2019年清华大学数学系直博生考试试题

合集下载

2019年4月清华大学标准能力测试(数学)(附详细解答)

2019年4月清华大学标准能力测试(数学)(附详细解答)

2019年4月清华大学标准能力测试(数学)(附详细解答)‘详细解答:1.答案:ACF解析:点222)(),(a a a A a a P ⋅≤⇔∈01212≥+-⇔))((a a a 021≤≤-⇔a 或21≥a ; 点a a a B a a P 122222≥-⇔∈)(),(04≥-⇔)(a a 0≤⇔a 或4≥a ; 点a a a C a a P 254222≤+⇔∈),(05≤-⇔)(a a ≤⇔05≤a ;将六个选项逐一代入检验,可知6.25,2.5,-0.375恰好属于C B A ,,中的两个集合。

2.答案:DF解析:⎩⎨⎧≥=+⇔=,,||)(0340x ax x f 或⎩⎨⎧<=-.,||054x ax ⎩⎨⎧≥--=⇔,,01或7x ax 或⎩⎨⎧<-=,,01或9x ax 1-=⇔ax 或⎩⎨⎧≥-=,,07x ax 或⎩⎨⎧<=.,09x ax 当n a=时,不确定有几个零点,不合题意;当2-=x a 时,⎩⎨⎧<=-⎩⎨⎧≥-=--=-⇔=,,)(,,)()()(092或072或120x x x x x x x x x f 1=⇔x 或101-,不合题意;当0=a 时,无零点,不合题意;当32-=a 时,2-3=⇔x 或)2-3(7=x 或)2-3(9-=x ,符合题意;当32+-=x a 时,方程012312=+-+⇔-=x x ax )(,0621<-=∆,无实根;方程072372=+-+⇔-=x x ax )(,06223<--=∆,无实根;方程092392=--+⇔=x x ax )(,恰有一个负实根,不合题意;当32--=x a 时,方程012312=++-⇔-=x x ax )(,0621>+=∆,方程有两不相等的实根;方程072372=++-⇔-=x x ax )(,02362<-=∆,无实根;方程092392=-+-⇔=x x ax )(,恰有一个负实根,符合题意;综上所述,正确选项为DF .3.答案:A解析:由题意,可设))()(()(04522≠+++-=a c bx x x x a x f ,则))(())(()('b x x x a c bx x x a x f ++-+++-=2455222,因为452+-x x 是)('x f 的因式,所以只有可能45=22+-++x x c bx x,即)()()(04522≠+-=a x x a x f ,))(()('45-5222+-=x x x a x f ,故133-=)(')(f f 。

清华大学2019年自主招生试题及答案

清华大学2019年自主招生试题及答案

2019清华自主招生试题与答案(2018清华自主招生)1、如图的电路,闭合开关S ,当滑动变阻器滑片P 向右移动时,下列说法正确是 CA.电流表读数变小,电压表读数变大B.小电泡L 变暗C.电容器C 上电荷量减小D.电源的总功率变小(2018清华自主招生)2、如图,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h。

让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中 CA.圆环机械能守恒B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mgh D.弹簧的弹性势能最大时圆环的动能最大3、(2018清华自主招生)4、如图所示,有三个斜面a,b,c,底边的长分别为L、L 、2L高度分别为2h、h、h ,某物体与三个斜面间的动摩擦因数都相同,这个物体分别沿三个斜面从顶端由静止下滑到底端,忽略空气阻力,三种情况相比较,下列说法正确的是BDA.物体克服摩擦力做的功W c= 2W b= 4W aB.物体克服摩擦力做的功W c= 2W b= 2W aC.物体到达底端的动能E ka= 2E kb= 2E kcD .物体到达底端的动能E ka >2E kb >2E kc解:克服摩擦力做的功 cos W mg x mgx =μθ=μ斜底则有 ::W 2:1:1c b a W W =动能定理 k mgx mgx E -μ=高底则有 E ka >2E kb >2E kc(2018清华自主招生)10、2013 年 12 月 6 日,“嫦娥三号”携带月球车“玉兔号”运动到地月转移轨道的P 点时做近月制动后被月球俘获,成功进入环月圆形轨道Ⅰ上运行,如图所示。

在“嫦娥三号”沿轨道Ⅰ经过 P 点时,通过调整速度使其进入椭圆轨道Ⅱ,在沿轨道Ⅱ经过Q 点时,再次调整速度后又经过一系列辅助动作,成功实现了其在月球上的“软着陆”。

对于“嫦娥三号”沿轨道Ⅰ和轨道Ⅱ运动的过程,若以月球为参考系,且只考虑月球对它的引力作用,下列说法中正确的是 ACA .沿轨道Ⅱ经过 P 点时的速度小于经过Q 点时的速度B .沿轨道Ⅱ经过 P 点时的机械能小于经过Q 点时的机械能C .沿轨道Ⅰ经过 P 点时的速度大于沿轨道Ⅱ经过 P 点时的速度D .沿轨道Ⅰ经过 P 点时的加速度大于沿轨道Ⅱ经过 P 点时的加速度1发射m 1前后动量守恒 0111()m m m m υυυ=+-由角动量守恒定律和机械能守恒守恒定律11()()m m m R m m R υυ-=-′(2018清华自主招生)11.下列说法中正确是 BEA .一弹簧连接一物体沿水平方向做简谐运动,则该物体做的是匀变速直线运动B .若单摆的摆长不变,摆球的质量增加为原来的4倍,摆球经过平衡位置时速度减 为原来的1/2,则单摆振动的频率将不变,振幅变小C .做简谐运动的物体,当它每次经过同一位置时,速度一定相同D .单摆在周期性的外力作用下做简谐运动,则外力的频率越大,单摆的振幅越大E .机械波在介质中传播时,各质点将不会随波的传播而迁移,只在平衡位置附近振动(2018清华自主招生)15.两电荷量分别为q 1 和q 2 的点电荷放在 x 轴上的O 、M 两点,两电荷连线上各点电势φ 随x 变化的关系如图所示,其中A 、N 两点的电势为零, ND 段中C 点电势最高,则ADA . C 点的电场强度大小为零B . A 点的电场强度大小为零C . NC 间场强方向向 x 轴正方向D .将一负点电荷从 N 点移到 D 点,电场力先做正功后做负功拓展:(20届复赛)六、(23分)两个点电荷位于x轴上,在它们形成的电场中,若取无限远处的电势为零,则在正x 轴上各点的电势如图中曲线所示,当0x →时,电势U →∞:当x →∞时,电势0U →;电势为零的点的坐标0x , 电势为极小值0U -的点的坐标为 0ax (a >2)。

