七年级数学因式分解复习题
初中数学因式分解知识点复习
初中数学因式分解知识点复习一、选择题1.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .3.已知4821-可以被在60~70之间的两个整数整除,则这两个数是( )A .61、63B .61、65C .61、67D .63、65 【答案】D【解析】【分析】由()()()()()()24242412686421212121221121=+-=+++--,多次利用平方差公式化简,可解得.【详解】解:原式()()24242121=+-,()()()()()()()()()24121224126624122121212121212163652121=++-=+++-=⨯⨯++ ∴这两个数是63,65.选D.【点睛】本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.4.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8 【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.5.下列等式从左边到右边的变形,属于因式分解的是( )A .2ab(a-b)=2a 2b-2ab 2B .x 2+1=x(x+1x )C .x 2-4x+3=(x-2)2-1D .a 2-b 2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.6.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=- 【答案】A【解析】【分析】根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误. 故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.7.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.8.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】 试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.9.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+- C .()2x 2x l x x 21++=++ D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x 2−4y 2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.10.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.11.下列因式分解结果正确的是( ).A.10a3+5a2=5a(2a2+a)B.4x2-9=(4x+3)(4x-3)C.a2-2a-1=(a-1)2D.x2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A作出判断;而B符合平方差公式的结构特点,因此可对B作出判断;C不符合完全平方公式的结构特点,因此不能分解,而D可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A、原式=5a2(2a+1),故A不符合题意;B、原式=(2x+3)(2x-3),故B不符合题意;C、a2-2a-1不能利用完全平方公式分解因式,故C不符合题意;D、原式=(x-6)(x+1),故D符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.12.某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy2+6x2y+3xy=-3xy•(4y-______)横线空格的地方被钢笔水弄污了,你认为横线上应填写()A.2x B.-2x C.2x-1 D.-2x-l【答案】C【解析】【分析】根据题意,提取公因式-3xy,进行因式分解即可.【详解】解:原式=-3xy×(4y-2x-1),空格中填2x-1.故选:C.【点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.13.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-【答案】C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】 ()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.14.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定 【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.15.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.16.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】 此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.17.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解.【详解】移项得,a2c2−b2c2−a4+b4=0,c2(a2−b2)−(a2+b2)(a2−b2)=0,(a2−b2)(c2−a2−b2)=0,所以,a2−b2=0或c2−a2−b2=0,即a=b或a2+b2=c2,因此,△ABC等腰三角形或直角三角形.故选B.【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键.18.把x2-y2-2y-1分解因式结果正确的是().A.(x+y+1)(x-y-1) B.(x+y-1)(x-y-1)C.(x+y-1)(x+y+1) D.(x-y+1)(x+y+1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x2-(y2+2y+1),=x2-(y+1)2,=(x+y+1)(x-y-1).故选A.19.下列从左到右的变形属于因式分解的是()A.(x+1)(x-1)=x2-1 B.m2-2m-3=m(m-2)-3C.2x2+1=x(2x+1x) D.x2-5x+6=(x-2)(x-3)【答案】D 【解析】【分析】根据因式分解的定义,因式分解是把多项式写出几个整式积的形式,对各选项分析判断后利用排除法求解.【详解】解:A 、(x+1)(x-1)=x 2-1不是因式分解,是多项式的乘法,故本选项错误; B 、右边不全是整式积的形式,还有减法,故本选项错误;C 、右边不是整式积的形式,分母中含有字母,故本选项错误;D 、x 2-5x +6=(x -2)(x -3)符合因式分解的定义,故本选项正确.故选:D .【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.20.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 【答案】A【解析】试题分析:把多项式分别进行因式分解,多项式2mx m -=m (x+1)(x-1),多项式221x x -+=()21x -,因此可以求得它们的公因式为(x-1).故选A考点:因式分解。
初一下册数学多项式的因式分解试题及答案
初⼀下册数学多项式的因式分解试题及答案 对于初⼀数学的学习,我们要在理解的基础上多做试题才能更好的掌握数学知识点,尤其是对于初⼀数学多项式的因式分解的学习!以下便是店铺为⼤家所带来的初⼀下册数学多项式的因式分解试题! 初⼀下册数学多项式的因式分解试题 ⼀、选择题(每⼩题4分,共12分) 1.(2013•茂名中考)下列各式由左边到右边的变形中,属于因式分解的是( ) A.a(x+y)=ax+ay B. x2-4x+4=x(x-4)+4 C.10x2-5x=5x(2x-1) D.x2-16+6x=(x+4)(x-4)+6x 2.(2013•柳州中考)下列式⼦是因式分解的是( )A.x(x-1)=x2-1B.x2-x=x(x+1)C.x2+x=x(x+1)D.x2-x=(x+1)(x-1) 3.若多项式x2-px-6因式分解的结果是(x-1)(x+6),则p的值是( )A.-1B.1C.5D.-5 ⼆、填空题(每⼩题4分,共12分) 4 .由(x-2)(x-1)=x2-3x+2,则x2-3x+2因式分解为 . 5.若x+5,x-3都是多项式x2-kx-15的因式,则k= . 6.如果多项式M可因式分解为3(1+2x)(-2x+1),则M= . 三、解答题(共26分) 7.(8分)两位同学将⼀个⼆次三项式因式分解,⼀位同学因看错了⼀次项系数⽽分解成2(x-1)(x-9),另⼀位同学因看错了常数项⽽分解成2(x-2)(x-4),求原多项式. 8.(8分)已知关于x 的⼆次三项式x2+mx+n有⼀个因式(x+5),且m+n=17,试求m,n的值. 【拓展延伸】 9.(10分)已知多项式x4+2x3-x+m能因式分解,且有⼀个因式为x-1. (1)当x=1时,求多项式x4+2x3-x+m的值. (2)根据(1)的结果 ,求m的值. (3)仿照(1)的⽅法,试判断x+2是不是多项式x4+2x3-x+ m的⼀个因式. 初⼀下册数学多项式的因式分解试题答案 1.【解析】选C.a(x+y)=ax+ay是将乘积的形式化成和差的形式,是多项式乘法⽽不是因式分解,x2-4x+4=x(x-4)+4与x2-16+6x=(x+4)(x-4)+6x两式的右边最终还是和的形式,所以不是因式分解,10x2-5x=5x(2 x-1)满⾜由多项式的和差形式化为乘积形式,且等号的左边和右边相等,所以C正确. 2.【解析】选C.选项A是将乘积的形式化成差的形式,并且等式左右两边不相等,所以选项A错误;选项B“看起来”满⾜由多项式的和差形式化为乘积形式,但是x(x+1)=x2+x,与等式的左边x2-x不等,所以选项B错误;选项C满⾜把⼀个多项式化成⼏个整式的积的形式,且等号的左边和右边相等,所以选项C正确;选项D类同选项B,所以选项D是错误的. 3.【解析】选D.因为(x-1)(x+6)=x2+5x-6,所以p的值为-5. 4.【解析】因为(x-2)(x-1)=x2-3x+2, 所以x2-3x+2=(x-2)(x-1). 答案:(x-2)(x-1) 5.【解析】根据题意得(x+5)(x-3) =x2+2x-15=x2-kx-15,所以-k=2,解得k=-2. 答案:-2 6.【解析】M=3(1+2x)(-2x+1)=3(1-4x2)=3-12x2. 答案:3-12x2 7.【解析】设原多项式为ax2+bx+c(其中a,b,c均为常数,且abc≠0). 因为2(x-1)(x-9)=2(x2-10x+9)=2x2-20x+18, 所以a=2,c=18. ⼜因为2(x-2)(x-4)=2(x2-6x+8)=2x2-12x+16, 所以b=-12. 所以原多项式为2x2-12x+18. 8.【解析】设另⼀个因式是x+a,则有 (x+5 )•(x+a)=x2+(5+a)x+5a=x2+mx+n, 所以5+a=m,5a=n, 这样就得到⼀个⽅程组 解得 所以m,n的值分别是7, 10. 9.【解析】 (1)根据题意得x4+2x3-x+m =(x3+ax2+bx+c)(x-1), 当x=1时,x4+2x3-x+m=0. (2)由(1)知m=-2. (3)由x+2=0得x=-2,当x=-2时, x4+2x3-x-2=16-16+2-2=0, 所以x+2是多项式的⼀个因式. 多项式因式分解的⼀般步骤 ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运⽤公式、⼗字相乘法来分解; ③如果⽤上述⽅法不能分解,那么可以尝试⽤分组、拆项、补项法来分解; ④分解因式,必须进⾏到每⼀个多项式因式都不能再分解为⽌。
七年级数学下册《因式分解》单元测试卷(附带答案解析)
