必修一幂函数(教案)

合集下载

高中数学教案《幂函数

高中数学教案《幂函数

高中数学教案《幂函数》章节一:幂函数的定义与性质教学目标:1. 理解幂函数的定义;2. 掌握幂函数的性质;3. 能够运用幂函数的性质解决问题。

教学内容:1. 幂函数的定义:一般形式为f(x) = x^a,其中a为实数,a≠0;2. 幂函数的性质:a) 当a>0时,函数在x>0时单调递增,在x<0时单调递减;b) 当a<0时,函数在x>0时单调递减,在x<0时单调递增;c) 当a=1时,函数为常值函数f(x)=x;d) 当a=0时,函数为常值函数f(x)=1;e) 当a为负偶数时,函数在x>0时单调递增,在x<0时单调递减;f) 当a为负奇数时,函数在x>0时单调递减,在x<0时单调递增。

教学活动:1. 引入幂函数的概念,引导学生理解幂函数的一般形式;2. 通过示例,引导学生掌握幂函数的性质;3. 进行练习,巩固学生对幂函数性质的理解。

章节二:幂函数的图像与性质教学目标:1. 能够绘制幂函数的图像;2. 理解幂函数图像的性质;3. 能够运用幂函数图像解决问题。

教学内容:1. 幂函数的图像:一般形式为一条曲线,当a>0时,图像在x轴正半轴上单调递增,在x轴负半轴上单调递减;当a<0时,图像在x轴正半轴上单调递减,在x轴负半轴上单调递增;2. 幂函数图像的性质:a) 当a>0时,图像在x轴正半轴上无界,在x轴负半轴上有界;b) 当a<0时,图像在x轴正半轴上有界,在x轴负半轴上无界;c) 当a=1时,图像为一条直线,穿过原点;d) 当a=0时,图像为一条水平线,位于y轴上;e) 当a为负偶数时,图像在x轴正半轴上单调递增,在x轴负半轴上单调递减,且过原点;f) 当a为负奇数时,图像在x轴正半轴上单调递减,在x轴负半轴上单调递增,且过原点。

教学活动:1. 通过示例,引导学生绘制幂函数的图像;2. 分析幂函数图像的性质,引导学生理解幂函数图像的特点;3. 进行练习,巩固学生对幂函数图像性质的理解。

高中数学必修一幂函数教案

高中数学必修一幂函数教案

高中数学必修一幂函数教案教案主题:幂函数教案目标:1.了解幂函数的定义和性质;2.掌握幂函数图像的特点以及对称性;3.准确理解幂函数的增减性质并能应用到解题中;4.能够分析幂函数与线性函数、指数函数和对数函数的关系。

教学准备:1.多媒体教学工具;2.手写板或黑板;3.课本及教学参考书。

教学过程:一、导入(5分钟)教师利用多媒体工具或手写板呈现一幂函数的图像,并提问学生对于该图像的感受和认知。

引导学生逐渐了解幂函数。

二、输入与解释(10分钟)教师在黑板上写下幂函数的定义,并对每一部分进行解释。

幂函数定义:幂函数是指以自变量x为底数,以常数a(a>0且a≠1)为指数的函数。

它可以表示为y=x^a。

三、图像特点与对称性(20分钟)1.通过幂函数的图像和函数表达式的关系,教师解释幂函数的图像特点:(1)当a>1时,函数图像在x轴正半轴上逐渐上升;当0<a<1时,函数图像保持下降的趋势。

(2)当a为整数时,函数图像在坐标原点有一个翻转对称轴,如a为奇数,则函数图像在原点处且坐标原点是函数图像的一个特殊点。

2.教师通过实例讲解幂函数图像的对称性,并要求学生在黑板上绘制出幂函数图像,并观察其对称轴和特殊点。

四、增减性质与应用(30分钟)1.幂函数的增减性质:(1)a>1时,函数递增;(2)0<a<1时,函数递减。

教师通过函数的图像和定义,对幂函数的增减性质进行讲解,强调函数图像的上升和下降趋势。

2.教师通过例题引导学生应用增减性质去解题。

五、幂函数与其他函数的关系(20分钟)1.幂函数与线性函数的关系:幂函数的特殊情况即a=1时,函数变为y=x。

教师通过图像和式子对比,指出线性函数就是幂函数的特殊情况。

2.幂函数与指数函数及对数函数的关系:幂函数与指数函数和对数函数正好是互为反函数,即幂函数和指数函数是对方的反函数。

3.教师通过例题和实例分析,引导学生理解以上关系。

六、总结与归纳(10分钟)教师与学生共同总结幂函数的定义、图像特点以及与其他函数的关系。

新人教A版必修1《幂函数》教案

新人教A版必修1《幂函数》教案
其次,在实践活动环节,学生们在分组讨论和实验操作中表现出了很高的积极性。他们能够将所学的幂函数知识应用到实际问题中,这让我感到很欣慰。但同时我也注意到,有些学生在讨论过程中过于依赖公式,缺乏对问题的深入思考。针对这一问题,我计划在今后的教学中,多引导学生从不同角度分析问题,培养他们的创新意识和解决问题的能力。
-强调幂函数的单调性、奇偶性、过定点等性质。
-结合具体幂函数,如f(x) = x^2、f(x) = x^3等,讲解其性质并举例说明。
-核心内容三:常见幂函数的图像与性质
-详细分析正比例函数、反比例函数、二次函数、三次函数的图像及其性质。
-引导学生观察图像,总结性质,并能运用性质解决相关问题。
2.教学难点
4.数学抽象:帮助学生从具体实例中抽象出幂函数的一般规律,培养学生的数学抽象思维。
三、教学难点与重点
1.教学重点
-核心内容一:幂函数的定义及其一般形式
-重点讲解幂函数的一般形式f(x) = x^a,强调a为常数的特点。
-通过实例展示,让学生理解不同a值对应的幂函数图形差异。
-核心内容二:幂函数的性质
-难点三:幂函数在实际问题中的应用
-学生可能不知道如何将幂函数应用于实际问题,如计算面积、体积等。
-教师应设计相关实际问题,引导学生运用幂函数知识解决问题,提高应用能力。
-难点四:幂函数性质的应用与拓展
-学生可能难以将幂函数性质应用于更广泛的数学问题。
-教师可通过举例,如数学竞赛题等,展示幂函数性质在更复杂问题中的应用,拓展学生思维。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解幂函数的基本概念。幂函数是形如f(x) = x^a的函数,其中a为常数。幂函数在数学中具有重要地位,广泛应用于实际问题中。

2023年高中数学幂函数教学教案(7篇)

2023年高中数学幂函数教学教案(7篇)

