人教版初中数学七年级下册《6.3实数》同步练习(含答案)(最新整理)
初中数学同步训练必刷题(人教版七年级下册 6
初中数学同步训练必刷题(人教版七年级下册 6.3 实数)一、单选题(每题3分,共30分)1.(2022七上·余杭月考)下列实数中,无理数是()A.0B.3.14C.√5D.227【答案】C【知识点】无理数的认识【解析】【解答】解:A、0是有理数,故A不符合题意;B、3.14是有理数,故B不符合题意;C、√5是无理数,故C符合题意;D、227是有理数,故D不符合题意;故答案为:C【分析】整数和分数统称为有理数,可对A,B,D作出判断;开方开不尽的数是无理数,可对C作出判断.2.(2022八上·杏花岭期中)下列四个实数中,最大的数是()A.-3B.-1C.√10D.3【答案】C【知识点】实数大小的比较【解析】【解答】解:因为√10>3>−3>−1,所以√10最大.故答案为:C.【分析】根据实数比较大小的方法求解即可。
3.(2022七上·乐清期中)关于√8的叙述正确的是()A.在数轴上不存在表示√8的点B.√8=√2+√6C.√8=±√2D.与√8最接近的整数是3【答案】D【知识点】平方根;实数在数轴上的表示;估算无理数的大小【解析】【解答】解:A、∵实数与数轴上的点是一一对应关系,∴任意一个实数都可以用数轴上的点表示,故选项A错误;B、∵√2≈1.414,√6≈2.236,√2+√6≈1.414+2.236=3.65,√8=2√2≈2×1.414=2.828,∴∴√8≠√2+√6,故选项B错误;C、∵√8>0,−√2<0,∴√8≠−√2,故选项C错误;D、∵√8=2√2≈2×1.414=2.828∴与√8最接近的整数是3,故选项D正确.故答案为:D.【分析】根据数轴上的点与实数是一一对应关系,可判断A;分别估算出√2、√6、√8的大小即可判断B、D;根据正数大于负数,可判断C.4.(2022七上·新城月考)与数轴上的点建立一一对应关系的是()A.全体有理数B.全体整数C.全体自然数D.全体实数【答案】D【知识点】实数在数轴上的表示【解析】【解答】解:∵数轴上的点和实数是一一对应的,∴与数轴上的点建立一一对应关系的是全体实数.故答案为:D.【分析】根据数轴上的点和实数是一一对应的进行判断即可.3的值为()5.(2022七下·西山期末)计算:|√5−3|+√−8A.1−√5B.5−√5C.√5−1D.√5−5【答案】A【知识点】实数的运算3=3−√5+(−2)=1−√5.【解析】【解答】解:|√5−3|+√−8故答案为:A.【分析】利用绝对值,立方根计算求解即可。
人教版七年级数学下册第第六章 6.3 实数同步练习(含答案)
6.3 实数一、单选题1.在下列实数﹣3 3.141,2.303003000…,5π中无理数有( ) A .4个 B .3个C .2个D .1个2.下列说法: ① √(−10)2=−10;①数轴上的点与实数成一一对应关系; ①﹣2是√16的平方根;①任何实数不是有理数就是无理数; ①两个无理数的和还是无理数; ①无理数都是无限小数, 其中正确的个数有( ) A .2个B .3个C .4个D .5个3的相反数是( )A .BC .2-D .24.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a <﹣bB .|a|>|b|C .|a|<|b|D .﹣a >b5.给出四个数0π,﹣1,其中最小的是( )A.0B C.πD.﹣16.m)A.1<m<2B.2<m<3C.3<m<4D.4<m<57﹣|﹣3|的结果是()A.﹣1B.﹣5C.1D.58.有一列数a1,a2,…a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2019等于()A.2019B.2C.﹣1D.1 29a和b之间,a b<,那么+a b的值是()A.11B.13C.14D.1510.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180B.182C.184D.186二、填空题11.请写出一个比1大且比3小的无理数:_____.12.数轴上表示1的点分别为A,B,点A 是BC 的中点,则点C 所表示的数是_____13.(填“<”或“>”)14.已知122=,224=,328=,4216=……,观察上面规律,试猜想20192的末位数是__________.三、解答题15.把下列各数分别填入相应的集合里:|5|--,2.525525552…(相邻两个2之间的5的个数逐个加1),0,π-,34⎛⎫-- ⎪⎝⎭,0.12,(6)--,3π,227,300% (1)负数集合:{ …}; (2)非负整数集合:{ …}; (3)分数集合:{ …}; (4)无理数集合:{ …}.16.如图,一只蚂蚁从点A 沿数轴向右直爬2个单位到达点B ,点A 表示﹣,设点B所表示的数为m . (1)求m 的值;(2)求|m ﹣1|+(m+6)0的值.17.比较下列各组数的大小(1) 3.2-;(2;(3)12与12;(4)72-与85.18.已知的小数部分为a,5的小数部分为b,求:(1)a+b的值;(2)3a-2b的值.19.阅读下列材料:的大小.第一步:因为12=1,22=4,1<2<4,所以12.第二步:通过取1和2所在的范围:取121.52x+==,因为1.52=2.25,2<2.25,所以1 1.5.(1界于哪两个相邻的整数之间?(2)在1 1.5所在的范围缩小至m<n,使得n-m=18.20.观察下列两个等式:2﹣13=2×13+1,5﹣23=5×23+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1”,“4,35”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”“共生有理数对”(填“是”或“不是”),并说明理由;(4)若(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m答案1.B 2.C3.A 4.C 5.D 6.C 7.B 8.C 9.B 10.C11(答案不唯一)12.2 13.< 14.815.(1){|5|--,π-};(2){ 0,(6)--,300%};(3){34⎛⎫-- ⎪⎝⎭,0.12,227};(4){2.525525552…(相邻两个2之间的5的个数逐个加1), π-,3π}.16.(1)2 ;(217.(1) 3.2>-;(2)1122-<;(3)1122<;(4)7825<.18.(1)a+b=1;(2)3a --17.19.(1界于8和9相邻的整数之间;(2)1.375<1.5.20.解:(﹣2,1)不是“共生有理数对”;(4,35)是共生有理数对;(2)a =57;(3)是. (4)11n m n +=--。
人教版七年级数学 下册 6.3实数 同步练习 有答案
6.3 实数一选择题1、下列说法正确的是()A. 单独的一个数或一个字母也是代数式B. 任何有理数的绝对值都是正数C. 如果两个数的绝对值相等,那么这两个数相等D. 数轴上的任意一个点都可以表示一个有理数2、下列实数中,是有理数的为()A.B.C.D.3、下列各数中,既不是正数也不是负数的是().A. 0B. —1C. 3D. 24、下列有关叙述错误的是()A. 是正数B. 是的平方根C.D. 是分数5、两数在数轴上的位置如图所示,下列结论中正确的是().A. 以上均不对B. ab>0C. a<0,b>0D. a>0,b<06、估计11的值在()之间.A. 4与5之间B. 3与4之间C. 2与3之间D. 1与2之间7、在下列语句中:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数.其中正确的是()A. ②③B. ②③④C. ①②④D. ②④8、的绝对值是()A.B.C.D.9、实数在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A. dB. cC. bD. a10、已知,则下列大小关系正确的是()A.B.C.D.二填空题1.化简:=_________.2.比较大小:3_______(填写“<”或“>”) 3.请写出一个大于8而小于10的无理数:_______.4.已知,a<23<b ,且a 、b 是两个连续的整数,则|a+b|=______.三 计算题 1.计算:9×(﹣32)+4+|﹣3|2.计算:|﹣4|+(﹣2)0﹣(21)﹣1.3.计算:25﹣|﹣2|+(﹣3)0﹣(51)﹣1. 参考答案一 选择题ADADD BCADA二 填空题1.2—32. >3.π+6(答案不唯一)4. 9三 计算题1.—12. 33.—1。
人教版初中数学七年级下册《6.3实数》同步练习(含答案)(最新整理)
(2) 3 2 ;
(3) 3 1 . 125
课后作业
8
9.下列说法正确的是( ) A.两个无理数的和一定是无理数 B.无理数的相反数是无理数 C.两个无理数的积一定是无理数 D.无理数与有理数的乘积是无理数
10.已知三个数:-π,-3, 7 ,它们按从小到大的顺序排列为( ) A. 3 7 B. 3 7 C. 7 3 D. 7 3 11.设实数 a、b 在数轴上对应的位置如图所示,且|a|>|b|,则化简 a2 | a b | 的结果是( )
A.2a+b B.-2a+b C.b D.2a-b
12.计算:(1) 3 5 2 5 ________ ; (2) 3 4 | 3 4 | ________ . 13. 7 2 的相反数是________,绝对值是________.
5 14.已知 a 是小于 3 5 的整数,且|2-a|=a-2,那么 a 的所有可能值是________.
6.把下列各数填在相应的表示集合的大括号内.
2
22
-6,π,- ,-|-3|, ,-0.4,1.6,
6 ,0,1.101 001 000 1…
3
7
整数:{
,…},
负分数:{
,…},
无理数:{
,…}.
5
7.下列结论正确的是( ) A.数轴上任一点都表示唯一的有理数 B.数轴上任一点都表示唯一的无理数 C.两个无理数之和一定是无理数 D.数轴上任意两点之间还有无数个点
6
3
(1)有理数集合:{ …};
(2)无理数集合:{ …};
(3)正实数集合:{ …}:
(4)负实数集合:{ …}.