七年级数学下册《因式分解》单元测试卷(附带答案解析)一.选择题1.下列多项式不能用平方差分解因式的是()A.0.36a2﹣0.04b2B.x2﹣16C.﹣a2+b2+c2D.﹣x2+y22.多项式4ab2+8ab2﹣12ab的公因式是()A.4ab B.2ab C.3ab D.5ab3.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣44.下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1D.a2﹣1=a(a﹣)5.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形②是直角三角形③是钝角三角形④是等边三角形,其中正确说法的个数是()A.4个B.3个C.2个D.1个6.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6B.18C.28D.507.若a=x﹣20,b=x﹣18,c=x﹣16,则a2+b2+c2﹣ab﹣ac﹣bc的值为()A.12B.24C.27D.54二.填空题(共8小题)8.因式分解:a3+2a2b+ab2=.9.已知x2+2x+2y+y2+2=0,则x2022+y2023=.10.若x2+2x﹣3=0,则x3+x2﹣5x+2022=.11.分解因式:25a﹣ab2=.12.若x2+mx﹣n=(x+2)(x﹣5),则m﹣n=.13.若mn=1,m﹣n=2,则m2n﹣mn2的值是.14.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.15.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为.三.解答题16.分解因式:x(x+4)+4.17.将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc18.因式分解:(1)2a3﹣8a(2)3x2y﹣18xy2+27y319.因式分解:(1)x2(a﹣b)+9(b﹣a)(2)(a2+4)2﹣16a2.20.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你完成下列各题:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2(2)因式分解:25(a+2)2﹣10(a+2)+1(3)因式分解:(y2﹣6y)(y2﹣6y+18)+81.21.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)若F(a)=且a为100以内的正整数,则a=(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.参考答案与解析一.选择题1.解:A、0.36a2﹣0.04b2=(0.6a+0.2b)(0.6a﹣0.2b),能分解因式,本选项不符合题意B、x2﹣16=(x+4)(x﹣4),本选项不合题意C、﹣a2+b2+c2无法分解因式,本选项符合题意D、﹣x2+y2=(y+x)(y﹣x),本选项不合题意故选:C.2.解:多项式4ab2+8ab2﹣12ab的公因式4ab故选:A.3.解:A、原式不能分解B、原式=(x+y)2﹣2=(x+y+)(x+y﹣)C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4)D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2)故选:A.4.解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.5.解:∵a2+b2+c2=ab+bc+ca∴2a2+2b2+2c2=2ab+2bc+2ca即(a﹣b)2+(b﹣c)2+(a﹣c)2=0∴a=b=c∴此三角形为等边三角形,同时也是锐角三角形.故选:C.6.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2将a+b=3,ab=2代入得,ab(a+b)2=2×32=18故代数式a3b+2a2b2+ab3的值为18故选:B.7.解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]∵a=x﹣20,b=x﹣18,c=x﹣16∴a﹣b=﹣2,a﹣c=﹣4,b﹣c=﹣2则原式=×(4+16+4)=12故选:A.二.填空题8.解:原式=a(a2+2ab+b2)=a(a+b)2故答案为a(a+b)29.解:∵x2+2x+2y+y2+2=0∴(x2+2x+1)+(y2+2y+1)=0∴(x+1)2+(y+1)2=0∴x+1=0,y+1=0解得:x=﹣1,y=﹣1∴x2022+y2023=(﹣1)2022+(﹣1)2023=1+(﹣1)=0故答案为0.10.解:∵x2+2x﹣3=0∴x2=3﹣2x∴x3+x2﹣5x+2022=x(3﹣2x)+x2﹣5x+2022=3x﹣2x2+x2﹣5x+2022=﹣3+2x﹣2x+2022=2019 11.解:25a﹣ab2=a(25﹣b2)=a(5+b)(5﹣b)故答案为a(5+b)(5﹣b)12.解:∵x2+mx﹣n=(x+2)(x﹣5)=x2﹣3x﹣10∴m=﹣3,n=10∴m﹣n=﹣3﹣10=﹣13.故答案为﹣13.13.解:∵mn=1,m﹣n=2∴m2n﹣mn2=mn(m﹣n)=1×2=2故答案为2.14.解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式∴2(3﹣m)=±10解得:m=﹣2或8.故答案为﹣2或8.15.解:因式分解x2+ax+b时∵甲看错了a的值,分解的结果是(x+6)(x﹣2)∴b=6×(﹣2)=﹣12又∵乙看错了b的值,分解的结果为(x﹣8)(x+4)∴a=﹣8+4=﹣4∴原二次三项式为x2﹣4x﹣12因此,x2﹣4x﹣12=(x﹣6)(x+2)故答案为(x﹣6)(x+2).三.解答题16.解:原式=x2+4x+4=(x+2)217.解:(1)原式=4x(2x﹣y)(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).18.解:(1)原式=2a(a2﹣4)=2a(a+2)(a﹣2)(2)原式=3y(x2﹣6xy+9y2)=3y(x﹣3y)2 19.解:(1)原式=x2(a﹣b)﹣9(a﹣b)=(a﹣b)(x2﹣9)=(a﹣b)(x﹣3)(x+3)(2)原式=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)220.解:(1)设x﹣y=m原式=1﹣2m+m2=(1﹣m)2=[1﹣(x﹣y)]2=(1﹣x+y)2(2)设a+2=m原式=25m2﹣10m+1=(5m﹣1)2=[5(a+2)﹣1]2=(5a+9)2(3)设y2﹣6y=m原式=m(m+18)+81=m2+18m+81=(m+9)2=(y2﹣6y+9)2=(y﹣3)4.21.解:(1)2×3=6,4×6=24,6×9=54,8×12=96 (2)F(m)存在最大值和最小值.当m为完全平方数,设m=n2(n为正整数)∵|n﹣n|=0∴n×n是m的最佳分解∴F(m)==1又∵F(m)=且p≤q∴F(m)最大值为1此时m为16,25,36,49,64,81当m为最大的两位数质数97时,F(m)存在最小值,最小值为.故答案为6,24,54,96.。
初一因式分解试题及答案
初一因式分解试题及答案一、选择题1. 将多项式 \(2x^2 + 4x + 2\) 因式分解后,正确的结果是:A. \(2x(x + 2) + 2\)B. \(2(x^2 + 2x + 1)\)C. \(2(x + 1)^2\)D. \(2x^2 + 4x + 2\)答案:C2. 多项式 \(x^2 - 4\) 因式分解后为:A. \((x - 2)(x + 2)\)B. \((x + 2)^2\)C. \(x(x - 4)\)D. \((x - 2)^2\)答案:A3. 将 \(3x^2 - 12\) 因式分解,正确的选项是:A. \(3x(x - 4)\)B. \(3x(x + 4)\)C. \(3(x^2 - 4)\)D. \(3(x - 2)(x + 2)\)答案:D4. 多项式 \(x^2 + 5x + 6\) 因式分解后为:A. \((x + 2)(x + 3)\)B. \((x - 2)(x - 3)\)C. \((x + 2)(x - 3)\)D. \((x - 2)(x + 3)\)答案:A二、填空题1. 将 \(4x^2 - 12x + 9\) 因式分解,结果为 \(\boxed{(2x - 3)^2}\)。
2. 将 \(x^2 - 6x + 9\) 因式分解,结果为 \(\boxed{(x - 3)^2}\)。
3. 将 \(2x^2 + 8x + 8\) 因式分解,结果为 \(\boxed{2(x + 2)^2}\)。
4. 将 \(x^2 - 10x + 25\) 因式分解,结果为 \(\boxed{(x - 5)^2}\)。
三、解答题1. 因式分解 \(x^2 - 7x + 12\)。
答案:\((x - 3)(x - 4)\)2. 因式分解 \(4x^2 - 20x + 25\)。
答案:\((2x - 5)^2\)3. 因式分解 \(3x^2 - 12x + 12\)。
答案:\(3(x - 2)^2\)4. 因式分解 \(a^2 - 4b^2\)。
七年级数学试卷整式乘法与因式分解易错压轴解答题复习题(含答案)
七年级数学试卷整式乘法与因式分解易错压轴解答题复习题(含答案)一、整式乘法与因式分解易错压轴解答题1.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;……根据这一规律计算:(1)(x﹣1)(x4+x3+x2+x+1)=________.(x﹣1)(x n+x n﹣1+…+x+1)=________. (2)22020+22019+22018+…+22+2+1.(3)32020﹣32019+32018﹣32017+…+32﹣3+1.2.如图1是一个长为,宽为的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为;(2)观察图2请你写出,,之间的等量关系是________;(3)根据(2)中的结论,若,,则 ________;(4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式.在图形上把每一部分的面积标写清楚.3.好学小东同学,在学习多项式乘以多项式时发现:( x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是: ×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为________.(2)( x+6)(2x+3)(5x-4)所得多项式的二次项系数为________.(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=________.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如, ···,因此都是奇巧数.(1)是奇巧数吗?为什么?(2)奇巧数是的倍数吗?为什么?5.阅读材料:把形如的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即 .例如:是的一种形式的配方,是的另一种形式的配方请根据阅读材料解决下列问题:(1)比照上面的例子,写出的两种不同形式的配方;(2)已知,求的值;(3)已知,求的值.6.【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题。
七年级数学因式分解练习题及答案
七年级数学因式分解练习题及答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--七年级数学因式分解练习题及答案一、选择1.下列各式由左到右变形中,是因式分解的是=ax+ayB. x-4x+4=x+4C. 10x-5x=5xD. x-16+3x=+3x2.下列各式中,能用提公因式分解因式的是A. x-yB. x+2xC. x+yD. x-xy+13.多项式6xy-3xy-18xy分解因式时,应提取的公因式是4.多项式x+x提取公因式后剩下的因式是A. x+1 C. x D. x+15.下列变形错误的是=- B.= - C. –x-y+z=-D.=6.下列各式中能用平方差公式因式分解的是A. –+y +y7.下列分解因式错误的是A. 1-16a=B. x-x=x=8.下列多项式中,能用公式法分解因式的是-xy二、填空+ab-ab=ab.+14a-49ab=-7a.+2=___________=____________.+b==___________=________22222B. x+xyC. x-y D. x+y2222+x+____=17.若a+b=1,x-y=2,则a+2ab+b-x+y=____。
222三、解答18.因式分解:①4x316x224x②8a2123③2am14am2am1④2a2b2-4ab+2⑤2-4x2y2⑥2-419.已知a+b-c=3,求2a+2b-2c的值。
220、已知,2x-Ax+B=2,请问A、B的值是多少221、若2x2+mx-1能分解为,求m的值。
22.已知a+b=5,ab=7,求a2b+ab2-a-b的值。
23. 已知a2b2-8ab+4a2+b2+4=0,求ab的值。
24.请问9910-99能被99整除吗说明理由。
参考答案一、选择1. C . B .C.C. C7. B . C二、填空9. a+b-1; +7b11.12.13. b-a14. .解答题18. 解:①原式=-4x211,17. -142②原式=8a+12=4=4 ③原式=2a④原式=2=2.⑤原式==⑥原式=-4+4=22m-12232219. 解:2a+2b-2c=2=2×3=6.20、解:2x-Ax+B=2=x+8x-2所以A=-8,B=-2.21、解:2x+mx-1==x-x-1所以mx=-x 即m=-1.22. 解:ab+ab-a-b=ab-=把a+b=5,ab=7代入上式,原式=30.23. 解:将ab-8ab+4a+b+4=0变形得ab-4ab+4+4a-4ab+b=0;+=0所以ab=2,2a=b解得:a=±1,b=±2.所以ab=2或ab= -2.24. 解:99-99=99所以99-99能被99整除,结果为99-1.224初一数学上因式分解练习题精选一、填空:1、若x22x16是完全平方式,则m的值等于_____。
初中数学因式分解100题及答案