2023高中数学幂函数教学教案(7篇)高中数学必修1《幂函数》教案篇一1、教学目标学问目标:(1)把握幂函数的形式特征,把握详细幂函数的图象和性质。

(2)能应用幂函数的图象和性质解决有关简洁问题。

力量目标:培育学生发觉问题,分析问题,解决问题的力量。

情感目标:(1)加深学生对讨论函数性质的根本方法和流程的阅历。

(2)渗透辨证唯物主义观点和方法论,培育学生运用详细问题详细分析的方法分析问题、解决问题的力量。

2、教学重点:从详细函数归纳熟悉幂函数的一些性质并简洁应用。

教学难点:引导学生概括出幂函数的性质。

3、教学方法和教学手段:探究发觉法和多媒体教学4、教学过程:问题情境问题1写出以下y关于x的函数解析式:①正方形边长x、面积y②正方体棱长x、体积y③正方形面积x、边长y④某人骑车x秒内匀速前进了1m,骑车速度为y⑤一物体位移y与位移时间x,速度1m/s问题2是否为指数函数?上述函数解析式有什么共同特征?(教师将解析式写成指数幂形式,以启发学生归纳,)板书课题并归纳幂函数的定义。

(二)新课讲解幂函数的定义:一般地,我们把形如的函数称为幂函数(powerfunction),其中是自变量,是常数。

为了加深对定义的理解,请同学们判别以下函数中有几个幂函数?①y=②y=2x2我们了解了幂函数的概念以后我们一起来讨论幂函数的性质。

问题3幂函数具有哪些性质?用什么方法讨论这些性质的呢?我们请同学们回忆一下在前面学习指数函数、对数函数我们一起讨论了哪些性质呢?(学生争论,教师引导)(引发学生作图讨论函数性质的兴趣。

函数单调性的推断,既可以使用定义,也可以通过图象解决,直观,易理解。

)在初中我们已经学习了幂函数的图象和性质,请同学们在同一坐标系中画出它们的图象。

依据你的学习经受,你能在同一坐标系内画出函数的图象吗?(学生作图,教师巡察。

将学生作图用实物投影仪演示,指出优点和错误之处。

教师利用几何画板演示,通过超级链接几何画板演示。

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案一、教学目标1.了解幂函数的定义和特点;2.学习叠加思想,并掌握简单的幂函数叠加方法;3.能够解决一些实际问题。

二、教学重难点1.幂函数的定义及其特点;2.幂函数的叠加思想;3.幂函数的绘图方法;三、教学过程1.引入幂函数的定义:$y=x^p(p\\in \\mathbb{R})$让学生发现x的取值范围对函数图象的影响,并对函数图象进行描述。

2. 概念讲解1.首先讲解幂函数的定义,指出它是一种基本函数;2.介绍幂函数的性质,让学生知道幂函数的图像不可能横切x轴;3.引入幂函数的叠加思想,让学生知道可以将不同的函数图像叠加在一起。

3. 具体例子讲解1.书写公式,说明函数图象的性质;2.给出幂函数的图象,描出函数的图象;3.确定函数图象的性质,让学生明白函数图象的变化。

4. 例题解析1.给出实际问题,提供数据;2.根据实际问题列出函数式,确定函数图象;3.通过实际问题,解释函数图象的意义。

5. 分组讨论1.将学生分成若干小组,每组做一道练习题;2.每组向其他组展示自己的想法、方法及结果;3.学生之间相互交流,共同探讨出最佳答案。

四、教学方法1.板书法:结合具体例子进行讲解;2.案例法:让学生通过实际问题练习解题思路;3.分组讨论法:提高学生探究问题、思考问题和解决问题的能力。

五、教学帮助1.帮助学生理解定义和性质;2.尤其帮助学生掌握幂函数的叠加思想,找出函数图象的变化规律。

六、课堂反馈1.倾听学生提出的疑问和问题;2.鼓励并指导学生提出自己的解决方案;3.搜集学生反馈,及时调整教学进度和方法。

七、课堂作业1.完成教师布置的作业;2.阅读教材给出的例题;3.自己找出一些幂函数的例子进行探究。

高一数学必修1《幂函数》教案

高一数学必修1《幂函数》教案

高一数学必修1《幂函数》教案教学目标:1. 理解幂函数的定义和性质,掌握画出幂函数的图象的方法。

2. 学会用不等式的方法解决幂函数方程的问题。

教学重点:1. 幂函数的定义和性质。

2. 画出幂函数的图象。

3. 不等式解法。

教学难点:1. 幂函数的图象,如何画出图象。

2. 不等式的解法,如何运用不等式解决幂函数方程的问题。

教学方法:1. 归纳法。

2. 演示法。

3. 分组讨论法。

教学内容:一. 幂函数1. 幂函数的定义:设a为正实数,x为任意实数,幂函数f(x)=$a^x$ 定义为f(x)=$a^x$。

2. 幂函数的性质:(1)当a>1时,幂函数f(x)严格单调递增;当0<a<1时,幂函数f(x)严格单调递减。

(2)当a>1时,幂函数f(x)在x轴的右侧无上界;当0<a<1时,幂函数f(x)在x轴的右侧无下界。

(3)当a=1时,幂函数f(x)为常函数y=1。

3. 幂函数的图象:(1)当a>1时,幂函数f(x)在右侧无上界,并超过x轴,图象接近x轴。

(2)当0<a<1时,幂函数f(x)在右侧无下界,趋近于x轴,图象在x轴上方。

(3)当a=1时,幂函数f(x)图象为直线y=1,在y轴上方。

4. 例题:(1)求幂函数y=$\frac{1}{4}$^x 的增减区间,并画出图象。

(2)求方程$\frac{1}{2x+1}$=8 的解。

二. 不等式的解法1. 不等式的性质:(1)等式两边加(减)同一个数、同一个式子,不等式的方向不变;(2)等式两边同乘(除)一个正数,不等式的方向不变;等式两边同乘(除)一个负数,不等式的方向反转。

