用Matlab实现遗传算法

合集下载

用MATLAB实现遗传算法程序

用MATLAB实现遗传算法程序

用MATLAB实现遗传算法程序一、本文概述遗传算法(Genetic Algorithms,GA)是一种模拟自然界生物进化过程的优化搜索算法,它通过模拟自然选择和遗传学机制,如选择、交叉、变异等,来寻找问题的最优解。

由于其全局搜索能力强、鲁棒性好以及易于实现并行化等优点,遗传算法在多个领域得到了广泛的应用,包括函数优化、机器学习、神经网络训练、组合优化等。

本文旨在介绍如何使用MATLAB实现遗传算法程序。

MATLAB作为一种强大的数学计算和编程工具,具有直观易用的图形界面和丰富的函数库,非常适合用于遗传算法的实现。

我们将从基本的遗传算法原理出发,逐步介绍如何在MATLAB中编写遗传算法程序,包括如何定义问题、编码、初始化种群、选择操作、交叉操作和变异操作等。

通过本文的学习,读者将能够掌握遗传算法的基本原理和MATLAB编程技巧,学会如何使用MATLAB实现遗传算法程序,并能够在实际问题中应用遗传算法求解最优解。

二、遗传算法基础遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传学机制的优化搜索算法。

它借鉴了生物进化中的遗传、交叉、变异等机制,通过模拟这些自然过程来寻找问题的最优解。

遗传算法的核心思想是将问题的解表示为“染色体”,即一组编码,然后通过模拟自然选择、交叉和变异等过程,逐步迭代搜索出最优解。

在遗传算法中,通常将问题的解表示为一个二进制字符串,每个字符串代表一个个体(Individual)。

每个个体都有一定的适应度(Fitness),适应度越高的个体在下一代中生存下来的概率越大。

通过选择(Selection)、交叉(Crossover)和变异(Mutation)等操作,生成新一代的个体,并重复这一过程,直到找到满足条件的最优解或达到预定的迭代次数。

选择操作是根据个体的适应度,选择出适应度较高的个体作为父母,参与下一代的生成。

常见的选择算法有轮盘赌选择(Roulette Wheel Selection)、锦标赛选择(Tournament Selection)等。

利用MATLAB实现遗传算法和MATLAB神经网络工具箱的使用

利用MATLAB实现遗传算法和MATLAB神经网络工具箱的使用

实验一利用MATLAB实现遗传算法一、实验目的1、熟悉MATLAB语言编程环境2、掌握MATLAB语言命令3、学会利用MATLAB编程实现遗传算法二、实验原理MATLAB是美国Math Works公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,MATLAB可以进展矩阵运算、绘制函数和数据、实现算法、创立用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计等领域。

通过学习遗传算法原理,使用MATLAB编写程序,实现其求解策略。

三、实验内容通过MATLAB编程,利用遗传算法求解:xx=求[-2,2]f-)(f.x,max∈exp05xsin(),.0)(x)200(三、实验要求1、程序设计2、调试3、实验结果4、撰写实验报告实验二 MATLAB神经网络工具箱的使用一、实验目的1、掌握MATLAB语言命令2、提高MATLAB程序设计能力3、学会使用MATLAB神经网络工具箱二、实验原理MATLAB语言是Math Works公司推出的一套高性能计算机编程语言,集数学计算、图形显示、语言设计于一体,其强大的扩展功能为用户提供了广阔的应用空间。

它附带有30多个工具箱,神经网络工具箱就是其中之一。

利用该工具箱可以方便的构建神经网络的构造模型、设计、训练等,实现神经网络算法。

三、实验内容通过MATLAB编程,利用神经网络工具箱预测公路运量:公路运量主要包括公路客运量和公路货运量两个方面。

据研究,某地区的公路运量主要与该地区的人数、机动车数量和公路面积有关,上表给出了该地区20年的公路运量相关数据。

根据有关部门数据,该地区2021和2021年的人数分别为73.39和75.55万人,机动车数量分别为3.9635和4.0975万辆,公路面积分别为0.9880和1.0268万平方千米。