初中数学因式分解100题及答案一、提取公因式(1)(53)(35)(53)(54)-----x y x y(2)(74)(25)(74)(52)----+x y x y(3)(54)(73)(54)(72)a b a b--+--(4)(45)(23)(71)(45)---+-m n n m(5)(25)(41)(25)(92)(25)(63)-++--+--a b a b a b(6)(1)(51)(1)(83)+-++-a b a b(7)(35)(85)(31)(35)-+---a b b a(8)4424322-+283521xy z y z x y z(9)22242x y z x yz x y+-15615(10)(21)(34)(23)(21)--+---m n n m(11)4232+x z x y z126(12)3222-x y x y39(13)343-ab c c2114(14)2333+xyz x y z820(15)(45)(2)(45)(33)a b a b+-+++-(16)(5)(25)(5)(53)(5)(42)--+--+-+m n m n m n (17)(72)(25)(72)(31)--+-+m x m x(18)33231435a c a b c-(19)3423234664xy z x y z x y z --(20)(2)(34)(2)(25)a b a b -----二、公式法(21)224253681x y x -+-(22)2262550x xy y ++(23)2324625x -(24)22729324m n -(25)2281324m n -(26)22364816a b a -+-(27)22900225a b -(28)22289340100a ab b -+(29)2361140900x x -+(30)22495616m n n -+-三、分组分解法(31)45408172mx my nx ny--+(32)455273xy x y --+(33)224835182186a c ab bc ca+-+-(35)60125010+--mn m n(36)12402480----xy x y(37)22++--54224545x y xy yz zx (38)28327080+++mn m n(39)22++++x z xy yz zx635102529 (40)54451815+--mx my nx ny (41)40802856+--ax ay bx by (42)245637--+xy x y(44)351573+--ax ay bx by (45)36541624+--ab a b (46)981981mx my nx ny+--(47)183060100+++ab a b (48)48641216-+-mx my nx ny (49)22-+--a c ab bc ca93326 (50)45253620--+ax ay bx by四、拆添项(51)22-+++936361235x y x y(52)223610489a b a b ---+(53)2299364828x y x y ----(54)2249161127217x y x y --+-(55)229366368x y x y ----(56)4224256936a a b b -+(57)2264254830m n m n-++(58)2281181880m n m n ----(59)22164641255m n m n -+++(60)2249649814432x y x y ----五、十字相乘法(61)22----+a ab b a b5412333018 (62)22+-+--x xy y x y283152815 (63)2++--a ab a b32828749(64)22x xy y x y-+-++327635564412 (65)22--+-+x xy y x y212025352514 (66)222x y z xy yz xz++-+-491512563656 (67)222x y z xy yz xz-+-+-28182031851 (68)222-++--48182030964a b c ab bc ac(69)22691523167x xy y x y +-+-+(70)2227216542321x xy y x y -----(71)22429149171415x xy y x y -++--(72)2229108471614x y z xy yz xz+----(73)22849293535a ab a b ++--(74)22629282315x xy y x y -++--(75)2293299x xy y y --+-(76)222141211165x xy y x y -+-++(77)2254697302224x xy y x y +++--(78)2215241231210a ab b a b --+-+(79)227222242712x xy y x y+-+-(80)2274342512814x xy y x y +-+-+六、双十字相乘法(81)22185914592814x xy y x y +-+--(82)2226341219260x y z xy yz xz-++++(83)2261121483142x xy y x y +-+-+(84)2227216282513x y z xy yz xz++--+(85)22263312342060x y z xy yz xz+++--(86)2146592135x xy x y +--+(87)22499849707024x xy y x y -+-++(88)22151910252110x xy y x y +-+++(89)242723x xy x y ++++(90)2728455x xy x y-+-七、因式定理(91)32672912x x x ---(92)326132015x x x --+(93)32896x x x ++-(94)321529173x x x +++(95)322536x x x +--(96)32384x x x -++(97)3220191312a a a --+(98)32463x x x +--(99)3231024x x x --+(100)32515136x x x +++初中数学因式分解100题答案一、提取公因式(1)(53)(21)x y --+(2)(74)(37)x y --+(3)(54)(145)a b --(4)(45)(54)m n --+(5)(25)(194)a b --(6)(1)(134)a b +-(7)(35)(56)a b -+(8)2222237(453)y z xy z z x -+(9)223(525)x y yz z x y +-(10)(21)(57)m n ---(11)326(2)x z xz y +(12)223(3)x y x -(13)337(32)c ab c -(14)2224(25)xyz x y z +(15)(45)(21)a b +-(16)(5)(116)m n --(17)(72)(54)m x --(18)2237(25)a c ac b -(19)3332(332)xy z z x xz --(20)(2)(1)a b -+二、公式法(21)(259)(259)x y x y ++-+(22)2(25)x y +(23)(1825)(1825)x x +-(24)(2718)(2718)m n m n +-(25)(918)(918)m n m n +-(26)(64)(64)a b a b ++-+(27)(3015)(3015)a b a b +-(28)2(1710)a b -(29)2(1930)x -(30)(74)(74)m n m n +--+三、分组分解法(31)(59)(98)m n x y --(32)(53)(91)x y --(33)(67)(835)a c a b c ---(34)(41)(310)m n --(35)2(65)(51)m n -+(36)4(2)(310)x y -++(37)(625)(9)x y z x y +-+(38)2(25)(78)m n ++(39)(357)(25)x y z x z+++(40)3(3)(65)m n x y-+(41)4(107)(2)a b x y-+(42)(81)(37)x y--(43)2(5)(310)m n+-(44)(5)(73)a b x y-+(45)2(94)(23)a b-+(46)9()(9)m n x y-+(47)2(310)(35)a b++(48)4(4)(34)m n x y+-(49)(3)(9)a c ab c-++(50)(54)(95)a b x y--四、拆添项(51)(365)(367)x y x y++-+(52)(61)(69)a b a b+---(53)(332)(3314)x y x y++--(54)(7417)(741)x y x y+--+ (55)(362)(364)x y x y++--(56)2222(536)(536)a ab b a ab b+---(57)(85)(856)m n m n+-+(58)(98)(910)m n m n++--(59)(425)(4211)m n m n++-+ (60)(782)(7816)x y x y++--五、十字相乘法(61)(563)(26)a b a b+---(62)(453)(75)x y x y++--(63)(47)(87)a b a++-(64)(852)(476)x y x y----(65)(757)(352)x y x y++-+ (66)(752)(736)x y z x y z----(67)(435)(764)x y z x y z+---(68)(665)(834)a b c a b c+---(69)(331)(257)x y x y-+++ (70)(337)(923)x y x y--++ (71)(675)(773)x y x y-+--(72)(52)(924)x y z x y z---+(73)(75)(477)a a b-++ (74)(345)(273)x y x y-+--(75)(33)(323)x y x y+--+ (76)(65)(221)x y x y----(77)(676)(94)x y x y+++-(78)(365)(522)a b a b-+++(79)(863)(94)x y x y++-(80)(77)(762)x y x y++-+六、双十字相乘法(81)(277)(922)x y x y++--(82)(72)(946)x y z x y z-+++ (83)(676)(37)x y x y-+++ (84)(776)(3)x y z x y z-+-+ (85)(732)(96)x y z x y z+-+-(86)(27)(735)x x y-+-(87)(774)(776)x y x y----(88)(352)(525)x y x y++-+ (89)(1)(423)x x y+++(90)(9)(85)x y x-+七、因式定理(91)(3)(21)(34)x x x-++ (92)2(3)(655)x x x-+-(93)2(2)(63)x x x++-(94)(1)(53)(31)x x x+++ (95)2(1)(236)x x x++-(96)2(1)(354)x x x---(97)(1)(43)(54)a a a--+ (98)2(1)(423)x x x++-(99)(3)(4)(2)x x x+--(100)2(2)(553)x x x+++。
初一数学因式分解常考训练
初一数学因式分解常考训练1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8【分析】(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.【解答】(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8=2(x2+4x+4)=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy(2)3a3﹣6a2b+3ab2.【分析】(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.【解答】(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.【分析】(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.【解答】(1)a2(x﹣y)+16(y﹣x)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4)(2)(x2+y2)2﹣4x2y2=(x2+2xy+y2)(x2﹣2xy+y2)=(x+y)2(x﹣y)24.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.【分析】(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.【解答】(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3=﹣y(9x2﹣6xy+y2)=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2=[2+3(x﹣y)]2=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2【分析】(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2=x(4x2+4xy+y2)=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.【分析】(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.【解答】(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.【分析】(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.【解答】(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.【分析】(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.【解答】(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.【分析】本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.【解答】a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.【解答】a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1【分析】(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.【解答】(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)-(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y-x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;【分析】(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.【解答】(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2。