清华大学自主招生试题 数学 Word版含解析

清华大学自主招生试题 数学 Word版含解析

一、选择题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)322.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”的( )条件(A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要 3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥22(C)直线AB 过抛物线y=2x 的焦点 (D)O 到直线AB 的距离小于等于14.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x yf xy++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点 6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( ) (A)b=2a (B)△ABC 的周长为3 (C)△ABC 的面积为33(D)△ABC 的外接圆半径为337.设函数2()(3)xf x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值 (C)若方程()f x =b 恰有一个实根,则b>36e(D)若方程()f x =b 恰有三个不同实根,则0<b<36e 8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-= (C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 的最小值为( ) (A)1 (B)2 (C)3 (D)410.设数列{n a }的前n 项和为n S ,若对任意正整数n ,总存在正整数m ,使得n S =m a ,则( )(A ){n a }可能为等差数列 (B ){n a }可能为等比数列(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n ,总存在正整数m ,使得n a =m S11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) (A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )(A)13 (B)23(C)22 (D)6313.设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩所表示的区域为D ,其面积为S ,则( )(A)若S=4,则k 的值唯一 (B)若S=12,则k 的值有2个(C)若D 为三角形,则0<k ≤23(D)若D 为五边形,则k>4 14.△ABC 的三边长是2,3,4,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅=( ) (A)0 (B)−15 (C)−212(D)−29215.设随机事件A 与B 互相独立,且P(B)=0.5,P(A −B)=0.2,则( )(A)P(A)=0.4 (B)P(B −A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916.过△ABC 的重心作直线将△ABC 分成两部分,则这两部分的面积之比的( ) (A)最小值为34 (B)最小值为45 (C)最大值为43 (D 最大值为5417.从正15边形的顶点中选出3个构成钝角三角形,则不同的选法有( )(A)105种 (B)225种 (C)315种 (D)420种18.已知存在实数r ,使得圆周222x y r +=上恰好有n 个整点,则n 可以等于( ) (A)4 (B)6 (C)8 (D)12 19.设复数z 满足2|z|≤|z −1|,则( ) (A)|z|的最大值为1 (B)|z|的最小值为13 (C)z 的虚部的最大值为23(D)z 的实部的最大值为1320.设m,n 是大于零的实数,a =(mcosα,msinα),b =(ncosβ,nsinβ),其中α,β∈[0,2π)α,β∈[0,2π).定义向量12a =(2m α2m α),12b =(2n β2n β),记θ=α−β,则( )(A)12a ·12a =a (B)1122a b ⋅=2mn θ(C)112222||44a b mn θ-≥(D)112222||44a b mn θ+≥21.设数列{n a }满足:1a =6,13n n n a a n++=,则( ) (A)∀n ∈N ∗,n a <3(1)n + (B)∀n ∈N ∗,n a ≠2015 (C)∃n ∈N ∗,n a 为完全平方数 (D)∃n ∈N ∗, n a 为完全立方数 22.在极坐标系中,下列方程表示的图形是椭圆的有( ) (A )ρ=1cos sin θθ+ (B )ρ=12sin θ+ (C )ρ=12cos θ- (D )ρ=112sin θ+23.设函数2sin ()1xf x x x π=-+,则( )(A )()f x ≤43(B)|()f x |≤5|x| (C)曲线y=()f x 存在对称轴 (D)曲线y=()f x 存在对称中心24.△ABC 的三边分别为a ,b,c ,若△ABC 为锐角三角形,则( ) (A)sinA>cosB (B)tanA>cotB (C)222a b c +> (D)333a b c +>25.设函数()f x 的定义域是(−1,1),若(0)f =(0)f '=1,则存在实数δ∈(0,1),使得( ) (A)()f x >0,x ∈(−δ,δ) (B)()f x 在(−δ,δ)上单调递增 (C)()f x >1,x ∈(0,δ) (D)()f x >1,x ∈(−δ,0)26.在直角坐标系中,已知A(−1,0),B(1,0).若对于y 轴上的任意n 个不同的点k P (k=1,2,…,n),总存在两个不同的点i P ,j P ,使得|sin ∠A i P B −sin ∠A j P B|≤13,则n 的最小值为( )(A)3 (B)4 (C)5 (D)627.设非负实数x,y 满足2x+y=1,则22x y + )(A)最小值为45 (B)最小值为25(C)最大值为1 (D)最大值为12328.对于50个黑球和49个白球的任意排列(从左到右排成一行),则( )(A)存在一个黑球,它右侧的白球和黑球一样多 (B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个29.从1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( ) (A)300个 (B)450个 (C)900个 (D)1800个30.设曲线L 的方程为42242(22)(2)y x y x x +++-=0,则( ) (A)L 是轴对称图形 (B)L 是中心对称图形 (C)L ⊂{(x,y)∣22x y +≤1} (D)L ⊂{(x,y)∣−12≤y ≤12} ##Answer## 1.【解析】2111-1z z +-=211-zz z zz z +-=11-z z z z +-=22cos sin 1332221-cos sin 2sin 333i i i πππππ-+--=212sin 2sincos333i πππ-⋅-22cos()sin()333(cossin )22i i ππππ-+-+ =cos 0sin 02sin [cos()sin()]366i i πππ+-+-77)sin()]663i ππ-+- 31sin )6623i i ππ+=1,选B2.【简解】 ()p q k l a a a a +-+=[(p+q)-(k+l)]d ,与公差d 的符号有关,选D3.【解析】设A(211,x x ),B(222,x x ),OA OB ⋅=1212(1)x x x x +=0⇒211x x =-答案(A),||||OA OB ⋅2211221111(1)(1)x x x x ++2121111x x +++11122||||x x +⋅=2,正确;答案(B),|OA|+|OB|≥2||||OA OB ⋅22,正确;答案(C),直线AB 的斜率为222121x x x x --=21x x +=111x x - 方程为y-21x =(111x x -)(x-1x ),焦点(0,14)不满足方程,错误;答案(D),原点到直线AB :(111x x -)x-y+1=0的距离2111()1x x -+1,正确。