请利用BP网络预测该地区2021和2021年的公路客运量和公路货运量。

matlab遗传算法 算例

matlab遗传算法 算例

下面是一个使用MATLAB实现的基本遗传算法算例。

本例用于解决简单的优化问题:寻找函数f(x) = x^2在[-10,10]范围内的最小值。

```matlab定义问题参数PopSize = 100; 种群数量Genes = -10:0.1:10; 基因范围FitnessFunc = @(x) -x.^2; 适应度函数(这里为了方便,使用了-x^2,即求最大值,实际应用中应改为-f(x))MaxGen = 50; 最大迭代次数初始化种群Pop = zeros(PopSize, length(Genes));for i = 1:PopSizePop(i,:) = rand(1,length(Genes))*2*Genes - Genes; 随机产生初始种群end开始迭代for gen = 1:MaxGen计算当前种群适应度Fitness = FitnessFunc(Pop);[BestFit, Index] = max(Fitness); 找到最佳适应度BestFitPos = Pop(Index,:); 找到最佳适应度对应的基因选择(轮盘赌选择)NewPop = zeros(PopSize, length(Genes));SumFitness = sum(Fitness);RandomFitness = rand(PopSize,1)*SumFitness; 随机生成每个个体的"随机适应度"for i = 1:PopSize[~, Index] = min(RandomFitness); 用随机适应度进行选择(越小被选中概率越大)NewPop(i,:) = Pop(Index,:); 将选择出的个体放入新种群RandomFitness(Index) = SumFitness; 将已选择的个体的随机适应度设为最大值,避免重复选择end交叉(杂交)for i = 1:PopSize/2随机选择两个父代个体Parent1 = NewPop(randi([1 PopSize]),:);Parent2 = NewPop(randi([1 PopSize]),:);生成新个体Child1 = (Parent1 + Parent2)/2; 中间值交叉Child2 = Parent1 + (Parent2 - Parent1)*rand; 一点交叉将新个体加入新种群NewPop((i-1)*2+1,:) = Child1;NewPop((i-1)*2+2,:) = Child2;end变异for i = 1:PopSizeif rand < 0.01 变异概率为0.01随机选择一个基因进行变异(取反)GeneIdx = randi(length(Genes));NewPop(i,GeneIdx) = ~NewPop(i,GeneIdx);endend更新种群Pop = NewPop;end输出结果BestFit = FitnessFunc(BestFitPos);fprintf('Best fitness: f\n', BestFit);fprintf('Best position: s\n', num2str(BestFitPos));```这个例子比较简单,只用了基本的遗传算法操作:选择、交叉和变异。

Matlab遗传算法及实例

Matlab遗传算法及实例

Matlab遗传算法及实例Matlab遗传算法工具箱函数及实例讲解转:最近硏究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。

还好用遗传算法的工具箱予以实现了,期间也遇到了许多问题。

借此与大家分享一下。

首先,我们要熟悉遗传算法的基本原理与运算流程。

基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。

它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。

它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。

遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。

从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。

如此模仿生命的进化进行不断演化,直到满足期望的终止条件。

运算流程:Step 1 :对遗传算法的运行参数进行赋值。

参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。

Step 2 :建立区域描述器。

根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。

Step 3 :在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。

Step 4 :执行比例选择算子进行选择操作。

Step 5 :按交叉概率对交叉算子执行交叉操作。

Step 6 :按变异概率执行离散变异操作。

Step 7 :计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。

Step 8 :判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果其次,运用遗传算法工具箱。

运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。

目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学幵发的遗传算法工具箱GATBXGAOT以及Math Works公司推出的GADS实际上,GAD鉞是大家所看到的Matlab中自带的工具箱。

遗传算法及其MATLAB程序

遗传算法及其MATLAB程序

遗传算法及其MATLAB实现主要内容遗传算法简介遗传算法的MATLAB实现应用举例一、遗传算法简介遗传算法(Genetic Algorithm,GA)最先是由美国Mic-hgan大学的John Holland于1975年提出的。

遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。

它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。

遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。

其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等5个要素组成了遗传算法的核心内容。

遗传算法的基本步骤:遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从一组随机产生的称为“种群(Population)”的初始解开始搜索过程。

种群中的每个个体是问题的一个解,称为“染色体(chromos ome)”。

染色体是一串符号,比如一个二进制字符串。

这些染色体在后续迭代中不断进化,称为遗传。

在每一代中用“适值(fitness)”来测量染色体的好坏,生成的下一代染色体称为后代(offspring)。

后代是由前一代染色体通过交叉(crossover)或者变异(mutation)运算形成的。

在新一代形成过程中,根据适度的大小选择部分后代,淘汰部分后代。

从而保持种群大小是常数。

适值高的染色体被选中的概率较高,这样经过若干代之后,算法收敛于最好的染色体,它很可能就是问题的最优解或次优解。

主要步骤如下所示:(1)编码:GA在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合便构成了不同的点。

(2)初始群体的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个个体构成了—个群体。

GA以这N个串结构数据作为初始点开始迭代。

遗传算法matlab代码

遗传算法matlab代码