2. 不等式的应用:利用不等式的性质,解决幂函数的方程。

3. 例题:求不等式$x^2$+2$\sqrt2x$+1<0 的解。

教学流程:1. 教师介绍幂函数的定义和性质,并简单讲解幂函数的图象。

2. 教师出示幂函数$f(x)=2^x$ 的图象,并让同学对幂函数的图象做出讨论,了解幂函数图象的特点,为下面的探究提供基础。

高一数学必修1幂函数教学

高一数学必修1幂函数教学

高一数学必修1幂函数教学一、教学任务及对象1、教学任务本节课的教学任务为高一数学必修1中的幂函数教学。

幂函数是数学中一种重要的函数类型,它涉及到的知识面广,对学生的数学思维能力和逻辑推理能力有较高要求。

通过本节课的学习,学生需要掌握幂函数的定义、图像特征、性质及应用,能够解决与幂函数相关的问题,为后续学习其他函数打下坚实基础。

2、教学对象本节课的教学对象为高一年级学生。

经过初中数学的学习,他们已经具备了一定的数学基础和逻辑思维能力,但对于幂函数这一全新的概念,可能还存在一定的陌生感和理解难度。

因此,在教学过程中,教师需要关注学生的实际情况,从浅入深地进行教学,使学生在掌握知识的同时,提高数学素养和解决问题的能力。

二、教学目标1、知识与技能(1)理解幂函数的定义,掌握幂函数的表达式、图像特征及性质;(2)掌握幂函数在不同底数、指数下的图像变化,能够分析幂函数的增减性、奇偶性等性质;(3)能够运用幂函数解决实际问题,如求函数值、解方程等;(4)培养运用数学语言表达、数学符号表示及运用数学工具(如计算器、图形计算器等)解决问题的能力。

2、过程与方法(1)通过实例引导学生发现幂函数的规律,培养学生观察、分析、归纳的能力;(2)采用问题驱动的教学方法,激发学生的思考,引导学生主动探究幂函数的性质,提高学生的逻辑推理能力;(3)运用图形计算器、数学软件等工具,帮助学生直观地理解幂函数的图像变化,提高学生的数学应用能力;(4)组织课堂讨论,鼓励学生发表自己的观点,培养学生的团队合作意识和交流能力。

3、情感,态度与价值观(1)培养学生对数学的兴趣和热情,激发学生主动学习的动力;(2)培养学生勇于探索、积极思考的良好学习习惯,使学生形成面对问题敢于挑战、不怕困难的精神;(3)通过幂函数的学习,使学生认识到数学与现实生活的联系,体会数学在自然科学、社会科学等领域的应用价值,增强学生的数学素养;(4)培养学生的集体荣誉感,使学生学会尊重他人、团结协作,形成积极向上的人生态度。

幂函数教案:高中数学必修的章节之一

幂函数教案:高中数学必修的章节之一

幂函数教案:高中数学必修的章节之一在高中数学必修的课程中,幂函数是一道重要而又基础的数学知识,更是我们学习其他数学知识的基础。

因此,针对高中数学必修中的幂函数教案,我们需要作出详细的讲解和探究,同时需要结合一些实例和练习来帮助学生更好地理解和掌握这一知识,提高数学素养和解题能力。

一、教学目标1.理解幂函数的定义和性质,知道其图像特征并能用具体实例说明。

2.能变形解决简单的幂函数的运算。

3.能应用指数函数和对数函数的性质,解决幂函数与指数函数、对数函数的联立方程。

二、教学重点1.在数轴上绘制幂函数的图像并分析其特征。

2.掌握幂函数的运算规则,以及幂函数与指数函数、对数函数的联立方程解法。

三、教学难点1.理解并掌握幂函数的定义和性质,知道幂函数的图像特点。

2.掌握幂函数的运算规则,能解决幂函数的简单运算。

3.掌握幂函数和指数函数、对数函数联立方程的解法。

四、教学过程1.幂函数的定义和性质幂函数是形如y=x^a(a为实数)的函数,其中x>0(x=0时,a>0)。

幂函数的图像特征与指数函数相似,是利用对数函数的概念、运算,指数函数的知识,掌握的一个重要的数学工具。

幂函数的图像特征:当a>1时,幂函数y=x^a的图像上升逐渐加速,当a=1时为与x 轴正比例函数y=x,当0<a<1时,幂函数y=x^a的图像上升逐渐减缓,最后趋近于x轴。