课后作业
7.下列说法正确的是( )
人教版七年级下册《6.3第2课时实数的运算》同步练习(含答案)
第2课时实数的运算关键问答①本题用到的运算律是什么?1.-5的绝对值是( )A .-15B .-5C. 5 D .5 2.①计算:3 2-2+2=________.3.计算:327+16-14.命题点 1 实数的大小比较 [热度:90%]4.比较大小:|3-2|________|3|+|-2|.5.数轴上表示-3.14的点在表示-π的点的________边.6.实数a 在数轴上对应的点的位置如图6-3-6所示,试确定a ,-a ,1a,a 2的大小关系.图6-3-6命题点 2 实数的性质 [热度:93%]7.4的倒数是( )A .-2 B.12C .2 D .±128.下列实数中绝对值最小的是( )A .-4B .-2C .1D .39.②实数2-1的相反数是( )A.2-1B.2+1 C .1-2D .-2-1方法点拨②a 的相反数是-a .若两个数的和为0,则这两个数互为相反数.10.计算|3-2|的结果是( ) A .2-3B.3-2 C .-2-3D .2+ 311.③观察下列各式:①a 2;②|a |+1;③-a ;④23a .取一个适当的实数作为a 的值代入求值后,不可能互为相反数的式子序号为( )A .②④B .①②C .①③D .③④解题突破③两个数的符号不同才有可能互为相反数(0除外).12.④如果一个实数的绝对值为11-5,那么这个实数为______________.易错警示 ④本题容易丢掉11-5这种情况.13.若无理数a 使得|a -4|=4-a ,则a 的一个值可以是________.14.若(x +3)2+|y -2|=0,则|x +y |=________.15.若a 是15的整数部分,b 是15的小数部分,则a -b -ab =____________.16.已知7+5=x +y ,其中x 是整数,且0<y <1,求x -y +5的相反数.17.⑤在数轴上点A 表示的数是 5.(1)若把点A 向左平移2个单位长度得到点B ,求点B 表示的数;(2)若点C 和(1)中的点B 所表示的数互为相反数,求点C 表示的数;(3)在(1)(2)的条件下,求线段OA ,OB ,OC 的长度之和.解题突破⑤求线段OA ,OB ,OC 的长度之和,即求A ,B ,C 三个点所表示的数的绝对值之和. 命题点 3 实数的运算 [热度:98%]18.若等式2□2=2 2成立,则□内的运算符号为( )A .+B .-C .×D .÷19.计算|3-4|-3-22的结果是( )A .23-8B .0C .-23D .-820.定义新运算“☆”:a ☆b =ab +1,则2☆(3☆5)=__________. 21.⑥有四个实数分别是|-9|,22,-38,2 2.请你计算其中有理数的积与无理数的积的差,结果是__________.解题突破⑥(1)先确定四个数中的有理数和无理数;(2)再分别计算它们的积;(3)最后求两个积 的差.22.⑦已知数轴上有A ,B 两点,且这两点之间的距离为4 2.若点A 在数轴上表示的数为3 2,则点B 在数轴上表示的数为____________.解题突破⑦点B 在点A 的左边还是右边?23.计算: (1)19+32627-1+|3-2|-(-2)2+2 3;(2)(-1)3+||3-2+2÷23- 4.24.⑧我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,那么我们称正整数a 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数字与十位上的数字得到的新数减去原来的两位正整数所得的差为18,那么我们称t 为“吉祥数”,求所有“吉祥数”中,F (t )的最大值.解题突破⑧(1)读懂新定义的条件:一个正整数分解成两个正整数的积,且取两因数之差的绝对值最小的情况.(2)在列举的所有情况中,找出满足条件的情况.典题讲评与答案详析1.C 2.22+23.解:原式=3+4-12=132. 4.< [解析]∵|3-2|=3-2,|3|+|-2|=3+2,∴3-2<3+ 2.故填“<”.5.右 [解析] 因为3.14<π,所以-3.14>-π,所以数轴上表示-3.14的点在表示-π的点的右边.6.解:∵-1<a <0,不妨令a =-12,∴-a =12,1a =-2,a 2=14. ∵-2<-12<14<12,∴1a<a <a 2<-a . 7.B [解析] 因为4=2,所以4的倒数是12. 8.C [解析] -4的绝对值是4,-2的绝对值是2,1的绝对值是1,3的绝对值是3.因为4>3>2>1,所以这些实数中绝对值最小的是1.9.C [解析] 实数2-1的相反数是-(2-1)=1- 2.10.A [解析] 因为3<2,所以3-2<0,所以|3-2|=-(3-2)=2- 3.11.B [解析]∵a 2≥0,|a |+1≥1,∴①和②不可能互为相反数.12.11-5或5-11[解析] 因为|11-5|=11-5,|5-11|=11-5,所以这个实数为11-5或5-11.13.2(答案不唯一) [解析] 答案不唯一,只要a 是小于4的无理数即可.14.3-2 [解析] 由题意,得x =-3,y =2,所以|x +y |=|-3+2|=-(-3+2)=3- 2.15.15-415 [解析] 因为3<15<4,所以a =3,b =15-3,所以a -b -ab = 3-(15-3)-3×(15-3)=3-15+3-315+9=15-415.16.解:∵4<5<9,∴2<5<3.又∵7+5=x +y ,其中x 是整数,且0<y <1,∴x =9,y =5-2,∴x -y +5=9-(5-2)+5=11,∴x -y +5的相反数是-11.17.解:(1)点B 表示的数是5-2.(2)点C 表示的数是2- 5.(3)由题意,得点A 表示5,点B 表示5-2,点C 表示2-5,∴OA =5,OB =5-2,OC =|2-5|=5-2,∴OA +OB +OC =5+5-2+5-2=3 5-4.18.A [解析] 因为2+2=2 2,2-2=0,2×2=2,2÷2=1,所以选A.19.C [解析] 原式=4-3-3-4=-2 3.故选C. 20.3 [解析] 2☆(3☆5)=2☆(3×5+1)=2☆4=2×4+1=3.21.-20 [解析] 有理数为|-9|,-38,它们的积为|-9|×(-38)=-18.无理数为22, 2 2,它们的积为22×2 2=2.有理数与无理数积的差为-18-2=-20. 22.-2或7 2[解析] 本题要分两种情况进行分析:①当点B 在点A 的左边时, 则3 2-4 2=-2,故点B 表示的数是-2;②当点B 在点A 的右边时, 则4 2+3 2=7 2,故点B 表示的数是7 2.综上,点B 在数轴上表示的数为-2或7 2.23.解:(1)原式=13-13+2-3-4+2 3=3-2. (2)原式=-1+2-3+2×32-2=-1. 24.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数).∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=n n=1. (2)设交换t 的个位上的数字与十位上的数字得到的新数为t ′,则t ′=10y +x . ∵t 为“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=18,∴y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有13,24,35,46,57,68,79.∵F (13)=113,F (24)=46=23,F (35)=57, F (46)=223,F (57)=319,F (68)=417, F (79)=179, 又∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F (t )的最大值是57. 【关键问答】①乘法分配律的逆用.。
人教版七年级下册数学6.3 实数 同步精练试卷含答案
6.3 实数同步精练
一.选择题
1.的相反数是()
A.﹣B.C.D.5
2.下列实数中,有理数是()
A.B.πC.D.
3.在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是()
A.﹣B.﹣3C.|﹣3.14|D.﹣π
4.如图,在数轴上点A和点B之间的整数是()
A.1和2B.2和3C.3和4D.4和5
5.下列计算中,正确的是()
A.=﹣2B.5=5C.=2D.=3 6.已知A,B,C是数轴上三点,点B是线段AC的中点,点A,B对应的实数分别为﹣1和,则点C对应的实数是()
A.B.C.D.
二.填空题
7.请写出一个小于﹣1的无理数.
8.比较大小:﹣3.
9.|π|=,||=.
10.下列各数中:12,,,﹣|﹣1|,0.1010010001…(每两个1之间的0依次加1),其中,无理数有个.
11.的平方根是,=,=.
12.已知x,y为两个连续的整数,且x<<y,则5x+y的平方根为.
三.解答题
13.把下列各数分别填在相应的括号内.
﹣,0,0.16,,,﹣,,,﹣,﹣3.14.
有理数:{…};
无理数:{…};
负实数:{…};
正分数:{…}.
14.计算:(1)||+.
(2).
15.已知与(b+27)2互为相反数,求﹣的值.
16.已知+|b+3|=b+3,m为的整数部分,n为的小数部分,求2m﹣n 的值.
17.(1)如图,化简﹣|a+b|++|b+c|.
18.已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.(1)求这个正数a以及b的值;
(2)求b2+3a﹣8的立方根.。
人教版七年级下册《6.3第1课时实数的概念》同步练习(含答案)
6.3实数第1课时实数的有关概念关键问答①无理数有几种常见的表现形式?②数轴上的每一点都可以表示一个什么样的数?1.①2017·滨州下列各数中是无理数的是()A. 2B.0 C.12017D.-12.②如图6-3-1,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2πr),把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,则点A表示的数是________,属于__________(填“有理数”或“无理数”).图6-3-1命题点1无理数[热度:90%]3.③下列说法正确的是()A.无理数就是无限小数B.无理数就是带根号的数C.无理数都是无限不循环小数D.无理数包括正无理数、0和负无理数易错警示③(1)无理数的特征:无理数的小数部分位数无限且不循环,不能表示成分数的形式.(2)常见的无理数有三种表现形式:化简后含π的数;有规律的无限不循环小数,如:1.3131131113…;含有根号且开方开不尽的数,如5,36.4.④在下列各数:0.51525354…,0,0.2,3π,227,9,39,13111,27中,是无理数的有________________________.方法点拨④一个数不是有理数就是无理数,识别一个数是不是有理数,只需看其是不是整数或分数即可.5.有一个数值转换器,原理如图6-3-2所示:当输入的x 为256时,输出的y 是________.图6-3-26.⑤在1,2,3,…,100这100个自然数的算术平方根和立方根中,无理数共有多 少个?方法点拨⑤分别找出1~100这100个自然数的算术平方根和立方根中有理数的个数,即可得出无理数的个数.命题点 2 实数的概念与分类 [热度:95%] 7.⑥下列说法中,正确的是( ) A .正整数、负整数统称整数 B .正数、0、负数统称有理数C .实数包括无限小数与无限不循环小数D .实数包括有理数与无理数 易错警示⑥实数包括有理数和无理数,即有限小数、无限循环小数、无限不循环小数. 8.⑦有下列说法:①两个无理数的和还是无理数;②无理数与有理数的积是无理数;③有理数与有理数的和不可能是无理数;④无限小数是无理数;⑤不是有限小数的数不是有理数.其中正确的有( )A .0个B .1个C .2个D .3个 解题突破⑦两个无理数的和或差不一定是无理数.9.⑧实数13,24,π6中,分数有( )A .0个B .1个C .2个D .3个 方法点拨⑧分数是两个整数作商,不能整除的数. 10.下列说法错误的是( ) A.14是有理数 B.2是无理数 C .-3-27是正实数 D.22是分数11.在数轴上,表示实数2与10的点之间的整数点有________个;表示实数2与10之间的实数点有________个.12.将下列各数填在相应的集合里: 3512,π,3.1415926,-0.456,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),0,511,-321,(-13)2,0.1.有理数集合:{_____________________________________________…};无理数集合:{_____________________________________________…};正实数集合:{_____________________________________________…};整数集合:{_______________________________________________…}.命题点3实数与数轴[热度:98%]13.下列说法中正确的是()A.每一个整数都可以用数轴上的点表示,数轴上的每一个点都表示一个整数B.每一个有理数都可以用数轴上的点表示,数轴上的每一个点都表示一个有理数C.每一个无理数都可以用数轴上的点表示,数轴上的每一个点都表示一个无理数D.每一个实数都可以用数轴上的点表示,数轴上的每一个点都表示一个实数14.⑨如图6-3-3,数轴上的A,B,C,D四个点表示的数中,与-3最接近的是()图6-3-3A.点A B.点B C.点C D.点D解题突破⑨-3介于哪两个连续的整数之间?这两个连续的整数中哪个整数的平方与3的差的绝对值小?15.2018·宁晋县期中如图6-3-4,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是()图6-3-4A.π-1 B.-π-1C.-π-1或π-1 D.-π-1或π+116.