基于单片机的远红外烘干机温度控制系统设计
基于单片机的温度控制系统设计与应用
基于单片机的温度控制系统设计与应用温度控制系统是一种常见的自动控制系统,用于维持设定温度范围内的温度稳定。
本文将介绍基于单片机的温度控制系统的设计与应用。
一、系统设计1.功能需求:(1)温度检测:获取环境温度数据。
(2)温度显示:将检测到的温度数据以数字方式显示。
(3)温度控制:通过控制输出信号,自动调节温度以维持设定温度范围内的稳定温度。
2.硬件设计:(1)单片机:选择适合的单片机,如51系列、AVR系列等,具有较强的计算和控制能力。
(2)温度传感器:选择适当的温度传感器,如DS18B20、LM35等,能够准确检测环境温度。
(3)显示屏:选择适当的数字显示屏,如LCD显示屏、数码管等,用于显示温度数据。
(4)执行机构:根据具体需求选择合适的执行机构,如继电器、风扇等,用于控制温度。
3.软件设计:(1)温度检测:通过单片机采集温度传感器的模拟信号,并通过数字转换获得温度数据。
(2)温度显示:将获取到的温度数据进行处理,通过数字显示屏显示。
(3)温度控制:通过控制执行机构,如继电器等,根据温度数据的变化进行调节,将温度维持在设定范围内。
二、系统应用1.家居温控系统:家庭中的空调、暖气等设备可以通过单片机温度控制系统实现智能控制。
通过温度传感器检测室内温度,并将温度数据显示在数字显示屏上。
通过设定温度阈值,当室内温度超出设定范围时,系统控制空调或暖气进行启停,从而实现室内温度的调节和稳定。
这不仅提高了居住舒适度,还能节约能源。
2.工业过程控制:在工业生产过程中,一些特定的应用需要严格控制温度,以确保产品质量或生产过程的稳定。
通过单片机温度控制系统,可以实时检测并控制生产环境的温度。
当温度超过或低于设定的阈值时,系统可以自动调整控制设备,如加热器、冷却器等,以实现温度的控制和稳定。
3.温室农业:温室农业需要确定性的环境温度来保证作物的生长。
通过单片机温度控制系统,可以监测温室内的温度,并根据预设的温度范围,自动启停加热或降温设备,以维持温室内的稳定温度。
基于单片机控制的红外烘手器毕业论文
基于单片机的温度控制系统设计方案
基于单片机的温度控制系统设计方案设计方案:1. 系统概述:本温度控制系统采用单片机作为核心控制器,通过对温度传感器的采集并对温度进行处理,控制继电器的开关状态,实现对温度的精确控制。
系统可广泛应用于家庭、工业、医疗等领域中的温度控制需求。
2. 硬件设计:a. 单片机选择:根据系统需求,我们选择适用于温度控制的单片机,如8051、PIC、STM32等,具备较高的性能和稳定性。
b. 传感器:采用温度传感器(如DS18B20)进行温度的精确测量,传感器将温度值转化为数字信号进行输出,供单片机进行处理。
c. 屏幕显示:选用LCD液晶屏幕,实时显示当前温度值和设定的目标温度值。
3. 软件设计:a. 数据采集:单片机通过GPIO口连接温度传感器,采集传感器输出的数字信号,并进行AD转换,将模拟信号转化为数字信号。
b. 控制策略:单片机通过比较当前温度值和设定的目标温度值,根据控制算法判断是否需要开启或关闭继电器,从而实现对温度的控制。
c. 温度显示:单片机通过串口通信或I2C通信与LCD屏幕进行数据传输和显示,使用户能够随时了解当前温度和设定的目标温度。
4. 控制算法设计:a. ON/OFF控制:当当前温度值超过设定的目标温度值时,继电器闭合,使制冷或加热设备开始工作;当当前温度值低于设定的目标温度值时,继电器断开,使制冷或加热设备停止工作,实现温度的维持控制。
b. PID控制:根据温度的测量值和设定值,通过比例、积分、微分三个环节的控制,精确调节控制设备的工作状态,使温度尽可能接近设定值。
5. 系统实现和调试:a. 硬件连接:根据设计制作电路板,并连接单片机、温度传感器、继电器、液晶显示器等组件。
b. 程序编写:按照软件设计进行程序编写,并进行单片机的初始化设置、温度数据的采集和处理、继电器的控制等功能的实现。
c. 系统调试:通过实际应用场景中的温度测试数据,验证系统的稳定性和准确性,并根据实际情况进行调试和优化,确保系统达到要求的温度控制效果。
基于51单片机的粮食烘干炉温度控制系统设计
基于51单片机的粮食烘干炉温度控制系统设计摘要:本文论述了一种基于51单片机的粮食烘干炉温度控制系统设计。
在系统设计中,单片机使用PID算法对烘干炉内的温度进行控制,并通过LCD显示屏实时显示温度,为粮食烘干过程提供精确可靠的温度保障,实现了智能化和自动化控制。
关键词:51单片机;PID算法;烘干炉;温度控制;LCD显示屏1. 引言随着农业生产的发展,粮食烘干技术逐渐得到广泛应用。
而粮食的烘干过程是需要对温度进行高精度、稳定的控制的。
传统的烘干炉控制方式大多采用手动控制方式,效率低、稳定性差,对于温度要求较高的粮食干燥来说,这种方式存在很大的局限性。
因此,需要设计一种智能化的粮食烘干炉温度控制系统,实现温度的高精度自动控制。
2. 设计方案2.1 系统硬件设计本系统采用51单片机作为主控制器,通过数字温度传感器获取烘干炉内温度信号,再通过LCD显示屏实时显示温度信息。
为了更好地实现温度控制,本系统采用PID算法对烘干炉内温度进行自动调整。
2.2 PID算法原理PID算法是一种常用的温度控制算法,它通过实时反馈温度信息,并根据偏差值进行比例、积分、微分调整,最终实现温度自动控制。
其中,比例控制作用于调整偏差大小,积分控制作用于去除偏差存在的稳态误差,微分控制作用于消除偏差存在的瞬态误差,从而达到控制温度的效果。
2.3 系统软件设计本系统软件包括数据采集程序、PID算法程序、温度控制程序和温度显示程序。
数据采集程序通过数字温度传感器实时采集烘干炉内的温度值,PID算法程序在获得温度值后进行控制算法处理,并进行调整,温度控制程序则通过程序实现PID算法的控制,保证实现精准恒温,温度显示程序则将当前温度值实时显示在LCD显示屏上。
3. 系统性能测试与分析在实际测试中,使用本系统进行粮食烘干,通过实时显示温度及PID算法控制,控制范围精度达到了0.1℃,控制结果较为准确和稳定,温度和时间的误差均在可控范围内。
基于51单片机 的烘干箱智能温度控制器毕业设计 初稿
开封大学毕业设计题目烘干箱智能温度控制器设计姓名李振华学号 **********专业班级 09电气一班分院机电工程学院指导教师董卫军2011年 12 月 23 日摘要温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发,本文设计了一种基于A T89C51的温度检测及报警系统。
该系统将数字温度传感器DB18B20通过模拟放大电路接在模数转化器A D C0809的输入端,然后将A D C0809的输出端接在控制器的一个端口上,对传感器温度进行采集,将采集到的温度值与设定值进行比较,当低于设定的上限温度时,通过打开加热电路来使温度自然冷却。
文中给出了系统实现的硬件原理图及软件流程图。
经实验测试表明,该系统测量精度高、抗干扰能力强、报警及时准确,具有一定的参考价值。
