0衡水中学物理最经典-物理建模系列(十) 人船模型问题
高三物理二轮复习常考模型微专题复习-人船问题专题(含解析)
人船问题专题一、单选题1.如图所示,质量为m的人,站在质量为M的车的一端,相对于地面静止.当车与地面间的摩擦可以不计时,人由一端走到另一端的过程中,则()A. 人运动得越快,车运动得越慢B. 车的运C. 人在车动方向与人的运动方向相反D. 车的运上行走时,车可以相对地面静止动方向可以与人的运动方向相同2.如图,质量为m的人在质量为M的平板车上从左端走到右端,若不计平板车与地面的摩擦,则下列说法正确的是()A. 人在车上行走时,车将向右运动B. 当人停止走动时,由于车的惯性大,车将继续后退C. 若人越慢地从车的左端走到右端,则车在地面上移动的距离越大D. 不管人在车上行走的速度多大,车在地面上移动的距离都相同3.如图所示,小车(包括固定在小车上的杆)的质量为M,质量为m的小球通过长度为L的轻绳与杆的顶端连接,开始时小车静止在光滑水平面上,现把小球从O点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是()A. 2MLM+m B. 2mLM+mC. MLM+mD. mLM+m4.某人在一只静止的小车上练习打靶,已知车,人,枪(不包括子弹)及靶的总质量为M,枪内装有n颗子弹,每颗子弹的质量均为m,枪口到靶的距离为L,子弹水平射出枪口相对于地面的速度为v,在发射后一颗子弹时,前一颗子弹已嵌入靶中,求发射完n颗子弹时,小车后退的距离为A. mm+M L B. nmm+ML C. nmnm+ML D. mnm+ML5.如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M,顶端高度为h,今有一质量为m的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是()A. mℎM+m B. MℎM+mC. mℎ(M+m)tanαD. Mℎ(M+m)tanα6.有一条捕鱼小船停靠在湖边码头,小船又窄又长,一位同学想用一个卷尺粗略地测定它的质量,他进行了如下操作:首先将小船平行码头自由停泊,然后他轻轻地从船尾上船,走到船头后停下,而后轻轻地下船,用卷尺测出小船后退的距离为d,然后用卷尺测出小船的长为L。
人船模型
动量守恒定律的应用2——人船模型一、“人船模型”问题模型:如图所示,质量为M的小船长L,静止于水面,质量为m 的人从船右端走到船左端,不计水对船的运动阻力,则:该过程中船将移动多远?(1)人匀速行走过程(2)人变速行走过程二、“人船模型”的力学特征人和船构成一个相互作用的系统;人和船在相互作用下各自运动;系统所受的合外力为零,从而系统在运动过程中总动量守恒。
三、“人船模型”的分析思路①系统总动量始终为②系统任一时刻,均有:,所以即使人做变速运动,也有:由此可得:人走船,人停船;人匀速则船,人变速则船。
③上式两端同乘以时间t:④由于人相对船相对的距离为L,所以S1+S2 = L⑤人、船相对于地面移动的距离分别为:思考:若有质量不等的甲乙两人分别站在船头和船尾,他们分别朝船尾和船头行走后互换位置,则船最终会在何处?结论与两人行走的时间长短,行走的运动性质等有关吗?四、“人船模型”变例1、变“人船模型”为“人车模型”例1:如图所示,质量为M,长为L的平板小车静止于光滑水平面上,质量为m的人从车右端走到车左端的过程中,车将后退多少?2、变“水平运动”为“竖直运动”例2:如图,总质量为M的气球下端悬着质量为m的人而静止于高度为h的空中,欲使人能沿着绳安全着地,人下方的绳至少应为多长?3、变“直线运动”为“曲线运动”例3:如图所示,质量为M的滑块静止于光滑水平面上,其上有一个半径为R的光滑半球形凹面轨道,今把质量为m且可视为质点的小球自轨道右测与球心等高处静止释放,求滑块向右运动的最大距离。
4、变“质点模型”为“刚体模型”例4:题与例3相同,只是题中的小球不可视为质点,其半径为r,则仍求滑块向右运动的最大距离。
5、变“两体问题”为“多体问题”例5:某人在船上练习射击,人在船的一端,靶在船的另一端,相距为L,人、船、枪、靶的总质量为M,枪膛里另有质量为m的子弹n发。
当人把所有的子弹全部射入枪靶后(子弹打完后留在靶中),船将会后退多远?6、变“通常情况”为“极端情况”例6:光滑水平面上有个斜面体,其质量为M,底面宽度为b。
高中物理建模:“人船模型”类问题的处理方法
平状态,现给小球一个竖直向上的初速度v0=4 m/s,g取10 m/s2。
(1)若锁定滑块,试求小球通过最高点
P时对轻杆的作用力大小及方向;
(2)若解除对滑块的锁定,试求小球通
过最高点轨道位置点与小球起始位置
点间的距离。
转到解析
t
t
x 人+x 船=L
即 x 人= M L,x 船= m L
M+m
M+m
mv 人-Mv 船=0
2.典例剖析
【思维训练】如图9所示,质量M=2 kg的滑块套在光滑的水平轨道
上,质量m=1 kg的小球通过L=0.5 m的轻质细杆与滑块上的光滑轴O
连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于水
目录页
Contents Page
物理建模: “人船模型”类问题的处理方法
1.模型特点 2.典例剖析
基础课
1.模型特点
1.人船模型的适用条件
物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动
量为0。
2.人船模型的特点
(1)遵从动量守恒定律,如图8所示。
x人 x船
(2)两物体的位移满足:m -M =0
20190529高中物理人船模型例题的动画演示
人船模型之五
下面是针对练习题
( D )1、某人站在静浮于水面的船上,从某时
刻开始人从船头走向船尾,设水的阻力不计,那 么在这段时间内关于人和船的运动情况,下列判 断错误的是: A.人匀速行走,船匀速后退,两者速度大小与 它们的质量成反比。 B.人加速行走,船加速后退,而且加速度大小 与它们的质量成反比。 C.人走走停停,船退退停停,两者动量总和总 是为零。 D.当人从船头走到船尾停止运动后,船由于惯 性还会继续运动一段距离。
人船模型的实质:系统总的重心位置不变。这是因为模 型所属系统最初静止且不受外力作用。
适用条件:⑴系统的总动量守恒或某一方向的动量守 恒。⑵构成系统的原来都静止,因相互作用而运动。
例题1、如图专7—1所示,质量为m1=300 kg 的小船,长为L=3 m,浮在静水中。开 始时质量为m2=60 kg的人站在船尾,人和 船均处于静止状态,若此人从船尾走到船
6、某人在一只静止的船上练习射击,船和人连 枪(不包括子弹)及靶的质量为M,枪内装有n颗 子弹,每颗子弹的质量均为m , 枪口到靶间的距 离为L,子弹射出枪口时对地的速度v, 在发射后一
颗子弹时,前一颗子弹刚好陷入靶中,则发射完 n 颗子弹后,小船后退的距离为多少?