当a<0时,幂函数y=x^a的图像下降,且在x轴右侧有垂直渐近线x=0,在x轴左侧有水平渐近线y=0。

2.幂函数的运算规则加减法运算:当幂函数底数相同时,可将其指数相加或相减。

即x^a+x^b=x^(a+b),x^a-x^b=x^(a-b)。

乘法运算:当幂函数底数相同时,可将其指数乘积。

即x^a*x^b=x^(a+b)。

幂函数的运算可以变形为指数函数和对数函数的运算,如x^a=y,可变形为a=logx(y)或者y=x^a,可变形为a=logy(x)。

高中数学幂函数的教案

高中数学幂函数的教案

高中数学幂函数的教案
一、教学目标:
1. 理解幂函数的基本概念和特点;
2. 掌握幂函数的图像特征和性质;
3. 能够解决幂函数相关的问题。

二、教学重点:
1. 幂函数的定义和基本特点;
2. 幂函数的图像性质。

三、教学难点:
1. 幂函数的特殊情况的解决方法;
2. 幂函数的应用问题的解决。

四、教学过程:
1. 导入:通过实际生活中的例子引入幂函数的概念,引发学生的兴趣。

2. 概念讲解:介绍幂函数的定义和基本特点,解释幂函数的图像特征和性质。

3. 实例演练:通过案例分析,让学生运用所学知识解决幂函数相关的问题。

4. 拓展应用:引导学生探讨幂函数在实际问题中的应用,开拓思维。

五、课堂讨论:组织学生讨论幂函数的特殊情况和解决方法,促进学生之间的交流和思考。

六、练习测试:布置与幂函数相关的习题,检验学生对知识的掌握程度。

七、总结反思:引导学生总结本节课的重点知识,反思学习过程中的问题和感悟。

八、课后复习:提醒学生及时复习幂函数相关知识,完成作业,并准备下节课内容。

九、教学手段:采用多媒体教学、案例分析、讨论互动等方式,激发学生学习兴趣。

十、教学评估:根据学生的学习情况和表现,及时调整教学策略,确保教学效果。

十一、教学延伸:鼓励学生主动学习,拓展幂函数相关知识,提高数学思维能力。

以上是高中数学幂函数的教案范本,仅供参考。

祝教学顺利!。

《幂函数》教学设计

《幂函数》教学设计

普通高中教科书数学必修第一册(人教A版2019)3.3幂函数一、教学目标:(一)了解幂函数的概念,会求幂函数的解析式.(二)通过具体实例,会画y=x,y=x2,y=x3,y=x-1,y=x12的图象,描述它们的变化规律,总结掌握幂函数的性质.(三)能利用幂函数的单调性比较指数幂的大小.二、教学重难点重点:幂函数的概念、图象和性质.难点:利用幂函数的性质解决有关问题.三、教学用具:ppt、geogebra软件四、教学过程:(一)情境导入前面学习了函数的概念,利用函数概念和对函数的观察,研究了函数的一些性质.本节我们利用这些知识研究一类新的函数.先看几个实例. 1.如果张红以1元/kg的价格购买了某种蔬菜wkg,那么她需要支付 p=w元,这里p是w的函数;2.如果正方形的边长为x,那么正方形的面积y=x2,这里y是x的函数; 3.如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数; 4.如果一个正方形场地的面积为S,那么正方形场地的边长c=√S,这里c是S的函数;5.如果某人t s内骑车行进了1km,那么他骑车的平均速度v=1km/s,t 即v=t−1,这里v是t的函数.(二)探究活动1:请观察1—5中的函数解析式,讨论它们有何共同特征.1.p=w;2.y=x2;3.V=b3;,即v=t−1.4.c=√S,即c=s12;5.v=1t实际上,这些函数的解析式都有幂的形式,而且都是以幂的底数为自,-1;它们都是形如y=xα的变量;幂的指数都是常数,分别是1,2,3,12函数.【设计意图】将实际问题转化为数学问题,引导学生经历从实例中用函数思维方式抽象出幂函数的形式,进而引出新知识的定义和形式. (三)概念新知幂函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.1.练习:(1)下列函数哪些是幂函数()①y=x3②y=(1)x③y=4x2④y=x5+12⑤y=(x-1)2 ⑥y=x ⑦y=2x(2)若f(x)=(m2-4m-4)x m是幂函数,则m=_____.结论:底数只能是自变量x,指数只能是常数,幂的系数只能是1, 解析式只能是一项;判断一个函数是不是幂函数的依据是该函数是否为y=xα(α为常数)的形式;反过来,若一个函数为幂函数,那么它也一定具有这个形式.在我们解决某些问题的时候这个结论有奇效.【设计意图】通过引导学生从函数的思维方式归纳出幂函数的定义,然后再通过练习和思考,学生进一步理解幂函数的定义.(四)探究活动2(数到形),−1时的图象与性质.现对于幂函数,我们只研究α=1,2,3,12请同学们尝试在同一坐标系中画出这五个函数的大致图象.(取点要具有代表性)老师用geogebra软件进行展示【设计意图】通过课前预习的网络作业让学生先独立画出三个幂函数的图像,然后课堂上在同一直角坐标系中通过描点法画出另外两个幂函数,在画的过程中体会图像的变化趋势,掌握幂函数的特征.(五)探究活动3(形到数)结合幂函数图像和解析式,将你发现的结论填写在下表.【设计意图】由形到数,发现并归纳5个常见幂函数的图像性质. (六)性质探究探究活动4:观察α=1,2,3,1/2 ,-1时幂函数的图形,填写以下研究报告1.特殊幂函数的性质(1) y=x,y=x2,y=x3,y=x12,y=x-1主要分布在第象限,第象限无图像.(2)函数y=x,y=x2,y=x3,y=x12和y=x-1的图像都通过点;(3)函数y=x,y=x3,y=x-1是,函数y=x2是;(4)在区间(0,+∞)上,函数y=x,y=x2,y=x3,y=x12,函数y=x-1;(5)在第一象限内,函数y=x-1的图像向上与y轴,向右与x轴.2.一般幂函数的性质:(1)第一象限均有图像,第四象限均无图像(2)幂函数图像都过点(1,1);α>0,函数过(0,0)(3)α为偶数时,幂函数是偶函数;α为奇数时,幂函数是奇函数.(4)当α>0时,幂函数在区间(0,+∞)上单调递增;当α<0时,幂函数在区间(0,+∞)上单调递减(5)一般地,幂函数的图像在直线x=1的右侧,指数大的在上,指数小的在下(指大图高),在y轴与直线x=1之间正好相反(指大图低).【设计意图】引导学生通过观察函数的图像,分析归纳出五个函数图像各自性质的基础上,再归纳幂函数的共性和差异性,进而得出幂函数的基本性质.(七)应用提升例1.在下列四个图形中,y =x-12的大致图像是( )例2 比较下列各组数的大小.(1) (2) (3)(八)当堂检测1.下列函数是幂函数的是( )A .y =5x 2B .y =x 5−1 C .y =x 8D.y =(x +1)22.若 f (x )=(m 2-2m -2)x m是幂函数,且在第一象限为增函数,则m =( )A .−1 B. 3 C. -1或3 D.13.已知幂函数y =f(x)的图像经过点(4, 12 ),则 f (2)=( )A .14B.4C.√22D.√24.下列正确的是( )A.(1.5)3<(1.4)3B. (0.1)0.3>(0.2)0.3C. (11.5)−3<(11.6)−3D. (0.6)3<(0.6)0.5111.5 1.4--,1.23,1.330.53 ,0.50.55.若(3-2m)12>(m+1)12,求实数m的取值范围.五.归纳总结1.幂函数概念:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.2.幂函数性质:(1)幂函数图象都过点(1,1).(2)α为偶数时,幂函数是偶函数。

幂函数》教案-公开课-优质课(人教A版必修一精品)

幂函数》教案-公开课-优质课(人教A版必修一精品)

幂函数》教案-公开课-优质课(人教A版必修一精品)幂函数》教案教学目标:知识与技能:通过具体实例了解幂函数的图像和性质,并能进行简单的应用。

能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图像和性质。

情感、态度、价值观:体会幂函数的变化规律及蕴含其中的对称性。

教学重点:从五个具体幂函数中认识幂函数的一些性质。

教学难点:画五个具体幂函数的图像并由图像概括其性质,体会图像的变化规律。

教学程序与环节设计:1.创设情境问题引入,尝试练幂函数性质的初步应用。

2.组织探究幂函数的图像和性质。

3.巩固反思复述幂函数的图像规律及性质。

4.作业回馈幂函数性质的初步应用。

5.课外活动:利用图形计算器或计算机探索一般幂函数的图像规律。

教学内容设计师生双边互动:学生独立思考完成引阅读教材P90的具体实例(1)~(5),思考下列创设情境问题:1.它们的对应法则分别是什么?2.以上问题中的函数有什么共同特征?答案:1.(1) 乘以1;(2) 求平方;(3) 求立方;(4) 开方;(5) 取倒数(或求-1次方)。