该系统设计和布线简单,结构紧凑,体积小,重量轻,抗干扰能力强,性价比高,扩展方便,在大型仓库,工厂,智能化建筑等领域的多点温度检测中有广阔的应用前景。
关键词:D B18B20;A D C0809;A T89C51;C D4511。
\目录摘要 (ii)Abstract ............................................... 错误!未定义书签。
目录 ................................................. 错误!未定义书签。
1 温度控制器绪论 (1)1.1课题背景 (1)1.2温度检测系统的国内外状况 (2)2 整体系统方案 (3)2.1 系统整体方案和结构 (3)2.2系统硬件接线图 (4)3 系统硬件电路设计 (5)3.1主机控制电路 (5)3.2温度采集电路 (8)3.3模数转换电路 (12)3.4数码显示电路 (16)3.5 键盘输入电路与加热控制电路 (18)4 程序设计 (21)4.1 主程序设计 (21)4.2温度检测模块 (23)4.3数值转化模块 (25)4.4 BCD显示模块 (27)4.5比较加热模块 (29)4.6键盘中断程序 (30)总结 (35)参考资料 (36)致谢 (37)1 温度控制器绪论1.1课题背景测量控制的作用是从生产现场中获取各种参数,运用科学计算的方法,综合各种先进技术,使每个生产环节都能够得到有效的控制,不但保证了生产的规范化、提高产品质量、降低成本,还确保了生产安全。
基于单片机的温控系统设计与实现
基于单片机的温控系统设计与实现温控系统是一种可以根据环境温度自动调节设备工作状态的系统。
基于单片机的温控系统是一种利用单片机计算能力、输入输出功能及控制能力,通过传感器获取环境温度信息并实现温度控制的系统。
下面将对基于单片机的温控系统的设计与实现进行详细介绍。
一、系统设计和功能需求:基于单片机的温控系统主要由以下组成部分构成:1.温度传感器:用于获取当前环境温度值。
2.控制器:使用单片机作为中央控制单元,负责接收温度传感器的数据并进行温度控制算法的计算。
3.执行器:负责根据控制器的指令控制设备工作状态,如电风扇、加热器等。
4.显示器:用于显示当前环境温度和控制状态等信息。
系统的功能需求主要包括:1.温度监测:通过温度传感器实时获取环境温度数据。
2.温度控制算法:根据温度数据进行算法计算,判断是否需要调节设备工作状态。
3.设备控制:根据控制算法的结果控制设备的工作状态,如打开或关闭电风扇、加热器等。
4.信息显示:将当前环境温度及控制状态等信息显示在显示器上。
二、系统实现的具体步骤:1.硬件设计:(1)选择适合的单片机:根据系统功能需求选择合适的单片机,通常选择具有较多输入输出引脚、计算能力较强的单片机。
(2)温度传感器的选择:选择合适的温度传感器,常见的有热敏电阻、热电偶、数字温度传感器等。
(3)执行器的选择:根据实际需求选择合适的执行器,如电风扇、加热器等。
(4)显示器的选择:选择适合的显示器以显示当前温度和控制状态等信息,如液晶显示屏等。
2.软件设计:(1)编写驱动程序:编写单片机与传感器、执行器、显示器等硬件的驱动程序,完成数据的读取和输出功能。
(2)设计温度控制算法:根据监测到的温度数据编写温度控制算法,根据不同的温度范围判断是否需要调节设备工作状态。
(3)控制设备的逻辑设计:根据温度控制算法的结果设计控制设备的逻辑,确定何时打开或关闭设备。
(4)设计用户界面:设计用户界面以显示当前温度和控制状态等信息,提示用户工作状态。
基于51单片机的粮食烘干炉温度控制系统设计
基于51单片机的粮食烘干炉温度控制系统设计摘要:粮食烘干是农业生产中非常重要的一环,对于保证粮食质量和储存寿命具有重要意义。
本文基于51单片机设计了一种粮食烘干炉温度控制系统,通过对温度的实时监测和控制,实现了对粮食烘干过程中温度的自动调节。
实验结果表明,该系统能够有效地控制粮食烘干过程中的温度,提高了烘干效果。
关键词:51单片机;粮食烘干;温度控制;自动调节第一章绪论1.1 研究背景随着农业生产水平的提高和人们对粮食质量要求的不断提高,传统的太阳能和人工晾晒等方法已经无法满足现代农业生产中对于高质量、高效率、低成本、低能耗等方面需求。
因此,采用科学合理的方法进行粮食烘干成为了现代农业生产中不可或缺的环节。
1.2 研究目的和意义本文旨在设计一种基于51单片机的粮食烘干炉温度控制系统,通过对温度的实时监测和控制,实现对粮食烘干过程中温度的自动调节。
通过该系统,可以提高粮食烘干过程中的温度控制精度和稳定性,提高烘干效果,保证粮食质量。
第二章系统设计2.1 系统框架本系统主要由传感器、51单片机、执行器和人机交互界面等组成。
传感器用于实时监测炉内温度情况,将数据传输给51单片机进行处理;51单片机根据监测到的数据进行分析处理,并根据设定值控制执行器调节加热功率;人机交互界面用于设定目标温度、显示当前温度等。
2.2 传感器选择与接口设计在本系统中,选择了一种高精度、稳定性好的温度传感器作为监测元件。
该传感器通过模拟量信号输出当前温度值,并与51单片机进行连接。
2.3 信号采集与处理51单片机通过模拟输入接口采集传感器输出的模拟量信号,并通过模数转换将其转换为数字量信号。
然后,通过软件算法对数字信号进行处理,得到当前温度值。
2.4 控制算法设计本系统采用PID控制算法进行温度控制。
PID控制算法是一种经典的控制算法,具有调节快、稳定性好、适应性强等特点。
通过对PID参数的调整,可以实现对温度的精确控制。
2.5 执行器设计本系统采用电热丝作为执行器。
基于单片机的烘箱温度控制器设计说明
基于单片机的烘箱温度控制器设计目录1.项目概述 (1)1.1.该设计的目的及意义 (1)1.2.该设计的技术指标 (2)2.系统设计 (3)2.1.设计思想 (3)2.2.方案可行性分析 (4)2.3.总体方案 (5)3.硬件设计 (6)3.1.硬件电路的工作原理 (6)3.2.参数计算 (7)4.软件设计 (8)4.1.软件设计思想 (8)4.2.程序流程图 (9)4.3.程序清单 (10)5.系统仿真与调试 (11)5.1.实际调试或仿真数据分析 (11)5.2.分析结果 (13)6.结论 (12)7.参考文献 (13)8.附录 (14)1.项目概述:1.1.该设计的目的及意义温度的测量及控制,随着社会的发展,已经变得越来越重要。
而温度是生产过程和科学实验中普遍而且重要的物理参数,准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。
在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。
它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。
而本设计正是为了保证生产过程的稳定运行并提高控制精度,采用以51系列单片机为控制核心,对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。
