测量;稳定点测量就是等靶球稳定之后跟踪仪会自动测量,只需要点击一次测量就可以了;空间扫描就是点击测量之后它会根据你行走路线及设置,自动采集多个点形成一个轮廓.3.使用“构造”功能,构成一个平面,在上面选择“点位于平面之上”,并更改偏移量,靶球座是多大的就填写多大的,一般我们使用“25.4”.4.使用“查询—多个点—到对象”功能,生成一个矢量组,能够根据图来反映被测平面的凹凸情况.5.使用“关系—几何图形拟合—只进行拟合”功能,生成被测平面的平面度.6.在界面上找到“拍照”功能的按钮,点击拍摄功能,可以有利于生成报告,更好的表达出测量结果.7.将需要的测量结果拖拽到“动态报告”中,生成PDF格式报告.三、参与培训的感受经过这为期三天多的学习Radian激光跟踪仪培训,二次培训更加深对激光跟踪仪的印象,对激光跟踪仪安装及安全规程有了更深的了解,使我学到了现场设备保全的理论知识,还实地的测量了机器人.。
利用激光跟踪仪对机器人进行标定的方法
利用激光跟踪仪对机器人进行标定的方法一、本文概述随着机器人技术的飞速发展,机器人在工业、医疗、军事等领域的应用越来越广泛。
机器人的定位精度和运动性能直接决定了其工作效率和准确性,因此,对机器人进行精确标定至关重要。
激光跟踪仪作为一种高精度测量设备,因其非接触性、高效率和高精度等特点,被广泛应用于机器人标定领域。
本文旨在介绍一种利用激光跟踪仪对机器人进行标定的方法,通过该方法可以实现对机器人位姿参数的精确测量和校准,提高机器人的定位精度和运动性能,为机器人在各领域的应用提供有力支持。
本文首先介绍了机器人标定的基本概念和重要性,以及激光跟踪仪的基本原理和优势。
接着,详细阐述了利用激光跟踪仪对机器人进行标定的具体步骤和方法,包括标定前的准备工作、标定过程中的数据采集和处理、以及标定结果的评估和应用。
本文还讨论了标定过程中可能遇到的问题和解决方法,以确保标定结果的准确性和可靠性。
通过本文的介绍,读者可以深入了解利用激光跟踪仪对机器人进行标定的基本原理和方法,掌握相关技术和应用,为机器人在各领域的应用提供有力支持。
本文也为相关领域的研究人员和技术人员提供了有益的参考和借鉴。
二、激光跟踪仪基本原理及特点激光跟踪仪是一种高精度、非接触式的测量设备,其基本原理基于激光测距和角度测量。
激光跟踪仪通过发射一束激光并追踪其反射光,测量激光发射器与目标点之间的距离。
通过内置的旋转关节和角度编码器,激光跟踪仪可以精确地测定目标点在空间中的方向。
结合距离和方向信息,激光跟踪仪能够计算出目标点在三维坐标系中的精确位置。
激光跟踪仪具有多种显著特点。
其测量精度高,可达到微米级甚至纳米级,适用于对机器人等精密设备的标定工作。
激光跟踪仪的测量速度快,能够实现实时跟踪和测量,提高工作效率。
激光跟踪仪具有非接触式测量的优点,不会对目标点产生任何机械力或热影响,从而避免了可能引起的误差。
激光跟踪仪的操作简单,只需将目标点置于激光束的照射范围内,即可进行自动跟踪和测量,无需复杂的操作和调整。
激光跟踪仪工作原理 -回复
激光跟踪仪工作原理-回复激光跟踪仪是一种用激光束追踪目标物体并测量其位置、速度和方向的仪器。
它广泛应用于航空航天、工业制造、机器人等领域。
本文将详细介绍激光跟踪仪的工作原理,从激光的发射和接收到数据处理的各个环节逐步解析。
一、激光发射激光跟踪仪的第一步是通过激光器产生一束窄束的激光光束。
激光光束具有高能量密度、高定向性和单色性等特点,使其能够长距离传输并保持较小的束腰直径。
激光器通常采用半导体激光器或固体激光器,可以根据不同的应用需求选择合适的光源。
二、光束整形与对准激光光束发出后,需要经过光束整形系统进行整形和对准。