人船模型之二
h
H
绳 长 h
例题3、最初斜面和木箱均静止,后来木箱自光 滑斜面滑下,如图专7—3所示,求木箱滑至斜面 底部时斜面移动的距离。木箱和斜面的质量分别 为m=10 kg 和 M=50 kg 斜面底边长L=1.8 m ,不 计斜面与地面的摩擦力。
人船模型之三 N
S1
S2
例题4、如图专7—4所示,质量为M,半径为R 的光滑半圆弧槽静止在光滑水平面上,有一质量 为m的小球形滑块在与圆心O等高处无初速度滑 下,求:⑴在小滑块滑到圆弧槽最低点的过程中, 圆弧槽产生的位移。⑵在小滑块滑到圆弧槽右侧 最高点的过程中,圆弧槽产生的位移。
高中物理教研论文巧解人船模型问题(最全)word资料
高中物理教研论文巧解人船模型问题(最全)word资料巧解人船模型问题——平均动量守恒定律的应用1.平均动量守恒定律当系统在全过程中动量守恒时,则这一系统在全过程中的平均动量也守恒。
在符合动量守恒的条件下,如果物体做变速运动,为了求解位移,可用平均动量及其守恒规律来处理。
2. 人船模型如果系统是由两(或多)个物体组成的,合外力为零,且相互作用前合动量为零,我们称为人船模型。
(1)一人一船模型:如图1所示人由左端走到右端的过程中, 由动量守恒定律,得 02211=-v m v m由于在全过程动量都守恒,所以有 0211=---v m v m同乘以时间t ,得 0211=---t v m t v m即 2211s m s m =此为一人一船模型的平均动量守恒方程,且知位移与质量成反比。
又由图知 L s s =+21,解得两物体位移分别为L m m m s 2121+= Lm m m s 2112+=(2)二人一船模型:如图2所示,a 、b 两人交换位置过程中,设船c 向左运动,同理可得平均动量守恒定律的方程c c b b a a s m s m s m +=3.一题三法求解人船模型例题 如图2所示,a 、b 两人质量分别为a m 和b m ,船c 的质量为c m ,船长为L ,现在a 、b 交换位置,求船c 在该过程的位移?法1 由二人一船模型得 c c b b a a s m s m s m +=位移关系 L s s c a =+ L s s c b =-联立解得Lm m m m m s cb a ba c ++-=此解法作图较简单,但位移关系和解方程都较复杂。
法2 如图3所示,先令b 不动,a 走到右端,由一人一船模型,得 Lm m m m s cb a ac ++=1再令a 不动,让b 走到左端,在该过程中同理可得L m m m m s cb a bc ++=2由图知L m m m m m s s s cb a ba c c c ++-=-=21此解法把问题化为两个一人一船模型,根据位移和质量的反比关系可直得到结果。
高考物理第一轮考点复习 (9)人船模型和反冲运动学习、解析+练习
人船模型和反冲运动 知识目标一、人船模型1.若系统在整个过程中任意两时刻的总动量相等,则这一系统在全过程中的平均动量也必定守恒。
在此类问题中,凡涉及位移问题时,我们常用“系统平均动量守恒”予以解决。
如果系统是由两个物体组成的,合外力为零,且相互作用前均静止。
相互作用后运动,则由0=m 11v +m 22v 得推论0=m 1s 1+m 2s 2,但使用时要明确s 1、s 2必须是相对地面的位移。
2、人船模型的应用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零.二、反冲运动1、指在系统内力作用下,系统内一部分物体向某发生动量变化时,系统内其余部分物体向相反方向发生动量变化的现象2.研究反冲运动的目的是找反冲速度的规律,求反冲速度的关键是确定相互作用的物体系统和其中各物体对地的运动状态.规律方法1、人船模型及其应用【例1】如图所示,长为l 、质量为M 的小船停在静水中,一个质量为m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?解析:当人从船头走到船尾的过程中,人和船组成的系统在水平方向上不受力的作用,故系统水平方向动量守恒,设某时刻人对地的速度为v 2,船对地的速度为v 1,则mv 2-Mv 1=0,即v 2/v 1=M/m.在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t -Mv 1t=0,即ms 2-Ms 1=0,而s 1+s 2=L 所以1,m s L M m =+2M s L M m=+ 思考:(1)人的位移为什么不是船长?(2)若开始时人船一起以某一速度匀速运动,则还满足s 2/s 1=M/m 吗?【例2】载人气球原静止于高h 的高空,气球质量为M ,人的质量为m .若人沿绳梯滑至地面,则绳梯至少为多长?解析:气球和人原静止于空中,说明系统所受合力为零,故人下滑过程中系统动量守恒,人着地时,绳梯至少应触及地面,因为人下滑过程中,人和气球任意时刻的动量大小都相等,所以整个过程中系统平均动量守恒.若设绳梯长为l ,人沿绳梯滑至地面的时间为 t ,由图4—15可看出,气球对地移动的平均速度为(l -h )/t ,人对地移动的平均速度为-h/t(以向上为正方向).由动量守恒定律,有M (l -h )/t -m h/t=0.解得 l=M m M +h . 答案:Mm M +h 说明:(1)当问题符合动量守恒定律的条件,而又仅涉及位移而不涉及速度时,通常可用平均动量求解.(2)画出反映位移关系的草图,对求解此类题目会有很大的帮助.(3)解此类的题目,注意速度必须相对同一参照物.【例3】如图所示,一质量为m l 的半圆槽体A ,A 槽内外皆光滑,将A 置于光滑水平面上,槽半径为R.现有一质量为m 2的光滑小球B 由静止沿槽顶滑下,设A 和B 均为弹性体,且不计空气阻力,求槽体A 向一侧滑动的最大距离.解析:系统在水平方向上动量守恒,当小球运动到糟的最右端时,糟向左运动的最大距离设为s 1,则m 1s 1=m 2s 2,又因为s 1+s 2=2R,所以21122m s R m m =+ 思考:(1)在槽、小球运动的过程中,系统的动量守恒吗?(2)当小球运动到槽的最右端时,槽是否静止?小球能否运动到最高点?(3)s 1+S 2为什么等于2R,而不是πR?【例4】某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内有n 颗子弹,每颗子弹的质量为m ,枪口到靶的距离为L ,子弹水平射出枪口相对于地的速度为v 0,在发射后一发子弹时,前一发子弹已射入靶中,在射完n 颗子弹时,小船后退的距离为()()()0;;;11mnl nml mnl A B C D M n m M nm M n m⋅⋅⋅⋅+-+++ 解析:设n 颗子弹发射的总时间为t,取n 颗子弹为整体,由动量守恒得nmv 0=Mv 1,即nmv 0t=Mv 1t; 设子弹相对于地面移动的距离为s 1,小船后退的距离为s 2,则有: s 1=v 0t, s 2= v 1t;且s 1+s 2=L 解得:2nml s M nm=+.答案C 【例5】如图所示,质量为m 、半径为R 的小球,放在半径为2R,质量为2m 的大空心球内.大球开始静止在光滑的水平面上,当小球从图示位置无初速度地沿大球壁滚到最低点时,大球移动的距离是多少?解析:设小球相对于地面移动的距离为s 1,大球相对于地面移动的距离为s 2.下落时间为t,则由动量守恒定律得12122;s s m m s s R t t =+=;解得213s R = 【例6】如图所示,长20 m 的木板AB 的一端固定一竖立的木桩,木桩与木板的总质量为10kg ,将木板放在动摩擦因数为μ=0. 2的粗糙水平面上,一质量为40kg 的人从静止开始以a 1=4 m/s 2的加速度从B 端向A 端跑去,到达A 端后在极短时间内抱住木桩(木桩的粗细不计),求:(1)人刚到达A 端时木板移动的距离.(2)人抱住木桩后木板向哪个方向运动,移动的最大距离是多少?(g 取10 m/s 2)解析:(1)由于人与木板组成的系统在水平方向上受的合力不为零,故不遵守动量守恒.设人对地的位移为s 1,木板对地的速度为s 2,木板移动的加速度为a 2,人与木板的摩擦力为F,由牛顿定律得:F=Ma 1=160N;()22160500.210 6.0/10F M m g a m s m μ-+-⨯⨯=== 设人从B 端运动到A 端所用的时间为t,则s 1=½a 1t, s 2=½a 2t; s 1+s 2=20m由以上各式解得t=2.0s,s 2=12m(2)解法一:设人运动到A 端时速度为v 1,木板移动的速度为v 2,则v 1=a 1t=8. 0m/s, v 2=a 2t=12.0m/s,由于人抱住木桩的时间极短,在水平方向系统动量守恒,取人的方向为正方向,则Mv 1-mv 2=(M+m)v,得v=4.0m/s.由此断定人抱住木桩后,木板将向左运动.由动能定理得(M+m)μgs=½(M+m)v 2解得s=4.0m.解法二:对木板受力分析,木板受到地面的摩擦力向左,故产生向左的冲量,因此,人抱住木桩后,系统将向左运动.由系统动量定理得(M +m)μgt=(M+m)v,解得v=4.0m/s由动能定理得(M+m)μgs=½(M+m)v 2解得s=4.0m.2、反冲运动的研究【例7】如图所示,在光滑水平面上质量为M 的玩具炮.以射角α发射一颗质量为m 的炮弹,炮弹离开炮口时的对地速度为v 0。