2019年北京大学数学科学院直博生考试题

2019年北京大学数学科学院直博生考试题
0
3x (x2 − 1) x4 − 4x2 + 1 1 + x4 dx 1 + x6

1
3. (本题 20 分) 试参照积分第二中值定理的表述,给出第一类曲线积分的积分第二中值定理 (注 意条件和结论表述的精准性),并给出相应的证明。 4. (本题 20 分) 设 f (x) 和 g (x) 皆为整个实数轴上的连续函数,其中 g (x) 以 T > 0 为周期。证 明: 函数方程 f (f (x)) = −x3 + g (x) 不可能有连续解。 5. (本题 20 分) 设 D 是单位圆盘,在 D 内,有 u = ∆u, u|∂D = 0。证明: u ≡ 0。 6. (本题 15 分) 若 a0 , a1 , a2 ∈ Q,使得下面矩阵的行列式为零 a0 a1 a2 a2 a0 + a1 a1 + a2 a1 a2 a0 + a1 证明: a0 = a1 = a2 = 0。 7. (本题 25 分) 设实二次型 f (x1 , x2 , x3 ) = 4x1 x2 − 2x1 x3 + 3x2 2 − 4x2 x3 。 (a) 将 f 写成 xT Ax 的形式, 求实对称矩阵 A 的特征向量与特征值。(5 分) (b) 求正交矩阵 P 及对角矩阵 D,使得 A = P DP T ; 作正交替换将 f 化为标准型。(10 分) (c) 求二次型 f (x) = xT Ax 在单位球面 ∥x∥ = 1 上取到的最大值,并确定在何处取到最大值。 (10 分) 1
(a) 写出该环面的一个参数方程。(10 分) (b) 判断该正等轴测投影图的外圈轮廓线是否是示意图所在纸面上的一个椭圆,并证明你的 结论。(20 分)
2 8. (本题 20 分) 设矩阵 A 的列数与矩阵 B 的行数皆为 n。证明: rank(A) + rank(B ) = rank(AB ) + n 当且仅当 A 解空间 {x : Ax = 0} 为 B 列空间的子空间。 9. (本题 10 分) 若 A ∈ Mn (C) 是 n 阶幂零矩阵,定义线性变换 TA : Mn (C) → Mn (C);

清华大学数学系硕士生入学考试试题

清华大学数学系硕士生入学考试试题

清华大学数学系硕士生入学考试试题清华大学硕士生入学考试试题专用纸准考证号系别考试日期 2003.01 专业考试科目数学分析试题内容:2{(x,y)},,一、(15分)设(20分)设在R\上定义,=A ,且>0使得limf(x,y)f(x,y)00x,x0y,y0limf(x,y),,当0,,y-y,, 时,Ф(y)存在。

0x,x0求证: lim[limf(x,y)],Ay,y,x,x002222二、(20分)设半径为r的球面?的球心在一固定球面?ˊ:x+y+z=a(a>0) 上,问当r取何值时,球面?含在球面?ˊ内部的部分面积最大,x三、(20分)设(x)[,a,a](a>0), (x)=(t)dt,(n=1,2,…). fff0,Cnn-1,0求证:{(x) }在[,a,a]上一致收敛于0. fn22四、(20分)设(x,y)在R上二阶连续可微,(x,2x)=x, (x,2x)=x, 且(x,y)= fff'f''xxx2(x,y),. ,(x,y),Rf''yy求:(x,2x), (x,2x) 及(x,2x). f'f''f''yyxyyn2f(k/n)五、(25分)设(0)存在,(0)=0,x=. f'fn,k,1,limxlimx求证:存在,且,f(0)/2. nnn,,n,,六、(25分)设(x),C[0,1]且在(0,1)上可导,且 f1/2(1)=. f2xf(x)dx,0求证:存在,使得()= -()/ ,,(0,1)f',f,,g七、(25分)设f,在R上连续,fοɡ(x)= ɡοf(x);, 并且f(x)?ɡ,x,R(x) ,. ,x,R求证:fοf(x)? ɡοɡ(x) ,x,R清华大学硕士生入学考试试题专用纸准考证号系别数学科学系考试日期2003.01 专业考试科目高等代数试题内容:43一、(20分)设(X)=(X+1)(X-1)为复方阵A的特征多项式,那么A的Jordan 标准型Jf有几种可能,(不计Jordan块的次序)二、(20分)设方阵31,1,,,,,6,23A, ,,,,,2,10,,-1A在实数域R上是否相似域对角形(即有实方阵P使PAP为对角形),在复数域C上呢,给出证明。

清华大学数学考博真题及答案

清华大学数学考博真题及答案

清华大学数学考博真题及答案
一、选择题
1.函数的定义域是() [单选题] *
A.[-2,3]
B.[-3,3]
C.(-2,-1)∪(-1,3](正确答案)
D.(-3,3)
2.已知,则() [单选题] *
A.有可去间断点
B.有跳跃间断点(正确答案)
C.有无穷间断点
D.没有间断点
3.设可导,且满足,则曲线在点处的切线斜率为() [单选题] *
A.4
B.-4
C.1
D.-1(正确答案)
4.曲线的水平和垂直渐近线分别为() [单选题] *
A.у=1,x=0
B.y=0,x=1
C.y=0,x=0(正确答案)
D.y=1,x=1
5.设() [单选题] *
A.-ƒ(-1)<ƒ(1)<ƒ´(0)
B.-ƒ(-1)<ƒ´(0)<ƒ(1)(正确答案)
C.ƒ(1))<-ƒ(-1)<ƒ´(0)
D.ƒ(1)<ƒ´(0)<-ƒ(-1)
二、填空题
[上传文件题] *
[上传文件题] *
[上传文件题] *
[上传文件题] *
[上传文件题] *
三、解答题
[上传文件题] *
[上传文件题] *
[上传文件题] *
[上传文件题] *
[上传文件题] *
[上传文件题] *
[上传文件题] *
[上传文件题] *
四、应用题
[上传文件题] *
五、证明题
[上传文件题] *。

2019年清华大学自主招生暨领军计划数学试题(解析版)

2019年清华大学自主招生暨领军计划数学试题(解析版)