光束整形系统通常由凸透镜、凹透镜和光学透镜组成,它的主要作用是调整激光光束的径向和切向尺寸,并将光束调整到与被跟踪对象重合的位置。
这样可以确保光束能够在被跟踪对象表面形成一个可以被接收器接收到的明亮点,从而提高测量的准确性。
三、光束发射经过光束整形系统整形的激光光束被发射到被跟踪目标物体上。
在目标物体表面,激光光束被反射或散射,并形成一个明亮的点。
这个点代表了激光光束的投射点,它的位置和运动信息可以通过测量来获取。
四、光束接收接收到反射或散射光线后,光束需要进一步经过光学系统捕获和聚焦到接收器上。
光学系统通常包括凸透镜、光电二极管等元件,它们的作用是将接收到的光线集中到接收器上,并转换为电信号。
光电二极管是最常用的光电转换器件之一,它可以将光信号转换为可测量的电压信号。
五、信号处理接收器将电光信号转换为电信号后,需要经过信号处理模块进行进一步的处理和解码。
信号处理模块通常包括放大器、滤波器、模数转换器等,它们的作用是增加信号的强度、滤除噪声和将模拟信号转换为数字信号。
数字信号可以通过计算机或嵌入式系统进行进一步的分析和处理。
六、数据处理最后一步是对接收到的数据进行处理。
数据处理可以根据具体的应用需求而定,可以是实时显示和分析,也可以是导入到其他软件或系统进行进一步的处理和应用。
通过对接收到的信号进行处理,可以得到目标物体的位置、速度和方向等关键信息,从而实现激光跟踪仪的目的。
激光跟踪仪操作指导书rev1.1
文件修订记录激光跟踪仪T3-15操作指导书1 软件名称:Metrolog/SILMA1.1 序列号:No.159541.2 软件授权文件的获取:1.2.1插上软件狗;1.2.2连接外网;1.2.3双击Protection→Web Read→Programmer→installed successfully(提示) ;1.2.4 OK.2 开关机次序2.1 开机次序:电源(黑色)→伺服电机(红色,主机移动时关掉)2.2 关机次序:伺服电机(红色)→电源(黑色)3 网络设置:3.1 IP设置:192.168.0.100 / 255.255.255.03.2 无线路由器IP:192.168.0.110 / 255.255.255.03.2.1用于控制器与电脑的无线连接;3.2.2用于控制器与智能测头的无线连接。
4 配置参数:4.1 初始参数文件:4048.PRM4.2 靶球校准的配置文件:Probe files→API Probes.plp4.3 I-Probe测头文件:4001_IProbe.prm5 预热预热15~30分钟后,跟踪头上红灯不再闪烁(常亮):5.1 ADM:红外激光器,可断光续接;5.2 IFM:双频激光干涉仪,氦氖激光器,断光不能续接;5.3 校准软件:Trackercal 4.12 / 测量软件:Metrolog XG V13.0045.4测量软件:Metrolog XG V13.0045.5 位置坐标:AZ------水平转角EL------俯仰角D ------极径/距离注意:校准软件和测量软件不能同时打开6 环境传感器6.1 大气压力------自动测量6.2 空气温度------自动测量6.3 材料温度------自动测量,人工补偿7 校准软件:Trackercal 4.12使用:Azimuth------方位角Elevation------仰角7.1 3个角度校准空间/前后视/单点7.2 2个距离校准8 测座种类:8.1 SM-TM:定位座,4个,转站用;8.2 ESM:边沿测座,高度偏移25mm;8.3 SSM:平面测座,高度偏移25mm;8.4 SMN:圆柱销座,4个,其中英制圆柱销座(1″)1个,用于测量基准孔中心,也可当ESM边沿测座用8.5 