2.上述问题中涉及到的函数,都是形如y = x^α 的函数,其中 x 是自变量,α 是常数。

材料一:幂函数定义及其图像。

一般地,形如y = x^α (α ∈ R) 的函数称为幂函数,其中α 为常数。

幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”。

作出下列函数的图像:1) y = x;(2) y = x;(3) y = x;4) y = x;(5) y = x。

解:略。

材料二:幂函数性质归纳。

1.所有的幂函数在(0.+∞) 都有定义,并且图像都过点(1.1)。

2.α。

0 时,幂函数的图像通过原点,并且随着x 的增大,y 增大,增长速度越来越快。

3.α < 0 时,幂函数的图像在 x 轴正半轴上,随着 x 的增大,y 增大,但增长速度越来越慢。

4.α = 0 时,幂函数的图像是一条水平直线,y = 1.5.幂函数的图像关于 y 轴对称(当α 为整数时)或关于原点对称(当α 为奇数时)。

人教版高中必修1幂函数教案

人教版高中必修1幂函数教案

人教版高中必修1幂函数教案《人教版高中必修1幂函数教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!§2.3幂函数一.教学目标:1.知识技能(1)理解幂函数的概念;(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.2.过程与方法类比研究一般函数,指数函数、对数函数的过程与方法,研究幂函数的图象和性质.3.情感、态度、价值观(1)进一步渗透数形结合与类比的思想方法;(2)体会幂函数的变化规律及蕴含其中的对称性.二.重点、难点重点:从五个具体的幂函数中认识的概念和性质难点:从幂函数的图象中概括其性质三.学法与教具(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质 ;(2)教学用具:多媒体四.教学过程:1导入新课1.如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?根据函数的定义可知,这里p是w的函数.2.如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数.3.如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数.4.如果正方形场地面积为S,那么正方形的边长a=S,这里a是S的函数.5.如果某人t s内骑车行进了1 km,那么他骑车的速度v=t-1km/s,这里v是t的函数.以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量).(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题:幂函数).2新知探究提出问题:问题①:给出下列函数:y=x,y=x,y=x2,y=x-1,y=x3,考察这些解析式的特点,总结出来,是否为指数函数?问题②:根据①,如果让我们起一个名字的话,你将会给他们起个什么名字呢?请给出一个一般性的结论.讨论结果:①通过观察发现这些函数的变量在底数位置,解析式右边都是幂,因为它们的变量都在底数位置上,不符合指数函数的定义,所以都不是指数函数.②由于函数的指数是一个常数,底数是变量,类似于我们学过的幂的形式,因此我们称这种类型的函数为幂函数,如果我们用字母α来表示函数的指数,就能得到一般的式子,即幂函数的定义:一般地,形如y=xα(x∈R)的函数称为幂函数,其中x是自变量,α是常数.如y=x2,y=x,y=x3等都是幂函数,幂函数与指数函数、对数函数一样,都是基本初等函数.练1判断下列函数哪些是幂函数.(1)y=0.2x;(2)y=x-3;(3)y=x-2;(4)y=x;(5)y=2x2 ;(6)y=-x-1活动:学生独立思考,讨论回答,教师巡视引导,及时评价学生的回答.根据幂函数的定义判别,形如y=xα(x∈R)的函数称为幂函数,变量x的系数为1,指数α是一个常数,严格按这个标准来判断.解:(1)y=0.2x的底数是0.2,因此不是幂函数;(2)y=x-3的底数是变量,指数是常数,因此是幂函数;(3)y=x-2的底数是变量,指数是常数,因此是幂函数;(4)y=x的底数是变量,指数是常数,因此是幂函数.(5)的变量x2的系数为2,因此不是幂函数;(6)的变量x3的系数为-1,因此不是幂函数点评:判断函数是否是幂函数要严格按定义来判断.提出问题:问题③:我们前面学习指对数函数的性质时,用了什么样的思路?研究幂函数的性质呢?问题④:画出y=x,y=x,y=x2,y=x-1,y=x3五个函数图象,完成下列表格.讨论结果:③我们研究指对数函数时,根据图象研究函数的性质,由具体到一般;一般要考虑函数的定义域、值域、单调性、奇偶性;有时也通过画函数图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等性质,研究幂函数的性质也应如此.④学生用描点法,也可应用函数的性质,如奇偶性、定义域等,画出函数图象.利用描点法,在同一坐标系中画出函数y=x,y=x,y=x2,y=x3,y=x-1的图象.列表:图1让学生通过观察图象,分组讨论,探究幂函数的性质和图象的变化规律,教师注意引导学生用类比研究指数函数、对数函数的方法研究幂函数的性质.通过观察图象,完成表格.提出问题:问题⑤:通过对以上五个函数图象的观察,哪个象限一定有幂函数的图象?哪个象限一定没有幂函数的图象?哪个象限可能有幂函数的图象,这时可以通过什么途径来判断?问题⑥:通过对以上五个函数图象的观察和填表,你能类比出一般的幂函数的性质吗?讨论结果:⑤第一象限一定有幂函数的图象;第四象限一定没有幂函数的图象;而第二、三象限可能有,也可能没有图象,这时可以通过幂函数和定义域和奇偶性来判断.⑥幂函数y=xα的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:1x=1);(2)当α>0时,幂函数的图象都通过原点,并且在[0,+∞)上是增函数(从左往右看,函数图象逐渐上升).特别地,当α>1时,x∈(0,1),y=x2的图象都在y=x图象的下方,形状向下凸,α越大,下凸的程度越大.当0<α<1时,x∈(0,1),y=x2的图象都在y=x的图象上方,形状向上凸,α越小,上凸的程度越大.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x向原点靠近时,图象在y轴的右方无限逼近y轴正半轴,当x慢慢地变大时,图象在x轴上方并无限逼近x轴的正半轴.活动:考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开,学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳,学生作图,教师巡视,学生小组讨论,得到结论,必要时,教师利用几何画板演示.3典例精析例1比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.活动:学生先思考或回忆,然后讨论交流,教师适时提示点拨.比较数的大小,常借助于函数的单调性.对(1)(2)可直接利用幂函数的单调性.对(3)只利用幂函数的单调性是不够的,还要利用指数函数的单调性,事实上,这里0.30.3可作为中间量.解:(1)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x0.1的单调性,在第一象限内函数单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x-0.2的单调性,在第一象限内函数单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,考察函数y=x0.3的单调性,在第一象限内函数单调递增,又因为0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,考察函数y=0.3x的单调性,它在定义域内函数单调递减,又因为0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.另外,本题还有图象法,计算结果等方法,留作同学们自己完成.点评:指数相同的幂的大小比较可以利用幂函数的单调性;底数相同的幂的大小比较可以利用指数函数的单调性例2.证明幂函数f(x)=在[0,+∞)上是增函数.活动:学生先思考或讨论,再回答,教师根据实际,可以提示引导.证明函数的单调性一般用定义法,有时利用复合函数的单调性.证明:任取x1,x2∈[0,+∞),且x1f(x1)-f(x2)===,因为x1-x2<0,x1+x2>0,所以<0.所以f(x1)点评:证明函数的单调性要严格按步骤和格式书写,利用作商的方法比较大小,f(x1)与f(x2)的符号要一致.4知能训练1.下列函数中,既是幂函数又是奇函数的是( )A.y=2xB.y=2x3C.y=D.y=2x2.下列结论正确的是( )A.幂函数的图象一定过原点B.当α<0时,幂函数y=xα是减函数C.当α>0时,幂函数y=xα是增函数D.函数y=x2既是偶函数,也是幂函数3.下列函数中,在(-∞,0)是增函数的是( )A.y=x3B.y=x2C.y=D.y=x4.已知某幂函数的图象经过点(2,),则这个函数的解析式为. 。