清华大学自主招生暨领军计划数学试题(解析版)1.已知函数x e a x x f )()(2+=有最小值,则函数a x x x g ++=2)(2的零点个数为( )A .0B .1C .2D .取决于a 的值 【答案】C【解析】注意)()(/x g e x f x =,答案C .2. 已知ABC ∆的三个内角C B A ,,所对的边为c b a ,,.下列条件中,能使得ABC ∆的形状唯一确定的有( )A .Z c b a ∈==,2,1B .B bC a C c A a A sin sin 2sin sin ,1500=+= C .060,0sin cos )cos(cos sin cos ==++C C B C B C B AD .060,1,3===A b a【答案】AD .3.已知函数x x g x x f ln )(,1)(2=-=,下列说法中正确的有( ) A .)(),(x g x f 在点)0,1(处有公切线B .存在)(x f 的某条切线与)(x g 的某条切线平行C .)(),(x g x f 有且只有一个交点D .)(),(x g x f 有且只有两个交点【答案】BD【解析】注意到1-=x y 为函数)(x g 在)0,1(处的切线,如图,因此答案BD .4.过抛物线x y 42=的焦点F 作直线交抛物线于B A ,两点,M 为线段AB 的中点.下列说法中正确的有( )A .以线段AB 为直径的圆与直线23-=x 一定相离B .||AB 的最小值为4C .||AB 的最小值为2D .以线段BM 为直径的圆与y 轴一定相切 【答案】AB【解析】对于选项A ,点M 到准线1-=x 的距离为||21|)||(|21AB BF AF =+,于是以线段AB 为直径的圆与直线1-=x 一定相切,进而与直线23-=x 一定相离;对于选项B ,C ,设)4,4(2a a A ,则)1,41(2a a B -,于是2414||22++=a a AB ,最小值为4.也可将||AB 转化为AB 中点到准线的距离的2倍去得到最小值;对于选项D ,显然BD 中点的横坐标与||21BM 不一定相等,因此命题错误.5.已知21,F F 是椭圆)0(1:2222>>=+b a b y a x C 的左、右焦点,P 是椭圆C 上一点.下列说法中正确的有( )A .b a 2=时,满足02190=∠PF F 的点P 有两个B .b a 2>时,满足02190=∠PF F 的点P 有四个C .21F PF ∆的周长小于a 4D .21F PF ∆的面积小于等于22a【答案】ABCD .【解析】对于选项A ,B ,椭圆中使得21PF F ∠最大的点P 位于短轴的两个端点;对于选项C ,21PF F ∆的周长为a c a 422<+;选项D ,21PF F ∆的面积为22212121212||||21sin ||||21a PF PF PF F PF PF =⎪⎭⎫ ⎝⎛+≤∠⋅.6.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测:甲:两名获奖者在乙、丙、丁中; 乙:我没有获奖,丙获奖了; 丙:甲、丁中有且只有一个获奖; 丁:乙说得对.已知四个人中有且只有两个人的猜测是正确的,那么两个获奖者是( ) A .甲B .乙C .丙D .丁【答案】BD【解析】乙和丁同时正确或者同时错误,分类即可,答案:BD .7.已知AB 为圆O 的一条弦(非直径),AB OC ⊥于C ,P 为圆O 上任意一点,直线PA 与直线OC 相交于点M ,直线PB 与直线OC 相交于点N .以下说法正确的有( ) A .P B M O ,,,四点共圆 B .N B M A ,,,四点共圆 C .N P O A ,,,四点共圆D .以上三个说法均不对【答案】AC【解析】对于选项A ,OPM OAM OBM ∠=∠=∠即得;对于选项B ,若命题成立,则MN 为直径,必然有MAN ∠为直角,不符合题意;对于选项C ,MAN MOP MBN ∠=∠=∠即得.答案:AC .8.C B A C B A cos cos cos sin sin sin ++>++是ABC ∆为锐角三角形的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】必要性:由于1cos sin )2sin(sin sin sin >+=-+>+B B B B C B π, 类似地,有1sin sin ,1sin sin >+>+A B A C ,于是C B A C B A cos cos cos sin sin sin ++>++.不充分性:当4,2ππ===C B A 时,不等式成立,但ABC ∆不是锐角三角形.9.已知z y x ,,为正整数,且z y x ≤≤,那么方程21111=++z y x 的解的组数为( )A .8B .10C .11D .12【答案】B【解析】由于x z y x 311121≤++=,故63≤≤x .若3=x ,则36)6)(6(=--z y ,可得)12,12(),15,10(),18,9(),24,8(),42,7(),(=z y ; 若4=x ,则16)4)(4(=--z y ,可得)8,8(),12,6(),20,5(),(=z y ;若5=x ,则6,5,320,211103=≤≤+=y y y z y ,进而解得)10,5,5(),,(=z y x ;若6=x ,则9)3)(3(=--z y ,可得))6,6(),(=z y . 答案:B . 10.集合},,,{21n a a a A =,任取Aa a A a a A a a n k j i i k k j j i ∈+∈+∈+≤<<≤,,,1这三个式子中至少有一个成立,则n 的最大值为( ) A .6B .7C .8D .9【答案】B11.已知000121,61,1===γβα,则下列各式中成立的有( )A .3tan tan tan tan tan tan =++αγγββαB .3tan tan tan tan tan tan -=++αγγββαC . 3tan tan tan tan tan tan =++γβαγβα D . 3tan tan tan tan tan tan -=++γβαγβα【答案】BD【解析】令γβαtan ,tan ,tan ===z y x ,则3111=+-=+-=+-zx zx yz y z xy x y ,所以)1(3),1(3),1(3zx z x yz y z xy z y +=-+=-+=-,以上三式相加,即有3-=++zx yz xy .类似地,有)11(311),11(311),11(311+=-+=-+=-zx x z yz z y xy y x ,以上三式相加,即有3111-=++=++xyz zy x zx yz xy .答案BD .12.已知实数c b a ,,满足1=++c b a ,则141414+++++c b a 的最大值也最小值乘积属于区间( )A .)12,11(B .)13,12(C .)14,13(D .)15,14(【答案】B【解析】设函数14)(+=x x f ,则其导函数142)(/+=x x f ,作出)(x f 的图象,函数)(x f 的图象在31=x 处的切线321)31(7212+-=x y ,以及函数)(x f 的图象过点)0,41(-和)7,23(的割线7174+=x y ,如图,于是可得321)31(7212147174+-≤+≤+x x x ,左侧等号当41-=x 或23=x 时取得; 右侧等号当31=x 时取得.因此原式的最大值为21,当31===c b a 时取得;最小值为7,当23,41=-==c b a 时取得,从而原式的最大值与最小值的乘积为)169,144(37∈.答案B .13.已知1,1,,,222=++=++∈z y x z y x R z y x ,则下列结论正确的有( ) A .xyz 的最大值为0B .xyz 的最大值为274-C .z 的最大值为32D .z 的最小值为31-【答案】ABD14.