高中物理“人船模型” 题型解析
高中物理“人船模型” 题型解析作者:安永娟来源:《学周刊·C》2014年第03期摘要:每年高考都牵动了广大师生的心,而高考命题和高考试题则始终是关注的焦点。
就物理这门学科而言,几十年来考查的知识方法范畴几乎没有太大的变化,所以大家都会发现近年来高考物理试卷中真正有新意的题不多,绝大部分是陈题翻新。
本文重点将“人船模型”的题型进行归类解答,为以后遇到此类问题提供解答基础。
关键词:人船模型解答习题高考试题命题组和命题专家们为了突出重围,必然要“标新立意”“挖空心思”和“绞尽脑汁”。
在动量守恒定律一章中最常见的题型就是“人船模型”,下面我对此类问题进行分析解答。
一、人船模型适用条件是由两个物体组成的系统,在水平方向动量守恒例1:载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?解析:气球和人原静止于空中,说明系统所受合力为零,故人下滑过程中系统动量守恒,人着地时,绳梯至少应触及地面。
因为人下滑过程中,人和气球任意时刻的动量大小都相等,所以整个过程中系统平均动量守恒。
若设绳梯长为l,人沿绳梯滑至地面的时间为 t,气球对地移动的平均速度为(l-h)/t,人对地移动的平均速度为-h/t(以向上为正方向)。
根据动量守恒定律,有M(l-h)/t-m h/t=0.解得 l= h. 答案: h说明:(1)当问题符合动量守恒定律的条件,而又仅涉及位移而不涉及速度时,通常可用平均动量求解。
(2)画出反映位移关系的草图,对求解此类题目会有很大的帮助。
(3)解此类的题目,注意速度必须相对同一参照物。
二、人船模型的变形例2:如图(一)气球的质量为M,下面拖一条质量不计的软梯,质量为m的人站在软梯上端距地面为H,气球保持静止状态,求:(1)人安全到地面软梯的最小长度。
(2)若软梯的长为H,则人从软梯上端到下端时,人距地面多高。
解:(1)令气球上升的距离为h,而人对地下降H,根据人船模型的结论有mH=Mh,L=H+h,L=(M+m)H/M(2)令气球上移S1,人下降S2,根据人船模型的结论有:MS1=mS2,S1+S2=H,h1=H-S2,解之得h1=mH/(m+M)例3:如图(二)一个质量为M,底边边长为b的斜形物体静止在光滑的水平面上,有一质量为m的小球由斜面顶部无初速滑到底部时,斜形物体移动的距离是多少?解析:斜形物体和小球组成的系统在水平面不受外力,故在水平方向动量守恒,令S1和S2为m和M对地的位移。
高中物理 人船模型 易懂
重难点 人船模型1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒。
在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比。
这样的问题即为“人船模型”问题。
2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0。
(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1。
(3)应用x 1x 2=v 1v 2=m 2m 1时要注意:v 1、v 2和x 1、x 2一般都是相对地面而言的。
方法讲解例1(第一个层次)如图所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,则船和人相对地面的位移各为多少?解析:因为动量守恒,当人向左运动时,船向右运动。
设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止。
因整个过程中动量守恒,所以有mv 1=Mv 2设整个过程中的平均速度大小为v -1、v -2,则有m v -1=M v -2上式两边乘以时间t ,有m v -1t =M v -2t ,即mx 1=Mx 2且x 1+x 2=L ,解得x 1=M m +M L ,x 2=m m +M L 。
答案:m m +M L M m +ML方法讲解例2(第二个层次)如图所示,船长为2L 、质量为M 的小船停在静水中,在船中央有一个旗杆,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,则船和人相对地面的位移各为多少?解析:因为动量守恒,当人向左运动时,船向右运动。
设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止。
因整个过程中动量守恒,所以有mv 1=Mv 2设整个过程中的平均速度大小为v -1、v -2,则有m v -1=M v -2前半和后半程是一样的;上式两边乘以时间t ,有m v -1t =M v -2t ,即mx 1=Mx 2且x 1+x 2=2L ,解得x 1=2M m +M L ,x 2=2m m +M L 。
高考物理建模之人船模型
高考物理建模之人船模型
在动量守恒定律应用上,人船模型是经典的特例,在近几年高考物理里极为常见,区分度较高。
因此在复习中,人船模型是高中物理专题复习里不容忽视的知识点。
人船模型特点
系统原来处于静止状态,总动量为0,一人(物)或两人(物)运动,会引起另一物体(人)发生相对运动。
系统遵循动量守恒定律,同时两物体的位移存在某种关系。
人船模型规律
设人的质量为m,速度为v1,位移为s1,船的质量为M,速度为v2,位移为s2。
船的长度为L,在水平方向上遵循动量守恒。
1、由动量守恒定律得:
0=mv1-Mv2
化简得:
mv1=Mv2
两边同时乘以t得:
ms1=Ms2
2、两位移存在关系式:
s1+s2=L
联立上述两式得:
s1=ML/(M+m)
s2=mL/(M+m)
常见人船模型
人船模型两个重要推论
1、系统动量守恒时,任意时间内平均动量也守恒;
2、系统动量守恒时,系统质心保持原来静止或匀速直线运动状态不变。
阅读本文的人还阅读:
1、高考物理建模之子弹打穿木块模型
2、高考物理建模之碰撞模型。
高中物理人船模型经典题训
2021/10/10
2
2.一长为L、质量为M的船上两端分别站有甲、 乙两人,质量为m甲、m乙。当两人交换位置后, 船移动距离多大?其中m甲>m乙
作右图,系统动量守恒:
m甲v甲=m乙v乙+Mv 则:m甲s甲=m乙s乙+Ms
s
s甲
且s+L=s乙 s+s甲=L
s乙
联立方程解得:S m甲m乙 L
Mm甲m乙
2021/10/10
6
解:(1)设空车出发后,第n个沙袋未扔前车的 动量为:[M+(n-1)m]Vn,其中Vn为车过第 n个+(n-1)m]Vn 解得:n>34/14=2.4 因为n为整数,故取n=3 (2)同理:[M+3m+(n'- 1)m']Vn'≤m'·2n'Vn' 解得:n'≥8 最后结果是车上有沙袋总数N=3+8=11个。
人与船静止在水面上,人从船头走向船尾,船将对地 有一位移。设人、船质量分别为m、M,船长为L, 设人、船匀速运动速率为v1、v2。
根据动量守恒定律,有:
设m运v1动-时M间v为2=t,0即mv:1mt=v1M=vM2tv,2即ms1=Ms2。
其又中因s1为、ss12+分s别2=是L人,、所船以对:地位移大小。
nS202=1/1n0/1m0 L/(M+nm)
5
5.如图,一排人站在沿x轴的水平轨道旁,原点O两 侧人的序号都记为n(n=1,2,3…)每人只有一个沙 袋,x>0一侧的每个沙袋的质量为m=14kg,x<0 一侧的每个沙袋的质量m'=10kg,一质量为M= 48kg的小车以某初速度从原点出发向正x方向滑行, 不计轨道阻力,当车每经过一人身旁时,此人就把沙 袋以水平速度u朝与车相反的方向沿车面扔到车上, u的大小等于扔此沙袋之前的瞬间车速大小的2n倍(n 是此人的序号数)(1)空车出发后,车上堆积了几个沙 袋时,车反向滑行?(2)车上最终有大小沙袋共多少 个?