⑩在同一数轴上表示2的点与表示-3的点之间的距离是________.方法点拨⑩数轴上两点间的距离等于右边的点表示的数减去左边的点表示的数.17.⑪如图6-3-5所示,按下列方法将数轴的正半轴绕在一个圆(该圆的周长为3个单位长度,且在圆周的三等分点处分别标上了数字0,1,2)上.先让原点与圆周上0所对应的点重合,再将数轴的正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样数轴的正半轴上的整数就与圆周上的数字建立了一种对应关系.图6-3-5(1)圆周上数字a与数轴上的数字5对应,则a=__________;(2)数轴绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是________.模型建立⑪数轴绕过圆周n圈(n为正整数)后,一个整数落在圆周上数字2所对应的位置,这个整数是3n+2.18.阅读下面的文字,解答问题.大家都知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,所以将2减去其整数部分,差就是其小数部分.(1)你能求出5+2的整数部分和小数部分吗?(2)已知10+3=x +y ,其中x 是整数,且0<y <1,请求出x -y 的相反数.19.⑫定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作是分母为1的有理数;反之为无理数.如2不能表示为两个互质的整数的商,所以2是无理数.可以这样证明:设2=a b ,a 与b 是互质的两个整数,且b ≠0,则2=a 2b 2,a 2=2b 2.因为b 是整数且不为0,所以a 是不为0的偶数.设a =2n (n 是整数),所以b 2=2n 2,所以b 也是偶数,这与a ,b 是互质的两个整数矛盾,所以2是无理数.仔细阅读上文,求证:5是无理数.方法点拨⑫从结论的反向出发,经推理,推得与基本事实、定义、定理或已知条件相矛盾的结果,这样的方法称为反证法.典题讲评与答案详析1.A 2.-2π无理数 3.C4.0.51525354…,3π,39,27[解析] 因为0是整数,0.2可化成分数,9=3,是整数,13111,227是分数,所以这五个数都是有理数.0.51525354…,3π,39,27都是无理数.5.2[解析] 由题图中所给的程序可知,把256取算术平方根,结果为16,因为16是有理数,所以再取算术平方根,结果为4,是有理数.再取4的算术平方根,结果为2,是有理数.再取算术平方根,结果为2,2是无理数,所以y= 2.6.解:∵12=1,22=4,32=9,…,102=100,∴1,2,3,…,100这100个自然数的算术平方根中,有理数有10个,∴无理数有90个.∵13=1,23=8,33=27,43=64,53=125,且64<100,125>100,∴1,2,3,…,100这100个自然数的立方根中,有理数有4个,∴无理数有96个,∴1,2,3,…,100这100个自然数的算术平方根和立方根中,无理数共有90+96=186(个).7.D[解析] 正整数、负整数、0统称为整数;有理数分为正有理数、0和负有理数;有理数包括无限循环小数和有限小数;实数包括有理数和无理数.8.B[解析] 两个无理数的和不一定是无理数,如2和-2;无理数与有理数的积也不一定是无理数,如2和0;有理数与有理数的和一定是有理数;无限不循环小数是无理数;有限小数和无限循环小数是有理数.9.B [解析] 分数是两个整数作商,不能整除的数,因此只有13是分数.10.D [解析]A 项,14=12是有理数,故选项正确;B 项,2是无理数,故选项正确;C 项,-3-27=3是正实数,故选项正确;D 项,22是无理数,故选项错误.故选D.11.2 无数12.有理数集合:{3512,3.1415926,-0.456,0,511,(-13)2,…};无理数集合:{π,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),-321,0.1,…};正实数集合:{3512,π,3.1415926,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),511,(-13)2,0.1,…};整数集合:{3512,0,(-13)2,…}.13.D [解析] 实数与数轴上的点具有一一对应的关系. 14.B15.C [解析]∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A ′表示的数是-1-π;当圆向右滚动时点A ′表示的数是π-1.16.2+3 [解析] 在同一数轴上表示2的点与表示-3的点之间的距离是2+||-3=2+ 3.17.(1)2 (2)302 [解析] (1)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上的数字a 与数轴上的数字5对应时,a =2.(2)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上的数字0,1,2与数轴的正半轴上的整数0,1,2,3,4,5,6,7,8,…每3个一组分别对应,∴数轴绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是302.18.解:(1)∵4<5<9,∴2<5<3,∴5的整数部分是2,小数部分是5-2,∴5+2的整数部分是2+2=4,小数部分是5-2.(2)∵3的整数部分是1,小数部分是3-1,∴10+3的整数部分是10+1=11,小数部分是3-1,∴x=11,y=3-1,∴x-y的相反数是y-x=3-12.19.证明:设5=ab,a与b是互质的两个整数,且b≠0,则5=a2b2,a2=5b2.因为b是整数且不为0,所以a不为0且为5的倍数.设a=5n(n是整数),所以b2=5n2,所以b也为5的倍数,这与a,b是互质的两个整数矛盾,所以5是无理数.【关键问答】①无理数有三种常见的表现形式:一是含有根号且开方开不尽的数;二是化简后含π的数;三是人为创造的一些无限不循环小数.②数轴上的每一点都可以表示一个实数.。
人教版七年级下册数学6.3 实数 课时同步练习试卷含答案
6.3实数课时同步练习 一、选择题1.下列实数3π,78-,0,2, 3.15-,9,33中,无理数有( ) A .1个 B .2个 C .3个 D .4个2.如果直径为1个单位长度的圆上一点P 从数轴上表示3的点A 出发,沿数轴向左滚动一周,圆上这一点到达数轴上另一点B ,则B 点表示的实数为( )A .3π-B .3π-C .23π-D .32π-3.若√a 2=−a ,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧4.如图,在数轴上表示实数15的点可能( )A .点PB .点QC .点MD .点N5.若a 、b 为实数,在数轴上的位置如图所示,则2||a b a -+的值是( )A .b -B .bC .2b a -D .2a b -6.下列命题:①绝对值最小的实数不存在;②无理数在数轴上对应的点不存在;③与本身的平方根相等的实数不存在:④最大的负数不存在.其中错误的命题的个数是( ) A .1 B .2 C .3 D .47.不用计算器回答:若√2=1.414,√20=4.472,则√2000000的值为( )A .141.4B .1414C .447.2D .44728.如图,正方形的周长为8个单位.在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表示−3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2019的点与正方形上的数字对应的是( )A .0B .2C .4D .6二、填空题9.比较345100---、、的大小,______<______<______. 10.已知||6x =,y 是4的平方根,且||y x x y -=-则x y +的值为________.11.写出两个大于2且小于4的无理数__________.写出一个比√3大且比√13小的整数是_______.12.已知a ,b 为两个连续整数,6a b <<,则a b +=_________.13.如图是一个简单的数值运算程序,当输入x 的值为16时,输出的数值为_______.(用科学计算器计算或笔算)三、解答题 14.把下列各数写入相应的集合中:17-,311,0.3,π2,25,327-,0,0.5757757775⋅⋅⋅(相邻两个5之间7的个数逐次加1). (1)正数集合{ }⋅⋅⋅;(2)负数集合{ }⋅⋅⋅;(3)有理数集合{ }⋅⋅⋅;(4)无理数集合{ }⋅⋅⋅;15.计算下列各式的值:(1)(32)2+-;(2)3323+.16.请将图中数轴上标有字母的各点与下列实数对应起来:2, 1.5-,5,π,3.17.自由下落物体的高度 ℎ(单位:米)与物体下落的时间t (单位:秒)之间的关系是ℎ=5t 2,有一物体从高50米的楼顶自由落下,物体落到地面需要多长时间?(精确到0.1秒)18.阅读下列材料,并回答问题:任意两个有理数进行加,减,乘,除运算(除数不为零),结果还是有理数,我们称这种性质为有理数的四则运算封闭性:例如:2+3=5,2−3=−1,2×3=6,2÷3=23,运算结果 5,−1,6,23 都是有理数,但是整数就不具有四则运算封闭性.由此可见,并不是所有的数都具有封闭性;小陈在学习无理数时发现,无理数也不具有四则运算封闭性,并且还发现:①任意一个有理数与无理数的和为无理数;②任意一个不为零的有理数与一个无理数的积为无理数;③零与无理数的积为零;由此可得:如果 ax +b =0,其中 a ,b 为有理数,x 为无理数,那么 a =0 且 b =0. 运用上述知识解决下列问题:(1)实数是否具有封闭性?(2)如果(a −2)√2+b +3=0,其中a ,b 为有理数,那么b a = .(3)如果(2+√2)a −(1−√2)b =5,其中a ,b 为有理数,求a +b 的值.参考答案1.C2.B3.C4.C5.C6.C7.B8.C9.5-3100-410.62+或62-11.5或π(答案不唯一).2,3(写一个即可)12.513.314.(1)311,0.3,π2,25,0.5757757775⋅⋅⋅(相邻两个5之间7的个数逐次加1);(2)17-,327-;(3)1 7-,0.3,25,327-,0;(4)311,π2,0.5757757775⋅⋅⋅(相邻两个5之间7的个数逐次加1)15.(1)3;(2)5316.根据数轴可知,2 1.51-<-<-∴点A对应数 1.5-122<<∴点B 对应数2253<<∴点C 对应数5点D 表示的数为3∴点D 对应数334π<<∴点E 对应数π综上所述,点A ,B ,C ,D ,E 分别对应数 1.5-,2,5,3,π.17.当ℎ=50时,50=5t 2.解得t =√505=√10≈3.2.∴物体落到地面需要3.2秒.18.(1)任意两个实数进行加,减,乘,除运算(除数不为零),结果还是实数,故实数的四则运算封闭性.(2)9(3)已知等式整理得:(2a −b −5)+(a +b )√2=0,∴由有理数的四则运算封闭性可得:{2a −b −5=0,a +b =0. ∴a +b =0.。
人教版数学七年级下册:6.3 实数 同步练习(附答案)
6.3 实数1.下列各数属于无理数的是( ) A. 2 B.38 C .0 D .12.实数37,3.101 001 000…,π,4,38中,无理数的个数是( ) A .1 B .2 C .3 D .43.下列说法中,正确的是( )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .实数可以分为正实数和负实数两类D .正实数包括正有理数和正无理数4.直径为1个单位长度的圆从原点开始沿数轴的负方向滚动2周(不滑动),圆上的一点由原点到达点O ′,则点O ′所对应的实数是 .5.-3的相反数是( )A .- 3B .-33 C .± 3 D. 3 6.π是1π的( ) A .绝对值 B .倒数 C .相反数 D .平方根7.-|-2|的值为( )A. 2 B .- 2 C .± 2 D .28.写出下列各数的相反数与绝对值.9.计算:(1)33-53; (2)|1-2|+ 2.10.计算(结果精确到0.01):(1)π-2+3; (2)|2-5|+0.9.11.下列说法正确的是( ) A.33是分数 B.227是无理数 C .π-3.14是有理数 D.3-83是有理数 12.下列各组数中,互为相反数的一组是( ) A .2与(-2)2 B .-2与38C .-2与-12D .2与|-2| 13.实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A .a >bB .-a <bC .a >-bD .-a >b14.将实数5,π,0,-6由小到大用“<”号连起来,可表示为 .15.点A 在数轴上和原点相距3个单位长度,点B 在数轴上和原点相距5个单位长度,则A ,B 两点之间的距离是 .16.把下列各数分别填入相应的集合中.-15,39,π2,3.14,-327,0,-5.123 45…,0.25,-32. (1)有理数集合:{ }; (2)无理数集合:{ };(3)正实数集合:{ };(4)负实数集合:{ }.17.求下列各式中的实数x.(1)|x|=45; (2)|x|=13. 18.计算: (1)4-3-8+25; (2)(-5)2+|2-5|- 5.19.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为4,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值.20.阅读下列材料:如果一个数的n(n 是大于1的整数)次方等于a ,这个数就叫做a 的n 次方根,即x n=a ,则x 叫做a 的n 次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如:(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是 ,-243的5次方根是 ,0的10次方根是 ;(2)归纳一个数的n 次方根的情况.参考答案:1.