通过本设计的实践,将以往学习的知识进行综合应用,是对知识的一次复习与升华,让以往的那些抽象的知识点在具体的实践中体现出来,更是对自己自身的挑战。
1.2.该设计的技术指标设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。
炉温可以在一定范围内由人工设定,并能在炉温变化时实现自动控制。
若测量值高于温度设定范围,由单片机发出控制信号,经过驱动电路使加热器停止工作。
当温度低于设定值时,单片机发出一个控制信号,启动加热器。
通过继电器的反复开启和关闭,使炉温保持在设定的温度范围内。
(1)1KW 电炉加热(电阻丝),最度温度为120℃(软件实现)(2)恒温箱温度可设定,温度控制误差≦±2℃(软件实现PID)(3)实时显示温度和设置温度,显示精度为1℃(LED)。
单片机课程设计基于单片机的温度控制系统设计
02 单片机基础知识
单片机的定义和作用
定义:单片机 是一种集成电 路芯片,将微 处理器、存储 器、输入/输出 接口等集成在 一个芯片上。
作用:单片机 广泛应用于各 种电子设备中, 如家电、汽车、 工业控制等领 域,实现对设 备的控制和操
作。
特点:体积小、 功耗低、可靠 性高、编程方
便等。
应用:在温度 控制系统设计 中,单片机可 以实时监测和 控制温度,实 现对温度的精
试等
温度数据采集与处理
温度传感器:用于采集环境温度数据 单片机:处理温度数据,控制加热或制冷设备 数据处理:将温度数据转换为可识别的信号 控制策略:根据温度数据调整加热或制冷设备的工作状态
温度控制输出实现
温度传感器:用于检测环境 温度
单片机控制:通过单片机控 制温度传感器和执行器
执行器:用于调节环境温度
温度控制算法:实现温度控 制的核心算法,如PID控制
算法
05 系统调试与性能测试
系统调试方法与步骤
硬件连接:确 保所有硬件设 备正确连接, 如单片机、温 度传感器、显
示设备等。
软件调试:编 写并调试单片 机程序,确保 其能够正确读 取温度传感器 数据并控制显
示设备。
性能测试:在 特定温度环境 下,测试系统 的响应速度和 准确性,以及 稳定性和可靠
问题:硬件资源不足 解决方案:优化硬件配置,提高系统性能 解决方案:优化硬件配置,提高系统性能
问题:系统稳定性差 解决方案:增加系统自检功能,提高系统稳定性 解决方案:增加系统自检功能,提高系统稳定性
创新点与特色功能实现
创新点:采用 单片机控制, 实现温度自动
调节
特色功能:具 有温度报警功 能,超过设定 温度时发出警
基于单片机的温度控制系统设计
基于单片机的温度控制系统设计温度控制系统是指通过对温度进行监控和控制,使温度维持在设定的范围内的一种系统。
单片机作为电子技术中的一种集成电路,具有控制灵活、精度高、反应迅速等优点,被广泛应用于温度控制系统。
一、系统硬件设计1.温度传感器:温度传感器是温度控制系统中的核心设备之一。
通过对环境温度的监测,将实时采集到的温度值传到单片机进行处理。
目前主要的温度传感器有热敏电阻、热电偶、晶体温度计等。
其中热敏电阻价格低廉、精度高,使用较为广泛。
2.单片机:单片机作为温度控制系统的基本控制模块,要求其具有高速、大容量、低功耗、稳定性强的特点。
常用单片机有STM32、AVR、PIC等,其中STM32具有性能优良、易于上手、接口丰富的优点。
3.继电器:温度控制系统中的继电器用于控制电源开关,当温度超出设定范围时,继电器将给单片机发送一个信号,单片机再通过控制继电器使得温度回到正常范围内。
4.数码管:数码管用于显示实时采集到的温度值。
在实际开发中,可以采用多位数码管来显示多个温度值,提高温度控制的精度性和准确性。
二、程序设计1.程序框架:程序框架最关键是实时采集环境温度,然后判断当前温度是否超出正常范围,若超出则控制继电器将电源关断,实现温度控制。
程序框架可参考以下流程:2.温度采集:采用热敏电阻作为温度传感器,利用AD转换实现数字化。
然后通过查表法或算法将AD值转化为环境温度值。
3.温度控制:将温度设定值与实时采集到的温度进行比较,若温度超出设定值范围,则控制继电器实现自动关断。
4.数码管控制:实时显示温度传感器采集到的温度值。
三、系统调试和性能测试1.系统调试:对系统进行硬件电路的检测和单片机程序的调试,确保系统各部分正常工作。
2.性能测试:利用实验室常温环境,将温度传感器置于不同的温度环境,测试系统的温度控制精度、反应速度和稳定性等性能指标。
在此基础上对系统进行优化,提高控制精度和稳定性。
四、总结基于单片机的温度控制系统通过对环境温度的实时监测和控制,实现自动化温度调节。
基于单片机的烘箱温度控制器设计
基于单片机的烘箱温度控制器设计目录1. 项目概述 (1)1.1. 该设计的目的及意义 (1)1.2. 该设计的技术指标 (2)2. 系统设计 (3)2.1. 设计思想 (3)2.2. 方案可行性分析 (4)2.3. 总体方案 (5)3. 硬件设计 (6)3.1. 硬件电路的工作原理 (6)3.2. 参数计算 (7)4. 软件设计 (8)4.1. 软件设计思想 (8)4.2. 程序流程图 (9)4.3. 程序清单 (10)5. 系统仿真与调试 (11)5.1. 实际调试或仿真数据分析 (11)5.2. 分析结果 (13)6. 结论 (12)7. 参考文献 (13)8. 附录 (14)1. 项目概述:1.1 .该设计的目的及意义温度的测量及控制,随着社会的发展,已经变得越来越重要。
而温度是生产过程和科学实验中普遍而且重要的物理参数,准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。
在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。
它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。
而本设计正是为了保证生产过程的稳定运行并提高控制精度,采用以 51系列单片机为控制核心,对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。
通过本设计的实践,将以往学习的知识进行综合应用,是对知识的一次复习与升华,让以往的那些抽象的知识点在具体的实践中体现出来,更是对自己自身的挑战。
1.2 .该设计的技术指标设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。
炉温可以在一定范围内由人工设定,并能在炉温变化时实现自动控制。
若测量值高于温度设定范围,由单片机发出控制信号,经过驱动电路使加热器停止工作。
当温度低于设定值时,单片机发出一个控制信号,启动加热器。
通过继电器的反复开启和关闭,使炉温保持在设定的温度范围内。
基于单片机的温度控制系统设计
基于单片机的温度控制系统设计引言:随着技术的不断发展,人们对于生活质量的要求也越来越高。
在许多领域中,温度控制是一项非常重要的任务。
例如,室内温度控制、工业过程中的温度控制等等。
基于单片机的温度控制系统能够实现智能控制,提高控制精度,降低能耗,提高生产效率。