2010年经典高中物理模型--人船模型之一
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型” 质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u ,则由动量守恒定律得:m v =Mu由于人在走动过程中任意时刻人和船的速度ν和u 均满足上述关系,所以运动过程中,人和船平均速度大小u ν 和 也应满足相似的关系,即 m ν=M u 而x t ν=,y u t=,所以上式可以转化为: mx=My又有,x+y=L,得: M x L m M=+ m y L m M=+ 以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M的14圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。
高中物理人船模型知识点归纳
高中物理人船模型知识点归纳全文共四篇示例,供读者参考第一篇示例:高中物理人船模型知识点归纳人船模型是物理学教学中经常使用的实验模型之一,通过这个实验可以学习到很多物理知识。
在进行人船模型实验时,可以观察到一些现象和规律,从而帮助学生更好地理解一些物理原理。
以下是关于高中物理人船模型的知识点归纳:1.浮力的作用:在人船模型实验中,我们可以观察到当人站在浮力极小的模型船上时,模型船会下沉,而人站在浮力足够的大的船上时,模型船会浮起。
这是因为浮力是与物体浸没在液体中的体积成正比的,当物体浸没在液体中时,浮力的大小与物体的体积大小有关。
根据浮力的作用,我们可以知道在不同密度的液体中,物体的浮沉情况会有所不同。
2.密度的影响:在人船模型实验中,我们也可以观察到密度对物体的浮沉情况有影响。
在模型船上放入不同密度的物体,可以发现密度越大的物体,模型船下沉的情况会更为明显。
这是因为密度是物体质量与体积的比值,密度越大的物体在液体中受到的浮力越小,从而导致它下沉的情况显著。
3.牛顿第三定律:在人船模型实验中,我们还可以学习到牛顿第三定律的作用。
牛顿第三定律规定了任何两个物体之间的相互作用力是大小相等、方向相反的,这个定律在人船模型实验中也得到了体现。
当人站在模型船上时,在人的重力作用下,模型船受到的向下的推力,从而使得模型船下沉;而在同一时间,模型船也对人施加一个向上的反作用力,使得人站在模型船上时不至于下沉太快。
这个过程中模型船和人之间就体现了牛顿第三定律的作用。
4.平衡力的平衡:在进行人船模型实验时,我们还可以学习到平衡力的平衡原理。
在模型船上放置小石块,可以观察到石块的位置会对模型船的浮沉情况产生影响。
当石块处于船的中心位置时,模型船可以平衡地漂浮在水面上;而当石块位置偏移时,模型船可能会发生倾斜或下沉的情况。
这个现象说明了平衡力的平衡在人船模型实验中的重要性,只有当平衡力平衡时,模型船才能稳定地浮在水面上。
高中物理“人船模型”问题的特点和分析
高中物理“人船模型”问题的特点和分析1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1. (3)应用此关系时要注意一个问题:公式v 1、v 2和x 一般都是相对地面而言的.典例1 如图7所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人相对地面的位移各为多少?图7答案 m m +M L M m +ML 解析 设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止.因整个过程中动量守恒, 所以有m v 1=M v 2.而整个过程中的平均速度大小为v 1、v 2,则有m v 1=M v 2.两边乘以时间t 有m v 1t =M v 2t ,即mx 1=Mx 2.且x 1+x 2=L ,可求出x 1=M m +M L ,x 2=m m +ML . 典例2 如图8所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )图8A.mhM+m B.Mh M+mC.mh(M+m)tan αD.Mh (M+m)tan α答案C解析此题属“人船模型”问题.m与M组成的系统在水平方向上动量守恒,设m在水平方向上对地位移为x1,M在水平方向上对地位移为x2,因此有0=mx1-Mx2. ①且x1+x2=htan α.②由①②可得x2=mh(M+m)tan α,故选C.“人船模型”问题应注意以下两点1.适用条件:(1)系统由两个物体组成且相互作用前静止,系统总动量为零;(2)在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向).2.画草图:解题时要画出各物体的位移关系草图,找出各长度间的关系,注意两物体的位移是相对同一参考系的位移.。
高中物理《动量之人船模型》教学课件
【人快船快、人慢船慢、人停船停、人左船右】
03. 模型分析
情境简化:静止在水面上的小船长为L,质量为M,在船的最右端站有一质量为m的人, 当人从最右端走到最左端的过程中(不计水的阻力)小船移动的距离是多大? 【微元的思想:将全过程分成很多个极短的时段Δt ,每个Δt 内人与船的运动可视为匀速运动】
2、找位移之间的等量关系。
3、根据动量守恒定律列出方程。
4、代入数据求解。
反冲
05. 模型特点——总结归纳
1、速度的关系 :m v人 +M 船 v船=0
人动船动,人静船静,人快船快,人慢船慢,人左船右。
2、距离的关系 :S人 + S船 =L
S人
M mM
L
S船
m mM
L
3、比例的关系
:
v人 v船
S人 S船
M m
人船位移比等于它们质量的反比。 人船平均速度(瞬时速度)比等于它 们质量的反比。
4、适用的条件 :①某一方向上系统的初动量为0 ②在该方向上系统动量守恒
06. 模型拓展
类人船模型
分析该类问题时:画位移大小的等量关系图
07. “类人船模型”判断
1
人沿绳子下滑运动的过程
类人船模型
感受物理学之美
当堂演练
【例题1】西晋史学家陈寿在《三国志》中记载:“置象大船之上,而刻其水痕所 至,称物以载之,则校可知矣。”这就是著名的曹冲称象的故事。某同学欲挑 战曹冲,利用卷尺测定大船的质量。该同学利用卷尺测出船长为L,然后慢速 进入静止的平行于河岸的船的船头,再从船头行走至船尾,之后,慢速下船,
第一章:动量守恒定律 人船模型及应用
高中物理·选择性必修第一册
物理建模系列(十) 人船模型问题
物理建模系列(十) 人船模型问题1.“人船模型”问题的特征:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.运动特点:两个物体的运动特点是“人”走“船”行,“人”停“船”停. 3.处理“人船模型”问题的两个关键:(1)处理思路:利用动量守恒,先确定两物体的速度关系,再确定两物体通过的位移的关系.①用动量守恒定律求位移的题目,大都是系统原来处于静止状态,然后系统内物体相互作用,此时动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率.②此种状态下动量守恒的过程中,任意时刻的系统总动量为零,因此任意时刻的瞬时速率v 1和v 2都与各物体的质量成反比,所以全过程的平均速度也与质量成反比,即有m 1v 1-m 2v 2=0.③如果两物体相互作用的时间为t ,在这段时间内两物体的位移大小分别为x 1和x 2,则有m 1x 1t -m 2x 2t=0,即m 1x 1-m 2x 2=0.(2)画出各物体的位移关系图,找出它们相对地面的位移的关系.4.推广:原来静止的系统在某一个方向上动量守恒,运动过程中,在该方向上速度方向相反,也可应用处理“人船模型”问题的思路来处理.例如,小球沿弧形槽滑下,求弧形槽移动距离的问题.例 长为L 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的黏滞阻力,当人从船头走到船尾的过程中,人和船对地面的位移各是多少?