下列各数属于无理数的是(A) A. 2 B.38 C .0 D .12.实数37,3.101 001 000…,π,4,38中,无理数的个数是(B) A .1 B .2 C .3 D .43.下列说法中,正确的是(D)A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .实数可以分为正实数和负实数两类D .正实数包括正有理数和正无理数4.直径为1个单位长度的圆从原点开始沿数轴的负方向滚动2周(不滑动),圆上的一点由原点到达点O ′,则点O ′所对应的实数是-2π.5.-3的相反数是(D)A .- 3B .-33 C .± 3 D. 3 6.π是1π的(B) A .绝对值 B .倒数 C .相反数D .平方根7.-|-2|的值为(B)A. 2 B .- 2 C .± 2 D .28.写出下列各数的相反数与绝对值.9.计算:(1)33-53;解:原式=(3-5) 3=-2 3. (2)|1-2|+ 2. 解:原式=2-1+ 2=22-1.10.计算(结果精确到0.01):(1)π-2+3;解:原式≈3.142-1.414+1.732=3.46. (2)|2-5|+0.9. 解:原式=5-2+0.9≈2.236-1.414+0.9≈1.72.11.下列说法正确的是(D) A.33是分数 B.227是无理数 C .π-3.14是有理数 D.3-83是有理数 12.下列各组数中,互为相反数的一组是(B) A .2与(-2)2 B .-2与38C .-2与-12D .2与|-2| 13.实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是(D)A .a >bB .-a <bC .a >-bD .-a >b14.将实数5,π,0,-615.点A 在数轴上和原点相距3个单位长度,点B 在数轴上和原点相距5个单位长度,则A ,B 两点之间的距离是16.把下列各数分别填入相应的集合中.-15,39,π2,3.14,-327,0,-5.123 45…,0.25,-32. (1)有理数集合:{-15,3.14,-327,0,0.25,…}; (2)无理数集合:{39,π2,-5.123 45…,-32,…}; (3)正实数集合:{39,π2,3.14,0.25,…}; (4)负实数集合:{-15,-327,-5.123 45…,-32,…}. 17.求下列各式中的实数x. (1)|x|=45; (2)|x|=13. 解:x =±45. 解:x =±13. 18.计算:(1)4-3-8+25;解:原式=2-(-2)+5=2+2+5=9.(2)(-5)2+|2-5|- 5.解:原式=5+5-2-5=3.19.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为4,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值. 解:由题意可知:ab =1,c +d =0,e =±4=±2,f =64,∴e 2=(±2)2=4,3f =364=4. ∴12ab +c +d 5+e 2+3f=12×1+0+4+4 =812. 20.阅读下列材料:如果一个数的n(n 是大于1的整数)次方等于a ,这个数就叫做a 的n 次方根,即x n =a ,则x 叫做a 的n 次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如:(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是±2,-243的5次方根是-3,0的10次方根是0;(2)归纳一个数的n 次方根的情况.解:当n 为偶数时,一个正数的n 次方根有两个,它们互为相反数;当n 为奇数时,一个数的n 次方根只有一个.负数没有偶次方根.0的n 次方根是0.。
_人教版七年级下册第六章实数6.3实数同步训练有答案
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2020-2021学年度初一数学第二学期人教(2012)七年级下册第六章实数6.3实数同步训练一、选择题1.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>02.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B3.下列结论:①两个无理数的和一定是无理数②两个无理数的积一定是无理数③任何一个无理数都能用数轴上的点表示④实数与数轴上的点一一对应,其中正确的是()A.①②B.②③C.③④D.②③④4.在实数1)0))1))2中)最小的实数是()A .-2B .-1C .1D .05.已知甲、乙、丙三数,甲=531者正确 ( )A .丙<乙<甲B .乙<甲<丙C .甲<乙<丙D .甲=乙=丙6.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a <﹣3C .a >﹣bD .a <﹣b7.在实数- 3.14中,无理数的个数是()个. A .1 B .2 C .3 D .48.在下列式子中,正确的是( )A .20200->B .3π->-C .33-=D .03>-9.3-的倒数是( )A .3B .13 C .13- D .3-10则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点右侧D .原点或原点左侧11.﹣2的绝对值是( )A .2B .12C .12- D .2-12.下列实数3π,78-,0 3.15( ).A .1个B .2个C .3个D .4个二、填空题 13.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数.例如:[]2.32=,[]1.52-=-.则下列结论:)[][]2.112-+=-; )[][]0x x +-=; ③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号).14.如图,观察所给算式,找出规律:1+2+1=4)1+2+3+2+1=9)1+2+3+4+3+2+1=16)1+2+3+4+5+4+3+2+1=25)……根据规律计算1+2+3+…+99+100+99+…+3+2+1=____________15.写出一个大于3且小于4的无理数:___________.16.比较大小:填“>”、“<”或“=”).17.点 M ,N 在数轴上,且两点间的距离是个单位,已知点 N 表示的数是 1,则点 M 表示的实数是_____.18之间,整数个数有_________个三、解答题19.计算:2(2)1-+20.在 13-,π,02,22-,2.121121112⋯⋯(两个 2 之间依次多一个 1),0.3中. (1)是有理数的有 .(2)是无理数的有 .(3)是整数的有 .(4)是分数的有 .21.a ,b 均为正整数,且a ,b ,求a +b 的最小值.22.利用计算器,求下列各式的值(结果精确到万分位)(1 (2.参考答案1.B2.B3.C4.A5.A6.D7.D8.C9.C10.D11.A12.C 13.)).14.1000015π等,答案不唯一.16.>171 或 118.319.20.(1)13-,0,2,22-,0.3;(2)π- 2.121121112⋯⋯(两个 2 之间依次多一个 1);(3)13-,0,2,22-;(4)0.3 . 21.422.(1)28.2843;(2)1.6386。
人教版数学七年级下册 第六章 实数 6.3 实数 同步练习题 含答案
第六章 实数 6.3 实数 同步练习题1. 下列实数中的无理数是( ) A .0.7 B.12C . -8D .π2. 在2,-1,-3,0这四个实数中,最小的是( ) A. 2 B .-3 C .0 D .-13. 下列说法错误的是( )A .无理数的相反数还是无理数B .无理数都是无限小数C .正数、负数统称有理数D .实数与数轴上的点一一对应 4. 下列各组数中,把两数相乘,积为1的是( )A.2和-2B.-2和C.和D.和-5. 若<a<,则下列结论中正确的是( )A.1<a<3B.1<a<4C.2<a<3D.2<a<46. 如图,在数轴上标注了四段范围,则表示8的点落在( )A .①段B .②段C .③段D .④段7. 若(a-1)2与|b+|互为相反数,则a+b 的绝对值是( ) A.1- -1 B.C.+1 D.8. 16的平方根是_______9. 25的算术平方根的相反数是________ 10. 绝对值最小的实数是______.11. 设n 为整数,且n<20<n +1,则n =_____.12. 已知|x|=6,y 是4的平方根,且|y -x|=x -y ,则x +y 的值为__________. 13. 知a ,b 分别是6-的整数部分与小数部分,则2a-b=________.14. 若的整数部分是a ,小数部分是b ,计算a+b 的值为__________.15. 观察下列等式:2+23=223,3+38=338,4+415=4415,5+524=5524……对于一般的自然数n ,将有等式____________________. 16. 分别写出-6,π-3.14的相反数17. 指出-5,1-33分别是什么数的相反数18. 求3-64的绝对值;19. 已知一个数的绝对值是3,求这个数.20. 计算下列各式的值:(1) (3+2)-2;(2)33+2 3.21. 计算(结果保留小数点后两位):(1)5+π;(2)3· 2.22. 已知:=0,求实数a,b的值.23. 已知和互为相反数,且x-y+4的平方根是它本身,求x,y的值.24. 在数轴上点A表示的数是 5.(1)若把点A向左平移2个单位得到点B,则点B表示的数是什么?(2)点C和(1)中的点B所表示的数互为相反数,点C表示的数是什么?(3)求出线段OA,OB,OC的长度之和.25. 如图,一只蚂蚁从点A沿数轴向右直向爬行2个单位长度到达点B,点A表示-,设点B所表示的数为m,求|m-1|-(m+6)的值.26. 如图,每个小正方形的边长均为1,可以得到每个小正方形的面积为1.(1)图中阴影部分的面积是多少?(2)阴影部分正方形的边长是多少?(3)估计边长的值在哪两个整数之间?答案:1---7 DBCCB CA8. ±49. - 510. 011. 412. 6+2或6-213.14. 3-215.n +nn 2-1=n n n 2-116. -6,π-3.14的相反数分别为6,3.14-π. 17. -5,1-33分别是5,33-1的相反数. 18. 3-64|=|-4|=4.19. 因为|3|=3,|-3|=3,所以绝对值为3的数是3或- 3. 20. (1) (3+2)-2=3+(2-2)=3+0= 3 (2) 33+23=(3+2)3=5 3 21. (1)5+π≈2.236+3.142≈5.38 (2)3·2≈1.732×1.414≈2.45 22. 由题意得:+(a 2-49)=0且a+7≠0,解得a=7,b=21.23. 由题意,得y-1+3-2x-y=0且x-y+4=0,解得x=1,y=5. 24. 解:(1)点B 表示的数是5-2. (2)点C 表示的数是2- 5.(3)由题可知,点A 表示5,点B 表示5-2,点C 表示2-5, ∴OA =5,OB =5-2,OC =|2-5|=5-2, ∴OA +OB +OC =5+5-2+5-2=35-4. 25. 由题意可得m=2-,把m 的值代入得|m-1|-(m+6)=|2--1|-(2-+6)=|1-|-(8-)=-1-8+=2-9.26. 解:(1)S阴影=S正方形A′B′C′D′+S三角形BCC′+S三角形ABB′+S三角形ADA′+S三角形DCD′=2×2+12×4×(1×3)=4+6=10.(2)阴影部分正方形的边长为10.(3)∵9<10<16,∴3<10<4,即边长的值在3与4之间.。
《6.3实数》同步练习及答案(共两套)
《6.3实数》同步练习一(第1课时)一、选择题1.下列各数中:3.14,0,,,,,,,3.1414414441…(每两个1之间依次增加一个4),无理数的个数有( ).A.3个B.4个 C.5个 D.6个考查目的:考查无理数的概念.答案:B.解析:根据无理数是无限不循环小数可知,,,,3.1414414441…(每两个1之间依次增加一个4)这四个数是无理数.目前见到的无理数有三类:含有的数、开方开不尽的数、构造性无理数(看似循环其实不循环),如上面的3.1414414441…(每两个1之间依次增加一个4).2.下列关于无理数的说法中,正确的是( ).A.无限小数都是无理数B.任何一个无理数都可以用数轴上的点来表示C.是最小的正无理数D.所有的无理数都可以写成(、互质)的形式考查目的:考查无理数的概念和性质.答案:B.解析:无理数是无限不循环小数;不存在最小的正无理数,也不存在最大的负无理数;有理数可以写成(、互质)的形式,而无理数不可以;所有的实数都可以用数轴上的点来表示.3.如图,数轴上点P表示的数可能是( ).A.- B. C.- D.考查目的:考查无理数的大小估计,以及无理数在数轴上的表示.答案:A.解析:点表示的数介于-3与-2之间,而选项中只有-在这个范围内.二、填空题4.写出一个位于和0之间的无理数:.考查目的:考查无理数的概念和对无理数的大小估计.答案:答案不唯一,如(每两个1之间依次增加一个0)等.解析:根据无理数的概念来构造无理数,本题也可以用含有根号的数表示,如:等.5.如图,在数轴上,A,B两点之间表示整数的点有______个.考查目的:考查无理数用数轴上点表示以及无理数大小的估计.答案:4.解析:∵-2<<-1,2<<3,∴在数轴上,A,B两点之间表示整数的点有-1,0,1,2一共4个.6. 1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有____个.考查目的:本题结合算术平方根与立方根的定义考查了无理数的概念以及实数的分类.答案:186解析:在,,,…,中,有理数为,,,,,,,,,,共10个;在,,,…,中,有理数为,,,,共4个,故200个实数中有14个有理数,无理数为186个.三、解答题7.把下列各数填入相应的括号里:,,,0,,,,,(每两个1之间依次增加一个0).无理数集合:{ }分数集合:{ }整数集合:{ }负实数集合:{ }.