function youhuafunD=code;N=50; % Tunablemaxgen=50; % Tunablecrossrate=0.5; %Tunablemuterate=0.08; %Tunablegeneration=1;num = length(D);fatherrand=randint(num,N,3);score = zeros(maxgen,N);while generation<=maxgenind=randperm(N-2)+2; % 随机配对交叉A=fatherrand(:,ind(1:(N-2)/2));B=fatherrand(:,ind((N-2)/2+1:end));% 多点交叉rnd=rand(num,(N-2)/2);ind=rnd tmp=A(ind);A(ind)=B(ind);B(ind)=tmp;% % 两点交叉% for kk=1:(N-2)/2% rndtmp=randint(1,1,num)+1;% tmp=A(1:rndtmp,kk);% A(1:rndtmp,kk)=B(1:rndtmp,kk);% B(1:rndtmp,kk)=tmp;% endfatherrand=[fatherrand(:,1:2),A,B];% 变异rnd=rand(num,N);ind=rnd [m,n]=size(ind);tmp=randint(m,n,2)+1;tmp(:,1:2)=0;fatherrand=tmp+fatherrand;fatherrand=mod(fatherrand,3);% fatherrand(ind)=tmp;%评价、选择scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数score(generation,:)=scoreN;[scoreSort,scoreind]=sort(scoreN);sumscore=cumsum(scoreSort);sumscore=sumscore./sumscore(end);childind(1:2)=scoreind(end-1:end);for k=3:N tmprnd=rand;tmpind=tmprnd difind=[0,diff(tmpind)];if ~any(difind)difind(1)=1;endchildind(k)=scoreind(logical(difind));endfatherrand=fatherrand(:,childind);generation=generation+1;end% scoremaxV=max(score,[],2);minV=11*300-maxV;plot(minV,'*');title('各代的目标函数值');F4=D(:,4);FF4=F4-fatherrand(:,1);FF4=max(FF4,1);D(:,5)=FF4;save DData Dfunction D=codeload youhua.mat% properties F2 and F3F1=A(:,1);F2=A(:,2);F3=A(:,3);if (max(F2)>1450)||(min(F2)<=900)error('DATA property F2 exceed it''s range (900,1450]') end% get group property F1 of data, according to F2 value F4=zeros(size(F1));for ite=11:-1:1index=find(F2<=900+ite*50);F4(index)=ite;endD=[F1,F2,F3,F4];function ScoreN=scorefun(fatherrand,D)F3=D(:,3);F4=D(:,4);N=size(fatherrand,2);FF4=F4*ones(1,N);FF4rnd=FF4-fatherrand;FF4rnd=max(FF4rnd,1);ScoreN=ones(1,N)*300*11;% 这里有待优化for k=1:NFF4k=FF4rnd(:,k);for ite=1:11F0index=find(FF4k==ite);if ~isempty(F0index)tmpMat=F3(F0index);tmpSco=sum(tmpMat);ScoreBin(ite)=mod(tmpSco,300);endendScorek(k)=sum(ScoreBin);endScoreN=ScoreN-Scorek;遗传算法实例:% 下面举例说明遗传算法%% 求下列函数的最大值%% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %% 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01 。

matlab遗传算法实例

matlab遗传算法实例

matlab遗传算法实例Matlab遗传算法实例引言:遗传算法是一种模拟自然界生物遗传与进化过程的算法,它通过模拟自然选择、交叉、变异等操作来搜索最优解。

Matlab作为一种强大的数值计算软件,提供了丰富的工具箱来实现遗传算法。

本文将介绍一个基于Matlab的遗传算法实例,以帮助读者更好地理解遗传算法的原理和应用。

一、遗传算法基本原理遗传算法主要包括个体编码、适应度评价、选择、交叉和变异等基本操作。

个体编码是将问题的解表示为染色体,通常使用二进制编码。

适应度评价是根据问题的目标函数对个体进行评估,以确定其适应度值。

选择操作通过一定的策略选择适应度较高的个体作为下一代的父代。

交叉操作将选定的父代个体通过染色体交叉产生新的子代个体。

变异操作以一定的概率对个体的染色体进行变异,以增加种群的多样性。

通过迭代上述操作,逐步优化种群,最终找到问题的最优解。

二、遗传算法实例假设我们要解决一个简单的函数优化问题,即求解函数f(x) = x^2 + 8x + 16的最小值。

我们可以使用遗传算法来搜索函数的最优解。

1. 初始化种群我们需要初始化一个包含N个个体的种群。

每个个体都表示问题的一个解,即一个实数x。

这里,我们将种群大小设置为50,取值范围为[-10, 10]之间的随机数。

2. 适应度评价对于每个个体,我们计算其适应度值,即函数f(x)的值。

根据函数的性质,我们知道函数的最小值为-4,在x=-4时取得。

因此,我们可以将适应度值定义为f(x)与-4之间的差的倒数。

3. 选择操作选择操作决定了哪些个体将成为下一代的父代。

通常采用轮盘赌选择算法,即根据个体的适应度值来确定其被选中的概率。

适应度值较高的个体被选中的概率较大。

4. 交叉操作在选择出的父代个体中,通过染色体交叉操作来产生新的子代个体。

我们可以选择单点交叉或多点交叉。

例如,我们可以随机选择两个个体,将它们的染色体在一个随机位置进行交叉,得到两个新的子代个体。

遗传算法matlab程序代码

遗传算法matlab程序代码

遗传算法matlab程序代码遗传算法是一种优化算法,用于在给定的搜索空间中寻找最优解。

在Matlab中,可以通过以下代码编写一个基本的遗传算法:% 初始种群大小Npop = 100;% 搜索空间维度ndim = 2;% 最大迭代次数imax = 100;% 初始化种群pop = rand(Npop, ndim);% 最小化目标函数fun = @(x) sum(x.^2);for i = 1:imax% 计算适应度函数fit = 1./fun(pop);% 选择操作[fitSort, fitIndex] = sort(fit, 'descend');pop = pop(fitIndex(1:Npop), :);% 染色体交叉操作popNew = zeros(Npop, ndim);for j = 1:Npopparent1Index = randi([1, Npop]);parent2Index = randi([1, Npop]);parent1 = pop(parent1Index, :);parent2 = pop(parent2Index, :);crossIndex = randi([1, ndim-1]);popNew(j,:) = [parent1(1:crossIndex),parent2(crossIndex+1:end)];end% 染色体突变操作for j = 1:NpopmutIndex = randi([1, ndim]);mutScale = randn();popNew(j, mutIndex) = popNew(j, mutIndex) + mutScale;end% 更新种群pop = [pop; popNew];end% 返回最优解[resultFit, resultIndex] = max(fit);result = pop(resultIndex, :);以上代码实现了一个简单的遗传算法,用于最小化目标函数x1^2 + x2^2。