【思路点拨】【解析】 选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v 1,船对地的速率为v 2,根据动量守恒得m v 1-M v 2=0①因为在人从船头走到船尾的整个过程中时刻满足动量守恒,对①式两边同乘以Δt ,得mx 1-Mx 2=0②②式为人对地的位移和船对地的位移关系,由图还可看出: x 1+x 2=L ③联立②③两式得⎩⎨⎧x 1=M M +mLx 2=mM +m L【答案】M M +m L mM +mL[高考真题]1.(2017·课标卷Ⅰ,14)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/sD .6.3×102 kg·m/s【解析】 由于喷气时间短,且不计重力和空气阻力,则火箭和燃气组成的系统动量守恒.燃气的动量p 1=m v =0.05×600 kg·m/s =30 kg·m/s , 则火箭的动量p 2=p 1=30 kg·m/s ,选项A 正确. 【答案】 A2.(2017·课标卷Ⅲ,20)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零【解析】 A 对:前2 s 内物块做初速度为零的匀加速直线运动,加速度a 1=F 1m =22 m/s 2=1 m/s 2,t =1 s 时物块的速率v 1=a 1t 1=1 m/s.B 对:t =2 s 时物块的速率v 2=a 1t 2=2 m/s ,动量大小为p 2=m v 2=4 kg·m/s.C 错:物块在2~4 s 内做匀减速直线运动,加速度的大小a 2=F 2m =0.5 m/s 2,t =3 s 时物块的速率v 3=v 2-a 2t 3=(2-0.5×1)m/s =1.5 m/s ,动量大小p 3=m v 3=3 kg·m/s.D 错:t =4 s 时物块的速度v 4=v 2-a 2t 4=(2-0.5×2)m/s =1 m/s. 【答案】 AB3.(2017·天津卷,4)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是( )A .摩天轮转动过程中,乘客的机械能保持不变B .在最高点时,乘客重力大于座椅对他的支持力C .摩天轮转动一周的过程中,乘客重力的冲量为零D .摩天轮转动过程中,乘客重力的瞬时功率保持不变【解析】 A 错:摩天轮转动过程中,乘客的动能不变,重力势能不断变化,故乘客的机械能不断变化.B 对:乘客在最高点时,具有向下的加速度,处于失重状态.C 错:根据I =Ft 知,重力的冲量不为0.D 错:根据P =mg v cos θ,θ为力方向与速度方向之间的夹角,摩天轮转动过程中,θ不断变化,重力的瞬时功率不断变化.【答案】 B[名校模拟]4.(2018·山东临沂高三上学期期中)如图所示,曲线是某质点只在一恒力作用下的部分运动轨迹.质点从M点出发经P点到达N点,已知质点从M点到P点的路程大于从P点到N点的路程,质点由M点运动到P点与由P点运动到N点的时间相等.下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在M、N间的运动不是匀变速运动C.质点在这两段时间内的动量变化量大小相等,方向相同D.质点在这两段时间内的动量变化量大小不相等,但方向相同【解析】质点在恒力作用下从M到N的过程速度减小,确定是匀变速运动,故A、B均错;由动量定理F·Δt=Δp可知,质点在这两段时间内动量变化量大小相等,方向相同,C对,D错.【答案】 C5.(2018·山东烟台高三上学期期中)A、B两物体的质量之比m A∶m B=2∶1,它们以相同的初速度v0在水平面上在摩擦阻力的作用下做匀减速直线运动,直到停止.则在此过程中,A、B两物体所受摩擦力的冲量之比I A∶I B与A、B两物体克服摩擦力做的功之比W A∶W B分别为()A.4∶12∶1 B.2∶14∶1C.2∶12∶1 D.1∶21∶4【解析】由动量定理可知I=m v,再由动能和动量的关系可知,E k=I22m,所以W A∶W B=(I A∶I B)2·(m B∶m A)=2∶1,故C正确.【答案】 C6.(2018·山东潍坊高三上学期期中)质量为m的子弹,以水平速度v0射入静止在光滑水平面上质量为M的木块,并留在其中.在子弹进入木块过程中,下列说法正确的是() A.子弹动能减少量等于木块动能增加量B.子弹动量减少量等于木块动量增加量C.子弹动能减少量等于子弹和木块内能增加量D.子弹对木块的冲量大于木块对子弹的冲量【解析】子弹动能的减少量一部分转化为系统内能,一部分转化为木块动能,A、C 均错;由动量守恒可知,子弹动量减少量等于木块动量的增加量,B对;力的作用是相互的,故子弹对木块的冲量等于木块对子弹的冲量,D 错.【答案】 B课时作业(十八) [基础小题练]1.如图所示,质量为m 的物体(可视为质点),从h 高处的A 点由静止开始沿斜面下滑,停在水平地面上的B 点(斜面和水平面之间有小圆弧平滑连接).要使物体能原路返回,在B 点需给物体的瞬时冲量最小应是( )A .2m ghB .m gh C.m gh 2D .4m gh【解析】 物体从A 到B 的过程,根据动能定理,有mgh -W f =0,物体从B 返回A 的过程,根据动能定理,有-mgh -W f =0-12m v 2,联立解得v =2gh ,在B 点需给物体的瞬时冲量等于动量的增加量,故I =m v =2m gh ,故A 正确,B 、C 、D 错误.【答案】 A2.下列四幅图所反映的物理过程中,系统动量守恒的是( )【解析】 A 中子弹和木块的系统在水平方向不受外力,竖直方向所受合力为零,系统动量守恒;B 中在弹簧恢复原长过程中,系统在水平方向始终受到墙的作用力,系统动量不守恒;C 中剪断细线后,以整体为研究对象,木球与铁球的系统所受合外力为零,系统动量守恒;D 中木块下滑过程中,斜面始终受挡板作用力,系统动量不守恒.【答案】 AC3.(2018·山东潍坊高三上学期期中)在光滑水平地面上有两个完全相同的弹性小球a 、b ,质量均为m .现b 球静止,a 球向b 球运动,发生弹性正碰.当碰撞过程中达到最大弹性势能E p 时,a 球的速度等于( )A. E pm B . E p2m C .2E p mD .22E pm【解析】 设碰前a 球速度为v 0,弹性势能最大时刻即为两球共速之时,设共同速度为v ,则由动量守恒和能量守恒得:m v 0=(m +m )v ① 12m v 20=12(m +m )v 2+E p ② 由①②两式解得v = E pm,故A 正确. 【答案】 A4.在光滑的水平面上,有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度—时间图象如图所示,下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【解析】 由动量守恒定律得m a v a =m a v a ′+m b v b ′,由于v a ′<0,则b 球获得的动量大于a 球最初的动量.若m a =m b ,则两球交换速度,与图象不符;由E k =p 22m 知,若m a>m b ,则b 球的动能将会大于a 球最初的动能,违背能量守恒定律,则必然满足m a <m b .【答案】 B5.小船相对于静止的湖水以速度v 向东航行.某人将船上两个质量相同的沙袋,以相对于湖水相同的速率v 先后从船上水平向东、向西抛出船外.那么当两个沙袋都被抛出后,小船的速度将( )A .仍为vB .大于vC .小于vD .可能反向【解析】 以两沙袋和船为系统,抛沙袋的过程系统满足动量守恒定律的条件,即(M +2m )v =m v -m v +M v ′,解得v ′=M +2mMv >v ,故B 正确.【答案】 B6.如图所示,静止在光滑水平面上的木板,右端有一根轻质弹簧沿水平方向与木板相连,木板质量M =4 kg.质量m =2 kg 的小铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好到达木板的左端并与木板保持相对静止.在上述过程中弹簧具有的最大弹性势能为( )A .9 JB .12 JC .3 JD .24 J【解析】 当弹簧压缩至最短时,E p 最大,m v 0=(M +m )v ,v =2 m/s ,全程摩擦力做功W f =12m v 20-12(M +m )v 2=24 J ,E p =12m v 20-12(M +m )v 2-W f2=12 J. 