(完整word版)高中数学必修一幂函数教案.docx

(完整word版)高中数学必修一幂函数教案.docx

高中数学必修一幂函数教案教学目标:知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.教学重点:重点从五个具体幂函数中认识幂函数的一些性质.难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.教学程序与环节设计:创设情境问题引入.组织探究幂函数的图象和性质.尝试练习幂函数性质的初步应用.巩固反思复述幂函数的图象规律及性质.作业回馈幂函数性质的初步应用.课外活动利用图形计算器或计算机探索一般幂函数的图象规律.教学过程与操作设计:环节教学内容设计阅读教材 P90的具体实例( 1)~(5),思考下列问题:1.它们的对应法则分别是什么?2.以上问题中的函数有什么共同特征?创(答案)设情1.(1)乘以 1;( 2)求平方;( 3)求师生双边互动生:独立思考完成引例.师:引导学生分析归纳概括得出结论.师生:共同辨析这种新函数与指数函数的异同.境立方;( 4)开方;( 5)取倒数(或求- 1次方).2.上述问题中涉及到的函数,都是形如 y x 的函数,其中 x 是自变量,是常数.材料一:幂函数定义及其图象.师:说明:一般地,形如幂函数的定义y x (a R)来自于实践,它同指数函数、对数函数一的函数称为幂函数,其中为常数.样,也是基本初等函下面我们举例学习这类函数的一些性质.数,同样也是一种作出下列函数的图象:“形式定义”的函(1) y x ;(2)12数,引导学生注意辨y x2 ;();析.3 y x组(4)y x 1;(5) y x 3.织探[ 解]1列表(略)究○2图象○生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.师生共同分析,强调画图象易犯的错误.环节教学内容设计师生双边互动材料二:幂函数性质归纳.师:引导学生观(1)所有的幂函数在( 0, +∞)都有定察图象,归纳概括幂义,并且图象都过点( 1,1);函数的的性质及图(2)0时,幂函数的图象通过原点,象变化规律.并且在区间 [ 0,) 上是增函数.特别地,当生:观察图象,分组讨论,探究幂函组1时,幂函数的图象下凸;当 01时,数的性质和图象的织幂函数的图象上凸;变化规律,并展示各探( 3 )0 时,幂函数的图象在区间自的结论进行交流究评析,并填表.(0, ) 上是减函数.在第一象限内,当 x 从右边趋向原点时,图象在 y 轴右方无限地逼近 y轴正半轴,当 x 趋于时,图象在 x 轴上方无限地逼近 x 轴正半轴.材料三:观察与思考观察图象,总结填写下表:y xy x 2y x31y x1y x 2定义域值域奇偶性单调性定点材料五:例题[ 例 1](教材 P92例题)[ 例 2]比较下列两个代数值的大小:(1)(a1)1.5, a1.522(2)(2a2 ) 3,232[ 例 3]讨论函数 y x 3的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.环节呈现教学材料1.利用幂函数的性质,比较下列各题中两个幂的值的大小:33(1)2.34,2.44;66(2)0.315,0.355;尝33(3)( 2)2,( 3)2;试11练(4)1.12,0.9 2 .习32.作出函数y x2的图象,根据图象讨论这个函数有哪些性质,并给出证明.3.作出函数y x2和函数y(x 3) 2的图象,求这两个函数的定义域和单调区间.4.用图象法解方程:师:引导学生回顾讨论函数性质的方法,规范解题格式与步骤.并指出函数单调性是判别大小的重要工具,幂函数的图象可以在单调性、奇偶性基础上较快描出.生:独立思考,给出解答,共同讨论、评析.师生互动设计(1) xx 1;(2) x 3 x 2 3 .1.如图所示, 曲线是幂函数 yx 在第一象限内的图象,已知 分别取11,1, ,2 四个值,则相应2图 象 依 次 探 为: .究 2.在同一坐标系内,作出下列函数的图与 象,你能发现什么规律?发 (1) yx 3 和 y 1现x 3 ;5 4(2) yx 4 和 y x 5 .1.在 函 数作业 y1, y 2x 2 , y x 2 x, y 1 中,幂函数的 回馈 x 2个数为:A .0B .1C .2D .3 环节 呈现教学材料规律 1:在第一象 限 , 作 直 线x a(a 1) ,它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.规律 2:幂指数互为倒数的幂函数在第一象限内的图象关于直线 y x 对称.师生互动设计2 .已知幂函数y f ( x) 的图象过点(2, 2) ,试求出这个函数的解析式.3.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率 R与管道半径 r 的四次方成正比.(1)写出函数解析式;(2)若气体在半径为3cm的管道中,流3量速率为400cm/s ,求该气体通过半径为r 的管道时,其流量速率R的表达式;(3)已知( 2)中的气体通过的管道半径为 5cm,计算该气体的流量速率.4.1992 年底世界人口达到54.8 亿,若人口的平均增长率为x%,2008 年底世界人口数为 y(亿),写出:(1)1993 年底、 1994 年底、 2000 年底的世界人口数;(2)2008 年底的世界人口数y 与 x 的函数解析式.课外利用图形计算器探索一般幂函数y x 活的图象随的变化规律.动收1.谈谈五个基本幂函数的定义域与对应获幂函数的奇偶性、单调性之间的关系?与2.幂函数与指数函数的不同点主要表现体在哪些方面?会。

高中数学必修幂函数教案

高中数学必修幂函数教案

高中数学必修幂函数教案【教学目标】1. 理解和掌握幂函数的概念和性质;2. 掌握求解幂函数的基本问题;3. 利用幂函数解决实际问题。

【教学重点和难点】1. 幂函数的概念和性质;2. 幂函数的图像;3. 幂函数与实际问题的联系。

【教学内容】一、幂函数的概念和性质1. 幂函数的定义:$y=x^a$,其中$a$为常数且$a\neq0$;2. 幂函数的性质:幂函数的定义域为实数集,具有相似性、奇偶性和单调性等性质。

二、求解幂函数的基本问题1. 求幂函数的零点;2. 求幂函数的最值;3. 求幂函数的增减性;4. 求幂函数的解析式。

三、幂函数与实际问题的联系1. 利用幂函数解决实际问题;2. 利用幂函数分析实际问题。

【教学过程】一、引入通过举例引导学生了解幂函数的基本概念,并讨论幂函数在现实生活中的应用。

二、幂函数的性质1. 讲解幂函数的定义和性质,引导学生理解幂函数的基本特点;2. 通过例题讲解幂函数的相似性、奇偶性和单调性等性质。

三、求解幂函数的基本问题1. 讲解如何求幂函数的零点、最值、增减性和解析式;2. 练习相关例题,巩固学生的求解能力。

四、幂函数与实际问题的联系1. 通过实际问题引导学生应用幂函数进行分析和求解;2. 练习相关实际问题,培养学生的应用能力。

【课堂练习】1. 求解函数$y=x^3-3x^2+2x$的零点和最值;2. 分析实际问题:“某商品的销售额与价格之间的关系可以表示为$y=10x^{-0.5}$,求价格为$100$元时的销售额。