一、系统设计原理系统设计的原理是通过传感器检测环境温度,并将温度值传递给单片机。
单片机根据设定的温度值和当前的温度值进行比较,然后根据比较结果控制执行器实现温度控制。
二、硬件设计1.传感器:常见的温度传感器有NTC热敏电阻和DS18B20数字温度传感器。
可以根据具体需求选择适合的传感器。
2. 单片机:常见的单片机有ATmega、PIC等。
选择单片机时需要考虑性能和接口的需求。
3.执行器:执行器可以是继电器、电机、气动元件等。
根据具体需求选择合适的执行器。
三、软件设计1.初始化:设置单片机的工作频率、引脚输入输出等。
2.温度读取:通过传感器读取环境温度,并将温度值存储到变量中。
3.设定温度:在系统中设置一个目标温度值,可以通过按键输入或者通过串口通信等方式进行设置。
4.温度控制:将设定温度和实际温度进行比较,根据比较结果控制执行器的开关状态。
如果实际温度高于设定温度,执行器关闭,反之打开。
5.显示:将实时温度和设定温度通过LCD或者LED等显示出来,方便用户直观判断当前状态。
四、系统优化1.控制算法优化:可以采用PID控制算法对温度进行控制,通过调节KP、KI、KD等参数来提高控制精度和稳定性。
2.能耗优化:根据实际需求,通过设置合理的控制策略来降低能耗。
例如,在温度达到目标设定值之后,可以将执行器关闭,避免过多能量的消耗。
3.系统可靠性:在系统设计中可以考虑加入故障检测和自动切换等功能,以提高系统的可靠性。
总结:基于单片机的温度控制系统设计可以实现智能温度控制,提高生活质量和工作效率。
设计过程中需要考虑硬件和软件的设计,通过合理的算法和控制策略来优化系统性能,提高控制精度和稳定性。
基于单片机的红外线智能家电控制系统设计毕业设计论文
目录第一部分设计任务与调研 (2)1毕业设计的主要任务 (2)2设计的思路与方法 (2)3与本课题相关的资料 (2)4调研的目的和总结 (2)第二部分设计说明 (3)1设计方案 (3)2硬件电路设计与实现 (4)3系统软件设计及实现 (8)第三部分设计成果 (9)第四部分结束语 (11)第五部分致谢 (12)第六部分参考文献 (13)第一部分设计任务与调研1 毕业设计的主要任务本系统利用51单片机为核心控制部件,人体检测电路部分采用热释电红外扫描技术,单片机反馈电路采样信号采用可见光扫描技术,以达到不需要人工操作就可以实现电灯的亮灭的照明控制系统,进而实现节约能源的目的。
2 设计的思路与方法本设计主要由光照检测电路、热释电红外线传感器记处理电路、单片机系统记控制电路组成。
工作时,光照检测电路和热释电红外线传感器采集光照强弱、是否有人等信息送到单片机,单片机根据这些信息通过控制电路对照明设备进行开关操作,从而实现照明控制,以达到节能的目的。
通过去图书馆查阅相关书籍查找资料以及上网查询相关资料,还可以向学校老师请教来完成本次设计。
3 与本课题相关的资料图1-1单片机管脚图4 调研的目的和总结随着社会信息化与科技化的快速发展,家居智能化以迅猛的态势日益渗透到平常百姓的生活当中。
一股家居智能化的浪潮也席卷了人们的高品质生活。
家居照明所处的时代已不再是有几盏灯、亮度够就可以的时代了,家居照明也进入了智能时代。
第二部分设计说明1 设计方案1.1 M CS-51单片机AT89C51是MSC-51单片机中应用最广泛的型号,现在以其为代表介绍其参数。
AT89C51单片机是把那些作为控制应用所必需的基本内容都集成在一个尺寸有限的集成电路芯片上。
如果按功能划分,它由如下功能部件组成,即微处理器、数据存储器、程序存储器、并行I/O口、串行口、定时器/计数器、中断系统及特殊功能寄存器。
它们都是通过片内单一总线连接而成,其基本结构依旧是CPU加上外围芯片的传统结构模式。
基于51单片机的红外遥控水温控制系统的设计
【摘要】本设计基于AT89C51单片机为控制核心,片外配合红外线遥控模块、水温加热模块开关、基于Dallas单线数字式的DS18B20温度传感器模块、蜂鸣器报警模块、按键模块、LCD1602液晶显示器模块、晶振电路模块、复位电路模块以及电源模块为一体构成无线水温控制系统。
本水温控制系统设计采用自上而下的模块化设计,具有形象直观、操作简单、结构紧凑、温度控制灵活等优点。
本系统能够对水温进行实时并且快速地温度采集、温度值显示、超温报警以及加热等功能,并且能够通过红外线遥控器实现对温度值的设定。
经过大量实验测试,本次设计的系统通用性强、功能齐全、简单实用,值得在工控领域被大量推广,它能够将实现水加热系统的自动化,对企业及社会的发展具有重要意义。
【关键词】:AT89C51,DS18B20温度传感器,LCD1602液晶显示器ABSTRACTThe design is based on AT89C51 single chip microcomputer as control core, chip with infrared remote control module, the temperature of the water heating module switch, based on Dallas digital DS18B20 temperature sensor module, buzzer alarm module, a key module, LCD1602 liquid crystal display module, crystal oscillator circuit module, reset circuit module and power module are integrated to form a wireless temperature control system. The water temperature control system design uses the modular design from top to bottom, has the advantages of visual image, simple operation, compact structure, flexible temperature control. The system can real-time temperature and rapid temperature acquisition, temperature display, temperature alarm, heating and other functions, and can realize the setting temperature value through the infrared remote controller. After a lot of experiments testing, the design of the system has strong universality, complete function, simple and practical, it is worth to be popularized in the field of industrial control, it will be able to realize automatic water heating system, has important significance to the development of enterprises and society.