数列}{n a 满足)(6,2,1*1221N n a a a a a n n n ∈-===++,对任意正整数n ,以下说法中正确的有( ) A .nn n a a a 221++-为定值 B .)9(mod 1≡n a 或)9(mod 2≡n aC .741-+n n a a 为完全平方数 D .781-+n n a a 为完全平方数【答案】ACD 【解析】因为2112221122213226)6(++++++++++++-=--=-n n n n n n n n n n n a a a a a a a a a a a nn n n n n n a a a a a a a 22121122)6(++++++-=+-=,选项A 正确;由于113=a ,故76)6(2121121221-=+-=--=-++++++n n n n n n n n n n n a a a a a a a a a a a ,又对任意正整数恒成立,所以211211)(78,)(74n n n n n n n n a a a a a a a a +=--=-++++,故选项C 、D 正确.计算前几个数可判断选项B 错误. 说明:若数列}{n a 满足nn n a pa a -=++12,则nn n a a a 221++-为定值.15.若复数z 满足11=+z z ,则z 可以取到的值有( )A .21B .21-C .215-D . 215+【答案】CD【解析】因为11||1||=+≤-z z z z ,故215||215+≤≤-z ,等号分别当i z 215+=和i z 215-=时取得.答案CD .16. 从正2016边形的顶点中任取若干个,顺次相连构成多边形,若正多边形的个数为( )A .6552B .4536C .3528D .2016 【答案】C【解析】从2016的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2016个顶点中选出k 个构成正多边形,这样的正多边形有k 2016个,因此所求的正多边形的个数就是2016的所有约数之和减去2016和1008.考虑到732201625⨯⨯=,因此所求正多边形的个数为352810082016)71)(931)(32168421(=--++++++++.答案C .17.已知椭圆)0(12222>>=+b a b y a x 与直线x y l x y l 21:,21:21-==,过椭圆上一点P 作21,l l 的平行线,分别交21,l l 于N M ,两点.若||MN 为定值,则=b a( )A .2B .3C .2D .5【答案】C【解析】设点),(00y x P ,可得)2141,21(),2141,21(00000000y x y x N y x y x M +--++,故意2020441||y x MN +=为定值,所以2,1641422===b ab a ,答案:C .说明:(1)若将两条直线的方程改为kx y ±=,则k b a 1=;(2)两条相交直线上各取一点N M ,,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或椭圆.18. 关于y x ,的不定方程yx 21652=+的正整数解的组数为( )A .0B .1C .2D .3【答案】B19.因为实数的乘法满足交换律与结合律,所以若干个实数相乘的时候,可以有不同的次序.例如,三个实数c b a ,,相乘的时候,可以有 ),(),(,)(,)(ca b ab c c ba c ab 等等不同的次序.记n 个实数相乘时不同的次序有nI 种,则( )A .22=IB .123=IC .964=ID .1205=I【答案】B【解析】根据卡特兰数的定义,可得1121221)!1(!1------=⋅==n n n n n n n n C n n C n A C I .答案:AB .关于卡特兰数的相关知识见《卡特兰数——计数映射方法的伟大胜利》.20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军.4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是0.3,乙击败丁的概率是0.4.那么甲刻冠军的概率是 . 【答案】0.165【解析】根据概率的乘法公式 ,所示概率为165.0)8.05.03.05.0(3.0=⨯+⨯. 21.在正三棱锥ABC P -中,ABC ∆的边长为1.设点P 到平面ABC 的距离为x ,异面直线CP AB ,的距离为y .则=∞→y x lim .【答案】23【解析】当∞→x 时,CP 趋于与平面ABC 垂直,所求极限为ABC ∆中AB 边上的高,为23.22.如图,正方体1111D C B A ABCD -的棱长为1,中心为A A E A BC BF O 1141,21,==,则四面体OEBF 的体积为 .【答案】196【解析】如图,EBF G EBF O OEBF V V V --==21961161212111=⋅==--B BCC E GBF E V V .23.=+-⎰-dx x x n n )sin 1()(22012ππ .【答案】0【解析】根据题意,有)sin 1()sin 1()(21222012=+=+-⎰⎰---dx x x dx x x n n n n ππππ.24.实数y x ,满足223224)(y x y x =+,则22y x +的最大值为 .【答案】1【解析】根据题意,有22222322)(4)(y x y x y x +≤=+,于是122≤+y x ,等号当2122==y x 时取得,因此所求最大值为1.25.z y x ,,均为非负实数,满足427)23()1()21(222=+++++z t x ,则z y x ++的最大值与最小值分别为 . 【答案】2322-【解析】由柯西不等式可知,当且仅当)0,21,1(),,(=z y x 时,z y x ++取到最大值23.根据题意,有41332222=+++++z y x z y x ,于是,)(3)(4132y z y x z y x +++++≤解得2322-≥++z y x .于是z y x ++的最小值当)2322,0,0(),(-=yz x 时取得,为2322-. 26.若O 为ABC ∆内一点,满足2:3:4::=∆∆∆COA BOC AOB S S S ,设AC AB AO μλ+=,则=+μλ . 【答案】23【解析】根据奔驰定理,有329492=+=+μλ.27.已知复数32sin 32cos ππi z +=,则=+++2223z z z z .【答案】12i - 【解析】根据题意,有i z z z z z z 35sin 35cos 122223+=-=+=+++ππ28.已知z 为非零复数,z z 40,10的实部与虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形的面积为 .【答案】2003003π+-【解析】设),(R y x yi x z ∈+=,由于2||4040z z z =,于是⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥,140,140,110,1102222y x y y x x y x 如图,弓形面积为1003100)6sin 6(20212-=-⋅⋅πππ,四边形ABCD 的面积为100310010)10310(212-=⋅-⋅. 于是所示求面积为30031003200)1003100()1003100(2-+=-+-ππ.29.若334tan =x ,则=+++x x x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin .【解析】根据题意,有x x x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin +++38tan tan )tan 2(tan )2tan 4(tan )4tan 8(tan ==+-+-+-=x x x x x x x x .30.将16个数:4个1,4个2,4个3,4个4填入一个44⨯的数表中,要求每行、每列都恰好有两个偶数,共有 种填法.【答案】44100031.设A 是集合}14,,3,2,1{ 的子集,从A 中任取3个元素,由小到大排列之后都不能构成等差数列,则A 中元素个数的最大值为 .【答案】8【解析】一方面,设},,,{21k a a a A =,其中141,*≤≤∈k N k .不妨假设k a a a <<< 21.若9≥k ,由题意,7,33513≥-≥-a a a a ,且1335a a a a -≠-,故715≥-a a .同理759≥-a a .又因为1559a a a a -≠-,所以1519≥-a a ,矛盾!故8≤k .另一方面,取}14,13,11,10,5,4,2,1{=A ,满足题意.综上所述,A 中元素个数的最大值为8.。