2022年浙教版初中数学七年级下册第四章因式分解同步练习试题(含解析)
初中数学七年级下册第四章因式分解同步练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列各式由左边到右边的变形,是因式分解的是( )A.22()()x y x y x y -+=-B.241254(3)5x x x x +-=+-C.22()()x y x x y x y x -+=+-+D.2224484()x y xy x y +-=- 2、多项式3x x -的因式为( )A.()1x x -B.()1x +C.()()11x x +-D.以上都是3、下列各式中,能用完全平方公式分解因式的是( )A.2161x +B.221x x +-C.2224a ab b ++D.214x x -+ 4、多项式(2)(22)(2)x x x +--+可以因式分解成()(2)x m x n ++,则m n -的值是( )A.-1B.1C.-5D.55、下列因式分解正确的是( )A.ab +bc +b =b (a +c )B.a 2﹣9=(a +3)(a ﹣3)C.(a ﹣1)2+(a ﹣1)=a 2﹣aD.a (a ﹣1)=a 2﹣a 6、把多项式a 3﹣9a 分解因式,结果正确的是( )A.a (a 2﹣9)B.(a +3)(a ﹣3)C.﹣a (9﹣a 2)D.a (a +3)(a ﹣3)7、若()()223x x x a x b --=-+,则-a b 的值为( )A.3B.3-C.2D.2-8、下列等式中,从左往右的变形为因式分解的是( )A.a 2﹣a ﹣1=a (a ﹣1﹣1a )B.(a ﹣b )(a +b )=a 2﹣b 2C.m 2﹣m ﹣1=m (m ﹣1)﹣1D.m (a ﹣b )+n (b ﹣a )=(m ﹣n )(a ﹣b )9、下列四个式子从左到右的变形是因式分解的为( )A.(x ﹣y )(﹣x ﹣y )=y 2﹣x 2B.a 2+2ab +b 2﹣1=(a +b )2﹣1C.x 4﹣81y 4=(x 2+9y 2)(x +3y )(x ﹣3y )D.(a 2+2a )2﹣8(a 2+2a )+12=(a 2+2a )(a 2+2a ﹣8)+1210、下列各选项中因式分解正确的是( )A.x 2-1=(x -1)2B.a 3-2a 2+a =a 2(a -2)C.-2y 2+4y =-2y (y +2)D.a 2b -2ab +b =b (a -1)2 11、把多项式x 3﹣9x 分解因式,正确的结果是( )A.x (x 2﹣9)B.x (x ﹣3)(x +3)C.x (x ﹣3)2D.x (3﹣x )(3+x )12、下列各式中不能用平方差公式分解的是( )A.24x -B.22x y -+C.221x y +D.214x -13、对于①()()2212+-=+-x x x x ,②()233x xy x x y -=-,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解14、下列各式从左到右的变形是因式分解为( )A.()()2111x x x +-=-B.()()2233x y x y x y -+=+-+C.()2242a a -=-D.()2321x y xy x y xy x x -+=-+ 15、下面从左到右的变形中,因式分解正确的是( )A.﹣2x 2﹣4xy =﹣2x (x +2y )B.x 2+9=(x +3)2C.x 2﹣2x ﹣1=(x ﹣1)2D.(x +2)(x ﹣2)=x 2﹣4 二、填空题(10小题,每小题4分,共计40分)1、若223()()x x x a x b +-=--,则ab =______.2、因式分解:22421x y y ---=__________.3、若1,22ab a b =-=,则a 2b ﹣ab 2=___.4、若a +b =﹣2,a 2﹣b 2=10,则2021﹣a +b 的值是 _______.5、分解因式:x 2﹣7xy ﹣18y 2=___.6、因式分解:()()11x m y m -+-=____________.7、如果(a + )2=a 2+6ab +9b 2,那么括号内可以填入的代数式是 ___.(只需填写一个)8、若多项式21mx n -可分解因式118833x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭,则m =_______,n =_______. 9、因式分解:3a a -=________.10、下列多项式:①224a b -;②2244a ab b ++;③222a b ab +;④322a a b +,它们的公因式是______.三、解答题(3小题,每小题5分,共计15分)1、分解因式:(1)16x 2﹣8xy +y 2;(2)a 2(x ﹣y )+b 2(y ﹣x ).2、把下列各式分解因式:(1)2416a -(2)223242x y xy y -+.3、分解因式:(a 2﹣a )2+2(a 2﹣a )﹣8---------参考答案-----------一、单选题1、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故不符合;B 、没把一个多项式转化成几个整式积的形式,故不符合;C 、没把一个多项式转化成几个整式积的形式,故不符合;D 、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.2、D【分析】将3x x -先提公因式因式分解,然后运用平方差公式因式分解即可.【详解】解:3x x -2(1)x x =-(1)(1)x x x =+-,∴()1x x -、()1x +、()()11x x +-,均为3x x -的因式,故选:D.【点睛】本题考查了提公因式法因式分解以及运用平方差公式因式分解,熟练运用公式法因式分解是解本题的关键.3、D【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A 、不能用完全平方公式因式分解,故本选项不符合题意;B 、不能用完全平方公式因式分解,故本选项不符合题意;C 、不能用完全平方公式因式分解,故本选项不符合题意;D 、221142x x x ⎛⎫-+=- ⎪⎝⎭能用完全平方公式因式分解,故本选项符合题意; 故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握()2222a ab b a b ±+=± 是解题的关键.4、D【分析】先提公因式()2x +,然后将原多项式因式分解,可求出m 和 n 的值,即可计算求得答案.【详解】解:∵()()()()()()()22222221223x x x x x x x +--+=+--=+-,∴2m =,3n =-,∴()235m n -=--=.故选:D .【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.5、B【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.解:A.ab+bc+b=b(a+c+1),因此选项A不符合题意;B.a2﹣9=(a+3)(a﹣3),因此选项B符合题意;C.(a﹣1)2+(a﹣1)=(a﹣1)(a﹣1+1)=a(a﹣1),因此选项C不符合题意;D.a(a﹣1)=a2﹣a,不是因式分解,因此选项D不符合题意;故选:B.【点睛】本题考查因式分解,涉及提公因式、平方差、完全平方公式等知识,是重要考点,掌握相关知识是解题关键.6、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a3﹣9a=a(a2﹣9)=a(a+3)(a﹣3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.7、C【分析】根据十字相乘法可直接进行求解a、b的值,然后问题可求解.解:()()22331x x x x --=-+,∴3,1a b ==,∴2a b -=;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.8、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a 2﹣a ﹣1=a (a ﹣1﹣1a )∵从左往右的变形是乘积形式,但(a ﹣1﹣1a )不是整式,故选项A 不是因式分解;B. (a ﹣b )(a +b )=a 2﹣b 2,从左往右的变形是多项式的乘法,故选项B 不是因式分解;C. m 2﹣m ﹣1=m (m ﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C 不是因式分解;D.根据因式分解的定义可知 m (a ﹣b )+n (b ﹣a )=(m ﹣n )(a ﹣b )是因式分解,故选项D 从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.9、C【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A 选项,B ,D 选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C 选项,符合因式分解的定义,符合题意;故选:C .【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.10、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A 、()()21=11x x x -+-,选项错误;B 、()()23222211a a a a a a a a -+=-+=-,选项错误; C 、2242(2)y y y y -+=-- ,选项错误;D 、2222(21)(1)a b ab b b a a b a -+=-+=-,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.11、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3).故选:B.【点睛】本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.12、C【分析】分别利用平方差公式分解因式进而得出答案.【详解】解:A、2-=(2+x)(2﹣x),可以用平方差公式分解因式,故此选项错误;4xB、22-+=(y+x)(y﹣x),可以用平方差公式分解因式,故此选项错误;x yC、221x y+,不可以用平方差公式分解因式,故此选项正确;D、2-=(1+2x)(1﹣2x),可以用平方差公式分解因式,故此选项错误;14x故选:C.【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.13、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:①()()2212+-=+-x x x x ,属于整式乘法,不属于因式分解;②()233x xy x x y -=-,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.14、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A . ()()2111x x x +-=-,属于整式的乘法运算,故本选项错误;B . ()()2233x y x y x y -+=+-+,属于整式的乘法运算,故本选项错误;C . ()2242a a -≠-左边和右边不相等,故本选项错误;D . ()2321x y xy x y xy x x -+=-+,符合因式分解的定义,故本选项正确; 故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.15、A【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A 、把一个多项式转化成两个整式乘积的形式,故A 正确;B 、等式不成立,故B 错误;C 、等式不成立,故C 错误;D 、是整式的乘法,故D 错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.二、填空题1、-3【分析】利用因式分解求出,a b 的值,再代入ab 中即可.【详解】解:223(3)(1)x x x x +-=+-,223()()x x x a x b +-=--,(3)(1)()()x x x a x b ∴+-=--,取3,1a b =-=或1,3a b ==-,将,a b 的值,再代入ab 中,3ab =-,故答案是:3-.【点睛】本题考查了因式分解,解题的关键是利用十字交叉相乘法进行因式分解,求出,a b .2、(21)(21)x y x y ++--【分析】先分组,然后根据公式法因式分解.【详解】22421x y y ---224(21)x y y =-++22(2)(1)x y =-+(21)(21)x y x y =++--.故答案为:(21)(21)x y x y ++--.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.3、1【分析】直接提取公因式ab ,进而分解因式,把已知数据代入得出答案.