考查目的:考查实数的分类.答案:无理数集合:{,,,,…}分数集合:{,,,… }整数集合:{0,,…}负实数集合:{,,,…}.解析:在进行实数的分类的时候,需要先对数进行化简,需要注意,有限小数或无限循环小数属于分数,常见的无理数有含有的数、开方开不尽的数以及构造的无理数,即可得到答案.8.按要求分别写出一个大于9且小于10的无理数:(1)用一个平方根表示:_________________ ;(2)用一个立方根表示:_________________ ;(3)用含的式子表示:_________________ ;(4)用构造的方法表示:__________________.考查目的:考查无理数的概念和性质.答案:(1);(2);(3);(4)(每两个1之间依次增加一个0).(答案不唯一)解析:(1)(为其中的任意实数);(2)(为其中的任意实数);(3),;(4)在大于9且小于10的范围内,构造一个无限不循环小数即可.(第2课时)一、选择题1.下列各数中,最小的是( ).A.O B.1 C.-1 D.考查目的:考查实数的大小比较.答案:D.解析:根据“正数大于零,零大于负数;两个负数,绝对值大的反而小”可知,最小的数只能在-1和中找.因为,所以,故最小的数是.2.在算式()□()的□中填上运算符号,使结果最大,这个运算符号是( ).A.加号 B.减号C.乘号D.除号考查目的:考查无理数的四则运算以及实数大小比较.答案:D.解析:加法运算的结果仍然为负数,减法运算的结果为零,乘法运算的结果为,除法运算的结果为1,而运算的结果中1最大,故选择D.3.对于以下四个判断:①是无理数.②是一个分数.③-|-|和-(-)是互为相反数.④若||<||,则<.其中正确的判断的个数是( ).A.3 B.2 C.1 D.考查目的:考查实数的概念和性质.答案:C.解析:①,2是一个有理数;②是无理数;③-|-|=-,-(-)=,-与是互为相反数;④反例:,.二、填空题4.的相反数是,绝对值是.考查目的:考查实数的相反数、绝对值的意义.答案:解析:-()=, ||=-()=.5.请写出两个你喜欢的无理数,使它们的和为有理数,这两个无理数为,如果是积为有理数,那么这两个无理数又为(任意写出一组).考查目的:考查互为相反数和互为倒数的概念和应用.答案:和和.(答案不唯一)解析:若两个无理数的和为有理数,这样的两个无理数的形式可以为和,其中,,,都是有理数,>0,为无理数,也可以为;若两个无理数的积为有理数,这样的两个无理数的形式可以为,,其中,为有理数,>0,也可以为.6.计算:-=_____________ .考查目的:考查算术平方根的运算和绝对值的化简计算.答案:-1.14.解析:由于<0,<0,所以-===-1.14.三、解答题7.创新设计题:如图所示的集合中有5个实数,请计算其中的有理数的和与无理数的积的差.考查目的:考查实数的分类以及实数的运算.答案:1-2.解析:有理数为:,,无理数为: ,,,由题意可得:()-(××)=1-2.8.观察下列推理过程:∵<<,即2<<3,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为,的小数部分为,求的值.考查目的:考查无理数的小数部分的表示,以及实数的运算.答案:.解析:的小数部分为=-1,的小数部分为=-1,故有=.《6.3实数》同步练习二第1课时实数课前预习:要点感知1 无限________小数叫做无理数,________和_______统称为实数. 预习练习1-1 下列说法:①有理数都是有限小数;②有限小数都是有理数;③无理数都是无限小数;④无限小数都是无理数,正确的是( )A.①②B.①③C.②③D.③④1-2实数-2,0.3,17,2,-π中,无理数的个数是( )A.2B.3C.4D.5要点感知2 实数可以按照定义和正负性两个标准分类如下:⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎭⎨⎩⎪⎧⎫⎪⎪⎨⎬⎪⎪⎭⎩⎩正有理数零负有理数实数正无理数负无理数⎧⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正分数正无理数实数负整数负有理数负分数负无理数预习练习2-1 给出四个数-1,0,0.5,其中为无理数的是( )要点感知3 __________和数轴上的点是一一对应的,反过来,数轴上的每一个点必定表示一个__________.预习练习3-1 和数轴上的点一一对应的是( ) A.整数 B.有理数 C.无理数 D.实数 3-2 如图,在数轴上点A 表示的数可能是( )A.1.5B.-1.5C.-2.6D.2.6当堂练习:知识点1 实数的有关概念 1.下列各数中是无理数的是( )B.-2C.0D.132.下列各数中,3.141 59,,0.131 131 113…,-,-17,无理数的个数有( )A.1个B.2个C.3个D.4个 3.写出一个比-2大的负无理数__________. 知识点2 实数的分类 4.下列说法正确的是( ) A.实数包括有理数、无理数和零 B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数5.实数可分为正实数,零和__________.正实数又可分为__________和__________,负实数又可分为__________和__________.6.把下列各数填在相应的表示集合的大括号内.-6,π,-23,-|-3|,227,-0.4,1.6,0,1.101 001 000 1… 整数:{ ,…}, 负分数:{ ,…}, 无理数:{ ,…}.知识点3 实数与数轴上的点一一对应 7.下列结论正确的是( ) A.数轴上任一点都表示唯一的有理数 B.数轴上任一点都表示唯一的无理数 C.两个无理数之和一定是无理数 D.数轴上任意两点之间还有无数个点8.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.9.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O ′,点O ′所对应的数值是__________.课后作业:10.下列实数是无理数的是( )A.-2B.1311.下列各数:2 ,00.23,227,0.303 003…(相邻两个3之间多一个0),中,无理数的个数为( ) A.2个 B.3个 C.4个 D.5个12.有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有( ) A.0个 B.1个 C.2个 D.3个 13.若a 为实数,则下列式子中一定是负数的是( )A.-a 2B.-(a+1)22+1)14.如图,( )A.点PB.点QC.点MD.点N 15.下列说法中,正确的是( )都是无理数B.无理数包括正无理数、负无理数和零C.实数分为正实数和负实数两类D.绝对值最小的实数是016.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )17.在下列各数中,选择合适的数填入相应的集合中.-152,3.14,,0,-5.123 45. 有理数集合:{ ,…} 无理数集合:{ ,…} 正实数集合:{ ,…} 负实数集合:{ ,…} 18.有六个数:0.142 7,(-0.5)3,3.141 6,227,-2π,0.102 002 000 2…,若无理数的个数为x,整数的个数为y,非负数的个数为z,求x+y+z 的值.挑战自我19.是无理数,的点呢?的点,如图.小颖作图说明了什么?参考答案 课前预习要点感知1 不循环 有理数 无理数 预习练习1-1 C1-2 A要点感知2 有理数 有限小数或无限循环小数 无理数 无限不循环小数 正实数 零 负实数预习练习2-1 D要点感知3 实数 实数预习练习3-1 D3-2 C当堂训练1.A2.B3.答案不唯一,如:4.D5.负实数 正有理数 正无理数 负有理数 负无理数6.-6,-|-3|,0 -23,-0.4 1.101 001 000 1…7.D 9.π课后作业10.D 11.B 12.B 13.D 14.C 15.D 16.B17.-152π,-5.123 45 (2)π,3.14,15…18.由题意得无理数有2个,所以x=2;整数有0个,所以y=0,非负数有4个,所以z=4,所以x+y+z=2+0+4=6.19.①每一个无理数都可以用数轴上的一个点表示出来,也就是数轴上的点有些表示有理数,有些表示无理数;②到原点距离等于某一个数的实数有两个.第2课时 实数的运算课前预习:要点感知1 实数a 的相反数是__________;一个正实数的绝对值是它__________;一个负实数的绝对值是它的__________;0的绝对值是__________.即:|a|=0.aaa⎧⎪⎪⎨⎪⎪⎩>=<,当时;,当时;,当时预习练习1-1的相反数是( )1-2的绝对值是( )要点感知2 正实数__________0,负实数__________0.两个负实数,绝对值大的实数__________.预习练习2-1 在实数0,,-2中,最小的是( )要点感知3 实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且__________可以进行开平方运算,__________可以进行开立方运算.预习练习3-1的结果是( )A.4B.0C.8D.12当堂练习:知识点1 实数的性质1. -34的倒数是( )A.43B.34C.-34D.-432.无理数( )3.下列各组数中互为相反数的一组是( )A.-|-2|与与知识点2 实数的大小比较4.在-3,0,4这四个数中,最大的数是( )5.如图,在数轴上点A,B对应的实数分别为a,b,则有( )A.a+b>0B.a-b>0C.ab>0D.ab>06.,则实数a在数轴上的对应点一定在( )A.原点左侧B.原点右侧C.原点或原点左侧D.原点或原点右侧7.比较大小:;(填“>”或“<”).知识点3 实数的运算8.计算:=( )9.计算:=__________.的相反数是__________,绝对值是__________. 11.计算:(1)-2|; (2(3.12.计算:(1)π(精确到0.01);保留两位小数).课后作业:13.的相反数是( )14.若|a|=a ,则实数a 在数轴上的对应点一定在( )A.原点左侧B.原点右侧C.原点或原点左侧D.原点或原点右侧15.比较2的大小,正确的是( )<216.如图,数轴上的点A ,B 分别对应实数a ,b,下列结论正确的是( )A.a>bB.|a|>|b|C.-a<bD.a+b<017.下列等式一定成立的是( )±=918.如果0<x<1,那么1x2中,最大的数是( )A.xB.1x D.x 219.点A 在数轴上和原点相距3个单位,点B 则A,B 两点之间的距离是__________.20.若(x 1,y 1)※(x 2,y 2)=x 1x 2+y 1y 2,则※)=________. 21.计算:;-1|.22.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r为多少米?(球的体积V=43πr3,π取3.14,结果精确到0.1米)23.如图所示,某计算装置有一数据入口A和一运算结果的出口B,下表给出的是小红输入的数字及所得的运算结果:若小红输入的数为49,输出的结果应为多少?若小红输入的数字为a,你能用a 表示输出结果吗?24.12,我们把1-1.利用上面的知识,你能确定下列无理数的整数部分和小数部分吗?(2)挑战自我25.阅读下列材料:如果一个数的n(n是大于1的整数)次方等于a,这个数就叫做a的n次方根,即x n=a,则x叫做a的n次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是__________,-243的5次方根是__________,0的10次方根是__________;(2)归纳一个数的n次方根的情况.参考答案课前预习要点感知1 -a 本身相反数 0 a 0 -a 预习练习1-1 C1-2 A要点感知2 大于小于反而小预习练习2-1 A要点感知3 正数以及0 任意一个实数预习练习3-1 B当堂训练1.D2.B3.C4.C5.A6.C7.(1)< (2)> (3)>8.C 9.111.(1)原式)=4.(2)原式=2+0-12=32.(3)原式.12.(1)π≈3.142-1.414+1.732≈3.46;(2)原式≈2.236-1.414+0.9≈1.72.课后作业13.C 14.D 15.C 16.C 17.B 18.B 19.20.-221.(1)原式;(2)原式-1=1.22.把V=13.5,π=3.14代入V=43πr3,得13.5=43×3.14r3,r≈1.5(米).所以球罐的半径r约为1.5米.23.-1=6;若小红输入的数字为a≥0).24.(1)因为343;(2)因为9109-9.25.(1)±2 -3 0(2)当n为偶数时,一个正数的n次方根有两个,它们互为相反数;当n为奇数时,一个数的n次方根只有一个.负数没有偶次方根.0的n次方根是0.。
人教版七年级数学下册 6.3实数 同步测试(含答案)