【答案】 B[创新导向练]7.动量定理的实际应用——打篮球时的传球技巧篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量【解析】 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B 正确. 【答案】 B8.动量守恒定律在航天科技中的实际应用一质量为M 的航天器,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( )A.v 2-v 0v 1MB .v 2v 2+v 1MC.v 2-v 0v 2+v 1M D .v 2-v 0v 2-v 1M【解析】 规定航天器的速度方向为正方向,由动量守恒定律可得M v 0=(M -m )v 2-m v 1,解得m =v 2-v 0v 2+v 1M ,故C 正确.【答案】 C9.应用动量守恒定律分析碰撞中的实际问题某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知( )A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为7∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的16【解析】 根据s -t 图象的斜率等于速度,可知碰前滑块Ⅰ的速度v 1=-2 m/s ,滑块Ⅱ的速度v 2=0.8 m/s ,则碰前速度大小之比为5∶2,故A 错误;碰撞前后系统动量守恒,碰撞前,滑块Ⅰ的动量为负,滑块Ⅱ的动量为正,由于碰撞后总动量为正,故碰撞前总动量也为正,故碰撞前滑块Ⅰ的动量大小比滑块Ⅱ的小,故B 错误;碰撞后的共同速度为v =0.4 m/s ,根据动量守恒定律,有m 1v 1+m 2v 2=(m 1+m 2)v ,解得m 2=6m 1,由动能的表达式可知,12m 1v 21>12m 2v 22,故C 错误,D 正确.【答案】 D10.应用动量定理分析安全带受力问题质量是60 kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来.已知安全带的缓冲时间是1.2 s ,安全带长5 m ,取g =10 m/s 2,则安全带所受的平均冲力的大小为( )A .500 NB .600 NC .1 100 ND .100 N【解析】 安全带长5 m ,人在这段距离上做自由落体运动,获得速度v =2gh =10 m/s.受安全带的保护经1.2 s 速度减小为0,对此过程应用动量定理,以向上为正方向,有(F -mg )t =0-(-m v ),则F =m vt+mg =1 100 N ,C 正确.【答案】 C[综合提升练]11.(2018·山东潍坊高三上学期期中)如图所示,质量为M 的轨道由上表面粗糙的水平轨道和竖直平面内的半径为R 的14光滑圆弧轨道紧密连接组成,置于光滑水平面上.一质量为m 的小物块以水平初速度v 0由左端滑上轨道,恰能到达圆弧轨道最高点.已知M ∶m =3∶1,物块与水平轨道之间的动摩擦因数为μ.求:(1)小物块到达圆弧轨道最高点时的速度; (2)水平轨道的长度.【解析】 设小物块到达圆弧轨道最高点时速度为v 1(1)从小物块滑上轨道到到达最高点的过程中,由动量守恒定律得m v 0=(M +m )v 1① 联立解得:v 1=14v 0.②(2)由能量守恒定律得:μmgL +mgR +12(m +M )v 21=12m v 20③ 由②③联立得:L =3v 208μg -R μ.④【答案】 (1)14v 0 (2)3v 208μg -R μ12.(2018·山东淄博一中高三上学期期中)如图所示,AOB 是光滑水平轨道,BC 是半径为R 的光滑的14固定圆弧轨道,两轨道恰好相切于B 点.质量为M 的小木块静止在O 点,一颗质量为m 的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C (木块和子弹均看作质点).(1)求子弹射入木块前的速度;(2)若每当小木块返回到O 点或停止在O 点时,立即有一颗相同的子弹射入小木块,并留在其中,则当第17颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【解析】 (1)由子弹射入木块过程动量守恒有m v 0=(m +M )v 1 木块和子弹滑到点C 处的过程中机械能守恒,有 12(m +M )v 21=(m +M )gR 联立两式解得 v 0=M +m m2gR .(2)以后当偶数子弹射中木块时,木块与子弹恰好静止,奇数子弹射中木块时,向右运动.第17颗子弹射中时,由动量守恒定律可知 (M +17m )v =m v 0射入17颗子弹后的木块滑到最高点的过程中机械能守恒,有 12(M +17m )v 2=(M +17m )gH 由以上两式解得 H =(M +m )2(M +17m )2R .【答案】 (1)M +m m 2gR (2)(M +m )2(M +17m )2R。
人船模型(解析版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习
动量守恒的十种模型解读和针对性训练人船模型模型解读1.模型图示2.模型特点(1)两物体满足动量守恒定律:m v 人-M v 船=0。
(2)两物体的位移大小满足:m s 人t -M s 船t =0,s 人+s 船=L 得s 人=M M +m L ,s 船=mM +m L 。
3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右。
(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即s 人s 船=v 人v 船=M m。
“人船模型”的拓展(某一方向动量守恒)【典例分析】【典例】 如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直。
质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑。
以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上。
整个过程凹槽不翻转,重力加速度为g 。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小;(2)凹槽相对于初始时刻运动的距离。
答案 (2)maM +m 解析 (1)小球从静止到第一次运动到轨道最低点的过程,小球和凹槽组成的系统水平方向上动量守恒,有0=m v 1-M v 2mgb =12m v 21+12M v 22联立解得v 2(2)根据人船模型规律,在水平方向上有mx 1=Mx 2又由位移关系知x 1+x 2=a解得凹槽相对于初始时刻运动的距离x 2=ma M +m。
【名师点拨】应用“人船模型”解题的两个关键点(1)“人船模型”的应用条件:相互作用的物体原来都静止,且满足动量守恒条件。
(2)人、船位移大小关系:m 人x 人=m 船x 船,x 人+x 船=L (L 为船的长度)。
【针对性训练】1. (2024河南名校联考).如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在平静的池中某处,木块上表面距离水面的竖直距离为h 。
高中物理人船模型知识点归纳
高中物理人船模型知识点归纳全文共四篇示例,供读者参考第一篇示例:高中物理人船模型知识点归纳人船模型是一种常见的物理实验器材,用于研究浮力、压力等物理现象。
在高中物理教学中,人船模型是一个重要的学习工具,通过实验操作,学生可以更直观地了解浮力和压力的原理和应用。
下面我们将对高中物理人船模型的知识点进行归纳和总结,希望能帮助同学们更好地掌握这一重要实验内容。
一、浮力的原理浮力是指液体或气体对浸入其中的物体的向上的支持力。
根据阿基米德原理,浮力大小等于排挤的液体的重量,方向垂直向上。
在人船模型实验中,我们可以通过调节水面上的人船的放水量,观察人船的浮沉情况,来验证浮力的原理。