【详解】解:∵ab =12,a ﹣b =2,∴a 2b ﹣ab 2=ab (a ﹣b ) =12×2=1.故答案为:1.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.4、2026【分析】利用平方差公式求得a ﹣b ,将a ﹣b 代入2021﹣a +b =2021﹣(a ﹣b )即可.【详解】解:∵a +b =﹣2,a 2﹣b 2=10,∴a 2﹣b 2=(a +b )(a ﹣b )=﹣2(a ﹣b )=10,∴a ﹣b =﹣5,∴2021﹣a +b =2021﹣(a ﹣b )=2021﹣(﹣5)=2026,故答案为:2026.【点睛】本题主要考查了用平方差公式进行因式分解,解题的关键是利用平方差公式求得a ﹣b ,牢记平方差公式22()()a b a b a b -=+- .5、()()92x y x y -+【分析】根据十字相乘法因式分解即可.【详解】 x 2﹣7xy ﹣18y 2()()92x y x y =-+,故答案为:()()92x y x y -+.本题考查了因式分解,掌握因式分解的方法是解题的关键.6、()()1x y m --【分析】将y (1-m )变形为-y (m -1),再提取公因式即可.【详解】∵x (m -1)+ y (1-m )= x (m -1)-y (m -1),=(x -y )(m -1),故答案为:(x -y )(m -1).【点睛】本题考查了因式分解,熟练进行代数式的变形构造公因式是解题的关键.7、3b【分析】先根据展开式三项进行公式化变形,利用因式分解公式得出因式分解结果,再反过来即可得解.【详解】解:a 2+6ab +9b 2= a 2+2×a×3b +(3b )2=(a +3b )2,∴(a + 3b )2=a 2+6ab +9b 2,故答案为3b .【点睛】本题考查多项式的乘法公式,可反过来用因式分解公式来求解是解题关键.8、64 9利用平方差公式可得21118864339x x x ⎛⎫⎛⎫-+=- ⎪⎪⎝⎭⎝⎭,进而可得答案.【详解】 解:∵多项式21mx n -可分解因式118833x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭, ∴21118864339x x x ⎛⎫⎛⎫-+=- ⎪⎪⎝⎭⎝⎭,∴m =64,n =9.故答案为:64,9.【点睛】此题主要考查了因式分解,关键是掌握平方差公式:a 2-b 2=(a +b )(a -b ).9、a (a +1)(a -1)【分析】先找出公因式a ,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:3a a -()2=1a a - (1)(1)a a a =+-故答案为:(1)(1)a a a +-.【点睛】本题考查了用提公因式法分解因式,准确找出公因式是解题的关键.10、2+a b【分析】将各多项式分解因式,即可得到它们的公因式.【详解】解:∵①224(2)(2)a b a b a b -=+-,②22244(2)a ab b a b ++=+,③2222)(a b b ab a a b =++,④32222)(a a a b a b +=+,∴它们的公因式是2+a b ,故答案为:2+a b .【点睛】此题考查多项式的因式分解方法,公因式的定义,熟练掌握多项式的因式分解方法是解题的关键.三、解答题1、(1)(4x ﹣y )2;(2)(a +b )(a ﹣b )(x ﹣y ).【分析】(1)运用完全平方公式分解即可;(2)先提取公因式(x ﹣y ),再用平方差公式分解即可.【详解】解:(1)原式=(4x ﹣y )2;(2)原式=a 2(x ﹣y )﹣b 2(x ﹣y ),=(x ﹣y )(a 2﹣b 2),=(a +b )(a ﹣b )(x ﹣y ).【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解,注意:因式分解要彻底.2、(1)4(2)(2)a a +-;(2)22()y x y -【分析】(1)原式提取4,再利用平方差公式分解即可;(2)原式提取2y ,再利用完全平方公式分解即可.【详解】解:(1)2416a -=4(a 2−4)=4(2)(2)a a +-; (2)223242x y xy y -+=2y (x 2−2xy +y 2)=2y (x −y )2. 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、()()()2421a a a a -+-+【分析】将2-a a 看错整体,根据十字相乘法进行因式分解,对于()22a a --再次分解即可【详解】(a 2﹣a )2+2(a 2﹣a )﹣8()()2242a a a a =-+--()()()2421a a a a =-+-+ 【点睛】本题考查了因式分解,分解彻底是解题的关键.。
最新苏科版七年级数学下册《因式分解》复习练习
初一下数学复习因式分解一.因式分解-提公因式法1.把下列各式分解因式:(1)ax﹣ay+az;(2)6a2b﹣15ab2+30a2b2;(3)10a(x﹣y)2﹣5b(y﹣x);(4)x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a).2.因式分解:(x+1)(x+3)﹣33.(2019秋•徐汇区校级期中)(x﹣3y)(x﹣y)﹣(﹣x﹣y)24.因式分解:2m(a﹣b)﹣3n(b﹣a)5.(2019春•大丰区期末)因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y ﹣x)6.(2018秋•如皋市期中)因式分解:(1)x2﹣10x (2)﹣8ax2+16axy﹣8ay2 6.(2017春•天宁区校级月考)因式分解:2x2﹣4x.8.(2017春•滨海县期末)因式分解:(1)3a(x﹣y)﹣5b(y﹣x)(2)x6﹣x2y4.9.分解因式:3x(a﹣b)﹣6y(b﹣a)二.因式分解-运用公式法10.分解因式:(1)16x2﹣8xy+y2;(2)a2(x﹣y)﹣b2(x﹣y).11.(2019春•泰兴市期中)因式分解.(1)4x2﹣9y2 (2)x2+2xy+2y212.分解因式:(a2+1)2﹣4a2.13.(2018春•江宁区校级月考)分解因式.(1)(m+1)(m﹣9)+8m (2)(x2﹣x)2﹣(x﹣1)214.(2018春•工业园区期末)分解因式:x4﹣2x2+1.三.提公因式法与公式法的综合运用15.(2020春•灌云县期中)因式分解:(1)2m(a﹣b)﹣3n(b﹣a)(2)8a2﹣2b2 (3)4+12(x﹣y)+9(x﹣y)216.(2019秋•崇川区校级期末)分解因式:(1)4x2y﹣9y (2)(a2+4)2﹣16a217.因式分解(1)4a2﹣9;(2)3ax2+6axy+3ay2.18.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.19.(2020春•东台市期中)因式分解①2x2﹣8 ②x3﹣2x2y+xy2 ③(x2+4)2﹣16x2.20.因式分解:(1)x2﹣4;(2)x3﹣2x2+x.四.因式分解-分组分解法21.分解因式:x2+y2+2xy﹣1.22.(2018春•玄武区校级期中)因式分解(1)m2(x﹣2)+m(2﹣x)(2)(x+y)2﹣4(x+y﹣1);(3)(x2+y2)2﹣4x2y2;(4)x3+x2y﹣xy2﹣y3.23.(2018秋•启东市期中)分解因式(1)16﹣a4 (2)y3﹣6xy2+9x2y(3)(m+n)2﹣4m(m+n)+4m2 (4)9﹣a2+4ab﹣4b224.(2017秋•海安县月考)因式分解:(1)a4﹣16 (2)x2﹣2xy+y2﹣9 (3)n2(m﹣2 )+(2﹣m )25.(2017春•苏州期中)分解因式:(1)2a3﹣8a (2)4a(x﹣y)﹣2b(y﹣x)(4)(x2+4)2﹣16x2 (4)2xy﹣x2+1﹣y2.26.(2017春•江阴市校级月考)因式分解(1)x3﹣4x (2)﹣2a2+4a﹣2(3)x2﹣5x﹣6 (4)x2﹣4y2+x+2y.五.因式分解-十字相乘法等27.(2019春•常熟市期末)将下列各式分解因式:(1)x2﹣5x﹣6;(2)8x2﹣8x+2;(3)a2(x﹣y)+b2(y﹣x).28.(2019春•相城区期中)将下列各式分解因式(1)9x2﹣25 (2)x4y4﹣8x2y2+16 (3)a2(x﹣y)﹣b2(x﹣y)(4)x2﹣xy﹣6y229.(2019春•吴江区期中)分解因式:(1)ax2﹣6ax+9a (2)(m+1)(m﹣9)+8m (3)a4+3a2﹣430.(2019春•丹阳市期中)分解因式(1)6xz﹣9xy (2)8a3﹣8a2+2a(3)2ax2﹣18a3 (4)x2﹣4x﹣1231.(2019春•常熟市期中)分解因式:(1)3a2﹣6a+3;(2)a2﹣ab﹣6b2;(3)9a2(2x﹣y)+(y﹣2x)32.(2019春•太仓市期中)把下列各式分解因式(1)x4﹣81 (2)x2﹣x﹣2 (3)2x2y﹣8xy+8y33.分解因式:(a2+a)2﹣8(a2+a)+12.34.(2018春•玄武区校级月考)分解下列因式(1)a2(x﹣y)+b2(y﹣x)(2)16x4﹣8x2y2+y4 (3)(x2+4)2﹣16x2(4)36(a+b)2﹣4(a﹣b)2 (5)x2﹣6x﹣1635.(2018春•常熟市期末)将下列各式分解因式(1)3x(a﹣b)﹣9y(b﹣a);(2)a2﹣4a﹣12;(3)81x4﹣72x2y2+16y436.(2018春•相城区期中)将下列各式分解因式:(1)2ax2﹣8a (2)x2﹣6xy+5y2(3)(2m﹣n)2﹣6n(2m﹣n)+9n2 (4)a2﹣b2+2b﹣1初一下期中复习因式分解答案一.因式分解-提公因式法1.(1)ax﹣ay+az=a(x﹣y+z);(2)6a2b﹣15ab2+30a2b2=3ab(2a﹣5b+10ab);(3)10a(x﹣y)2﹣5b(y﹣x)=10a(x﹣y)2+5b(x﹣y)=5(x﹣y)[2a(x﹣y)+b]=5(x﹣y)(2ax﹣2ay+b);(4)x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a)=x(a﹣x)(a﹣y)﹣y(a ﹣x)(a﹣y)=(a﹣x)(a﹣y)(x﹣y).2.(x+1)(x+3)﹣3=x2+4x+3﹣3=x2+4x=x(x+4),3.(x﹣3y)(x﹣y)﹣(﹣x﹣y)2=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).4.2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n).5.3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)=3x2(x﹣2y)﹣18x(x ﹣2y)+27(x﹣2y)=3(x﹣2y)(x2﹣6x+9)=3(x﹣2y)(x﹣3)2.6.(1)x2﹣10x=x(x﹣10);(2)﹣8ax2+16axy﹣8ay2=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.7.2x2﹣4x=2x(x﹣2).8.(1)3a(x﹣y)﹣5b(y﹣x)=(x﹣y)(3a+5b)(2)x6﹣x2y4=x2(x4﹣y4)=x2(x2﹣y2)(x2+y2)=x2(x﹣y)(x+y)(x2+y2)9.3x(a﹣b)﹣6y(b﹣a)=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y).二.因式分解-运用公式法10.(1)16x2﹣8xy+y2=(4x﹣y)2(2)a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b).11.(1)4x2﹣9y2=(2x+3y)(2x﹣3y)(2)x2+2xy+2y2=(x2+4xy+4y2)=(x+2y)2.12.(a2+1)2﹣4a2.=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.13.(1)(m+1)(m﹣9)+8m=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3);(2)(x2﹣x)2﹣(x﹣1)2=(x2﹣x+x﹣1)(x2﹣x﹣x+1)=(x+1)(x﹣1)(x﹣1)2=(x+1)(x﹣1)3.14.x4﹣2x2+1=(x2﹣1)2=(x+1)2(x﹣1)2.三.提公因式法与公式法的综合运用15.(1)2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n)(2)8a2﹣2b2=2(4a2﹣b2)=2(2a+b)(2a﹣b)(3)4+12(x﹣y)+9(x﹣y)2=[2+3(x﹣y)]2=(2+3x﹣3y)2 16.(1)4x2y﹣9y=y(4x2﹣9)=y(2x+3)(2x﹣3)(2)(a2+4)2﹣16a2=(a2+4﹣4a)(a2+4+4a)=(a+2)2(a﹣2)217.(1)4a2﹣9=(2a+3)(2a﹣3)(2)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)218.(1)9ax2﹣ay2=a(9x2﹣y2)=a(3x+y)(3x﹣y)(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)219.①2x2﹣8=2(x2﹣4)=2(x﹣2)(x+2)②x3﹣2x2y+xy2═x(x2﹣2xy+y2)=x(x﹣y)2③(x2+4)2﹣16x2=(x2+4x+4)(x2﹣4x+4)=(x+2)2(x﹣2)2 20.(1)x2﹣4=(x+2)(x﹣2);(2)x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.四.