6.3 实数一、选择题1.在下列各数中8;0;3π;327;722;1.1010010001…,无理数的个数是( )A . 5B . 4C . 3D . 2 2.下列各数中,既不是正数也不是负数的是( ). A. 0 B. —1 C. 3 D. 23.在下列语句中:①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小; ④无限小数不一定是无理数. 其中正确的是( )A. ②③B. ②③④C. ①②④D. ②④ 4.和数轴上的点一一对应的是( )A. 整数B. 有理数C. 无理数D. 实数 5. 下列各组数中互为相反数的一组是( )A. -|-2|与3-8 B. -4与-(-4)2 C. -32与|3-2| D. -2与126. 有一个数值转换器,原理如下:当输入的x 为4时,输出的y 是( )A. 4B. 2C. 2D. -27.计算32-2的值是()A.2 B.3 C. 2 D.228.计算364+(-16)的结果是()A.4 B.0 C.8 D.12 9.下列四个实数中最大的是()A.-5 B.0 C.π D.310.下列等式一定成立的是()A.9-4= 5B.||1-3=3-1C.9=±3 D.-(-9)2=9二、填空题11.在下列各数中,选择合适的数填入相应的集合中.-15,39,π2,3.14,-327,0,-5.123 45…,0.25,-32.(1)有理数集合:{ };(2)无理数集合:{ };(3)正实数集合:{ };(4)负实数集合:{ }.12.2的相反数是,绝对值是.13.写出下列各数的相反数与绝对值.3.5,-6,π3,2-3.解:14.点A在数轴上和原点相距3个单位,点B在数轴上和原点相距5个单位,则A,B两点之间的距离是.15.直径为1个单位长度的圆从原点开始沿数轴的负方向滚动2周(不滑动),圆上的一点由原点到达O′,点O′所对应的实数是.三、解答题16.求下列各式中的实数x.(1)|x|=4 5;(2)|x-2|= 5.17.计算:(1)23+32-53-32;(2)|3-2|+|3-1|.18. 已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为2,f的算术平方根是8,求12ab+c+d5+e2+3f的值.19.我们知道:3是一个无理数,它是一个无限不循环小数,且1<3<2,我们把1叫做3的整数部分,3-1叫做3的小数部分.利用上面的知识,你能确定下列无理数的整数部分和小数部分吗?(1)10;(2)88.20.观察:2-25=85=4×25=225,即2-25=225;3-310=2710=9×310=3310,即3-310=3310;猜想:5-526等于什么,并通过计算验证你的猜想.参考答案1.在下列各数中;0;3π;;;1.1010010001…,无理数的个数是(C )A.5 B.4 C.3 D.22.下列各数中,既不是正数也不是负数的是(A).A. 0B. —1C.D. 23.在下列语句中:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数.其中正确的是(C)A. ②③B. ②③④C. ①②④D. ②④4.和数轴上的点一一对应的是( D )A. 整数B. 有理数C. 无理数D. 实数5. 下列各组数中互为相反数的一组是( C )A. -|-2|与3-8 B. -4与-(-4)2C. -32与|3-2| D. -2与126. 有一个数值转换器,原理如下:当输入的x为4时,输出的y是( C )A. 4B. 2C. 2D. -2832772237.计算32-2的值是(D)A.2 B.3 C. 2 D.228.计算364+(-16)的结果是(B)A.4 B.0 C.8 D.12 9.下列四个实数中最大的是(C)A.-5 B.0 C.π D.310.下列等式一定成立的是(B)A.9-4= 5B.||1-3=3-1C.9=±3 D.-(-9)2=9二、填空题11.在下列各数中,选择合适的数填入相应的集合中.-15,39,π2,3.14,-327,0,-5.123 45…,0.25,-32.(1)有理数集合:{-15,3.14,-327,0,0.25,…};(2)无理数集合:{39,π2,-5.123 45…,-32,…};(3)正实数集合:{39,π2,3.14,0.25,…};(4)负实数集合:{-15,-327,-5.123 45…,-32,…}.12.213.写出下列各数的相反数与绝对值.3.5,-6,π3,2-3.解:14.点A 在数轴上和原点相距3个单位,点B 在数轴上和原点相距5个单位,则A ,B 两点之间的距离是15.直径为1个单位长度的圆从原点开始沿数轴的负方向滚动2周(不滑动),圆上的一点由原点到达O′,点O′所对应的实数是-2π.三、解答题16.求下列各式中的实数x. (1)|x|=45; 解:x =±45.(2)|x -2|= 5. 解:x =2± 5.17.计算:(1)23+32-53-32;解:原式=(2-5)3+(3-3)2=-3 3.(2)|3-2|+|3-1|.解:原式=2-3+3-1=1.18. 已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为2,f的算术平方根是8,求12ab+c+d5+e2+3f的值.解:由题意可知:ab=1,c+d=0,e=±2,f=64,e2=(±2)2=2,∴3 f=364=4. ∴12ab+c+d5+e2+3f=12+0+2+4=612.19.我们知道:3是一个无理数,它是一个无限不循环小数,且1<3<2,我们把1叫做3的整数部分,3-1叫做3的小数部分.利用上面的知识,你能确定下列无理数的整数部分和小数部分吗?(1)10;(2)88.解:(1)∵3<10<4,∴10的整数部分是3,小数部分是10-3.(2)∵9<88<10,∴88的整数部分是9,小数部分是88-9.20.观察:2-25=85=4×25=225,即2-25=225;3-310=2710=9×310=3310,即3-310=3310;猜想:5-526等于什么,并通过计算验证你的猜想.解:猜想:5-526=5526.5 26=12526=25×526=5526.验证:5-。
七年级数学下册第六章实数6.3实数练习卷含解析新版新人教版
6.3 实数一.选择题(共20小题)1.比较两个实数与的大小,下列正确的是()A.>B.<C.=D.不确定2.若a=﹣,b=﹣|﹣|,c=﹣,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.c>b>a3.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.54.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.设边长为a的正方形的面积为5.下列关于a的三种说法:①a是无理数;②a可以用数轴上的一个点来表示;⑧0<a<2.其中,所有正确的序号是()A.①②B.①③C.②③D.①②③6.已知m,n是连续的两个整数,且,则mn的值为()A.6 B.12 C.20 D..307.下列说法正确的是()A.的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应8.有下列说法:(1)有理数和数轴上的点一一对应;(2)不带根号的数一定是有理数;(3)负数没有立方根;(4)是17的平方根.(5)两个无理数的和一定是无理数.其中正确的说法有()A.0个B.1个C.2个D.3个9.下列说法中,不正确的个数有()①实数与数轴上的点一一对应;②|a|一定是正数;③近似数8.96×104精确到百分位;④(﹣2)8没有平方根;⑤绝对值等于本身的数是正数;⑥带根号的一定是无理数;⑦在1和3之间的无理数有且只有,,,这4个,⑧2﹣的相反数是﹣2.A.4个B.5个C.6个D.7个10.下列各式计算正确的是()A.B.C.D.2+11.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i12.已知实数a=2+,则与实数a互为倒数的是()A.B.C.D.13.在下列实数,3.14159,,0,,,0.131131113…,中,无理数有()个.A.3 B.4 C.5 D.614.下列数据:﹣,021212121,,,|﹣2|,,﹣π,2003003003…(相邻两个3之间有2个0),60.12345..(小数部分由相继的正整数组成),属于无理数的个数为()A.6个B.5个C.3个D.4个15.在实数,3.1415926,0.123123123…,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A.2个B.3个C.4个D.5个16.一个数的立方根正好与本身相等,这个数是()A.0 B.0或1 C.0或±1 D.非负数17.下列说法正确的个数()(1)无理数就是开方不尽的数(2)无理数包括正无理数、零、负无理数(3)一个数的平方根等于它本身的是0和1(4)和互为相反数A.1个B.2个C.3个D.4个18.下列说法不正确的是()A.实数包括正实数、零、负实数B.正整数和负整数统称为整数C.无理数一定是无限小数D.2是4的平方根19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是()A.﹣2π﹣1 B.﹣1+πC.﹣1+2πD.﹣π20.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.二.填空题(共9小题)21.写出一个满足<a<的整数a的值为.22.已知的小数部分是a,的整数部分是b,则a+b=.23.的小数部分是.24.=.25.化简﹣﹣得.26.计算﹣﹣||﹣=27.若和互为相反数,求的为.28.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是.29.已知数轴上A、B两点的距离是,点A在数轴上对应的数是2,那么点B在数轴上对应的数是.三.解答题(共1小题)30.计算:﹣.人教新版七年级下学期《6.3 实数》2020年同步练习卷参考答案与试题解析一.选择题(共20小题)1.比较两个实数与的大小,下列正确的是()A.>B.<C.=D.不确定【分析】先估算出的范围,再进行变形即可.【解答】解:∵2<<3,∴1<﹣1<2,∴<<1,即,故选:A.【点评】本题考查了实数的大小比较和估算无理数的大小,能估算出的范围是解此题的关键.2.若a=﹣,b=﹣|﹣|,c=﹣,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.c>b>a【分析】根据正数大于0,0大于负数,可得答案.【解答】解:∵,,∴,故选:D.【点评】本题考查了实数比较大小,正数大于0,0大于负数是解题关键.3.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.5【分析】先估算出的大小,再估算出+1的大小,从而得出整数n的值.【解答】解:∵2<<3,∴3<+1<4,∴整数n为3;故选:B.【点评】此题考查了估算无理数的大小,解题的关键是估算出的大小.4.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,再估算出7﹣的范围即可.【解答】解:∵4<<5,∴7﹣的值在2和3之间;故选:A.【点评】此题主要考查了估计无理数,得出的取值范围是解题关键.5.设边长为a的正方形的面积为5.下列关于a的三种说法:①a是无理数;②a可以用数轴上的一个点来表示;⑧0<a<2.其中,所有正确的序号是()A.①②B.①③C.②③D.①②③【分析】利用正方形的面积公式得到a=,则可对①②进行判断,利用4<5<9可对③进行判断.【解答】解:∵边长为a的正方形的面积为5,∴a=,所以a为无理数,a可以用数轴上的一个点来表示;2<a<3.故选:A.【点评】本题考查了估算无理数的大小:用有理数逼近无理数,求无理数的近似值.6.已知m,n是连续的两个整数,且,则mn的值为()A.6 B.12 C.20 D..30【分析】先估算出的取值范围,得出m、n的值,进而可得出结论.【解答】解:∵9<10<16,∴3<<4,∴m=4,n=5,∴mn=4×5=20;故选:C.【点评】本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.7.下列说法正确的是()A.的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应【分析】利用算术平方根定义,乘方的意义,以及实数、无理数的性质判断即可.【解答】解:A、=9,9的平方根为±3,不符合题意;B、(﹣1)2010=1,不是最小的自然数,不符合题意;C、两个无理数的和不一定是无理数,例如﹣+=0,不符合题意;D、实数与数轴上的点一一对应,符合题意,故选:D.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.有下列说法:(1)有理数和数轴上的点一一对应;(2)不带根号的数一定是有理数;(3)负数没有立方根;(4)是17的平方根.(5)两个无理数的和一定是无理数.其中正确的说法有()A.0个B.1个C.2个D.3个【分析】利用实数的性质及平方根定义判断即可.【解答】解:(1)实数和数轴上的点一一对应,不符合题意;(2)不带根号的数不一定是有理数,不符合题意;(3)负数有立方根,不符合题意;(4)﹣是17的平方根,符合题意;(5)两个无理数的和不一定是无理数,不符合题意,则正确的说法有1个,故选:B.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.9.下列说法中,不正确的个数有()①实数与数轴上的点一一对应;②|a|一定是正数;③近似数8.96×104精确到百分位;④(﹣2)8没有平方根;⑤绝对值等于本身的数是正数;⑥带根号的一定是无理数;⑦在1和3之间的无理数有且只有,,,这4个,⑧2﹣的相反数是﹣2.A.4个B.5个C.6个D.7个【分析】直接利用实数的性质结合无理数的定义以及相反数的定义分别分析得出答案.【解答】解:①实数与数轴上的点一一对应,正确,故此选项不合题意;②|a|一定是正数或0,错误,故此选项符合题意;③近似数8.96×104精确到百位,错误,故此选项符合题意;④(﹣2)8有平方根,错误,故此选项符合题意;⑤绝对值等于本身的数是正数或0,错误,故此选项符合题意;⑥带根号的一定是无理数,错误,例如,故此选项符合题意;⑦在1和3之间的无理数有,,,,1.4…等无数个,错误,故此选项符合题意,⑧2﹣的相反数是﹣2,正确,故此选项不合题意.故选:C.【点评】此题主要考查了实数的性质、无理数的定义以及相反数的定义,正确把握相关定义是解题关键.10.下列各式计算正确的是()A.B.C.D.2+【分析】根据同类二次根式的概念与合并法则及二次根式的性质和化简逐一计算可得.【解答】解:A.=2≠﹣2,此选项错误;B.与不能合并,即,此选项错误;C.=2,此选项正确;D.2与2不是同类二次根式,不能合并,此选项错误;故选:C.【点评】本题主要考查二次根式的化简和加减运算,解题的关键是掌握二次根式的运算性质和运算法则.11.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i【分析】根据已知得出变化规律进而求出答案.【解答】解:∵i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,∴每4个数据一循环,∵2019÷4=504…3,∴i2019=i3=﹣i.