【KEY WORD】:AT89C51,DS18B20,LCD1602目录一、引言 (1)(一)选题背景 (1)(二)设计意义 (1)(三)设计任务 (2)二、总体方案设计 (3)(一)方案的选择 (3)(二)方案简述 (3)三、元器件介绍 (5)(一)AT89C51单片机 (5)(二)DS18B20温度传感器 (7)(三)红外遥控系统介绍 (8)四、系统硬件设计 (11)(一)原理图描述 (11)(二)DS18B20温度传感器模块 (12)(三)加热器开关模块 (12)(四)蜂鸣器报警模块 (12)(五)LCD1602液晶显示器模块 (13)(六)按键模块 (13)五、系统软件设计 (15)(一)主程序设计 (15)(二)子程序设计 (15)总结 (18)致谢 (19)参考文献 (20)附录一系统原理图 (21)附录二PCB (22)附录三元器件清单 (23)附录四系统程序 (24)一、引言(一)选题背景对于温度的控制在工业活动中非常普遍,温度参数是一个最常用的被控参数,在化工、食品、燃料以及钢铁产业中都涉及到温控过程。
基于单片机的烘干机温度控制系统设计
基于单片机的烘干机温度控制系统设计摘要:本文基于单片机设计了一个烘干机温度控制系统。
系统利用单片机和温度传感器实现温度的监测和控制,并通过控制加热器的工作来实现温度的调节。
实验结果显示,系统能够实现准确的温度控制,达到了预期效果。
关键词:单片机、烘干机、温度控制、温度传感器引言:烘干机的工作原理是通过加热器给物体加热,将湿度逐渐蒸发,从而将物体中的水分蒸发掉。
而一个烘干机的核心在于准确的温度控制,因为温度过高可能会引起燃烧,而温度过低则无法蒸发水分,从而达不到烘干的目的。
因此,在实际应用中需要一个可靠的温度控制系统。
本文基于单片机设计了一个烘干机温度控制系统,该系统可以实现准确的温度控制,克服了传统机械式温度控制系统的一些缺陷。
设计:本系统的核心是一个AT89S52型单片机,它可以实现温度的监测和控制。
系统使用LM35型温度传感器来监测热源的温度,并将其转换成电压信号送入单片机的模拟输入端。
同时,系统中还装有一定功率的加热器,通过调节加热器的工作时间,可以实现温度的调节。
为了保证系统的安全性,系统中还安装了一个温度上限开关。
当温度超过设定值时,开关会自动切断加热器的电源,从而保护烘干机不会过热。
结果:实验结果显示,本文设计的烘干机温度控制系统具有良好的可靠性和精度。
在测试中,系统完全可以做到准确稳定地控制热源温度,从而实现了良好的烘干效果。
同时,由于系统的精度和可靠性,使得它可以广泛应用于工业生产中。
结论:本文基于单片机设计了一种烘干机温度控制系统,该系统通过监测温度,实现了准确的温度控制,并能够自动保护烘干机不会过热。
本系统具有良好的可靠性和精度,在实际应用中可以广泛应用。
毕业设计(论文):基于单片机的烘干炉温度自动检测系统的设计与
毕业设计(论文):基于单片机的烘干炉温度自动检测系统的设计与1 引言1.1 课题设计的目的和意义在工业生产中,涂装工艺占据着举足轻重的地位。
烘干又是涂装工艺的三大主要工序之一,它使液态(湿态或粉态)的涂膜快速转化为固态的漆膜,对生产效率、涂层质量和涂装成本等有直接的影响。
在干燥固化过程中,烘干炉内各点的温度是否能保证在规定的工艺要求范围内,将对被涂装的材料、产品、工件的质量,降低能耗,以及提高生产效率和经济效益产生重要的影响,而且随着整机度的提高和元件的微型化、复杂化,在各种工业过程中对温度工艺的要求越来越高。
而我国目前采用的传统的定点式烘干炉测温方法已经显得比较落后,无法满足生产工艺对温度测量的要求。
因此,本文提出了一种新型的炉温检测系统,即:烘干炉温度自动检测系统。
近年来,随着微电子技术的发展,特别是单片微型计算机技术的飞速发展与成熟,给烘干炉炉温的检测提供了有力的技术支持。
由此,本烘干炉温度自动检测系统采用单片机系统对炉温及炉内工件的温度进行采集和处理,监控烘干炉的热加工过程以及产品的质量状态,实现数据的存储,并实时显示温度值。
该系统能够对烘干炉的温度进行实时的检测,以保证烘干炉的温度处于合理的范围之内,便于生产的正常进行,并且优化了生产过程,提高烘干炉热加工的产品质量和生产效率,降低能耗。
由于目前国内在烘干炉温度检测领域尚处于比较落后的阶段,而随着工业的迅猛发展,各种工业过程对温度工艺的要求也越来越高,因此,需要采用更高性能的温度检测系统。
然而,从国外进口的该类产品,其性能虽能满足温度工艺的要求,但其价格确实十分昂贵,一般企业难以承受,限制了它的推广和应用。
研制烘干炉温度自动检测系统,可以把国外的先进技术和方法引入我国,大大降低我国烘干炉热加工产品的成本和提高产品的质量,改变我1国热加工领域测温技术相对落后的现状,推动我国烘干炉温度检测技术的发展,同时该课题的研究对经济建设、社会效益以及工程技术都有极其深远的意义。
基于单片机的温度控制系统设计毕业论文
分类号:TP212单位代码:科技大学本科专业职业生涯设计基于单片机的温度控制系统设计2012 年 4 月10日摘要近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。
本文从硬件和软件两方面来讲述对烘干箱温度的自动控制过程,在控制过程中主要应用AT89C51、ADC0809、LED显示器、LM324比较器,而主要是通过DS18B20数字温度传感器采集环境温度,以单片机为核心控制部件,并通过四位数码管显示实时温度的一种数字温度计。
软件方面采用汇编语言来进行程序设计,使指令的执行速度快,节省存储空间。
为了便于扩展和更改,软件的设计采用模块化结构,使程序设计的逻辑关系更加简洁明了,使硬件在软件的控制下协调运作。
关键词:单片机系统;传感器;数据采集;模数转换器;温度AbstractIn recent years along with computer penetration in the social sphere, SCM applications are constantly deepening, led the traditional control test at the same time ever updated..In this paper, from two aspects of hardware and software about automatic temperature control process, the control process is mainly used AT89C51, ADC0809, LED display, LM324 comparator, but mainly through the DS18B20 digital temperature sensor to collect the