2019-2020北京大学和清华大学强基计划数学笔试试题

2019-2020北京大学和清华大学强基计划数学笔试试题

2019年北京大学博雅计划笔试试题1.金字塔的底座为边长是200米的正方形。

如果一个游客处于距离底座中心200米的圆周上,则游客可以同时看到金字塔两个塔面的概率为________。

A. 13B. 12C. √32D.以上答案都不对2. 已知f (x )=a sin x ,x ∈[0,π2]. 其中a >0. 若f(x)与其反函数y =f −1(x)有两个交点,则实数a 的取值范围是_________。

A.0<a <1 B. 1<a <π2C. 2π<a <π2D.以上答案都不对3.f (x )=√1+x 2+1−x 21+x 2的取值范围是___________。

A.(−2,1]B.(−2,98]C.(−2,98)D.以上答案都不对4.四面体P −ABC 的底面是边长为2的正三角形ABC ,PC 垂直于面ABC ,PC =1. M,N 分别为AB,BC 的中点,则异面直线PN,CM 的夹角的正弦值为__________。

A. 14B. √54C.√104D.以上答案都不对5.已知函数f(x)满足对任意的x ≠0或1,均有f (x )+f (11−x )=x . 求f (2). 6. 已知点A (12,√32)关于直线y =kx 的对称点A′落在圆(x −2)2+y 2=1上,则k的值为_________。

A. 12B. √33C.1D.以上答案都不对7.已知x,y,z 均为正实数。

则f (x,y,z )=xyz(1+4x)(9x+y)(4y+z)(9z+1)的最大值为_____。

A. 1576B. 11024 C. 11296D.以上答案都不对8.已知a,b,z 均为复数,对任意的|z |=1,均有|z 4+az 2+b |=1. 则ab 的值为_________。

A.i B.−i C.1 D.以上答案都不对9.从6名男员工和4名女员工中各抽取2人,组成羽毛球混合双比赛。

清华大学2019年自主招生数学试题(含详细解析)

清华大学2019年自主招生数学试题(含详细解析)

1清华大学自主招生数学试题2019.061.一个四面体棱长分别为6,6,6,6,6,9,求外接球的半径.2.求值:1221(1sin )x x dx --⎰.3.已知P 为单位圆上一动点,(0,2)A ,(0,1)B -,求2||||AP BP ⨯的最大值.4.AB 为圆O 的直径,CO AB ⊥,M 为AC 中点,CH MB ⊥,则下列选项正确的是()A.2AM OH =B.2AH OH =C.△BOH ∽△BMAD.忘记5.{1,2,3,,15}A =⋅⋅⋅,{1,2,3,4,5}B =,f 是A 到B 的映射,若满足()()f x f y =,则称有序对(,)x y 为“好对”,求“好对”的个数最小值.6.若对c ∀∈R ,,a b ∃,使得()()()f a f b f c a b -=-成立,则称函数()f x 满足性质T ,下列函数不满足性质T 的是()A.32()33f x x x x =-+ B.21()1f x x =+ C.1()x f x e += D.()sin(21)f x x =+7.已知||||1a b == ,12a b ⋅= ,()()0c a c b --= ,若||1d c -= ,求||d 的最大值.8.椭圆22162x y +=,过(2,0)F 的直线交椭圆于A 、B 两点,点C 在直线3x =上,若△ABC 为正三角形,求△ABC 的面积.9.圆224x y +=上一点00(,)x y 处的切线交抛物线28y x =于A 、B 两点,且满足90AOB ∠=︒,其中O 为坐标原点,求0x .10.设a 为44444444各位数字和,b 是a 的各位数字之和,c 为b 的各位数字之和,求c 的值.11.实数x 、y 满足22(2)1x y +-≤的最大值和最小值.初高中数学学习资料的店。

2019 年清华大学数学系直博生招生考试

2019 年清华大学数学系直博生招生考试

2019年清华大学数学系直博生招生考试1.21,0(),0,0x e x f x x -⎧⎪>=⎨⎪≤⎩求证()f C ∞∈R .2.证明Hermite 多项式22()(1)n n x x n n d H x ee dx-=-为多项式,且诸根均为实数.3.设曲线C 为xOy 平面内包含原点的封闭曲线,X=ax+by ,Y=cx+dy,ad bc -=.计算22C XdY YdX X Y -+⎰ (方向沿C 的逆时针方向).4.已知f(x)和g(x)均为[a,b]上的连续函数.f(x)>0,g(x)>0且g(x)严格单调递减,求证()()()()()()b b a a bb a a xf x g x dx xf x dx f x g x dx f x dx<⎰⎰⎰⎰5.已知n 阶矩阵A,B 满足22,,n A A B B I A B ==--可逆,求证r(A)=r(B).6.A ,B ,C ,D 均为n 阶矩阵,A B X C D ⎛⎫ ⎪⎝⎭(1)如A 可逆,证明1det det det()X A D CA B -=⋅-;(2)如AC CA =,求证det det()X AD CB =-.7.定义如下映射为仿射变换::,,n n x Ax u ϕ→+ R R 其中,n n nA u ⨯∈∈ R R 证明:(1)ϕ可逆⇔A 可逆;(2)如ϕ可逆,求出1ϕ-,并说明1ϕ-亦为仿射变换;(3)仿射变换的复合仍是仿射变换.8.计算21,:1124zC e dz C Z i z π=-⎰ .9.f 为C 上的全纯函数,如存在,0.n C +∈>N 使得对模长充分大的z 有()n f z C z ≤,求证f(z)是次数不超过n 次的多项式.。

数学系直博考试题及答案

数学系直博考试题及答案

数学系直博考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是函数f(x) = x^2 + 3x + 2的根?A. -1B. -2C. 1D. 2答案:B2. 计算极限lim(x→0) (sin(x)/x)的值。

A. 0B. 1C. -1D. 不存在答案:B3. 判断以下哪个序列是发散的。

A. 1/nB. n/n^2C. n^2/n^3D. 1/n^2答案:A4. 给定矩阵A = [[1, 2], [3, 4]],求矩阵A的行列式。

A. -2B. 2C. -5D. 5答案:B二、填空题(每题5分,共20分)5. 计算定积分∫(0 to 1) x^2 dx的结果为______。

答案:1/36. 函数f(x) = e^x的导数为______。

答案:e^x7. 给定复数z = 3 + 4i,其共轭复数为______。

答案:3 - 4i8. 计算二项式(1 + x)^n的展开式中x^2的系数,当n=4时,系数为______。

答案:6三、解答题(每题15分,共40分)9. 证明:对于任意实数x,不等式x^2 + 2x + 2 ≥ 2成立。

证明:要证明x^2 + 2x + 2 ≥ 2,只需证明x^2 + 2x ≥ 0。

观察到x^2 + 2x = x(x + 2),由于x和x + 2同号或至少有一个为0,所以它们的乘积非负,即x^2 + 2x ≥ 0。

因此,x^2 + 2x + 2 ≥ 2成立。

10. 求解微分方程dy/dx = 2x,且y(0) = 1。

解:对两边积分,得到∫dy = ∫2x dx,即y = x^2 + C。

根据初始条件y(0) = 1,代入得1 = 0^2 + C,解得C = 1。

因此,微分方程的解为y = x^2 + 1。

2019年北京大学、清华大学、浙江大学、中国科技大学自主招生数学试题及参考答案

2019年北京大学、清华大学、浙江大学、中国科技大学自主招生数学试题及参考答案

2019年北京大学自主招生数学试题2019年清华大学自主招生数学试题2019年中国科学技术大学自主招生数学试题4.记3cos(),4cos()36x t y t =+-=++,则22x y +的最大值为__________。