基于MATLAB的遗传算法实现

基于MATLAB的遗传算法实现

基于MATLAB的遗传算法实现基于MATLAB的遗传算法实现摘要:运用MATLAB编程实现遗传算法,数值仿真验证了该实现方法的有效性,表明它能够对函数进行全局寻优。

这种实现方法既可以熟悉MATLAB语言,又可以加深对遗传算法的认识和理解,以此来设计智能系统。

关键词: MATLAB 遗传算法优化遗传算法(Genetic Algoritms,简称GA)是以自然选择和遗传理论为基础,将生物进化过程中适者生存规则与群体内部染色体的随机信息交换机制相结合的搜索算法。

自从1975年John H.Holland教授出版GA的经典之作“Adaptation in Natural and Artificial Systems”以来,GA已获得广泛应用。

1 遗传算法简介遗传算法是具有“生成+检测”的迭代过程的搜索算法。

基本流程。

可见,遗传算法是一种群体型操作,该操作以群体中的所有个体为对象。

选择(selection)、交叉(crossover)和变异(mutation)是遗传算法的三个主要操作算子。

遗传算法包含如下6个基本要素:(1)参数编码:由于遗传算法不能直接处理解空间的解数据,因此必须通过编码将它们表示成遗传空间的基因型串结构数据。

(2)生成初始群体:由于遗传算法的群体型操作需要,所以必须为遗传操作准备一个由若干初始解组成的初始群体。

初始群体的每个个体都是通过随机方法产生的。

(3)适应度评估检测:遗传算法在搜索进化过程中一般不需要其他外部信息,仅用适应度(fitness)值来评估个体或解的优劣,并作为以后遗传操作的依据。

(4)选择(selection):选择或复制操作是为了从当前群体中选出优良的个体,使它们有机会作为父代为下一代繁殖子孙。

个体适应度越高,其被选择的机会就越多。

本文采用与适应度成比例的概率方法进行选择。

具体地说,就是首先计算群体中所有个体适应度的总和(∑f),再计算每个个体的适应度所占的比例(fi/∑f),并以此作为相应的选择概率ps。

遗传算法的MATLAB实现实例

遗传算法的MATLAB实现实例

遗传算法(Genetic Algorithm)的MATLAB应用实例To use Optimization Toolbox software, you need to1 Define your objective function in the MATLAB language, as a function file or anonymous function.2 Define your constraint(s) as a separate file or anonymous function.首先建立目标函数的M文件;例1:如目标函数 min 100( )+ ;Function File for Objective FunctionA function file is a text file containing MATLAB commands with the extension .m. Create a new function file in any text editor, or use the built-in MATLAB Editor as follows:(1)At the command line enter:edit (想要建立的.m文件的文件名)The MATLAB Editor opens.(2) In the editor enter:function f = rosenbrock(x)f = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;(3) Save the file by selecting File > Save.把M文件保存在MATLAB默认的工作目录中;在命令行中输入命令:cd ,就可以得到MATLAB默认的工作目录。

To check that the M-file returns the correct value, enter rosenbrock ([1 1])ans =注释:如果想建立rosenbrock.m文件,那么步骤1变为edit rosenbrock。

遗传算法在matlab中的实现

遗传算法在matlab中的实现

遗传算法是一种模拟自然选择与遗传机制的优化算法,它模拟了生物进化的过程,通过优化个体的基因型来达到解决问题的目的。

在工程和科学领域,遗传算法被广泛应用于求解优化问题、寻找最优解、参数优化等领域。

而MATLAB作为一款强大的科学计算软件,拥有丰富的工具箱和编程接口,为实现遗传算法提供了便利。

下面将通过以下步骤介绍如何在MATLAB中实现遗传算法:1. 引入遗传算法工具箱需要在MATLAB环境中引入遗传算法工具箱。

在MATLAB命令窗口输入"ver",可以查看当前已安装的工具箱。

如果遗传算法工具箱未安装,可以使用MATLAB提供的工具箱管理界面进行安装。

2. 定义优化问题在实现遗传算法前,需要清楚地定义优化问题:包括问题的目标函数、约束条件等。

在MATLAB中,可以通过定义一个函数来表示目标函数,并且可以采用匿名函数的形式来灵活定义。

对于约束条件,也需要进行明确定义,以便在遗传算法中进行约束处理。

3. 设置遗传算法参数在实现遗传算法时,需要对遗传算法的参数进行设置,包括种群大小、交叉概率、变异概率、迭代次数等。

这些参数的设置将会直接影响遗传算法的收敛速度和优化效果。

在MATLAB中,可以通过设置遗传算法工具箱中的相关函数来完成参数的设置。

4. 编写遗传算法主程序编写遗传算法的主程序,主要包括对适应度函数的计算、选择、交叉、变异等操作。

在MATLAB中,可以利用遗传算法工具箱提供的相关函数来实现这些操作,简化了遗传算法的实现过程。

5. 运行遗传算法将编写好的遗传算法主程序在MATLAB环境中运行,并观察优化结果。

在运行过程中,可以对结果进行实时监测和分析,以便对遗传算法的参数进行调整和优化。

通过以上步骤,可以在MATLAB中实现遗传算法,并应用于实际的优化问题与工程应用中。

遗传算法的实现将大大提高问题的求解效率与精度,为工程领域带来更多的便利与可能性。

总结:遗传算法在MATLAB中的实现涉及到了引入遗传算法工具箱、定义优化问题、设置算法参数、编写主程序和运行算法等步骤。

遗传算法matlab代码

遗传算法matlab代码

遗传算法matlab代码以下是一个简单的遗传算法的MATLAB 代码示例:matlab复制代码% 遗传算法参数设置pop_size = 50; % 种群大小num_vars = 10; % 变量数目num_generations = 100; % 进化的代数mutation_rate = 0.01; % 变异率crossover_rate = 0.8; % 交叉率% 初始化种群population = rand(pop_size, num_vars);% 开始进化for i = 1:num_generations% 计算适应度fitness = evaluate_fitness(population);% 选择操作selected_population = selection(population, fitness);% 交叉操作offspring_population = crossover(selected_population,crossover_rate);% 变异操作mutated_population = mutation(offspring_population,mutation_rate);% 生成新种群population = [selected_population; mutated_population];end% 