”【教学反馈】对学生进行课堂参与评分,检查学生的作业完成情况并加以讨论,及时纠正学生的错误。

【课后作业】1. 完成课堂练习的题目;2. 拓展练习:自行设计一个实际问题,利用幂函数进行分析和求解。

以上为高中数学必修幂函数教案范本,希望对教学工作有所帮助。

高中数学(幂函数)示范教案新人教A版必修

高中数学(幂函数)示范教案新人教A版必修

高中数学(幂函数)示范教案新人教A版必修一、教学目标知识与技能:1. 理解幂函数的定义和性质;2. 掌握幂函数的图像和几何特征;3. 学会运用幂函数解决实际问题。

过程与方法:1. 通过观察、分析和探究,培养学生的抽象思维和逻辑推理能力;2. 利用信息技术辅助教学,提高学生对幂函数图像的理解和应用能力。

情感态度与价值观:1. 激发学生对数学的兴趣和好奇心,培养学生的自主学习能力;2. 引导学生运用数学知识解决实际问题,培养学生的应用意识。

二、教学重点与难点重点:1. 幂函数的定义和性质;2. 幂函数的图像和几何特征;3. 幂函数在实际问题中的应用。

难点:1. 幂函数的性质的推导和证明;2. 幂函数图像的分析和理解;3. 幂函数在实际问题中的灵活运用。

三、教学过程1. 导入:1.1 复习相关概念:函数、指数函数、对数函数;1.2 提问:幂函数在实际生活中有哪些应用?2. 知识讲解:2.1 引入幂函数的概念;2.2 讲解幂函数的性质;2.3 分析幂函数的图像和几何特征。

3. 案例分析:3.1 分析实际问题,引入幂函数;3.2 利用幂函数解决实际问题。

4. 课堂练习:4.1 练习幂函数的性质和图像分析;4.2 运用幂函数解决实际问题。

四、作业布置1. 复习幂函数的定义和性质;2. 分析幂函数的图像和几何特征;3. 运用幂函数解决实际问题。

五、教学反思本节课通过引入幂函数的概念,讲解幂函数的性质,分析幂函数的图像和几何特征,以及运用幂函数解决实际问题,旨在培养学生对幂函数的理解和应用能力。

在教学过程中,注意引导学生观察、分析和探究,培养学生的抽象思维和逻辑推理能力。

利用信息技术辅助教学,提高学生对幂函数图像的理解和应用能力。

在作业布置方面,注重巩固所学知识,培养学生的自主学习能力。

在教学反思中,要关注学生的学习情况,针对学生的薄弱环节进行针对性教学,提高教学效果。

六、教学拓展1. 介绍幂函数在其他领域的应用,如物理学、化学、经济学等;2. 探讨幂函数与其他函数的关系,如指数函数、对数函数等;3. 引导学生进行课外阅读,了解幂函数的历史和发展。

高中数学23幂函数教案新人教A版必修1教案

高中数学23幂函数教案新人教A版必修1教案

高中数学23幂函数教案新人教A版必修1教案教学目标:1.知识与技能:掌握基本的幂函数的概念及性质,能够灵活运用幂函数的性质解决相关问题。

2.过程与方法:培养学生分析问题、解决问题的能力,提高数学建模能力。

教学重点:1.掌握幂函数的定义及性质。

2.能够用幂函数的性质解决相关问题。

教学难点:1.理解幂函数的定义及性质。

2.运用幂函数的性质解决实际问题。

教学过程:一、导入(15分钟)1.师生互动,引导学生回顾指数函数的知识,了解指数函数的特点和性质。

2.引入幂函数的概念,与指数函数进行比较说明幂函数的特点和指数函数的区别。

二、概念与性质讲解(30分钟)1.定义幂函数,给出幂函数的一般形式y=x^a,解释其中x为底数,a为指数。

2.介绍幂函数的图像特点,分析指数a的正负和大小对图像的影响。

3.阐述幂函数的性质:增减性、奇偶性、单调性、最值等。

三、例题解析(45分钟)1.给出几个幂函数的例题,详细解析如何根据函数的性质来解决问题。

2.强调灵活运用函数性质,化简、转化问题,引导学生分析问题的关键点和解题方法。

3.鼓励学生通过数学建模的方式解决一些实际问题。

四、练习与巩固(30分钟)1.分发练习题,让学生独立完成,回顾巩固课上所学内容。

2.对学生的答题情况进行点评和解析,帮助学生梳理知识点。

五、拓展与应用(20分钟)1.分组合作,给学生出一道幂函数的实际问题,要求学生用数学建模的方法解决。

2.学生展示解题过程及答案,互相学习和讨论,培养学生的创新和合作能力。

六、总结归纳(10分钟)1.让学生总结本节课的重点和难点,回答出关键的知识点。

2.引导学生对幂函数的概念和性质进行思考和总结。

板书设计:幂函数的定义及性质1.定义:幂函数y=x^a2.性质:-增减性:当a>0时,函数递增;当a<0时,函数递减。

-奇偶性:当a为奇数时,函数为奇函数;当a为偶数时,函数为偶函数。

-单调性:当a>0时,函数单调递增;当a<0时,函数单调递减。

高中数学教案《幂函数》

高中数学教案《幂函数》

教学计划:《幂函数》一、教学目标1.知识与技能:学生能够理解幂函数的概念,掌握幂函数的一般形式及其图像特征;能够识别并绘制基本幂函数的图像;理解幂函数在特定区间内的单调性、奇偶性等基本性质。

2.过程与方法:通过观察、分析幂函数的图像,引导学生发现幂函数的性质;通过小组合作、讨论交流,培养学生探究问题的能力和团队合作精神;通过实例分析,提高学生运用幂函数解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的观察力和数学思维能力;通过幂函数的学习,让学生体会数学中的对称美、变化美,增强对数学美的感受力;培养学生的严谨治学态度和科学探索精神。