因式分解-分组分解法21.x2+y2+2xy﹣1=(x+y)2﹣1=(x+y﹣1)(x+y+1).22.(1)m2(x﹣2)+m(2﹣x)=m2(x﹣2)﹣m(x﹣2)=(x﹣2)(m2﹣m)=m(x﹣2)(m﹣1);(2)(x+y)2﹣4(x+y﹣1)=(x+y)2﹣4(x+y)+4=(x+y﹣2)2;(3)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2;(4)x3+x2y﹣xy2﹣y3=x2(x+y)﹣y2(x+y)=(x+y)(x2﹣y2)=(x+y)2(x﹣y).23.(1)16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(2)y3﹣6xy2+9x2y=y(y2﹣6xy+9x2)=y(y﹣3x)2(3)(m+n)2﹣4m(m+n)+4m2=(m+n﹣2m)2=(n﹣m)2 (4)9﹣a2+4ab﹣4b2=9﹣(a﹣2b)2=(3﹣a+2b)(3+a﹣2b)24.(1)a4﹣16=(a2+4)(a2﹣4)=(a2+4)(a+2)(a﹣2)(2)x2﹣2xy+y2﹣9=(x﹣y)2﹣32=(x﹣y+3)(x﹣y﹣3)(3)n2(m﹣2 )+(2﹣m )=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1)25.(1)2a3﹣8a=2a(a2﹣4)=2a(a+2)(a﹣2);(2)4a(x﹣y)﹣2b(y﹣x)=2(x﹣y)(2a+b);(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)2xy﹣x2+1﹣y2=1﹣(x﹣y)2=(1+x﹣y)(1﹣x+y).26.(1)x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2)(2)﹣2a2+4a﹣2=﹣2(a2﹣2a+1)=﹣2(a﹣1)2(3)x2﹣5x﹣6=(x﹣6)(x+1)(4)x2﹣4y2+x+2y=(x+2y)(x﹣2y)+(x+2y)=(x+2y)(x﹣2y+1)五.因式分解-十字相乘法等27.(1)x2﹣5x﹣6=(x﹣6)(x+1)(2)8x2﹣8x+2=2(4x2﹣4x+1)=2(2x﹣1)2(3)a2(x﹣y)+b2(y﹣x)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b)28.(1)9x2﹣25=(3x+5)(3x﹣5)(2)x4y4﹣8x2y2+16=(x2y2﹣4)2=(xy+2)2(xy﹣2)2(3)a2(x﹣y)﹣b2(x﹣y)=(a2﹣b2)(x﹣y)=(a+b)(a﹣b)(x﹣y)(4)x2﹣xy﹣6y2=(x﹣3y)(x+2y)29.(1)ax2﹣6ax+9a=a(x2﹣6x+9)=a(x﹣3)2;(2)(m+1)(m﹣9)+8m=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m ﹣3);(3)a4+3a2﹣4=(a2﹣1)(a2+4)=(a﹣1)(a+1)(a2+4).30.(1)6xz﹣9xy=3x(2z﹣3y)(2)8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2(3)2ax2﹣18a3=2a(x2﹣9a2)=2a(x+3a)(x﹣3a)(4)x2﹣4x﹣12=(x﹣6)(x+2)31.(1)3a2﹣6a+3=3(a2﹣2a+1)=3(a﹣1)2;(2)a2﹣ab﹣6b2=(a﹣3b)(a+2b);(3)9a2(2x﹣y)+(y﹣2x)=9a2(2x﹣y)﹣(2x﹣y)=(2x﹣y)(9a2﹣1)=(2x﹣y)(3a+1)(3a﹣1).32.(1)x4﹣81=(x2+9)(x2﹣9)=(x2+9)(x+3)(x﹣3);(2)x2﹣x﹣2=(x+1)(x﹣2);(3)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.33.(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a ﹣1)(a+3)(a﹣2).34.(1)a2(x﹣y)+b2(y﹣x)=a2(x﹣y)﹣b2(x﹣y)=(a2﹣b2)(x﹣y)=(x﹣y)(a+b)(a﹣b);(2)16x4﹣8x2y2+y4=(4x2﹣y2)2=(2x+y)2(2x﹣y)2;(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)36(a+b)2﹣4(a﹣b)2=(6a+6b)2﹣(2a﹣2b)2=(6a+6b+2a ﹣2b)(6a+6b﹣2a+2b)=(8a+4b)(4a+8b)=16(2a+b)(a+2b);(5)x2﹣6x﹣16=(x﹣8)(x+2).35.(1)3x(a﹣b)﹣9y(b﹣a)=3x(a﹣b)+9y(a﹣b)=3(a﹣b)(x+3y);(2)a2﹣4a﹣12=(a﹣6)(a+2);(3)81x4﹣72x2y2+16y4=(9x2﹣4y2)2=(3x+2y)2(3x﹣2y)2.36.(1)2ax2﹣8a=2a(x2﹣4)=2a(x+2)(x﹣2);(2)x2﹣6xy+5y2=(x﹣y)(x﹣5y);(3)(2m﹣n)2﹣6n(2m﹣n)+9n2=(2m﹣n﹣3n)2=4(m﹣2n)2;(4)a2﹣b2+2b﹣1=a2﹣(b﹣1)2=(a+b﹣1)(a﹣b+1).。
因式分解初一数学习题及答案
因式分解初一数学习题及答案一、分解因式1.2x4y2-4x3y2+10xy4。
2.5xn+1-15xn+60xn-1。
4.(a+b)2x2-2(a2-b2)xy+(a-b)2y25.x4-16.-a2-b2+2ab+4分解因式。
10.a2+b2+c2+2ab+2bc+2ac11.x2-2x-812.3x2+5x-213.(x+1)(x+2)(x+3)(x+4)+114.(x2+3x+2)(x2+7x+12)-120.15.把多项式3x2+11x+10分解因式。
16.把多项式5x2―6xy―8y2分解因式。
二证明题17.求证:32000-431999+1031998能被7整除。
18.设为正整数,且64n-7n能被57整除,证明:是57的倍数.19.求证:无论x、y为何值,的值恒为正。
20.已知x2+y2-4x+6y+13=0,求x,y的值。
三求值。
21.已知a,b,c满足a-b=8,ab+c2+16=0,求a+b+c的值.22.已知x2+3x+6是多项式x4-6x3+mx2+nx+36的一个因式,试确定m,n的值,并求出它的其它因式。
因式分解精选练习答案一分解因式1.解:原式=2xy2x3-2xy22x2+2xy25y2=2xy2(x3-2x2+5y2)。
提示:先确定公因式,找各项系数的最大公约数2;各项相同字母的最低次幂xy2,即公因式2xy2,再把各项的公因式提到括号外面,把多项式写成因式的积。
2.提示:在公因式中相同字母x的最低次幂是xn-1,提公因式时xn+1提取xn-1后为x2,xn提取xn--1后为x。
解:原式=5xn--1x2-5xn--13x+5xn--112=5xn--1(x2-3x+12)3.解:原式=3a(b-1)(1-8a3)=3a(b-1)(1-2a)(1+2a+4a2)提示:立方差公式:a3-b3=(a-b)(a2+ab+b2)立方和公式:a3+b3=(a+b)(a2-ab+b2)所以,1-8a3=(1-2a)(1+2a+4a2)4.解:原式=[(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)2[提示:将(a+b)x和(a-b)y视为一个整体。
七年级因式分解50道题及答案和过程
七年级因式分解50道题及答案和过程1.因式分解:(1)2218x -(2)()()244m n m n +-++2.因式分解:(1)2129xyz x y -;(2)2464x -.3.因式分解:(1)249x -;(2)322242m m n mn ++.4.因式分解:(1)2464x -;(2)232a a a -+-.5.因式分解:(1)2422ax ay -.(2)4224817216x x y y -+.6.因式分解:(1)228a -(2)()()24129a b a b +-++7.因式分解:(1)244x x -+;(2)2327x -.8.分解因式:(1)533416m n m n-(2)32221218x x y xy -+9.分解因式:(2)32232x y x y xy ++.10.因式分解:(1)2416x -;(2)23216164a b a ab --.11.因式分解:(1)2296x xy y -+.(2)(1)(3)4x x +-+.12.因式分解:(1)222a ab b -+(2)24()()a ab b a -+-13.因式分解(1)242025x x ++;(2)()()2293a b a b -+-.14.因式分解:(1)a 3-4a 2+4a ;(2)a 4b 4-81;(3)16(x -2y )2-4(x +y )2.15.因式分解:(1)32288a a a -+;(2)328x x -16.因式分解:(1)33a b ab -(2)22363x xy y -+-17.因式分解:(1)2x 2-8(2)4221x x -+18.因式分解:(2)228x -19.因式分解(1)a 2(x+y )﹣b 2(x+y )(2)x 4﹣8x 2+16.20.因式分解:(1)2693x xy x -+;(2)2xy x -;21.因式分解:(1)x 3y ﹣xy 3;(2)(x +2)(x +4)+x 2﹣422.因式分解:(1)322369x y x y xy -+(2)()()236x x y x y x -+-23.因式分解:(1)32246x x x -+-;(2)222(4)16a a +-.24.因式分解:(1)236x x -;(2)2441a a -+(3)()()229m n m n +--;25.因式分解:(1)4ab b+(2)232x x -+(3)2214a b b -+-(4)2464a -参考答案1.(1)()()21313x x +-(2)()22m n +-【分析】(1)先提公因式2,再按照平方差公式分解即可;(2)把m n +看整体,直接利用完全平方公式分解即可.(1)解:2218x -()2219x =-()()21313x x =+-(2)()()244m n m n +-++()22m n =+-2.(1)()343xy z x -(2)()()444x x +-【分析】(1)提取公因式3xy 即可;(2)先提取公因式4,再利用平方差公式分解因式即可.(1)解:2129xyz x y-()343xy z x =-(2)()()()22464416444.x x x x -=-=+-3.(1)()()2323x x +-(2)()22m m n +【解析】(1)根据平方差公式因式分解即可求解;(2)提公因式2m ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2223x -()()2323x x =+-;(2)原式=()2222m m mn n ++()22m m n =+.4.(1)()()444x x +-(2)()21a a --【解析】(1)后利用平方差公式分解因式;(2)先提取公因数,再结合完全平方公式分解因式;(1)解:原式()()()2416444x x x =-=+-;(2)原式()()22211a a a a a =--+=--.5.(1)()()222a x y x y +-(2)22(32)(32)x y x y +-【解析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用完全平方公式分解,整理后,再利用平方差公式分解即可.(1)解:2422ax ay -()242a x y =-()()222a x y x y =+-;(2)解:4224817216x x y y -+()22294x y =-()()223232x y x y =+-.6.(1)()()222a a +-(2)()2223a b +-【解析】(1)先提公因式2,再用平方差公式分解;(2)将2()a b +看成一个整体,利用完全平方公式直接分解.(1)解:228a -()224a =-()()222a a =+-;(2)()()24129a b a b +-++()()22129a b a b ⎡⎤=+-++⎣⎦()223a b ⎡⎤=+-⎣⎦=()2223a b +-.7.(1)()22x -(2)()()333x x +-【解析】(1)利用完全平方公式法进行因式分解即可;(2)先对整式进行提公因式,再利用平方差公式进行因式分解即可.(1)解:原式=()22x -(2)原式=()239x -=()()333x x +-8.(1)()()3422m n mn mn +-(2)()223x x y -【解析】(1)先提公因式34,m n 再利用平方差公式分解即可;(2)先提公因式2,x 再按照完全平方公式分解因式即可.(1)解:533416m n m n-()32244m n m n =-()()3422m n mn mn =+-(2)解:32221218x x y xy -+()22269x x xy y =-+()223x x y =-9.(1)()()244x x +-(2)()2xy x y +【解析】(1)提出公因式2,然后根据平方差公式因式分解即可求解;(2)提公因式xy ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2216x -()()244x x =+-;(2)解:原式=()222xy x xy y ++()2xy x y =+.10.(1)4(2)(2)x x +-(2)24(2)a a b --【分析】(1)根据提公因式法和公式法即可求解.(2)先利用提公因式法,再利用公式法即可求解.(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b ⎡⎤=--+⎣⎦24(2)a a b =--.11.