选择最优解best_solution = population(find(fitness == max(fitness)), :);% 适应度函数function f = evaluate_fitness(population)f = zeros(size(population));for i = 1:size(population, 1)f(i) = sum(population(i, :));endend% 选择函数function selected_population = selection(population, fitness)% 轮盘赌选择total_fitness = sum(fitness);probabilities = fitness / total_fitness;selected_indices = zeros(pop_size, 1);for i = 1:pop_sizer = rand();cumulative_probabilities = cumsum(probabilities);for j = 1:pop_sizeif r <= cumulative_probabilities(j)selected_indices(i) = j;break;endendendselected_population = population(selected_indices, :);end% 交叉函数function offspring_population = crossover(parental_population, crossover_rate)offspring_population = zeros(size(parental_population));num_crossovers = ceil(size(parental_population, 1) *crossover_rate);crossover_indices = randperm(size(parental_population, 1),num_crossovers);以下是另一个一个简单的遗传算法的MATLAB 代码示例:matlab复制代码% 初始化种群population = rand(nPopulation, nGenes);% 进化迭代for iGeneration = 1:nGeneration% 计算适应度fitness = evaluateFitness(population);% 选择父代parentIdx = selection(fitness);parent = population(parentIdx, :);% 交叉产生子代child = crossover(parent);% 变异子代child = mutation(child);% 更新种群population = [parent; child];end% 评估最优解bestFitness = -Inf;for i = 1:nPopulationf = evaluateFitness(population(i, :));if f > bestFitnessbestFitness = f;bestIndividual = population(i, :);endend% 可视化结果plotFitness(fitness);其中,nPopulation和nGenes分别是种群大小和基因数;nGeneration是迭代次数;evaluateFitness函数用于计算个体的适应度;selection函数用于选择父代;crossover函数用于交叉产生子代;mutation函数用于变异子代。

Matlab实现遗传算法的示例详解

Matlab实现遗传算法的示例详解

Matlab实现遗传算法的⽰例详解⽬录1算法讲解1.1何为遗传算法1.2遗传算法流程描述1.3关于为什么要⽤⼆进制码表⽰个体信息1.4⽬标函数值与适应值区别1.5关于如何将⼆进制码转化为变量数值1.6关于代码改进2MATLAB⾃带ga函数2.1问题描述2.2⾃带函数使⽤3⾃编遗传算法各部分代码及使⽤3.1代码使⽤3.2Genetic1--主函数3.3PI(PopulationInitialize)--产⽣初始种群3.4Fitness--计算⽬标函数值3.5FitnessF--计算适应值3.6Translate--将⼆进制码转换3.7Probability--染⾊体⼊选概率3.8Select--个体选择3.9Crossing--交叉互换3.10Mutation--基因突变3.11Elitist--最优个体记录与最劣个体淘汰3.12完整代码这篇⽂章⽤了⼤量篇幅讲解了如何从零开始⾃⼰写⼀个遗传算法函数,主要是为了应对学⽣作业等情况,或者让⼤家对遗传算法有更充分的理解,如果要⽤于学术研究,最好还是使⽤⾃带遗传算法,之后可能会推出更多⾃带遗传算法⼯具箱的使⽤。

1 算法讲解1.1 何为遗传算法遗传、突变、⾃然选择、杂交,遗传算法是⼀种借鉴了进化⽣物学各类现象的进化算法。

看到⼀个很形象的⽐喻来描述各类进化算法的区别:爬⼭算法:⼀只袋⿏朝着⽐现在⾼的地⽅跳去。

它找到了不远处的最⾼的⼭峰。

但是这座⼭不⼀定是最⾼峰。

这就是爬⼭算法,它不能保证局部最优值就是全局最优值。

模拟退⽕:袋⿏喝醉了。

它随机地跳了很长时间。

这期间,它可能⾛向⾼处,也可能踏⼊平地。

但是,它渐渐清醒了并朝最⾼峰跳去。

这就是模拟退⽕算法。

遗传算法:有很多袋⿏,它们降落到喜玛拉雅⼭脉的任意地⽅。

这些袋⿏并不知道它们的任务是寻找珠穆朗玛峰。

但每过⼏年,就在⼀些海拔⾼度较低的地⽅射杀⼀些袋⿏。

于是,不断有袋⿏死于海拔较低的地⽅,⽽越是在海拔⾼的袋⿏越是能活得更久,也越有机会⽣⼉育⼥。

遗传算法的Matlab实现讲解

遗传算法的Matlab实现讲解

Matlab编程实现GA
初始化(编码)
% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小, chromlength表示染色体的长度(二值数的长度), % 长度大小取决于变量的二进制编码的长度(在本例中取20位)。
%Name: initpop.m
function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % round对矩阵的每个单元进行取整。这样产生的初始种群。
temp1=decodechrom(pop,1,chromlength); %将pop每行转化成十进制数
x=temp1*(Xmax-Xmin)/(2^chromlength-1); %将十进制域 中的数转化为变 量域 的数 objvalue=2*x+10*sin(5*x)+7*cos(4*x); %计算目标函数值
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1; else newpop(i,mpoint)=0; end
Matlab编程实现GA
求出群体中最大的适应值及其个体
function [bestindividual, bestfit] … =best(pop, fitvalue) [px,py]=size(pop); 或 function [bestindividual, bestfit]=… best(pop, fitvalue) [bestfit,m_indx]=max(fitvalue); bestindividual=pop(m_indx,:);

简单的遗传算法MATLAB实现

简单的遗传算法MATLAB实现

遗传算法是对达尔文生物进化理论的简单模拟,其遵循“适者生存”、“优胜略汰”的原理。

遗传算法模拟一个人工种群的进化过程,并且通过选择、杂交以及变异等机制,种群经过若干代以后,总是达到最优(或近最优)的状态。

自从遗传算法被提出以来,其得到了广泛的应用,特别是在函数优化、生产调度、模式识别、神经网络、自适应控制等领域,遗传算法更是发挥了重大的作用,大大提高了问题求解的效率。

遗传算法也是当前“软计算”领域的重要研究课题。

本文首先结合MATLAB对遗传算法实现过程进行详细的分析,然后通过1个实际的函数优化案例对其应用进行探讨。

1. 遗传算法实现过程现实生活中很多问题都可以转换为函数优化问题,所以本文将以函数优化问题作为背景,对GA的实现过程进行探讨。