5.设点0(1,0)P ,i OP (i =1,2,3…)绕原点按顺时针旋转θ得到向量i OQ , i Q 关于y 轴对称点记为1 i P +,则2019P 的坐标为__________。

.,且.已知,且9.将△D 1D 2D 3的各中点连线,折成四面体ABCD ,已知12233112,10,8D D D D D D ===,求四面体ABCD 的体积。

10.求证:对于任意的在R 上有仅有一个解0x =11.已知(1)求证:存在多项式()p x ,满足cos (cos )n p θθ=;(2)将()p x 在R [x ]上完全分解。

2019年中国科学技术大学自主招生数学试题参考答案2.B红色曲线为y =sin 2x ,蓝色曲线为y =-cos 3x综上,知:00100110cos sin cos sin 01sin cos sin cos x x x y y y θθθθθθθθ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭那么222(,)P x y 满足:200020002cos sin 10sin cos 01x x x x y y y y θθθθ--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭这也就说明了20,P P 重合。

故2019P 坐标为(cos ,sin )θθ--6.首先将递推公式两侧取倒数,则:112(1)11112(1)n n n n nn x n x x x x ++++=⇔-=+累加,即:21122(1)n n n k k x x n n =-=⇒=+∑裂项求和,则:2019112019*********k k x ==-=∑7.如图所示,我们定义a ~b 表示复数a 和b之间的边11z z -+是纯虚数,表明0~(z-1)与0~(z+1)垂直,进而说明|z~(z-1)|=|0~z|=|z~(z+1)|=1故||1z =,进一步,我们设cos sin z i θθ=+则222222222|3|(cos 2cos 3)(sin 2sin )cos 2cos 96cos 6cos 22cos cos 2sin 2sin 2sin 2sin 116cos 2812cos 8cos 53z z cos θθθθθθθθθθθθθθθθθθ++=++++=++++++++=++=++≥等号成立条件为1cos 3θ=-8.9.简解:由题意,易知四面体ABCD为等腰四面体,将其嵌入长方体后割补法即可图示蓝色边框为等腰四面体,黑色为被嵌入的长方体答案:410.首先,我们定义()()n f x 代表函数()f x 的n 阶导数令0()!kn x k x f x e k ==-∑注意到()()1n x f x e =-在R 上单调递增,故其在R 上仅有一根x =0,从而(1)()1n x f x e x -=--在R 上有最小值,即(1)(1)()(0)0n n f x f --≥=进而2(2)()12n x x f x e x -=---在R 上单调递增以此类推,可知:(2)()n k f x -在R 上单调递增,仅有一根x =0(21)()n k f x --在R 先减后增,且恒为非负实数,且仅有一根x =0综上,不论n 取何值,0()!knx k x f x e k ==-∑在R 上仅有一根x =011.本题考察内容十分清晰,旨在考察Chebyshev 多项式(1)采取归纳法证明,若对于不同的n ,存在满足题设的多项式,则记其为()n p x 首先,当1n =时,存在多项式1()p x x=其次,当2n =时,存在多项式22()21p x x =-我们假定命题在2,1n n --的情形下成立,下面考察n 的情形cos cos[(1)]cos(1)cos sin(1)sin 1cos(1)cos [cos cos(2)]2n n n n n n n θθθθθθθθθθθ=-+=-⋅--⋅=-⋅+--进而有cos 2cos cos(1)cos(2)n n n θθθθ=---即12()2()()n n n p x xp x p x --=-因为12(),()n n p x p x --都是多项式,所以()n p x 也是多项式。

清华大学高等研究院数学专业考博真题-参考书-分数线-复习方法-育明考博

清华大学高等研究院数学专业考博真题-参考书-分数线-复习方法-育明考博

清华大学高等研究院数学专业考博指导与分析一、清华大学高等研究院考博资讯(一)考试科目及各方向导师:1.070100数学研究方向01:应用数学。

导师分别是雍稳安、雷锦誌、朱毅。

考试的科目:(1)101英语(100%)。

(2)248数理方程(100%)。

(3)501综合考试(100%)。

研究方向02:基础数学。

导师分别是王小云、孔良。

考试的科目:(1)101英语(100%)。

(2)249近世代数(100%)。

(3)501综合考试(100%)。

(二)专业课指定参考书目:清华大学的各个专业都不指定参考书目,大家在平时的复习和备考过程中还应密切关注出题老师最新的学术研究动态,并且要对往年的专业课真题进行深入细致的分析和研究,另外还要搜集出题老师上课使用的课件、讲义、笔记等资料进行复习备考。

二、清华大学考博英语题型Part1:完形填空(词汇),共10分,20小题(两篇短文)。

Part2:阅读理解,共34分,4篇短文,4小题/1篇短文。

Part3:翻译,共40分,(汉译英20分3句话;英译汉20分3句话)。

Part4:写作,共16分,要求字数不得少于200字。

三、清华大学考博英语参考书“工欲善其事,必先利其器”,育明考博教研部主编的河北大学出版社出版的《考博英语真题解析》和《考博词汇》是考博人必备的最权威的复习资料,俗称“考博绿皮书”。

全国各大书店以及当当网卓越网均有销售,各位考生也可以直接联系育明考博购买。

需要各大院校历年考博英语/专业课真题及其解析或想加入育明考博辅导班的考生请加扣扣七七二六七八五三七或二八九零零六四三五一进行咨询,也可以拨打全国免费咨询电话四零零六六八六九七八享受考博辅导体验。