二、教学重点和难点●教学重点:幂函数的概念、一般形式及其图像特征;幂函数的基本性质(如单调性、奇偶性)及其判断方法。

●教学难点:理解幂函数图像与性质之间的关系,能够准确判断幂函数在特定区间内的性质;运用幂函数性质解决实际问题。

三、教学过程1. 引入新课(约5分钟)●情境创设:通过生活中的实例(如细胞分裂、面积与边长的关系等)引出幂的概念,进而引出幂函数的概念。

●问题导入:提出“这些关系能否用函数来表示?它们具有怎样的图像特征?”等问题,激发学生的好奇心和探究欲。

●明确目标:介绍本节课的学习目标,即掌握幂函数的概念、图像特征及基本性质。

2. 讲授新知(约15分钟)●定义讲解:详细讲解幂函数的概念和一般形式,强调底数为常数且不为0,指数为自变量。

●图像特征:利用多媒体展示基本幂函数(如y=x, y=x², y=x³, y=√x, y=1/x等)的图像,引导学生观察并总结它们的共同特征和不同点。

●性质阐述:结合图像,阐述幂函数在特定区间内的单调性、奇偶性等基本性质,并给出判断方法。

3. 观察探究(约10分钟)●图像分析:引导学生分组观察并分析更多幂函数的图像,记录它们的特征,并尝试从图像中判断幂函数的性质。

●小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究幂函数性质的图像表示方法。

3.幂函数-人教B版必修一教案

3.幂函数-人教B版必修一教案

3.幂函数-人教B版必修一教案1.教学目标1.了解幂函数的概念,掌握幂函数的性质;2.能够求解幂函数的零点、单调性和最值等相关问题;3.发现数学公式背后的规律和本质,培养思维能力和逻辑思维。

2.教学重点1.幂函数的图像、单调性和零点;2.幂函数的相关性质。

3.教学难点1.如何理解幂函数的图像特征;2.如何证明幂函数的性质。

4.教学准备1.课本《数学》(人教B版)必修一;2.课件PPT和教师课堂演示工具。

5.教学过程5.1 导入环节教师介绍本节课的学习内容和目标,引导学生思考幂函数的概念和性质。

5.2 概念讲解1.定义幂函数的数学表达式;2.画出幂函数的图像,分析幂函数的单调性、零点和最值等相关特征;3.分析幂函数的增减性;5.3 性质探究1.推导幂函数的导数公式;2.推导幂函数的两点式表达式;3.探究幂函数和指数函数的关系。

5.4 综合应用1.分组讨论,解决幂函数的具体问题,如求解幂函数的最值、零点和单调区间等;2.集体讨论和解答。

5.5 板书总结教师整理板书,总结本节课的重点和难点,梳理幂函数的图像特征和基本性质等。

6.课堂练习1.让学生自行练习幂函数相关题目,提高解题能力;2.进行课堂练习和讲解。

7.拓展延伸1.讲解幂函数在实际生活中的应用;2.拓展学生的数学知识,如指数函数等。

8.课堂作业布置相关练习题,鼓励学生自主思考和探究。

9.教学反思教师要及时对教学效果进行反思和总结,加以改善和提高。

同时,关注学生的学习情况,及时给予指导和建议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂 函 数
一般地,形如)R a (x y a ∈=的函数称为幂函数,其中a 为常数。

幂函数中,当12
1
321a -=,,,,时性质如下表所示:
函数 特征 性质 y=x y x =2
y x =3
y x
=
12
y x =-1 定义域 R R R [0,+∞) {|}x x ≠0
值域 R [0,+∞)
R [0,+∞)
{|}y y ≠0
x ∈+∞[)0,增 x ∈+∞()0,增 单调性 增 x ∈-∞(],0减 增 增 x ∈-∞(),0减
所过定点
(1,1) (0,0)
(1,1) (0,0)
(1,1) (0,0)
(1,1) (0,0)
(1,1)
结合以上特征,得幂函数的性质如下:
(1)所有的幂函数在()0,+∞都有定义,并且图象都通过点(1,1); (2)当a 为奇数时,幂函数为奇函数;当a 为偶数时,幂函数为偶函数;
(3)如果a>0,则幂函数的图象通过原点,并且在区间)0[∞+,上是增函数; (4)如果a<0,则幂函数在区间()0,+∞上是减函数
诊断练习:
1. 如果幂函数()f x x α=的图象经过点,则(4)f 的值等于 2.函数y =(x 2
-2x )
2
1-
的定义域是
3.函数y =5
2x 的单调递减区间为 4.函数y =
2
21
m m
x --在第二象限内单调递增,则m 的最大负整数是_______ _.
范例分析:
例1比较下列各组数的大小:
(1)1.53
1,1.73
1,1; (2)2
3
2-
,(-
107
)3
2
,1.1
3
4-

(3)3.83
2-,3.952
,(-1.8)5
3; (4)31.4,51.5
.
例2已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且 2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.
例3幂函数2
7323
5
()(1)t t f x t t x
+-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.
反馈练习:
1.幂函数()y f x =的图象过点1
(4,)2
,则(8)f 的值为 .
2.比较下列各组数的大小: 32
(2)a + 32
a ; 22
3
(5)a -
+ 23
5-
; 0.50.4 0.40.5.
3.幂函数的图象过点(2,
14
), 则它的单调递增区间是 .
4.设x ∈(0, 1),幂函数y =a
x 的图象在y =x 的上方,则a 的取值范围是 .
5.函数y =3
4x -在区间上 是减函数.
6.一个幂函数y =f (x )的图象过点(3, 427),另一个幂函数y =g (x )的图象过点(-8, -2), (1)求这两个幂函数的解析式; (2)判断这两个函数的奇偶性; (3)作出这两个函数的图象,观察得f (x )< g (x )的解集.
巩固练习
1.用“<”或”>”连结下列各式:0.6
0.32 0.5
0.32 0.5
0.34, 0.40.8- 0.40.6-. 2.函数132
2
(1)(4)y x x --
=-+-的定义域是
3.9
42
--=a a x y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 . 4.已知
3
53
2x x >
,x 的取值范围为
5.若幂函数a
y x =的图象在0<x<1时位于直线y=x 的下方,则实数a 的取值范围是
6.若幂函数()f x 与函数g(x)的图像关于直线y=x 对称,且函数g(x)的图象经过
,则
()f x 的表达式为
7. 函数2
()3
x f x x +=+的对称中心是 ,在区间 是 函数(填“增、减”)
8.比较下列各组中两个值的大小
33221.3 1.3
0.30.355
3
3
(1)1.5 1.6(2)0.60.7(3)3.5 5.3(4)0.18.15-
-
--与与与与0
9.若3
13
1)
23()2(-
--<+a a ,求a 的取值范围。

10.已知函数y =42215x x --.
(1)求函数的定义域、值域; (2)判断函数的奇偶性; (3)求函数的单调区间.
11.已知函数2
23
()()m m f x x m -++=∈Z 为偶函数,且(3)(5)f f <,求m 的值,并确定()f x 的解析式.。

相关文档
最新文档