大部分函数优化问题都可以写成求最大值或者最小值的形式,为了不是一般性,我们可以将所有求最优值的情况都转换成求最大值的形式,例如,求函数f(x)的最大值,若是求函数f(x)的最小值,可以将其转换成g(x)=-f(x),然后求g(x)的最大值,这里x可以是一个变量,也可是是一个由k个变量组成的向量,x=(x1, x2, …, x k)。

每个x i,i=1,2,…,k, 其定义域为D i,D i=[a i, b i]。

一般规定f(x)在其定义域内只取正值,若不满足,可以将其转换成以下形式,其中C是一个正常数。

1.1 编码与解码要实现遗传算法首先需要弄清楚如何对求解问题进行编码和解码。

对于函数优化问题,一般来说,有两种编码方式,一是实数编码,一是二进制编码,两者各有优缺点,二进制编码具有稳定性高、种群多样性大等优点,但是需要的存储空间大,需要解码过程并且难以理解;而实数编码直接用实数表示基因,容易理解并且不要解码过程,但是容易过早收敛,从而陷入局部最优。

本文以最常用的二进制编码为例,说明遗传编码的过程。

从遗传算法求解的过程来看,需要处理好两个空间的问题,一个是编码空间,另一个是解空间,如下图所示从解空间到编码空间的映射过程成为编码过程;从编码空间到解空间的映射过程成为解码过程。

matlab多目标遗传算法

matlab多目标遗传算法

matlab多目标遗传算法Matlab可以使用多目标遗传算法(MOGA)进行多目标优化问题的求解。

MOGA是一种基于遗传算法的多目标优化算法,它通过维护一个种群来搜索多个目标的最优解。

以下是使用Matlab实现MOGA的基本步骤:1、定义问题的目标函数和约束条件。

2、设置算法的参数,如种群大小、交叉概率、变异概率等。

3、初始化种群,并计算每个个体的适应度。

4、进行遗传操作,包括选择、交叉和变异。

5、计算新种群中每个个体的适应度。

6、重复进行遗传操作,直到达到停止条件,如达到最大迭代次数或满足一定的收敛条件。

7、输出最优解和优化结果。

以下是一个使用MOGA解决多目标优化问题的示例代码:matlab//定义问题的目标函数和约束条件function [f, c] = myfunc(x)f = [ x(1)^2+ x(2)^2, (x(1)-1)^2+ x(2)^2];% 目标函数c = [x(1) + x(2) -1; -x(1) - x(2) +1];% 约束条件end//设置算法的参数options = gaoptimset('PopulationSize',100,'Generations',50,'PlotFcn', @gaplotpareto);//初始化种群nvars =2; % 变量个数lb = [-5,-5]; % 变量下限ub = [5,5]; % 变量上限[x, fval] = gamultiobj(@myfunc, nvars, [], [], [], [], lb, ub, options);//输出最优解和优化结果disp('最优解:');disp(x);disp('优化结果:');disp(fval);在这个示例代码中,目标函数为一个二维的函数,有两个目标。

约束条件包括两个不等式约束。

使用gaoptimset函数设置算法的参数,并通过gamultiobj函数进行多目标优化求解。

matlab智能算法代码

matlab智能算法代码

matlab智能算法代码MATLAB是一种功能强大的数值计算和科学编程软件,它提供了许多智能算法的实现。

下面是一些常见的智能算法及其在MATLAB中的代码示例:1. 遗传算法(Genetic Algorithm):MATLAB中有一个专门的工具箱,称为Global Optimization Toolbox,其中包含了遗传算法的实现。

以下是一个简单的遗传算法示例代码:matlab.% 定义目标函数。

fitness = @(x) x^2;% 设置遗传算法参数。

options = gaoptimset('Display', 'iter','PopulationSize', 50);% 运行遗传算法。

[x, fval] = ga(fitness, 1, options);2. 粒子群优化算法(Particle Swarm Optimization):MATLAB中也有一个工具箱,称为Global Optimization Toolbox,其中包含了粒子群优化算法的实现。

以下是一个简单的粒子群优化算法示例代码:matlab.% 定义目标函数。

fitness = @(x) x^2;% 设置粒子群优化算法参数。

options = optimoptions('particleswarm', 'Display','iter', 'SwarmSize', 50);% 运行粒子群优化算法。

[x, fval] = particleswarm(fitness, 1, [], [], options);3. 支持向量机(Support Vector Machine):MATLAB中有一个机器学习工具箱,称为Statistics and Machine Learning Toolbox,其中包含了支持向量机的实现。

遗传算法matlab程序代码

遗传算法matlab程序代码

function [R,Rlength]= GA_TSP(xyCity,dCity,Population,nPopulation,pCrossover,percent,pMutation,generation,nR,rr,rang eCity,rR,moffspring,record,pi,Shock,maxShock)clear allA=load('d.txt');AxyCity=[A(1,:);A(2,:)]; %x,y为各地点坐标xyCityfigure(1)grid onhold onscatter(xyCity(1,:),xyCity(2,:),'b+')grid onnCity=50;nCityfor i=1:nCity %计算城市间距离for j=1:nCitydCity(i,j)=abs(xyCity(1,i)-xyCity(1,j))+abs(xyCity(2,i)-xyCity(2,j));endend %计算城市间距离xyCity; %显示城市坐标dCity %显示城市距离矩阵%初始种群k=input('取点操作结束'); %取点时对操作保护disp('-------------------')nPopulation=input('种群个体数量:'); %输入种群个体数量if size(nPopulation,1)==0nPopulation=50; %默认值endfor i=1:nPopulationPopulation(i,:)=randperm(nCity-1); %产生随机个体endPopulation %显示初始种群pCrossover=input('交叉概率:'); %输入交叉概率percent=input('交叉部分占整体的百分比:'); %输入交叉比率pMutation=input('突变概率:'); %输入突变概率nRemain=input('最优个体保留最大数量:');pi(1)=input('选择操作最优个体被保护概率:');%输入最优个体被保护概率pi(2)=input('交叉操作最优个体被保护概率:');pi(3)=input('突变操作最优个体被保护概率:');maxShock=input('最大突变概率:');if size(pCrossover,1)==0pCrossover=0.85;endif size(percent,1)==0percent=0.5;endif size(pMutation,1)==0pMutation=0.05;endShock=0;rr=0;Rlength=0;counter1=0;counter2=0;R=zeros(1,nCity-1);[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);R0=R;record(1,:)=R;rR(1)=Rlength;Rlength0=Rlength;generation=input('算法终止条件A.最多迭代次数:');%输入算法终止条件if size(generation,1)==0generation=200;endnR=input('算法终止条件B.