四、报考条件及注意事项(一)报考条件1.拥护中国共产党的领导,愿意为社会主义现代化服务,品德良好,遵纪守法;2.已获得硕士学位的在职人员,应届硕士生毕业(最迟须在入学前取得硕士学位);3.身体健康状况符合规定的体检标准;4.有两位与报考学科有关的副教授(或相当职称)以上的专家推荐;5.报考论文博士生一般须已取得硕士学位,并从事过长期实际工作,在科学和专门技术上取得了突出成绩,发表过高水平的研究论文,表明申请者在本门学科上掌握了坚实宽广的专门知识,具有独立从事科研工作的能力,具体要求见《清华大学“论文博士生”工作实施办法》;6.报考工程博士专业学位的考生是来自承担国家重大专项单位的工程技术或工程管理人员,并与清华大学电子与信息、先进制造、能源与环保三个领域有国家重大专项合作,在相关工程领域有较丰富的实践经验,获硕士学位后应具有五年以上工作经历、个别获学士学位后具有八年以上工作经历;7.报考教育博士专业学位的考生应是高等学校及相关教育机构中的高层管理人员(不包括企业人士及公务员),有5年及以上教育管理及相关工作经验,具有硕士学位;8.对以同等学力身份报考的人员,还必须同时具备下列条件:1)获得学士学位后在所要报考专业、学科或相近的领域工作六年或六年以上(从获得学士学位到博士生入学之日),并达到与硕士毕业生同等学力的人员;2)已修完所报考专业的硕士学位课程及选修课程且成绩合格(须提供授课单位的成绩证明);3)已在所要报考的学科或相近的研究领域的全国核心期刊上发表过二篇以上的学术论文(以第一或第二作者),或获得省、部级以上与报考学科相关的科技成果奖励(排名前五名);9.只有学位证书而无毕业证书的专业学位考生在资格审查时必须已获硕士学位,否则按同等学力对待;10.考生持境外获得的学位证书报考,须通过教育部留学服务中心认证,资格审查时须提交认证报告;11.考生须承诺学历、学位证书和所提交报名材料的真实性,一经招生单位或认证部门查证为不属实,即取消学习资格。

2019清华北大自主招生测评试题 数学 自主招生数学与逻辑测评试题

2019清华北大自主招生测评试题 数学  自主招生数学与逻辑测评试题

清华北大自主招生测评试题 数学 自主招生数学与逻辑测评试题(考试时间:90分钟,总分100分)一、选择题:本大题共6小题.每小题6分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设12,z z 为一对不相等的共轭复数,且2112=3,z z z 为实数,则12-z z 的值为( )A .3B .6C . 3D .232.若点P 在曲线2=--1y x 上,点Q 在曲线2=1+x y 上,则PQ 的最小值为( )A .32B .322 C .324 D .3283.在ABC 中,三边和三角满足3cos -cos =5a B b A c 则tan =tan AB( ) A 。

3 B 。

4 C 。

5 D 。

64.如图,在正四棱锥P−ABCD 中,∠APC =60°,则二面角A−PB−C 的平面角的余弦值为( )A.71 B. 71-C. 21D. 21-5.设P 是函数()2=+>2y x x x图像上任意一点,过点P 分别向直线=y x 和y 轴作垂线,垂足分别为A 、B ,则=PA PB ⋅( )A .1B .2C .-1D .-26.某情报站有A 、B 、C 、D 四种互不相同的密码,每周使用一种,且每DABC PM周都是从上周没使用的三种密码中等可能的随机选用一种,设第一周使用A 密码,则第七周也使用A 密码的概率为( )(用最简分数表示)A .4381 B .61243 C .48243 D .6181选择题答题处: 1.( ) 2.( ) 3.( ) 4.( ) 5.( ) 6.( )二、解答题(每题16分,共64分)7.设函数()()2=1-n n f x x x 在1,12⎡⎤⎢⎥⎣⎦上的最大值为n a ()=1,2,3,n (1)求数列{}n a 的通项公式;(2)求证:对任何正整数()2n n ≥,都有()21+2n a n ≤成立;(3)设数列{}a n 的前n 项和为S n ,求证:对任意正整数n ,都有7S <16n 成立。

北大直博历年试题(2011-2018,缺2014,2017)

北大直博历年试题(2011-2018,缺2014,2017)

使得 lim f x 0 ? x
(1) f x C ;
(3) f x 2 dx 收敛; a
(2) f x 3 dx 收敛; a
(4) f x 2 dx 收敛。 a
二、代数与几何
1. f x xn a1xn1 L an1x an , g x xm b1xm1 L bm1x bm , Amn 为 m n 阶方阵,前 m 行是 f x 系数,后 n 行 g(x) 是系数,如下:
¦3‡pƒ L«•˜‡
•þ,¦ 3dC†eEC•3‡pƒ
C†Ú©Oé3‡pƒ
••–1
•þ;¿ò¤‰ • C† C† ¦È.
3. y²:©OáuV- Ô¡
x2 y2 − = 2z
a2 b2
þ üxpƒR† †1‚ : ;,´-¡(1)†²¡2z = b2 − a2
‚.
(1) ‚•˜^V-
2
2013 北大数院直博

cos ε1, ηn
cos ε2, η1
cos ε2, η2 ...
cos ε2, ηn
. . . cos εn, η1

. . . cos εn, η2
...
...


. . . cos εn, ηn
(c) (½ ‘mþ1˜a Ý 91 a Ý ˜„/ª,¿‰Ñn‘î ¼˜mþ C† ƒqIO.(=,«{z L«/ª).
f (x)
=
g(x)
+
f (n)(y) − n!
g(n)(y) (x

x1)k1
.
.
.
(x

xt)kt .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2πiຫໍສະໝຸດ |z|=11−
cos
dz z
8. (15 分) 设 f (z) 是一个处处非零的全纯函数。证明存在一个全纯函数 g(z) 使得 f (z) = eg(z)。
1
清华大学数学系 2019 直博生摸底试题
编辑: 胡不归 2019 年 4 月 13 日
1. (10 分) 证明不存在一个实可微函数 f (x) 使得 f (f (x)) = −x, ∀x ∈ R.
2. (15 分) 证明 Legendre 多项式
Pn(x)
=
1 2nn!
dn dxn
( x2

1)n
的根都是实数并且包含于区间 (−1, 1) 中。
3. (10 分) 计算积分
∫∫
(∫ x2+y2 ez
)
dz dxdy
x2 +y 2 ≤1
0
1−z
4. (10 分) 设 A 和 B 是两个 n × n 矩阵。证明 AB 和 BA 有相同的特征值。
5. (15 分) 假设 In 是 n × n 的单位矩阵,A 是一个 n × n 的矩阵。令 f (x) = det (In + xA),计 算 f ′(0)。
6. (15 分) 设 v1, · · · , vn+1 是 Rn 中 n + 1 个向量,并且两两之间的内积满足 (vi, vj) < 0, ∀i ̸= j。 证明 v1, · · · , vn+1 中一定存在 n 个向量,它们组成 Rn 的一组基。
7. (10 分) 计算积分
∫ 1
ez sin z
相关文档
最新文档