(1)(3x-y)2(2)(x-1)2【分析】(1)直接利用完全平方公式进行因式分解;(2)先拆开括号,然后利用完全平方公式继续进行因式分解.(1)解:原式=()2236x xy y -+=()23x y -.(2)原式=221x x -+=()21x -.12.(1)2()a b -(2)()(21)(21)a b a a -+-【解析】(1)利用完全平方公式解答,即可求解;(2)先提出公因式,再利用平方差公式解答,即可求解.(1)解:()2222a ab b a b -+=-;(2)解:24()()a ab b a -+-()()241a b a =--()()()2121a b a a =-+-13.(1)2(25)x +(2)(3)(31)a b a b -++【解析】(1)根据完全平方公式因式分解即可求解;(2)根据平方差公式与提公因式法因式分解即可求解.(1)242025x x ++=()2222255x x +⋅⋅+=2(25)x +(2)()()2293a b a b -+-=()()2233a b a b ⎡⎤-+-⎣⎦=()()()333a b a b a b +-+-=(3)(31)a b a b -++14.(1)()22a a -(2)()()()22933a b ab ab ++-(3)()()125x y x y --【解析】(1)先提出公因式,再利用完全平方公式解答,即可求解;(2)利用平方差公式解答,即可求解;(3)先利用平方差公式,再提出公因式,即可求解.(1)解:3244a a a-+()244a a a =-+()22a a =-(2)解:4481a b -()()222299a b a b =+-()()()22933a b ab ab =++-(3)解:()()221624x y x y --+()()()()422422x y x y x y x y =-++--+⎡⎤⎡⎤⎣⎦⎣⎦()()66210x y x y =--()()125x y x y =--15.(1)()222a a -(2)()()21212x x x +-【解析】(1)先提公因式,然后利用公式法因式分解,即可得到答案;(2)先提公因式,然后利用公式法因式分解,即可得到答案.(1)解:()()232228824422a a a a a a a a -+=-+=-;(2)解:()()()322821421212x x x x x x x -=-=+-;16.(1)()()ab a b a b +-(2)23()x y --【解析】(1)先提取公因式,再利用平方差公式分解因式;(2)先提取公因式,再利用完全平方公式分解因式.(1)解:33a b ab -()22ab a b =-()()ab a b a b =+-;(2)解:22363x xy y -+-()2232x xy y =--+()23x y =--.17.(1)()()222.x x +-(2)()()2211.x x +-【解析】(1)利用提公因式法提公因式后,再按照平方差公式分解即可。
初中七年级因式分解练习题100道
1.)3a³b²c-12a²b²c2+9ab²c³2.)16x²-813.)xy+6-2x-3y4.)x²(x-y)+y²(y-x)5.)2x²-(a-2b)x-ab6.)a4-9a²b²7.)x³+3x²-4 8.)ab(x²-y²)+xy(a²-b²)9.)(x+y)(a-b-c)+(x-y)(b+c-a) 10.)a²-a-b²-b 11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12.)(a+3) ²-6(a+3)13.)(x+1) ²(x+2)-(x+1)(x+2) ²14.)16x²-8115.)9x²-30x+25 16.)x²-7x-30 17.) x(x+2)-x 18.) x²-4x-ax+4a 19.) 25x²-49 20.) 36x²-60x+25 21.) 4x²+12x+9 22.) x²-9x+18 23.) 2x²-5x-3 24.) 12x²-50x+8 25.) 3x²-6x 26.) 49x²-25 27.) 6x²-13x+5 28.) x²+2-3x29.) 12x²-23x-24 30.) (x+6)(x-6)-(x-6) 31.) 3(x+2)(x-5)-(x+2)(x-3) 32.) 9x²+42x+49 33.) x4-2x³-35x 34.) 3x6-3x²35.)x²-25 36.)x²-20x+10037.)x²+4x+3 38.)4x²-12x+539.)3ax²-6ax 40.)(x+2)(x-3)+(x+2)(x+4) 41.)2ax²-3x+2ax-3 42.)9x²-66x+12143.)8-2x²44.)x²-x+1445.)9x²-30x+25 46.)-20x²+9x+2047.)12x²-29x+15 48.)36x²+39x+949.)21x²-31x-22 50.)9x4-35x²-451.)(2x+1)(x+1)+(2x+1)(x-3) 52.)2ax²-3x+2ax-3 53.)x(y+2)-x-y-1 54.) (x²-3x)+(x-3) ²55.) 9x²-66x+121 56.) 8-2x²57.) x 4-1 58.) x ²+4x -xy -2y +459.) 4x ²-12x +5 60.) 21x ²-31x -2261.) 4x ²+4xy +y ²-4x -2y -3 62.) 9x 5-35x 3-4x63.) 若(2x)n −81 = (4x 2+9)(2x+3)(2x−3),那么n 的值是( )64.) 若9x ²−12xy+m 是两数和的平方式,那么m 的值是( )65) 把多项式a 4− 2a ²b ²+b 4因式分解的结果为( )66.) 把(a+b) ²−4(a ²−b ²)+4(a−b) ²分解因式为( )67.) 200020012121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-68) 已知x ,y 为任意有理数,记M = x ²+y ²,N = 2xy ,则M 与N 的大小关系为( )69) 对于任何整数m ,多项式( 4m+5) ²−9都能( )A .被8整除B .被m 整除C .被(m−1)整除D .被(2m −1)整除70.) 将−3x ²n −6x n 分解因式,结果是( )71.) 多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )72.) 若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
初一因式分解50道题
初一因式分解50道题一、因式分解练习题(30道无解析)1. x^2 - 92. 4x^2 - 163. x^2+6x + 94. 9x^2 - 25y^25. x^3 - 276. 8x^3+17. x^2 - 4x+48. 16x^2 - 8x + 19. x^2y - 4y10. 3x^2 - 1211. x^4 - 112. x^2+5x+613. x^2 - 5x+614. x^2+7x+1015. x^2 - 7x + 1016. 2x^2 - 817. 3x^2 - 27x18. x^3+2x^2+x19. x^3 - 3x^2+2x20. x^2 - xy - 2y^221. x^2+xy - 6y^222. 9x^2 - 12x+423. 1 - 4x^224. x^3 - x^2 - x+125. x^3+x^2 - x - 126. 4x^2 - 4x+127. x^2 - 8x+1628. x^2+10x + 2529. x^3 - 830. 27x^3+8二、因式分解练习题(20道带解析)1. x^2 - 16- 解析:这是一个平方差的形式,a^2 - b^2=(a + b)(a - b),在这里a=x,b = 4,所以x^2-16=(x + 4)(x - 4)。
2. 9x^2 - 49- 解析:同样是平方差形式,a = 3x,b=7,根据平方差公式可得9x^2 -49=(3x+7)(3x - 7)。
3. x^2+8x + 16- 解析:这是一个完全平方的形式(a + b)^2=a^2+2ab + b^2,这里a=x,b = 4,因为x^2+8x + 16=(x + 4)^2。
4. 25x^2 - 1- 解析:是平方差形式,a = 5x,b = 1,所以25x^2-1=(5x + 1)(5x - 1)。
5. x^3+27- 解析:这是立方和的形式a^3 + b^3=(a + b)(a^2 - ab + b^2),这里a=x,b = 3,则x^3+27=(x + 3)(x^2 - 3x+9)。
初一数学因式分解练习题
因式分解练习课精读定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式。
理解因式分解的要点:1是对多项式进行因式分解;2每个因式必须是整式;3结果是积的形式;4各因式要 分解到不能再分解为止。
因式分解和整式乘法的关系。
提公因式法--- 形如ma + mb + mc = m ( a + b + c ) 运用公式法——平方差公式:a 2 3 - b 2 = (a + b )(a - b ),完全平方公式:a 2 土 2ab + b 2 = (a 土 b )2a 2 +b 2 +c 2 + 2 ab + 2 bc + 2 ca = (a + b + c )2a 2 + (p + q )ab + p - qb 2 = (a + pb )(a + qb )(1) 2 x 3 - 8 x ;(5) 4a n -i b 2 -16a n +1=2 x (x + 2)( x — 2)=-(b + c + a )(b + c - a )(b - c + a )(b - c - a )例3、因式分解(本题只给出答案2 x 4y 2 - 6x 2y 2 + 9y 2.(6) x 2y 2 - y 4 -12xy 2 + 36y 2;= y 2(x 2 -3)2=y 2( x - 6 + y )(x - 6 - y )3 3a 3 + 6a 2b - 3a 2c - 6abc ;(7) x 2 -6xy + 9y 2 - 3x + 9y + 2.=3a (a - c )(a + 2b )例1、下列各式的变形中,是否是因式分解,为什么? x 2 - y 2 + 1 = (x + y )(x - y )+ 1 ;(4)(x - y )+ (y - x )a 2 = (x - y X - a 2,;(x - 2)(x +1)= x 2 - x - 2 ;(5),c (9 9 )x y + 6 xy + 9 y = xy x + 61. 2. 3. 十字相乘法 x 2 + (p + q ) x + pq = (x + p )(x + q )4. 分组分解法 例2、因式分解 (适用于四次或四项以上,①分组后能直接提公因式②分组后能直接运用公式)。
上海初中七年级数学上---因式分解练习(含答案)
因式分解练习一、 填空题1. 将下列各式分解因式:(1) a 2-5a -6=____________ ( 4a 2-1=________________________________________________________________________ (3)x2+x +41=____________ (4) 4-(x -y )2=________________________________________________________________________(5) x 2y 2+10xy +25=____________ (6) 2a (b +c )2-6a 2(c +b )=________________________________________________________________________(7) 5x 2-10xy +5y 2=____________ (8) 4x 2y -4x 3-xy 2=________________________________________________________________________2. 多项式x 4-81,x 2-x -6,x 2-6x +9的公因式是______________. 3. 如果多项式x 2+kx +94是一个完全平方式,则k 的值应为______________.4. 如果a +b =p ,ab =q ,那么(x +a )(x +b )=______________.5. 如果多项式x 2+mx +8在整数范围内因式分解,那么m 的值可以是________________________________________________________________________.6. 若x 2+2x -5=0,则2x 2+4x -12的值是____________. 7. 已知: x -x 1=5,则x 2+x21=________________.8. 对任何自然数n ,多项式(4n +5)2-9能够被__________整除.(最大约数) 二、 选择题9. 无论a 和b 取什么值,等式恒成立的是()A. (a +b )2=a 2+b 2B. (a -b )2=(b -a )2C. a 3+b 3=(a +b )(a 2+ab +b 2)D. (a -b )3=(b -a )310. 多项式x 2-3x +a 可分解为(x -5)(x -b ),则a ,b 的值分别为()A. 10,-2B. -10,-2C. 10,2D. -10,2 11. 下列多项式中,能用平方差公式分解的是()A. -x 2+y 2B. x 2+y 2C.-x 2-y 2D. -2x 2-y 212. 下列多项式能用完全平方公式分解的有()(1) x 2+6x +9 (2) -x 2+2xy -y 2(3) 25x 4-10x 2+1 (4) 16a 2+8a +1A. 1个B. 2个C. 3个D. 4个 三、 因式分解13. a -ab 2 14. x 3-3x 2+2x15. a2-2ab+b2-1 16. 9ax2+9bx2-a-b17. 