二、浮力的计算浮力的大小可以通过以下公式来计算:F=ρVgF表示浮力的大小,ρ表示液体的密度,V表示物体的体积,g表示重力加速度。
在实验中,我们可以通过称量水的重量,并根据液体的密度和重力加速度的数值,计算出物体的浮力大小。
三、浮力的应用浮力是人船模型实验的重要内容之一,通过实验操作,我们可以了解浮力的原理和应用,比如船只在水面上浮沉的原因、潜水艇的下潜和浮起等现象。
浮力的应用还涵盖了许多实际生活中的场景,比如气球、潜水器等设备的设计和制造,都需要考虑浮力对物体的支持作用。
压力是指单位面积上所受的力,通常用P表示,计量单位为帕斯卡(Pa)。
根据压力的定义,压强和压力有着密切的关系,可以通过以下公式来计算:P=F/AP表示压强,F表示作用力,A表示面积。
在人船模型实验中,我们可以通过在人船上施加外力,调节重物的放置位置,来观察人船表面的压强分布情况。
五、浮力和压力的关系浮力和压力是密切相关的物理现象,在液体中,物体受到的浮力大小和液体的密度、物体的体积以及重力加速度有关;而压力是液体对物体作用的力,并受到液体的密度和液体的深度的影响。
在人船模型实验中,我们可以通过调节水面上的人船和水面之间的距离,探究浮力和压力之间的关系,进一步加深对这两个物理现象的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理建模系列(十) 人船模型问题1.“人船模型”问题的特征:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.运动特点:两个物体的运动特点是“人”走“船”行,“人”停“船”停. 3.处理“人船模型”问题的两个关键:(1)处理思路:利用动量守恒,先确定两物体的速度关系,再确定两物体通过的位移的关系.①用动量守恒定律求位移的题目,大都是系统原来处于静止状态,然后系统内物体相互作用,此时动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率.②此种状态下动量守恒的过程中,任意时刻的系统总动量为零,因此任意时刻的瞬时速率v 1和v 2都与各物体的质量成反比,所以全过程的平均速度也与质量成反比,即有m 1v 1-m 2v 2=0.③如果两物体相互作用的时间为t ,在这段时间内两物体的位移大小分别为x 1和x 2,则有m 1x 1t -m 2x 2t=0,即m 1x 1-m 2x 2=0.(2)画出各物体的位移关系图,找出它们相对地面的位移的关系.4.推广:原来静止的系统在某一个方向上动量守恒,运动过程中,在该方向上速度方向相反,也可应用处理“人船模型”问题的思路来处理.例如,小球沿弧形槽滑下,求弧形槽移动距离的问题.例 长为L 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的黏滞阻力,当人从船头走到船尾的过程中,人和船对地面的位移各是多少?【思路点拨】【解析】 选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v 1,船对地的速率为v 2,根据动量守恒得m v 1-M v 2=0①因为在人从船头走到船尾的整个过程中时刻满足动量守恒,对①式两边同乘以Δt ,得mx 1-Mx 2=0②②式为人对地的位移和船对地的位移关系,由图还可看出: x 1+x 2=L ③联立②③两式得⎩⎨⎧x 1=M M +mLx 2=mM +m L【答案】M M +m L mM +mL[高考真题]1.(2017·课标卷Ⅰ,14)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/sD .6.3×102 kg·m/s【解析】 由于喷气时间短,且不计重力和空气阻力,则火箭和燃气组成的系统动量守恒.燃气的动量p 1=m v =0.05×600 kg·m/s =30 kg·m/s , 则火箭的动量p 2=p 1=30 kg·m/s ,选项A 正确. 【答案】 A2.(2017·课标卷Ⅲ,20)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零【解析】 A 对:前2 s 内物块做初速度为零的匀加速直线运动,加速度a 1=F 1m =22 m/s 2=1 m/s 2,t =1 s 时物块的速率v 1=a 1t 1=1 m/s.B 对:t =2 s 时物块的速率v 2=a 1t 2=2 m/s ,动量大小为p 2=m v 2=4 kg·m/s.C 错:物块在2~4 s 内做匀减速直线运动,加速度的大小a 2=F 2m =0.5 m/s 2,t =3 s 时物块的速率v 3=v 2-a 2t 3=(2-0.5×1)m/s =1.5 m/s ,动量大小p 3=m v 3=3 kg·m/s.D 错:t =4 s 时物块的速度v 4=v 2-a 2t 4=(2-0.5×2)m/s =1 m/s. 【答案】 AB3.(2017·天津卷,4)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是( )A .摩天轮转动过程中,乘客的机械能保持不变B .在最高点时,乘客重力大于座椅对他的支持力C .摩天轮转动一周的过程中,乘客重力的冲量为零D .摩天轮转动过程中,乘客重力的瞬时功率保持不变【解析】 A 错:摩天轮转动过程中,乘客的动能不变,重力势能不断变化,故乘客的机械能不断变化.B 对:乘客在最高点时,具有向下的加速度,处于失重状态.C 错:根据I =Ft 知,重力的冲量不为0.D 错:根据P =mg v cos θ,θ为力方向与速度方向之间的夹角,摩天轮转动过程中,θ不断变化,重力的瞬时功率不断变化.【答案】 B[名校模拟]4.(2018·山东临沂高三上学期期中)如图所示,曲线是某质点只在一恒力作用下的部分运动轨迹.质点从M点出发经P点到达N点,已知质点从M点到P点的路程大于从P点到N点的路程,质点由M点运动到P点与由P点运动到N点的时间相等.下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在M、N间的运动不是匀变速运动C.质点在这两段时间内的动量变化量大小相等,方向相同D.质点在这两段时间内的动量变化量大小不相等,但方向相同【解析】质点在恒力作用下从M到N的过程速度减小,确定是匀变速运动,故A、B均错;由动量定理F·Δt=Δp可知,质点在这两段时间内动量变化量大小相等,方向相同,C对,D错.【答案】 C5.(2018·山东烟台高三上学期期中)A、B两物体的质量之比m A∶m B=2∶1,它们以相同的初速度v0在水平面上在摩擦阻力的作用下做匀减速直线运动,直到停止.则在此过程中,A、B两物体所受摩擦力的冲量之比I A∶I B与A、B两物体克服摩擦力做的功之比W A∶W B分别为()A.4∶12∶1 B.2∶14∶1C.2∶12∶1 D.1∶21∶4【解析】由动量定理可知I=m v,再由动能和动量的关系可知,E k=I22m,所以W A∶W B=(I A∶I B)2·(m B∶m A)=2∶1,故C正确.【答案】 C6.(2018·山东潍坊高三上学期期中)质量为m的子弹,以水平速度v0射入静止在光滑水平面上质量为M的木块,并留在其中.在子弹进入木块过程中,下列说法正确的是() A.子弹动能减少量等于木块动能增加量B.子弹动量减少量等于木块动量增加量C.子弹动能减少量等于子弹和木块内能增加量D.子弹对木块的冲量大于木块对子弹的冲量【解析】子弹动能的减少量一部分转化为系统内能,一部分转化为木块动能,A、C 均错;由动量守恒可知,子弹动量减少量等于木块动量的增加量,B对;力的作用是相互的,故子弹对木块的冲量等于木块对子弹的冲量,D 错.【答案】 B课时作业(十八) [基础小题练]1.如图所示,质量为m 的物体(可视为质点),从h 高处的A 点由静止开始沿斜面下滑,停在水平地面上的B 点(斜面和水平面之间有小圆弧平滑连接).要使物体能原路返回,在B 点需给物体的瞬时冲量最小应是( )A .2m ghB .m gh C.m gh 2D .4m gh【解析】 物体从A 到B 的过程,根据动能定理,有mgh -W f =0,物体从B 返回A 的过程,根据动能定理,有-mgh -W f =0-12m v 2,联立解得v =2gh ,在B 点需给物体的瞬时冲量等于动量的增加量,故I =m v =2m gh ,故A 正确,B 、C 、D 错误.