HP:硬尖顶;8.6 SFA:球座(1/4″);8.7 CB:标准球;8.8 2个用途:8.8.1隐蔽点测杆+硬尖顶+英制圆柱销座配合(通过摆动采点构造球)用于测量指定点;8.8.2球座(1/4″)+标准球+加长杆+英制圆柱销座配合,用于测量销孔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概述 1.1激光跟踪测量系统(Laser Tracker System)是工业测量系统中一种高精度的大尺寸测量仪器。
它集合了激光干涉测距技术、光电探测技术、精密机械技术、计算机及控制技术、现代数值计算理论等各种先进技术,对空间运动目标进行跟踪并实时测量目标的空间三维坐标。
它具有高精度、高效率、实时跟踪测量、安装快捷、操作简便等特点,适合于大尺寸工件配装测量。
SMART310 是Leica 公司在1990年生产的第一台激光跟踪仪,1993年Leica公司又推出了SMART310 的第二代产品,其后,Leica 公司还推出了LT/LTD 系列的激光跟踪仪,以满足不同的工业生产需要。
LTD 系列的激光跟踪仪采用了Leica 公司专利的绝对测距仪,测量速度快,精度高,配套的软件则在Leica统一的工业测量系统平台Axyz 下进行开发,包括经纬仪测量模块、全站仪测量模块、激光跟踪仪测量模[8] 。
块和数字摄影测量模块等激光跟踪系统在我国的应用始于1996 年,上飞、沈飞集团在我国第一次引进了SMART310 激光跟踪系统;2005年上海盾构公司引进了Leica 公司的一套LTD600跟踪测量系统,应用于三维管模的检测。
[52] 激光跟踪测量系统的基本原理 1.2 近年来,激光跟踪测量系统的应用领域在不断扩大,很多公司都相继推出了各自品牌的激光跟踪仪,但所有的激光跟踪测量系统基本都是由激光跟踪头(跟踪仪)、控制器、用户计算机、反射器(靶镜)及测量附件等组成的。
在本文中,实验采用的是LTD600激光跟踪测量系统(图2.1 ),因此具体讨论的基本原理是基于LTD600 型的激光跟踪测量系统。
图 2.1 LTD600 激光跟踪测量系统系统的组成1.2.1 激光跟踪仪的实质是一台能激光干涉测距和自动跟踪测角测距的全站仪,区别之处在于它没有望远镜,跟踪头的激光束、旋转镜和旋转轴构成了激光跟踪仪的三个轴,三轴相交的中心是测量坐标系的原点。
它的结构原理如图2.2 所示系统的硬件主要组成部分包括:传感器头、控制器、电动机和传感器电缆、带LAN 电缆的应用计算机以及反射器。
(1)传感器头:读取角度和距离测量值。
激光跟踪器头围绕着两根正交轴旋转。
每根轴具有一个编码器用于角度测量和一只直接供电的DC 电动机来进行遥控移动。
传感器头的油缸包含了一个测量距离差的单频激光干涉测距仪(IFM ),还有一个绝对距离测量装置(ADM )。
激光束通过安装在倾斜轴和旋转轴交叉处的一面镜子直指反射器。
激光束也用作为仪器的平行瞄正轴。
挨着激光干涉仪的光电探测器(PSD)接收部分反射光束,使跟踪器跟随反射器。
图 2.2 激光跟踪仪结构原理图(2)控制器: 包含电源、编码器和干涉仪用计数器、电动机放大器、跟踪处理器和网卡(图2.3 )。
跟踪处理器将跟踪器内的信号转化成角度和距离观测值,通过局域网卡将数据传送到应用计算机上,同理从计算机中发出的指令也可以通过跟踪处理器进行转换再传送给跟踪器,完成测量操作。
图 2.3 控制器(3)电缆:传感器电缆和电动机电缆分别用来完成传感器和电动机与控制器之间的连接。
LAN 电缆则用于跟踪处理器和应用计算机之间的连接。
(4)应用计算机:经过专业人员的配置后,加载了工业用的专业配套软件,用来发出测量指令和接收测量数据。