environmental temperature, the single-chip microcomputer as the core control component, and through four digital tube display real-time temperature of a digital thermometer. Software using assembly language to program design, so that the instruction execution speed, save the memory space. In order to facilitate the expansion and the change, the software design uses the modular structure, make the logic relation of designing program more concise, making hardware tocoordinatetheoperation under the software control.Keywords: SCM system; sensor; data acquisition; a / D converter temperature;目录1 绪论 (3)1.1课题的背景及其意义 (3)1.2课题研究的容及要求 (4)1.2.1 课题的主要研究的容 (4)2 AT89C51系列单片机介绍及硬件设计 (6)2.1 AT89C51系列单片机介绍 (6)2.1.1 AT89C51系列基本组成及特性 (6)2.1.2 AT89C51系列引脚功能 (7)2.1.3 AT89C51系列单片机的功能单元 (9)2.2 硬件设计 (12)2.2.1 温度采样部分 (12)2.2.2 控制温度 (14)2.2.3 模数转换部分 (15)2.2.4 模数转换技术 (15)2.2.5 积分型模数转换器 (15)2.2.6 显示部分 (16)3 软件设计 (18)3.1主程序流程图 (18)3.2 读温度子程序 (19)3.3 计算温度子程序 (19)3.4按键流程图 (20)3.5 显示流程图 (22)结论 (24)参考文献 (25)辞 (26)1 绪论1.1课题的背景及其意义现代工业设计,工程建设及日常生活中温度控制都起着重要的作用,早期的温度控制主要用于工厂时间生产中,能起到实时采集温度数据,提高生产效率,产品质量之用。
红外遥控系统毕业设计基于单片机的红外遥控系统设计
《单片机设计》课程设计题目:基于单片机的红外遥控系统设计专业:电气工程系班级:姓名:学号:指导教师:小组成员:成绩:摘要随着社会的进展、科技的进步和人们生活水平的慢慢提高,各类方便于生活的遥控系统开始进入了人们的生活。
采纳单片机进行遥控系统的应用设计,具有编程灵活多样、操作码个数可随意设定等优势。
由于单片机具有集成度高、体积小、靠得住性高、价钱廉价等优势,其在机电一体化、工业操纵、仪器仪表和家用电器等领域取得了普遍应用。
当前单片机对家用电器操纵呈现出外形简单化、功能多样化、产品智能化的进展趋向。
红外遥控技术具有利用方便、功耗低、抗干扰能力强、价钱廉价的特点,因此它的应用前景十分广漠。
本课题以延伸红外无线遥控技术为目的,提出了一种红外遥控器集中操纵的方案,核心是设计出一个红外接收系统。
本设计以红外线作为传递信息的载体,可对受控对象的工作状态进行短距离无线操纵,适用于遥控工业、医疗、家用电器等设备的开闭状态。
并含有设备计数模块,可对处于工作状态的设备进行计数,并显示出来。
课题的重点在于通过软件实现二进制数据的解码工作,然后通过红外收发头进行数据传输操纵系统。
关键词:红外遥控;单片机操纵;显示模块目录1 引言........................................................................................................................................ - 4 -1.1 课题研究的目的........................................................................................................... - 4 -............................................................................................................................................. - 4 - 2设计任务及要求....................................................................................................................... - 5 -2.1红外遥控系统的设计与实现任务,要紧完成:........................................................ - 5 -2.2 红外遥控系统的设计要求:....................................................................................... - 5 -3 红外遥控系统的硬件设计...................................................................................................... - 6 -3.1 本设计方案思路......................................................................................................... - 6 -3.2 研发方向和技术关键................................................................................................. - 6 - ..................................................................................................................................................... - 7 - ...................................................................................................................................... - 7 -3.3.3 红外接收模块.................................................................................................. - 11 -3.3.4 LED模拟外围设备模块.................................................................................. - 12 -.................................................................................................................................... - 13 - 4 红外遥控系统的软件设计.................................................................................................... - 14 -4.1 主控程序..................................................................................................................... - 14 -4.2 遥控发射部份............................................................................................................. - 14 -4.3 遥控接收处置部份..................................................................................................... - 15 -5 测试结果及分析.................................................................................................................... - 15 -5.1 实验仪与运算机的连接............................................................................................. - 15 -5.2 硬件系统的调试......................................................................................................... - 16 -5.3 软件系统的调试......................................................................................................... - 16 -6 总结与体会............................................................................................................................ - 16 - 参考文献.................................................................................................................................... - 17 - 7附录程序代码....................................................................................................................... - 18 -1 引言1.1 课题研究的目的本设计要紧研究并设计一个基于单片机的红外发射及接收系统,实现对温度操纵、蜂鸣器、LED灯的隔离操纵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
櫓櫓櫓櫓櫓櫓櫓櫓毄
[ 摘 性好、 可靠性高。
基于单片机的远红外烘干机温度控制系统设计
王其利
1
李宗玉
2
栾新强
3
( 1. 山东铝业第二工程公司,山东 淄博 255000 ; 2. 山东水利职业学院,山东 日照 276826 ; 3. 潍柴动力股份有限公司,山东 潍坊 261000 )
2012 年 8 月第 4 期 基于单片机的远红外烘干机温度控制系统设计 — — —王其利 李宗玉 栾新强 · 43· 櫓櫓毄 櫓櫓櫓櫓櫓櫓櫓櫓毄 櫓櫓毄
电力节能
0
温度测控技术包括温度测量技术和温度控制技 术两个方面。近年来, 温度的检测在理论上发展比 较成熟, 但在实际测量和控制中, 如何保证快速实时 , 地对温度进行采样 确保数据的正确传输, 并能对所 测温度场进行较精确的控制, 仍然是需要解决的问 题。温度控制技术按照控制目标的不同可分为两 类: 动态温度跟踪与恒值温度控制。 动态温度跟踪 实现的控制目标是使被控对象的温度值按预先设定
图2 晶闸管输出电路
温度控制系统控制方案 PID 控制是最早发展起来的控制策略之一, 尽
管有许多先进的控制方法不断推出, 但由于 PID 控 制方法具有结构简单、 鲁棒性好、 可靠性高、 参数易 P、 I、 D 控制规律各自成独立环节, 于整定, 可根据工 而且其应用时期较长, 控制工程师 业过程进行组合, 们已经积累了大量的 PID 控制器参数的调节经验。 PID 控制器在工业控制中仍然得到广泛应用 。 因此, PID 控制方法包括增量式 PID 控制算法与位置
1
Байду номын сангаас
远红外烘干机温控系统组成
远红外烘干机与普通的烘干机在结构上的区别 主要是: 前者将远红外辐射元件布置在炉膛内部 , 以
有色冶金节能 · 44· □电力节能
热辐射加热为主, 对流为辅, 利用辐射对受烘干物直 接加热; 后者将热源置于炉膛之外的加热介质 , 利用 对流热风循环为主。 本文所涉远红外烘干机氢氧化铝的装置, 烘干 机采用箱式结构, 在加热过程中受热物料是缓慢运 动的。此烘干装置的加热系统采用了先进的远红外 辐射传热技术, 加热元件使用了远红外乳白石英加 4 个温区, 热管。远红外烘干机共有 2 个烘干箱, 因 箱体较大, 每个温区又分为两个区域进行控制 , 要对 整个烘干机分为 8 个区域来进行温度测量和控制, 测温范围 140 ~ 150 ℃ , 控制精度 ± 1 ℃ , 功率单层 约为 50 kW。基于以上的各种要求, 设计了此温度 , 控制系统 以便满足烘干机中所要求的温度范围及 其精度要求。 温度控制系统硬件部分按功能可以分为单片主 控模块、 输入通道、 输出通道、 报警电路等。 硬件总 体结构框图如图 1 所示。温度控制系统以单片机为 并扩展外部芯片构成主控模块。 温控箱的温 核心, 度传感器检测并转换成微弱电压信号, 再通过 8 位 的 A / D 转换器转换成数字量。 此数字量经过数字 滤波之后, 一方面将温控箱的温度通过控制面板上 的液晶显示器显示出来; 另一方面将该温度值与设 定的温度值进行比较, 根据其偏差值的大小, 采用 PID 控制算法进行运算, 最后通过控制双向晶闸管 控制周期内的通断占空比 ( 即 控 制 温 控 箱 加 热 平 均功率的大小 ) , 进而达到对温控箱温度进行控制 的目的 。 如果实际测得的温度值超过了系统给定 的极限安全温度 , 报警电路会做出反应 , 从而保护 温控箱 。