【答案】 A2.下列四幅图所反映的物理过程中,系统动量守恒的是( )【解析】 A 中子弹和木块的系统在水平方向不受外力,竖直方向所受合力为零,系统动量守恒;B 中在弹簧恢复原长过程中,系统在水平方向始终受到墙的作用力,系统动量不守恒;C 中剪断细线后,以整体为研究对象,木球与铁球的系统所受合外力为零,系统动量守恒;D 中木块下滑过程中,斜面始终受挡板作用力,系统动量不守恒.【答案】 AC3.(2018·山东潍坊高三上学期期中)在光滑水平地面上有两个完全相同的弹性小球a 、b ,质量均为m .现b 球静止,a 球向b 球运动,发生弹性正碰.当碰撞过程中达到最大弹性势能E p 时,a 球的速度等于( )A. E pm B . E p2m C .2E p mD .22E pm【解析】 设碰前a 球速度为v 0,弹性势能最大时刻即为两球共速之时,设共同速度为v ,则由动量守恒和能量守恒得:m v 0=(m +m )v ① 12m v 20=12(m +m )v 2+E p ② 由①②两式解得v = E pm,故A 正确. 【答案】 A4.在光滑的水平面上,有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度—时间图象如图所示,下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【解析】 由动量守恒定律得m a v a =m a v a ′+m b v b ′,由于v a ′<0,则b 球获得的动量大于a 球最初的动量.若m a =m b ,则两球交换速度,与图象不符;由E k =p 22m 知,若m a>m b ,则b 球的动能将会大于a 球最初的动能,违背能量守恒定律,则必然满足m a <m b .【答案】 B5.小船相对于静止的湖水以速度v 向东航行.某人将船上两个质量相同的沙袋,以相对于湖水相同的速率v 先后从船上水平向东、向西抛出船外.那么当两个沙袋都被抛出后,小船的速度将( )A .仍为vB .大于vC .小于vD .可能反向【解析】 以两沙袋和船为系统,抛沙袋的过程系统满足动量守恒定律的条件,即(M +2m )v =m v -m v +M v ′,解得v ′=M +2mMv >v ,故B 正确.【答案】 B6.如图所示,静止在光滑水平面上的木板,右端有一根轻质弹簧沿水平方向与木板相连,木板质量M =4 kg.质量m =2 kg 的小铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好到达木板的左端并与木板保持相对静止.在上述过程中弹簧具有的最大弹性势能为( )A .9 JB .12 JC .3 JD .24 J【解析】 当弹簧压缩至最短时,E p 最大,m v 0=(M +m )v ,v =2 m/s ,全程摩擦力做功W f =12m v 20-12(M +m )v 2=24 J ,E p =12m v 20-12(M +m )v 2-W f2=12 J. 【答案】 B[创新导向练]7.动量定理的实际应用——打篮球时的传球技巧篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量【解析】 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B 正确. 【答案】 B8.动量守恒定律在航天科技中的实际应用一质量为M 的航天器,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( )A.v 2-v 0v 1MB .v 2v 2+v 1MC.v 2-v 0v 2+v 1M D .v 2-v 0v 2-v 1M【解析】 规定航天器的速度方向为正方向,由动量守恒定律可得M v 0=(M -m )v 2-m v 1,解得m =v 2-v 0v 2+v 1M ,故C 正确.【答案】 C9.应用动量守恒定律分析碰撞中的实际问题某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知( )A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为7∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的16【解析】 根据s -t 图象的斜率等于速度,可知碰前滑块Ⅰ的速度v 1=-2 m/s ,滑块Ⅱ的速度v 2=0.8 m/s ,则碰前速度大小之比为5∶2,故A 错误;碰撞前后系统动量守恒,碰撞前,滑块Ⅰ的动量为负,滑块Ⅱ的动量为正,由于碰撞后总动量为正,故碰撞前总动量也为正,故碰撞前滑块Ⅰ的动量大小比滑块Ⅱ的小,故B 错误;碰撞后的共同速度为v =0.4 m/s ,根据动量守恒定律,有m 1v 1+m 2v 2=(m 1+m 2)v ,解得m 2=6m 1,由动能的表达式可知,12m 1v 21>12m 2v 22,故C 错误,D 正确.【答案】 D10.应用动量定理分析安全带受力问题质量是60 kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来.已知安全带的缓冲时间是1.2 s ,安全带长5 m ,取g =10 m/s 2,则安全带所受的平均冲力的大小为( )A .500 NB .600 NC .1 100 ND .100 N【解析】 安全带长5 m ,人在这段距离上做自由落体运动,获得速度v =2gh =10 m/s.受安全带的保护经1.2 s 速度减小为0,对此过程应用动量定理,以向上为正方向,有(F -mg )t =0-(-m v ),则F =m vt+mg =1 100 N ,C 正确.【答案】 C[综合提升练]11.(2018·山东潍坊高三上学期期中)如图所示,质量为M 的轨道由上表面粗糙的水平轨道和竖直平面内的半径为R 的14光滑圆弧轨道紧密连接组成,置于光滑水平面上.一质量为m 的小物块以水平初速度v 0由左端滑上轨道,恰能到达圆弧轨道最高点.已知M ∶m =3∶1,物块与水平轨道之间的动摩擦因数为μ.求:(1)小物块到达圆弧轨道最高点时的速度; (2)水平轨道的长度.【解析】 设小物块到达圆弧轨道最高点时速度为v 1(1)从小物块滑上轨道到到达最高点的过程中,由动量守恒定律得m v 0=(M +m )v 1① 联立解得:v 1=14v 0.②(2)由能量守恒定律得:μmgL +mgR +12(m +M )v 21=12m v 20③ 由②③联立得:L =3v 208μg -R μ.④【答案】 (1)14v 0 (2)3v 208μg -R μ12.(2018·山东淄博一中高三上学期期中)如图所示,AOB 是光滑水平轨道,BC 是半径为R 的光滑的14固定圆弧轨道,两轨道恰好相切于B 点.质量为M 的小木块静止在O 点,一颗质量为m 的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C (木块和子弹均看作质点).(1)求子弹射入木块前的速度;(2)若每当小木块返回到O 点或停止在O 点时,立即有一颗相同的子弹射入小木块,并留在其中,则当第17颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【解析】 (1)由子弹射入木块过程动量守恒有m v 0=(m +M )v 1 木块和子弹滑到点C 处的过程中机械能守恒,有 12(m +M )v 21=(m +M )gR 联立两式解得 v 0=M +m m2gR .(2)以后当偶数子弹射中木块时,木块与子弹恰好静止,奇数子弹射中木块时,向右运动.第17颗子弹射中时,由动量守恒定律可知 (M +17m )v =m v 0射入17颗子弹后的木块滑到最高点的过程中机械能守恒,有 12(M +17m )v 2=(M +17m )gH 由以上两式解得 H =(M +m )2(M +17m )2R .【答案】 (1)M +m m 2gR (2)(M +m )2(M +17m )2R。