最短路径连续保持不变代数:');if size(nR,1)==0nR=10;endwhile counter1<generation&counter2<nRif counter2<nR*1/5Shock=0;elseif counter2<nR*2/5Shock=maxShock*1/4-pMutation;elseif counter2<nR*3/5Shock=maxShock*2/4-pMutation;elseif counter2<nR*4/5Shock=maxShock*3/4-pMutation;elseShock=maxShock-pMutation;endcounter1newPopulationoffspring=crossover(newPopulation,nCity,pCrossover,percent,nPopulation,rr,pi,nRemain);offspringmoffspring=Mutation(offspring,nCity,pMutation,nPopulation,rr,pi,nRemain,Shock);[newPopulation,R,Rlength,counter2,rr]=select(moffspring,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);counter1=counter1+1;rR(counter1+1)=Rlength;record(counter1+1,:)=R;endR0;Rlength0;R;Rlength;minR=min(rR);disp('最短路经出现代数:')rr=find(rR==minR)disp('最短路经:')record(rr,:);mR=record(rr(1,1),:)disp('终止条件一:')counter1disp('终止条件二:')counter2disp('最短路经长度:')minRdisp('最初路经长度:')rR(1)figure(2)plotaiwa(xyCity,mR,nCity)figure(3)i=1:counter1+1;plot(i,rR(i))grid onfunction[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain)Distance=zeros(nPopulation,1); %零化路径长度Fitness=zeros(nPopulation,1); %零化适应概率Sum=0; %路径长度for i=1:nPopulation %计算个体路径长度for j=1:nCity-2Distance(i)=Distance(i)+dCity(Population(i,j),Population(i,j+1));end %对路径长度调整,增加起始点到路径首尾点的距离Distance(i)=Distance(i)+dCity(Population(i,1),nCity)+dCity(Population(i,nCity-1),nCity);Sum=Sum+Distance(i); %累计总路径长度end %计算个体路径长度if Rlength==min(Distance)counter2=counter2+1;elsecounter2=0;endRlength=min(Distance); %更新最短路径长度Rlength;rr=find(Distance==Rlength);R=Population(rr(1,1),:); %更新最短路径for i=1:nPopulationFitness(i)=(max(Distance)-Distance(i)+0.001)/(nPopulation*(max(Distance)+0.001)-Sum); %适应概率=个体/总和。

matlab遗传算法设计

matlab遗传算法设计

matlab遗传算法设计在MATLAB中设计遗传算法需要遵循以下步骤:1.定义问题参数:首先,你需要定义问题的参数,包括适应度函数、种群大小、交叉概率、变异概率和迭代次数等。

2.初始化种群:根据问题的参数,初始化一个种群,通常可以使用随机数生成器来生成初始解。

3.评估适应度:对于每个个体,计算其适应度值,这通常是通过将个体作为输入参数传递给适应度函数来完成的。

4.选择操作:根据适应度值,选择出适应度较高的个体,用于下一代种群的生成。

5.交叉操作:随机选择两个个体进行交叉操作,生成新的个体。

6.变异操作:对新的个体进行变异操作,以增加种群的多样性。

7.迭代更新:重复上述步骤,直到达到预设的迭代次数或满足终止条件。

8.输出结果:输出最终的种群中最优的个体作为问题的解。

下面是一个简单的MATLAB遗传算法示例代码:matlab复制代码% 遗传算法参数设置popSize = 100; % 种群大小crossoverRate = 0.8; % 交叉概率mutationRate = 0.01; % 变异概率maxGeneration = 100; % 最大迭代次数% 初始化种群pop = round(rand(popSize,1)); % 生成初始种群% 适应度函数(这里假设我们要最小化的目标函数是 x^2)fitnessFunction = @(x) x.^2;% 迭代更新种群for generation = 1:maxGeneration% 评估适应度fitness = fitnessFunction(pop);% 选择操作[newPop,~] = rouletteWheelSelection(pop,fitness);% 交叉操作newPop = crossover(newPop, crossoverRate);% 变异操作newPop = mutation(newPop, mutationRate);% 更新种群pop = newPop;end% 输出最优解[~, bestIndex] = min(fitness);bestSolution = pop(bestIndex);fprintf('最优解:%d\n', bestSolution);在这个示例中,我们使用了轮盘赌选择、均匀交叉和均匀变异等遗传算法的操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用GA找到函数最小值x = ga(fitnessfcn,nvars)局部无约束最小值,x是目标函数的适应度函数,nvars是适应度函数的尺寸(设计变量的数量)。

目标函数和适应度函数接受了1×N大小的x矢量,在x返回一个标量的计算值。

x = ga(fitnessfcn,nvars,A,b)在线性不等式约束下,适应度函数的局部最小值。

如果这个问题有m个线性不等式和n个变量,则A是m×n矩阵,b是m×1矩阵。

注意:当人口类型选项设置为“位串”或者“自定义”,线性约束不满足。

x = ga(fitnessfcn,nvars,A,b,Aeq,beq)存在线性等式约束下,适应度函数的局部最小值。

如果没有不等式存在,设置A=[] 和 b=[]。

如果问题存在r个线性等式约束和n个变量,那么Aeq 是r ×n矩阵的大小,beq是r大小的矢量。

注意:当人口类型选项设置为“位串”或者“自定义”,线性约束不满足。

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)定义了一系列设计变量x的最小和最大边界。

以至于在范围内找到一个解。

如果没有边界存在,LB 和 UB设置为空矩阵。

如果x(i)无下界,设置LB(i) = -Inf;如果x(i)无上界,设置UB(i) = Inf。

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon)服从在非线性约束条件下的最小值,非线性函数接收x,返回C和Ceq向量,分别代表非线性的不等式和等式。

GA最小化适应度函数,在C(x)≤0和Ceq(x)=0的条件下。

如果无边界存在,设置 LB=[] 和 UB=[]。

注意:当人口类型选项设置为“位串”或者“自定义”,非线性约束不满足。

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)用在结构选项中的值代替默认的优化参数来进行最小化,它也可以用gaoptimset函数来创建,具体参考gaoptimset的用法。