(5)反射器:采用球形结构,因此测量点到测量面的距离是固定的。
本系统中采用三面正交镜的三重镜反射器。
(6)气象站:记录空气压力和温度。
这些数据需要用来在计算激光反射时是必需的,并通过串行接口被传送给联机的计算机应用程序, 如图2.4。
图 2.4 气象站(7)测量附件:包括三角支架、手推服务小车等。
支架用来固定激光跟踪仪,调整高度,保证各种测量模式的稳定性,且三角支架底座带轮子,可方便地移动激光跟踪仪。
手推服务小车则可装载控制器等设备,运送方便快捷。
[7] 系统的基本原理1.2.2 激光跟踪测量系统的工作基本原理是在目标点上安置一个反射器,跟踪头发出的激光射到反射器上,又返回到跟踪头,当目标移动时,跟踪头调整光束方向来对准目标。
同时,返回光束为检测系统所接收,用来测算目标的空间位置。
简.单的说,激光跟踪测量系统的所要解决的问题是静态或动态地跟踪一个在空间中运动的点,同时确定目标点的空间坐标。
激光跟踪仪的坐标测量是基于极坐标测量原理的(图2.5 )。
测量点的坐标由跟踪头输出的两个角度,即水平角H 和垂直角V ,以及反射器到跟踪头的距离D 计算出来的。
本系统在实际应用中采用的一站法激光跟踪测量系统。
图 2.5 一站法激光跟踪仪坐标测量原理计算公式为:(2.1)系统的工作原理从以下几个部分进行讨论:(1)角度测量部分:其工作原理类似于电子经纬仪、马达驱动式全站仪的角度测量装置,包括水平度盘、垂直度盘、步进马达及读数系统,由于具有跟踪测量技术,它的动态性能较好。
(2)距离测量部分:由IFM 装置和ADM 装置分别进行相对距离测量和绝对距离测量。
IFM 是基于光学干涉法的原理,通过测量干涉条纹的变化来测量距离的变化量,因此只能测量相对距离。
而跟踪头中心到鸟池(图2.6 )的距离是已知固定的,称为基准距离。
ADM 装置的功能就是自动重新初始化IFM ,获取基准距离。
ADM 通过测定反射光的光强最小来判断光所经过路径的时间,来计算出绝对距离。
当反射器从鸟池内开始移动,IFM 测量出移动的相对距离,再加上ADM 测出的基准距离,就能计算出跟踪头中心到空间点的绝对距离。
图 2.6 鸟池(3)激光跟踪控制部分:由光电探测器(PSD)来完成。
反射器反射回的光经过分光镜,有一部分光直接进入光电探测器,当反射器移动时,这部分光将会在光电探测器上产生一个偏移值,光电探测器根据偏移值会自动控制马达转动直到偏移值为零,实现跟踪反射器的目的。
激光跟踪仪的测量精度和系统误差校准方法1.2.3 激光跟踪仪的测量精度主要取决于测角和测距的精度以及测量环境的影响。
以Leica 公司的LTD600型激光跟踪仪为例,它的角度分辨率为0.14 ″,角度测量精度达2.0 ″;单频光外差干涉法测量距离的分辨率为,距离的测,其精度主要受到温度和气压测量精度和变化及大气条件均量精度达匀性的影响,同时,干涉法距离测量的精度还受到基准距离校准精度的影响,因为基准距离校准误差将会成为干涉测距的系统误差;ADM 绝对测距仪采用光偏振的工作原理,它的距离测量分辨率达,在全量程范围内的距离测量精度为,垂直方,水平方向的量测范围达;跟踪仪最大量测距离为向的量测范围为。
在测量范围内,(即IFM);ADM 相对坐标测量精度达到绝对坐标测量精度达到()。
当然系统精度还取决于工作场即地和环境的稳定性,一般要求在室内较稳定的工作条件下。
之前提过激光跟踪仪的三轴,理论上,三轴之间是要保持正交关系,但由于实际的机械加工,安装调整误差和电子零点误差等影响,轴系间不可能到达理想的正交状态,这也是系统误差存在的原因。