故选:D.【点评】此题主要考查了新定义,正确理解题意是解题关键.12.已知实数a=2+,则与实数a互为倒数的是()A.B.C.D.【分析】根据倒数的定义作答.【解答】解:实数a的倒数是==2﹣.故选:B.【点评】考查了实数的性质,乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab =1;反之,若ab=1,则a与b互为倒数,这里应特别注意的是0没有倒数.13.在下列实数,3.14159,,0,,,0.131131113…,中,无理数有()个.A.3 B.4 C.5 D.6【分析】根据无理数的三种形式求解.【解答】解:=2,=8,无理数有:,,0.131131113…,,共4个.故选:B.【点评】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.14.下列数据:﹣,021212121,,,|﹣2|,,﹣π,2003003003…(相邻两个3之间有2个0),60.12345..(小数部分由相继的正整数组成),属于无理数的个数为()A.6个B.5个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,属于有理数;021212121,,是有限小数,属于有理数;|﹣2|=2,,是整数,属于有理数;2003003003…(相邻两个3之间有2个0)是循环小数,属于有理数.无理数有:,﹣π,60.12345..(小数部分由相继的正整数组成)共3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.在实数,3.1415926,0.123123123…,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A.2个B.3个C.4个D.5个【分析】根据立方根、算术平方根进行计算,根据无理数的概念判断.【解答】解:,0.1010010001…(相邻两个1中间一次多1个0)是无理数,故选:A.【点评】本题考查的是无理数的概念、立方根、算术平方根,掌握无限不循环小数叫做无理数是解题的关键.16.一个数的立方根正好与本身相等,这个数是()A.0 B.0或1 C.0或±1 D.非负数【分析】根据立方根的定义即可求出答案.【解答】解:一个数的立方根正好与本身相等,这个数是0,±1,故选:C.【点评】本题考查立方根,解题的关键是熟练运用立方根的定义,本题属于基础题型.17.下列说法正确的个数()(1)无理数就是开方不尽的数(2)无理数包括正无理数、零、负无理数(3)一个数的平方根等于它本身的是0和1(4)和互为相反数A.1个B.2个C.3个D.4个【分析】根据无理数的定义,相反数的定义,平方根的定义,分析(1)(2)(3)(4),选出说法正确的即可.【解答】解:(1)无理数是无限不循环小数,π也属于无理数,即(1)不合题意, (2)零不属于无理数,即(2)不合题意,(3)1的平方根为±1,即(3)不合题意,(4)与相加得零,即(4)符合题意,说法正确的个数是1个,故选:A.【点评】本题考查了实数和相反数,正确掌握无理数的定义,相反数的定义,平方根的定义是解题的关键.18.下列说法不正确的是()A.实数包括正实数、零、负实数B.正整数和负整数统称为整数C.无理数一定是无限小数D.2是4的平方根【分析】根据实数的概念解答即可.【解答】解:A、实数包括正实数、零、负实数,正确;B、正整数、0和负整数统称为整数,错误;C、无理数一定是无限小数,正确;D、2是4的平方根,正确;故选:B.【点评】此题考查实数的问题,关键是根据实数的概念解答.19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是()A.﹣2π﹣1 B.﹣1+πC.﹣1+2πD.﹣π【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【解答】解:∵直径为单位1的圆的周长=2π•=π,∴OA=π,∴点A表示的数为﹣π.故选:D.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应.也考查了实数的估算.20.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.【分析】由于数轴上两点间的距离应让较大的数减去较小的数,所以根据数轴上两点间距离的公式便可解答.【解答】解:由勾股定理得:正方形的对角线为,设点A表示的数为x,则2﹣x=,解得x=2﹣.故选B.【点评】此题主要考查了实数与数轴之间的对应关系,解题时求数轴上两点间的距离应让较大的数减去较小的数即可.二.填空题(共9小题)21.写出一个满足<a<的整数a的值为答案不唯一,如:2 .【分析】根据算术平方根的概念得到1<<2,4<<5,根据题意解答.【解答】解:∵1<<2,4<<5,a为整数,∴2≤a<5,∴满足<a<的整数a的值可以为2,故答案为:2(答案不唯一).【点评】本题考查的是估算无理数的大小,掌握算术平方根的概念是解题的关键.22.已知的小数部分是a,的整数部分是b,则a+b=.【分析】先分别求出和的范围,得到a、b的值,再代入a+b计算即可.【解答】解:∵2<<3,2<<3,∴a=﹣2,b=2,a+b=﹣2+2=,故答案为.【点评】本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.23.的小数部分是﹣4 .【分析】先估算出的范围,即可得出答案.【解答】解:∵4<<5,∴的小数部分是﹣4,故答案为:﹣4.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.24.=﹣4 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=﹣3﹣﹣﹣1+=﹣4.故答案为:﹣4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.25.化简﹣﹣得8 .【分析】直接利用立方根的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=10﹣﹣0.5=8.故答案为:8.【点评】此题主要考查了实数运算,正确化简各数是解题关键.26.计算﹣﹣||﹣=﹣+【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=3﹣3﹣(2﹣)﹣=3﹣3﹣2+﹣=﹣+故答案为:﹣ +.【点评】此题主要考查了实数运算,正确化简各数是解题关键.27.若和互为相反数,求的为.【分析】由立方根的性质可知,两个立方根互为相反数则被开方数互为相反数.【解答】解:∵和互为相反数,∴2a与b互为相反数,∴2a=﹣b,∴=﹣,故答案为﹣.【点评】本题考查立方根的性质和实数的性质;能够将立方根互为相反数转化为被开方数互为相反数是解题的关键.28.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是.【分析】根据勾股定理求出正方形的对角线的长,再根据旋转的性质求出A点的数,进而得出B点所表示的数;根据中点的定义可得点C所表示的数.【解答】解:对角线的长:,根据旋转前后线段的长分别相等,则A点表示的数=对角线的长=,B点所表示的数是,∵点C到A点的距离与点C到原点的距离相等,∴,即点C所表示的数是.故答案为:;.【点评】本题考查了实数与数轴,勾股定理和旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改,要求学生了解常见的数学思想、方法.29.已知数轴上A、B两点的距离是,点A在数轴上对应的数是2,那么点B在数轴上对应的数是.【分析】根据数轴求出点A表示的数,再分别分两种情况讨论求解点B所对应的数即可.【解答】解:∵数轴上A、B两点的距离是,点A在数轴上对应的数是2,∴点B在数轴上对应的数是.故答案为:【点评】本题考查了数轴,主要利用了数轴上数的表示,难点在于分情况讨论.三.解答题(共1小题)30.计算:﹣.【分析】本题涉及立方根、二次根式化简2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣=2﹣=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、二次根式等考点的运算.。
人教版数学七年级下册6.3 实数 同步训练(含答案)
人教版数学七年级下册6.3 实数同步训练一、单选题1.下列实数中是无理数的是()A.πB.√4C.0.38D.−2272.下列说法不正确的是( )A.实数包括正实数、零、负实数B.正整数和负整数统称为整数C.无理数一定是无限小数D.2是4的平方根.321,5c=-==,则a b c+-的值为()A.0B.-1C D.4.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.ac>0B.|b|<|c|C.a>﹣d D.b+d>05.在数0、1、、)A.0B.1C D6.若7<8则a的值可以是()A.49B.59C.69D.797.对任意四个有理数a,b,c,d定义新运算:a bad bcc d=-,已知24181-=xx,则x=()A .-1B .2C .3D .48.如果规定符号“⊗”的意义为a ⊗b =ab a b+,则2⊗(﹣3)的值是( ) A .6 B .﹣6 C .65 D .65- 9.对正整数n ,记!123n n =⨯⨯⨯⨯L ,则1!2!3!10!++++L 的末尾数为( ) A .0 B .1 C .3 D .510.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985B .-1985C .2019D .-2019二、填空题11.下列实数:123π,|﹣1|,2270.1010010001…(相邻两个1之间0的个数逐次加1)中无理数的个数有_____个.12.写出一个在数轴上离__________.13.定义一种新运算:a⊗b =()3()a b a b b a b -⎧⎨<⎩…,则2⊗3﹣4⊗3的值______. 14.为了求2310012222+++++L 的值,令2310012222S =+++++L ,则234101222222S =+++++L ,因此101221S S -=-,所以10121S =-,即231001*********+++++=-L ,仿照以下推理计算23202013333+++++L 的值是____________.三、解答题15.把下列各数填入相应的集合内:7.56,32,﹣π,0.13-g g . (1)有理数集合{_________________}(2)无理数集合{_________________}16.求下列各数的相反数和绝对值.(1(2)4π-.17a ,小数部分为b .(1)求a ,b 的值.(2)求2a b +的值.18.阅读材料:我们定义:如果一个数的平方等于-1,记作i 2=-1,那么这个i 就叫做虚数单位.虚数与我们学过的实数结合在一起叫做复数,一个复数可以表示为a +bi(a ,b 均为实数)的形式,其中a 叫做它的实部,b 叫做它的虚部.复数的加、减、乘的运算与我们学过的整式加、减、乘的运算类似.例如:计算(5+i)+(3-4i)=(5+3)+(i -4i)=8-3i.根据上述材料,解决下列问题:(1)填空:i 3= ,i 4= ;(2)计算:(6-5i)+(-3+7i);(3)计算:3(2-6i)-4(5-i).19.(1)材料1:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅n L 个 记为 n a 如32=8,此时,3叫做以2为底的8的对数,记为log 28(即log 28=3).那么,log 39=________,2231(log 16)log 813+=________; (2)材料2:新规定一种运算法则:自然数1到n 的连乘积用n !表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题: ⊗算5!=________;⊗已知x 为整数,求出满足该等式的15!:16!x x -⨯=答案1.A2.B3.D4.D5.D6.B7.C8.A9.C10.B11.312.-213.814.2021312-15.(1)有理数集合为:{7.5,6,32,0.13-g g };(2)无理数集合为:,﹣π};16.(1)相反数是4,绝对值是4;(2)相反数是4π-,绝对值4π-17.(1)3a =,3b =;(2)6. 18.(1)-i 1;(2)3+2i ;(3)-14-14i. 19.(1)2;(2)⊗ 1713;⊗120。
新人教版七年级数学下册同步练习6.3实数(含答案)