Design on Temperature Control System for Far Infrared Dryer Based on Singlechip Microcomputer
WANG Qili,LI Zongyu,LUAN Xinqiang Abstract: With the development of control theory and electronic technology,the industrial controller's adaptability enhancement and high intelligence are gradually becoming reality. A temperature control system for far infrared dryer based on singlechip microcomputer was designed. The test results showed that the system could control temperatures in different areas,and meet the requirements for temperature control during drying process. The system had high precision and good selfadaptability. The control method of this system used PID algorithm which has simple structure,good robustness and high reliability. Key words: singlechip microcomputer; temperature control; PID control
图1
硬件总体结构框图
2
2. 1
温度控制系统电路设计
温度传感器
温度传感器的种类比较繁杂, 各种不同的温度 方式及测温原理的不同, 使 传感器由于其构成材料、 得其测量温度的范围、 测量精度也各不相同。 Pt100 型铂电阻, 在 - 200 ~ 850 ℃ 内是精度最高的温度传 感器之一, 且检测精度高、 稳定性好, 因此选用 Pt100 铂电阻作为本温度控制系统的温度传感器 。 2. 3 晶闸管 目前多数温控系统均采用晶闸管来实现功率调 节。晶闸管的控制模式有相位控制和零位控制 ( 分 配式零位控制、 时间比例零位控制 ) 。 本系统采用 分 配 式 零 位 控 制 的 模 式, 晶闸管配套使用的是 MOC3061 光电藕合双向晶闸管驱动器, 其输出部分 还带有过零触发检测器, 以保 是硅光敏双向晶闸管, 证电压接近零时触发晶闸管。晶闸管输出电路如图 2 所示。 3. 2
[ 1] 潘新民, M] . 北京: 电 王燕美. 微型计算机控制技术[ 2003. 子工业出版社, [ 2] 孙育才. MSC -51 系列单片机及应用[ M] . 东南大学 2004. 出版社, [ 3] 李玉峰, 霓虹霞. MSC -51 系列单片机原理与接口技 M] . 北京: 人民邮电出版社, 2004. 术[ [ 4] 谭健成. 新编电机控制专用集成电路与应用[ M] . 北 2005. 京: 机械工业出版社, [ 5] 方程运. 工厂电气控制技术[M] . 北京: 机械工业出 2002. 版社, [ 6] 王海宁. 基于单片机的温度系统设计[D] . 合肥工业 2008. 大学控制理论与控制工程系, [ 7] 胡寿松. 自动控制原理[M] . 北京: 国防工业出版社, 2000.
引言
好的曲线进行变化。在工业生产中很多场合需要实 现这一控制目标, 如在发酵过程控制、 化工生产中的 化学反应温度控制和冶金工厂中燃烧炉中的温度控 制等; 恒值温度控制的目的是使被控对象的温度恒 定在某一给定数值上, 且要求其波动幅度 ( 即稳态 误差) 不能超过某允许值。 本文所讨论的基于单片 机的远红外烘干机温度控制系统就是要满足远红外 烘干箱中温度控制的要求, 实现对温控箱的恒值温 度控制。
3
3. 1
温度控制系统软件设计
主程序的设计 主程序的流程图如图 3 所示。
2012 年 8 月第 4 期 基于单片机的远红外烘干机温度控制系统设计 — — —王其利 李宗玉 栾新强 · 45·
图4 图3 主程序流程图
式控制算法, 前者有如下的一些优点: ( 1 ) 位置式算法每次输出与整个过去状态有 关, 容易产生较大的累计误差。 而增量式中只须计 算式中不需要累加, 控制增量的确定仅与最 算增量, 近几次偏差采样值有关, 当存在计算误差或者精度 不足时, 对控制量的影响较小, 且较容易通过加权处 理获得比较好的控制效果。 ( 2 ) 由于计算机只输出控制增量, 所以误动作 影响小, 而且必要时可以用逻辑判断的方法去掉 , 对 系统安全运行有利。 ( 3 ) 手动— — —自动切换时冲击比较小。 鉴于以上优点, 本系统的控制算法即采用增量 式的 PID 控制算法。其程序流程图如图 4 所示。
要] 随着控制理论和电子技术的发展, 工业控制器的适应能力增强和高度智能化正逐步成为现实 。 作者设
计了基于单片机的远红外烘干机温度控制系统, 试验表明, 该系统根据不同区域的温度要求进行控制, 可以满足烘 干过程中的温度控制的需要, 温度控制精度较高, 自适应性较好; 且该系统控制方法采用 PID 算法, 结构简单、 鲁棒 [ 关键词] 单片机; 温度控制; PID 控制 [ 中图分类号] TP273 [ 文献标识码] B [ 文章编号] 1008 - 5122 ( 2012 ) 04 - 0043 - 03
4
结束语
本文介绍了基于单片机的温度控制系统的开 发, 并进行了氢氧化铝烘干试验。 试验按照工艺要 求, 将氢氧化铝加热到 145 ℃ , 并保温脱水, 产生蒸 汽由风机抽走, 制得活性氧化铝符合性能要求。 试
增量式 PID 控制算法程序流程图
验表明, 该系统控制方法采用 PID 算法, 结构简单、 P、 I、 D 控制规 鲁棒性好、 可靠性高、 参数易于整定, 律各自成独立环节, 可根据工业过程进行组合; 该系 统根据不同区域的温度要求进行控制, 可以满足烘 温度控制精度较高, 自 干过程中的温度控制的需要, 适应性较好。 [ 参考文献]