[8] 中指出,按物理意义激光跟踪仪角度测量的系统误差在李广云教授的论文分为15类,即有15 个校准参数,分别是:水平轴倾斜误差i、旋转镜倾斜误差c、激光束倾斜误差lx 和ly 、水平轴偏移误差e、旋转镜偏移误差f、激光束偏移误差Ox 和Oy、平行玻璃板偏移误差O2x和O2y、垂直度盘指标差j、水平度盘偏心差Ex 和Ey、垂直度盘偏心差Kx 和Ky。
这些系统误差的检验类似于经纬仪或全站仪的检验,并且在配套的系统软件中已经添置了专门的仪器校准程序,在实际作业中这些参数会被,操作人员只要将测定的误差参数存于应用计算机中自动传送到跟踪仪控制器中,用来补偿修正各类测角测距观测值。
为了简化操作过程,在激光跟踪仪出厂前厂家同时给出了一组校准后的参数供用户参考,但考虑到重新安装、环境变化、长途运输等因素的影响,用户也应自行检测。
校准方法可参考经纬仪等的校准,具体的方法可参考仪器出厂的使用说明书。
不同于经纬仪或全站仪,跟踪仪中有个基准距离,即跟踪头中心到鸟池的距离,基准距离的测定误差称为基距误差C,它属于测距系统误差。
基距误差的测定方法在文献[7] 中提出,选取两个稳定点1、2,两点相距3~4m,确保两点基本与跟踪头处于同一高度,在A,B两点分别设站,分别观测1、2 点的水平角、垂直角、距离三类共12个观测值,根据余弦定理可以计算出C 值。
具体计算公式为:(2.2)两式并整理得:(2.3)式中,(2.4)在实际计算基距误差中,根据图2.7 所示,在A、B两站分别观测1、2 两点,按式(2.3)可以计算得出基距误差C。
图 2.7 基准距离校准方法实际上,C 的值是基准距离的变化部分与反射器常数之和,所以对于不同类型的反射器,C 的值也会发生变化,对于不同的反射器需要分别进行校准。
系统的应用1.2.4 激光跟踪仪配备了高精度的水平和垂直角度编码器,实现精确的角度测量;专利的徕卡激光干涉仪实现精确的相对距离测量;高精度的绝对测距仪则实现快速检测。
这些特点弥补了对大型构件的传统测量方法——经纬仪法的不足之处,例如人工测量的效率相对较低、观测精度差等缺点。
激光跟踪测量系统测量范围大、携带方便、对环境要求不高、适合现场作业等优点,使它的应用领域逐渐扩大。
在重型机械制造业中,大尺寸部件的检测和逆向工程常采用激光跟踪测量系统。
在零部件生产中,该系统可以快速精确地检验每个成品零部件的尺寸是否与设计尺寸完全一致,同时迅速地数字化零部件的物理模型,得到的数字化文件可以用各种方法处理从而得出测量结果。
在机械领域中,逆向工程(Reverse Engineering)是在没有设计图纸或者设计图纸不完整以及没有CAD 模型的情况下,按照现有零件的模型(称为零件原形),利用各种数字化技术及CAD 技术重新构造原形CAD 模型的过程。
CMM是逆向工程中的接触式测量方法,由于激光跟踪测量系统的原理也是基于三维坐标测量的方法,所以这套系统也在逆向工程中应用。
激光跟踪测量系统对工件模型进行扫描测量后建立数据模型,由数据[9] 。
模型生成可以被加工中心识别的加工程序,从而加工出模具三维管片和模具测量系统就是激光跟踪测量系统的一个工程实践应用(图2.8 ),通过跟踪测量已经制成成品的管片各面上的空间点的坐标,经过坐标系转换纠正,将各面上的数据点拟合成平面或曲面,检验管片的尺寸与设计尺寸的偏差,以便判断成品的质量是否合格。
比起传统的检测测量方法,此套系统测量速度快,能在短时间内采集大量空间数据点信息,同时可以直接处理数据,给出成果报表,工作效率高,也大大节省了人力物力,一般只需要一个计算机操控人员及一个手持反射器移动的作业人员。
该套系统同样也适用于制造管片的模具的测量检测。
图 2.8 三维管片和模具测量系统在汽车工业领域中,激光跟踪测量系统常用来在线检测车身、测量汽车外形、汽车工装检具的检测与调整。