x = ga(problem)在problem下找到最小值,problem是包含下表的结构。

正如在使用者向导的优化工具Importing and Exporting Your Work描述的一样,它依靠从优化工具导出一个问题来创建结构问题。

[x,fval] = ga(...)在x下,返回适应度函数的值fval。

[x,fval,exitflag] = ga(...)返回exitflag(终止条件值),整体识别算法的终止条件,下面列出了exitflag的值和算法相应的终止条件。

• 1 —Average cumulative change in value of the fitness function over options.StallGenLimit generations less than options.TolFun andconstraint violation less than options.TolCon.• 2 — Fitness limit reached and constraint violation less than options.TolCon.• 3 — The value of the fitness function did not change in options.StallGenLimit generations and constraint violation less than options.TolCon.• 4 —Magnitude of step smaller than machine precision and constraint violation less than options.TolCon.•0 — Maximum number of generations exceeded.•-1 — Optimization terminated by the output or plot function.•-2 — No feasible point found.•-4 — Stall time limit exceeded.•-5 — Time limit exceeded.[x,fval,exitflag,output] = ga(...)返回output的值, 它是一个包含了每一代的输出和关于算法的其他性能信息,它的结构包括下面的范围。

•randstate —The state of rand, the MATLAB random number generator, just before the algorithm started.•randnstate — The state of randn the MATLAB normal random number generator, just before the algorithm started. You can use the values of randstate and randnstate to reproduce the output of ga. SeeReproducing Your Results.•generations — The number of generations computed.•funccount — The number of evaluations of the fitness function •message — The reason the algorithm terminated.•maxconstraint — Maximum constraint violation, if any.[x,fval,exitflag,output,population] = ga(...)返回population的矩阵,它的行是最后一代。

[x,fval,exitflag,output,population,scores] = ga(...)返回最后一代的scores的值。

注意:(默认下)对于族群类型使用Double Vector的问题,GA不会接受任何那些输入类型复杂的函数。

为了解决复杂数据所涉及的问题,靠分开你的实部和虚部,写下你的函数使他们接收实向量。

例子:根据软件提供的lincontest6(一个二元二次目标函数,此处即是适应度函数),上述程序找到了函数的最小值。

终止条件为:适应度值得平均变化小于选项TolFun。

A = [1 1; -1 2; 2 1];b = [2; 2; 3];lb = zeros(2,1);[x,fval,exitflag] = ga(@lincontest6, 2,A,b,[],[],lb) Optimization terminated: average change in the fitness value less than options.TolFun.x =0.7794 1.2205fval =-8.03916(适应度函数的值)exitflag =1(终止条件值)求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9f=inline('-(x+10*sin(5*x)+7*cos(4*x))');[x,fval]=ga(f,1,[],[],[],[],0,9);x,fval=-fval(1)Optimization terminated: average change in the fitness value less than options.TolFun.x =1.5735fval =18.5722(2)Optimization terminated: average change in the fitness value less than options.TolFun.x =0.2272fval =13.5996注:由于遗传法的不确定性,每次得到的解可能不同。

ga是matlab 自带的遗传工具箱中的遗传算法函数,其中已经用到了选择、交叉、变异,你如果想知道其具体是怎么实现的,可以自己打开ga的源程序去看。

遗传算法的MATLAB程序之option设置研究:function my_ga()options=gaoptimset;%设置变量范围options=gaoptimset(options,'PopInitRange',[0;9]);%设置种群大小options=gaoptimset(options,'PopulationSize',100);%设置迭代次数options=gaoptimset(options,'Generations',100);%选择选择函数options=gaoptimset(options,'SelectionFcn',@selectionroulette);%选择交叉函数options=gaoptimset(options,'CrossoverFcn',@crossoverarithmetic);%选择变异函数options=gaoptimset(options,'MutationFcn',@mutationuniform);%设置绘图:解的变化、种群平均值的变化options=gaoptimset(options,'PlotFcns',{@gaplotbestf});%执行遗传算法,fitness.m是函数文件[x,fval]=ga(@fitness,1,options)例子:A = [1 1; -1 2; 2 1]; b = [2; 2; 3]; lb = zeros(2,1);% Use mutation function which can handle constraintsoptions = gaoptimset('MutationFcn',@mutationadaptfeasible);[x,fval,exitflag] = ga(@lincontest6,2,A,b,[],[],lb,[],[],options); Optimization terminated: average change in the fitness value less than options.TolFun.x,fval=fvalx =0.7043 1.2967fval =-8.1725注意:由于GA是一个概率过程,所以每次迭代的情况是不一样的;系统参数不同,迭代情况也不同。

相关文档
最新文档