4a2-2a-b2-b18. x n+1-3x n+2x n-119. (a+b)(a-b)+4(b-1) 20. 4(x+2)2-9(x+3)2四、解答题21. 已知x+y=0.2,x+3y=1,求3x2+12xy+9y2的值.22. 已知5x2-4xy+y2-2x+1=0,求(x-y)2010的值.因式分解(二)因式分解1. 9x2-12. 2ax3+6a2x23. 3x3-12x4. x4-81y45. 2a(b+c)-4(b+c)6. 25m2-(4m-3n)27. -a(a-x)(x-b)+ab(a-x)(b-x) 8. 4x2y2-12xy+9 9. x2-6x-7 10. ma2-4ma+4m11. x4-5x2+4 12. (a2+3a)2-3(a2+3a)-2813. (x+y)2-4(x+y)+4 14. (x2-x)2-4(x2-x-1)15. a2-2ab+b2-1 16. xy-y+x-117. m-m3-mn2+2m2n 18. 4a2-2a-b2+b 19. (x-y)2-5x+5y-14 20. x2+2xy+y2+ax+ay21. a2+b2-c2-2c-2ab-1 22. y(y-2)-(m-1)(m+1) 23. (x+2)(x-3)+6x因式分解测试(一)1(1)、()()32a a -+1(2)、()()2121a a +- 1(3)、212x ⎛⎫+ ⎪⎝⎭1(4)、()()22x y x y +--+1(5)、()25xy +1(6)、()()23a b c b c a ++- 1(7)、()25x y -1(8)、()22x x y -- 2、3x -3、43±4、2x px q ++5、9±或6±6、2-7、278、89、B10、D11、A12、D13、()()11a b b +-14、()()12x x x --15、()()11a b a b -+--16、()()()3131a b x x ++-17、()()221a b a b +--18、()()112n x x x ---19、()()22a b a b +--+20、()()5135x x -++21、0.622、1因式分解测试(二)1、()()3131x x +-2、()223ax x a +3、()()322x x x +-4、()()()22339x y x y x y +-+5、()()22b c a +-6、()()333m n m n -+7、()()()1a a x x b b ---+8、()223xy -9、()()61x x -+10、()22m a - 11、()()14x x -- 12、()()223734a a a a +-++ 13、()22x y +- 14、()()2221x x -+15、()()11a b a b -+--16、()()11x y -+17、()()221a b a b -+- 18、()()72x y x y ---+19、()()11a b c a b c -++---20、()()61x x -+。
七年级数学因式分解练习题
七年级数学因式分解练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN七年级数学因式分解练习题一.选择题1、下列各式中从左到右的变形属于分解因式的是() A a(a+b-1)=a2+ab-aB. a2–a-2=a(a-1)-2 C .-4a2+9b2 =(-2a+3b)(2a+3b) D 2x+1=x(2+1/x)2、下列各式分解因是正确的是()A x2 y+7xy+y=y(x2+7x) B 3 a2 b+3ab+6b=3b(a2+a+2)C. 6xyz-8xy2=2xyz(3-4y) D.-4x+2y-6z=2(2x+y-3z)3、下列多项式中,能用提公因式法分解因式的是()A. x2-y B. x2+2x C. x2+y2 D.x2-xy+y24、2(a-b)3-(b- a)2分解因式的正确结果是() A. (a-b)2(2a-2b+1)B. 2(a-b)(a-b-1) C (b-a)2(2a-2b-1) D. (a-b)2(2a-b-1)5、下列多项式分解因式正确的是() A. 1+4a-4a2=(1-2a)2B. 4-4a+a2=(a-2)2 C. 1+4x2 =(1+2x)2 D.x2+xy+y2 =(x+y)26、运用公式法计算992,应该是()A.(100-1)2B.(100+1)(100-1) C.(99+1)(99-1) D. (99+1)27、多项式:①16x2-8x;②(x-1)2-4(x-1)2;③(x+1)4-4(x+1)2+4x2④-4x2-1+4x分解因式后结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③8、无论x、y取何值,x2+y2-2x+12y+40的值都是()A.正数B.负数C.零D.非负数9、下列正确的是()A.x2+y2=(x+y)(x-y) B.x2-y2=(x+y)(x-y)C.-x2+y2=(-x+y)(-x-y) D.-x2-y2=-(x+y)(x-y)二、填空题1、25x2y6=( )22、多项式-9x2y+36xy2-3xy提公因式后的另一个因式是___________;3、把多项式-x4+16分解因式的结果是_____________;4、已知xy=5,a-b=3,a+b=4,则xya2-yxb2的值为_______________;5、若x2+2mx+16是完全平方式,则m=______; 6、分解因式:-x2+4x-4= ;7、+3mn+9n2=( +3n)2; 8、若x+y=1则1/2x2+xy+1/2y2= ;三、解答题-24x3-12x2+28x 6(m-n)3-12(n-m)2 3(a-b)2+6(b-a)18(a+b)3-12b(b-a)2 (2a+b)(2a-3b)-3a(2a+b) (x2+6x)2-(2x-4)29(m+n)2-(m-n)2 (2x+3y)2-1 9(a-b)2-16(a+b)2 (x+y)2-16(x-y)2-16x4+81y4 3ax2-3ay2 2x3-8x 7x2-63(m+n)2-6(m+n)+9 (3)(a-b)2-2(a-b)+1; 4xy2-4x2y-y3-x2-4y2+4xy-2xy-x2-y2-a+2a2-a3 (a2+4)2-16a2 (a2+b2)2-4a2b2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解
一、知识梳理
1、因式分解的概念
把一个多项式化为几个整式的积的形式,叫做把多项式因式分解.
注:因式分解是“和差”化“积”,整式乘法是“积”化“和差”故因式分解与整式乘法之间是互为相反的变形过程,因些常用整式乘法来检验因式分解.
2、提取公因式法
把ma mb mc ++,分解成两个因式乘积的形式,其中一个因式是各项的公因式m ,另一个因式()a b c ++是ma mb mc ++除以m 所得的商,像这种分解因式的方法叫做提公因式法.用式子表求如下:
()ma mb mc m a b c ++=++
注:i 多项式各项都含有的相同因式,叫做这个多项式各项的公因式.
ii 公因式的构成:①系数:各项系数的最大公约数;
②字母:各项都含有的相同字母;
③指数:相同字母的最低次幂.
3、运用公式法
把乘法公式反过用,可以把某些多项式分解因式,这种分解因式的方法叫做运用公式法.
ⅰ)平方差公式 22()()a b a b a b -=+-
注意:①条件:两个二次幂的差的形式;
②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;
③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么.
ⅱ)完全平方公式 2222222(),2()a ab b a b a ab b a b ++=+-+=-
注意:①是关于某个字母(或式子)的二次三项式;
②其首尾两项是两个符号相同的平方形式;
③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);
④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量.
补充:常见的两个二项式幂的变号规律:
①22()()n n a b b a -=-; ②2121()()n n a b b a ---=--.(n 为正整数)
4、十字相乘法
借助十字叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法.对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足,ab q a b p =+=的
a b 、,则有22()()();x px q x a b x ab x a x b ++=+++=++
5、分组分解法
定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因
式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。
再提公因式,即可达到分解因式的目的。
例如:
22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++,
这种利用分组来分解因式的方法叫分组分解法.
原则:用分组分解法把多项式分解因式,关键是分组后能出现公因式或可运用公式.
6、求根公式法:如果),0(02≠=++a c bx ax 有两个根12,x x ,那么
).)((212x x x x a c bx ax --=++
二、典型例题及针对练习
考点1 因式分解的概念
例1、 在下列各式中,从左到右的变形是不是因式分解?
⑴2(3)(3)9x x x -+=- ; ⑵2524(3)(8)x x x x +-=-+;
⑶223(2)3x x x x +-=+- ; ⑷21
1()x x x x
-=-. 注:左右两边的代数式必须是恒等,结果应是整式乘积,而不能是分式或者是n 个整式的积与某项的和差形式..
考点2 提取公因式法
例2 ⑴y x y x y x 3234268-+-; ⑵23
()2()x x y y x ---
解:
注:提取公因式的关键是从整体观察,准确找出公因式,并注意如果多项式的第一项系数是负的一般要提出“-”号,使括号的第一项系数为正.提出公因式后得到的另一个因式必须按降幂排列.
[补例练习]1、⑴3222245954a b c a bc a b c +-; ⑵433()()()a b a a b b b a -+-+-
考点3、运用公式法
例3 把下列式子分解因式:
⑴22364a b -; ⑵22122
x y -
. 解:
注:能用平方差分解的多项式是二项式,并且具有平方差的形式.注意多项式有公因式时,首先考虑提取公因式,有时还需提出一个数字系数.
例4把下列式子分解因式:
⑴2244x y xy --+; ⑵543351881a b a b a b ++. 解:
注:能运用完全平方公式分解因式的多项式的特征是:有三项,并且这三项是一个完全平方式,有时需对所给的多项式作一些变形,使其符合完全平方公式.
[补例练习]2、⑴6216a a -; ⑵22
(2)(2)a b a b +-+;
⑶421681x x -+; ⑷2222
(1)4(1)4x x x x +-++.
注:整体代换思想:a b 、比较复杂的单项式或多项式时,先将其作为整体替代公式中字母.还要注意分解到不能分解为止.
考点4、十字相乘法
例5 ⑴254a a -+; ⑵4224
54x x y y -+.
[补例练习]3、⑴22616x xy y -- ⑵2
()2()80x y y x ----
考点5、分组分解法
例6分解因式:
(1)2
2244z y xy x -+-; (2)b a b a a 2322-+-
(3)322222--++-y x y xy x
分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,。
四项式一般采用“二、二”或“三、一”分组,五项式一般采用“三、二”分组,分组后再试用提公因式法、公式法或十字相乘法继续分解。
答案:(1)()()z y x z y x --+-22(三、一分组后再用平方差)
(2)()()()112-+-a a b a (三、二分组后再提取公因式)
(3)()()13--+-y x y x (三、二、一分组后再用十字相乘法)
★ 综合探究创新
例7 若25)4(22+++x a x 是完全平方式,求a 的值.
说明 根据完全平方公式特点求待定系数a ,熟练公式中的“a 、b ”便可自如求解.
例8 已知2=+b a ,求
222121b ab a ++的值. 说明 将所求的代数式变形,使之成为b a +的表达式,然后整体代入求值.
例9 已知1=-y x ,2=xy ,求32232xy y x y x +-的值.
说明 这类问题一般不适合通过解出x 、y 的值来代入计算,巧妙的方法是先对所求的代数式进行因式分解,使之转化为关于xy 与y x -的式子,再整体代入求值.
三、巩固练习
课外练
一、填空题
1. 分解因式:23510m nm -+= .
2. 分解因式:2296x y xy --+= .
3. 当99a =时,223a a --的值是 .
4. 22(45)(5)x xy y x y --÷-= .
5. 分解因式:2212a ab b -+-= .
6. 分解因式:4224x x y y ++= .
二、解答题
7.分解因式:2()5()m a c c a ---.
8.运有简便的方法计算:2275 2.612 3.5⨯-⨯.
9.分解因式:224426x xy y x y -+-+-.
参考答案
一、填空题
1. 25(2)m m n --
2.2(3)x y --
3. 9600
4. x y +
5. (1)(1)a b a b +--+
6. 2222()()x y xy x y xy +++-
二、解答题
7. ()(25)a c m -+ 8. 360 9. (23)(22)x y x y ---+。