6.3实数1.在 3.14,,﹣,π,中,无理数的个数有()A.1个B.2个C.3个D.4个2.下列各数中是无理数的是()1.,,,0.020020002…, 6.57896.A.2个B.3个C.4个D.5个3.下列几个数中有理数有()个,,,,π,A.4 B.3 C.1 D.24.下列实数,,0,,0.123456,0.1010010001,﹣,,﹣中,无理数的个数有()A.2个B.3个C.4个D. 5个5.下列说法正确的是()A.带根号的数是无理数B.无理数就是开方开不尽而产生的数C.无理数是无限小数 D.无限小数是无理数6.下列说法正确的有()个(1)无限小数是无理数(2)不循环小数是无理数(3)无理数的相反数还是无理数(4)两个无理数的和还是无理数(5)16的立方根是.A. 1 B. 2 C. 3 D.47.(2008?宜昌)从实数﹣,﹣,0,π,4中,挑选出的两个数都是无理数的为()A.﹣,0 B.π,4 C.﹣,4 D.﹣,π8.比较数,,,的共同点,它们都是()A.分数B.有理数C.无理数D.正数9.下列说法:①无理数是无限小数;②带根号的数不一定是无理数;③任何实数都可以开立方;④有理数都是实数,其中正确的是()A.1个B.2个C.3个D.4个10.下列说法正确的是()A.只有正数才有平方根B.带根号的数都是无理数C.不带根号的数都是有理数 D.任何数都有立方根11.(2004?杭州)有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有()A. 0个B. 1个C. 2个D. 3个12.下列说法中正确的是()A.实数﹣a2是负数B. C. |﹣a|一定是正数 D.实数﹣a的绝对值是 a13.下列说法正确的是()A.是最小的无理数B.的绝对值是C.的相反数是 D.比大14.下列说法中正确的是()A.有理数可分为正数和负数B.实数可分为有理数,零和无理数C.整数和小数统称有理数 D.实数可分为负数和非负数15.以下判断正确的个数有()个(1)有理数和无理数统称实数.(2)无理数是带根号的数.(3)π是无理数.(4)是无理数.A. 0 B. 1 C. 2 D. 316.下面4种说法:其中,正确的说法个数为()A. 1 B. 2 C. 3 D.4(1)一个有理数与一个无理数的和一定是无理数;(2)一个有理数与一个无理数的积一定是无理数;(3)两个无理数的和一定是无理数;(4)两个无理数的积一定是无理数.17.下列说法正确的是()A.实数包括有理数、无理数和0 B.平方根是本身的数是0、1C.无限不循环小数是无限小数D.两个无理数的和是无理数18.有下列说法:①0.64的算术平方根是0.8;②;③单项式﹣ab2的次数是3;④是单项式;⑤是2的平方根;⑥代数式a2+1的值永远是正的.其中正确的个数是()A.3 B.4 C.5 D.619.下列说法正确的是()A.﹣81平方根是﹣9 B.的平方根是±9C.D.一定是负数20.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305.其中正确的个数是()A. 1 B. 2 C. 3 D. 421.若a为实数,下列代数式中,一定是负数的是()A.﹣a2B.﹣(a+1)2C.﹣D.﹣(|﹣a|+1)22.a是实数,则下列四个式的值一定是正数的是()A.a2B.(a+1)2C.|a| D.a2+123.对于“”,下面说法不正确的是()A.它是一个无理数B.它的整数部位上的数为 3C.它表示一个平方等于7的正数 D.它表示面积为7的正方形的边长24.下列数中﹣7.2、5、、4、、、0.31、、、1.23223222322223…,3.141414…无理数有_________ 个,负实数有_________ .。
人教版初中数学七年级下册第六章《6.3实数》同步练习(含答案)
《6.3实数》同步练习题一、选择题(每小题只有一个正确答案)1.√3的相反数是( )A. √3B. -√3C. 3D. -32.在﹣1.414, ,π,2 3.212212221…,3.14这些数中,无理数的个数为( )A. 5B. 2C. 3D. 4 3.若a)1,则a))a)1a 从大到小排列正确的是( )A. a))a)1aB. a)1a ))aC. 1a ))a)aD. 1a ))a)a)4.在实数范围内,下列判断正确的是 ) )A. 若|a |=|b |,则a =bB. 若|a |=(√b)2,则a =bC. 若a〉b,则a 2〉b 2D. 若√a 3=√b 3,则a =b5.下列4个无理数中,其大小在5和6之间的是( )A. √105B. 2√10−√5C. √10×√5D. √10+√56.若“)”是一种数学运算符号,并且1)=1)2)=2×1=2)3)=3×2×1=6)4)=4×3×2×1)…,则50!48! 的值为( )A. 5048B. 49)C. 2450D. 2) 7.已知a)b 分别是6)√13的整数部分和小数部分)那么2a)b 的值是( )A. 3)√13B. 4)√13C. √13D. 2)√13二、填空题8.满足不等式x 的整数x 共有_______个.9.比较下列实数的大小(填上>、<或=)._____12;③______. 10.10.实数a)b 在数轴上的位置如图所示,则化简|a+b|+√(b −a)2=___________.11.若a,b 互为相反数,c,d 互为倒数,则√a +b +√cd 3=____. 12.|1+√3|+|1−√3|=_________.三、解答题13.把下列各数填入相应的括号内-π,13,3.1, 49,0.8080080008...(相邻两个8之间0的个数逐次增加1),14 -52,,整数集合{ } 负分数集合{ …} 正数集合{ …} 负数集合{ …} 有理数集合{ …} 无理数集合{ …}14.计算:(﹣1)2018﹣(13)﹣1+2×)0.15.已知a ,b ,c 在数轴上对应点的位置如图所示,化简|a |-|a+b |+√(c −a )2+|b -c |.16.计算(1)4√3−2(1−√3)+√(−2)2.(2)|2−√6|+|1−√2|−(3+√6).参考答案1.B2.D3.B4.D5.D6.C7.C8.69. ) ) )10.-2a11.112.2√313.解析:整数集合{,1- … } 负分数集合{ 52- …} 正数集合{ 13,3.1, 49 ,0.8080080008…, 14, ,,, 1-…} 负数集合{ π- , 52- …} 有理数集合{ 13, 3.1, 49, 14, , 52-1- …} 无理数集合{ π- ,0.8080080008…,, …}14.解析:原式=1﹣3+2+.15.2c-a解:|a |-|a+b |+√(c −a )2+|b -c |=-a-[-(a+b)]+(c-a)+(c-b)=-a+a+b+c-a+c-b=2c-a.16.(1)6√3;(2)√2−6解析:(1)4√3−2(1−√3)+√(−2)2=4√3−2+2√3+2=6√3.(2)|2−√6|+|1−√2|−(3+√6)=√6−2+√2−1−3−√6=√2−6.。
人教版七年级数学下册6.3实数同步测试(含答案)
绝密★启用前6.3 实数班级: 姓名:一、单选题1.下列结论正确的是( ) A .无限小数都是无理数 B .无理数都是无限小数 C .带根号的数都是无理数 D .实数包括正实数、负实数 2.下列数中,有理数是( ) A .﹣7B .﹣0.6C .2πD .0.151151115…3.已知m 是负整数,则m ,﹣m ,1m 的大小关系是( ) A .﹣m >1m ≥m B .﹣m >1m >m C .m >1m>﹣mD .1m≥m >﹣m 4.有理数a ,b ,c 在数轴上对应点的位置如图所示,且b a -<,则下列选项中一定成立的是( )A .0ac <B .a b >C .b a >-D .2b c <5. a 、b 在数轴上对应的点如右图,下列结论正确的是( )A . a >bB . ab <0C . b-a >0D . a+b >06.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( ) A .1B .﹣1C .5D .﹣577-2,估计它的值( ) A .小于1B .大于1C .等于1D .小于08.下列各数中3.1415926,-39,0.131131113……,94,-117无理数的个数有()A.1个 B.2个 C.3个 D.4个二、填空题9.通过估算写出大于2但小于7的整数_____.10.a※b是新规定的这样一种运算法则:a※b=a﹣b+2ab,若(﹣2)※3=_____.11.数轴上点A,B分别表示实数5-1与5+10,则点A距点B的距离为_________.12.有一个数值转换器,原理如下:当输入的数是100时,则输出的数是___.三、解答题13.把下列各数前的序号分别填入相应的集合内:①﹣2.5,②0,③(﹣4)2,④45-,⑤2π,⑥53,⑦﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负分数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.14.已知2a﹣1的算术平方根是3,b﹣1是5的整数部分,c+1和9的平方根相等,求a ﹣2b﹣c的值.一、单选题1.下列实数中,在3 与4 之间的数是()A2B6C25D20-12.下列说法正确的个数共有()①最大的负整数是-1;②数轴上表示数2和-2的点到原点的距离相等;③当0a≤时,||a a=-成立;④2a +一定比a 大; A .1个B .2个C .3个D .4个3.下列说法正确的是( ) A .如果a =b ,那么a =|b| B .如果|a|=|b|,那么a =b C .如果a >|b|,那么a >bD .如果a >b ,那么|a|>|b|4.根据如图所示的程序计算函数y 的值,若输入x 的值是7,则输出y 的值是﹣2,若输入x 的值是﹣8,则输出y 的值是( )A .5B .10C .19D .215.如图,数轴上表示2的数对应的点为A 点,若点B 为在数轴上到点A 的距离为1个单位长度的点,则点B 所表示的数是( )A .21-+B .21+C .12-或12+D .21-或21+6.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会7.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( )①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=a A .① ③B .① ② ③C .① ② ③④D .① ② ④8.下列各数中,3.14159380.131131113…,﹣π25 )A .1个B .2个C .3个D .4个二、填空题9.a 、b 为有理数,现在规定一种新的运算“⊕”,如a ⊕b =ab +a 2﹣1,则(1⊕2)⊕(﹣3)=_____.10.按照如图所示的程序计算:若输入 x=7.6,则 m=_____.11.有理数,,a b c 在数轴上的位置如图所示,化简||||||a a b c a +-+-的值为________.122a ,小数部分是b ,则a b -=________. 三、解答题13.已知226a b m a +-=+a+6的算术平方根,366a b n b --=-b-6的立方根. (1)求a 、b 的值.(23m n +p ,小数部分为q ,求2p pq +的值14.形如a cb d 的式子叫做二阶行列式,它的运算法则用公式表示为a c ad bcb d=-,(1)计算4133(2)已知235cb =,求bc 的值.参考答案1-5.BBACA6-8.BAB9.210.-1711.1112.1013.(1)③⑤⑥;(2)①④;(3)②③;(4)⑤⑦14.-3或31-5.DDCCD6-8.ACB9.-310.711.-3a+b+c12.213.(1)a=3,b=-2;(2)7.14.(1)9;(2)7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》同步练习课堂作业1.下列实数中,是无理数的为( )A. 3B.13C.0D.-32.下列说法:①带根号的数都是无理数;②无理数是开方开不尽的数;③无理数是无限小数;④数轴上的所有点都表示实数.其中,错误的有( )A.1 个B.2 个C.3 个D.4 个3.如图,数轴上的点P 表示的数可能是( )A. 5B.-5C.-3.8D.- 104.在实数1.414,8 ,3,0,π,22,716 ,34 中,无理数有个.5.如图,在数轴上的A、B、C、D 四点中,与表示数- 3 的点最接近的是.6.把下列各数分别填在相应的集合中:-1,316 ,π,64 ,3.14159265,- | - 25|,-4.2 1 ,1.103030030003….6 3(1)有理数集合:{ …};(2)无理数集合:{ …};(3)正实数集合:{ …}:(4)负实数集合:{…}.课后作业7.下列说法正确的是( )A.实数分为正实数和负实数3B.是有理数3C.0.9 是有理数D. 3 0.01 是无理数1 2 π8.在实数,,中,分数的个数是( )2 2 2A.0B.1C.2D.39.如图,数轴上A、B 两点表示的数分别为 2 和5.1,则A、B 两点之间表示整数的点共有( )A.6 个B.5 个C.4 个D.3 个10.若无理数a 满足2<a<3,请写出a 的两个可能的取值为.11.在数轴上,与表示13 的点的距离最近的整数点所表示的数是.12.在实数-7.5,15 ,4,3-125 ,15π,(2)2 中,设有a 个有理数,b个无理数,则b a =.213.把下列各数分别填在相应的集合中:5 ,-3,3-16 ,| 3-1 |,- 27 ,-π,3 +229 ,0.3.(1)整数集合:{ …};(2)分数集合:{ …};(3)无理数集合:{ …};(4)负实数集合:{ …}.14.已知a、b 都是有理数,且( 3 -1)a + 2b = 3 + 3 ,求a+b 的平方根.15.如图,数轴上点A、B 表示的数分别是1、2,点C 也在数轴上,且AC=AB,求点C 表示的数.答案[课堂作业]1.A2.B 3.B 4.3 5.点B6.(1)有理数集合:{ -1,664 ,3.14159265,- | -25|,-4.2 1 ,…}(2)无理数集合:{ 316 ,π,1.103030030003…,…} 3(3)正实数集合:{ 316 ,π,3(4)负实数集合:{ -1,- | -664 ,3.14159265,1.103030030003…,…}25|,-4.2 1 ,…}[课后作业]7.D8.B9.C10.答案不唯一,如5 、 6 11.412.213.(1)整数集合:{-3,3-1 ,…} (2)分数集合:{0.3,…}(3)无理数集合:{ 5 3-16 ,- 27 -π,3 +229 ,…}(4)负实数集合:{-33-16 - 27 ,-π,…} 214.∵( 3 -1)a + 2b = 3 +3 ,∴3a -a + 2b = 3+ 3.∵a、b 都是有理数,∴3a = 3 ,-a+2b=3.解得a=1,b=2.∴a+b=3.∴a+b 的平方根是± 315.设点C 表示的数为x.∵AC=AB,∴1-x = 2 -1.解得x = 2 - 2 .∴点C 表示的数是2 -《实数》同步练习21.下列各数中是无理数的是( )A.2B.-2C.0D. 132.下列各数中,3.141 59,- 38 ,0.131 131 113…,-π,25 ,- 1,无理数的个数有( ) 7A.1个B.2 个C.3 个D.4 个3.写出一个比-2 大的负无理数.4.下列说法正确的是( )A.实数包括有理数、无理数和零B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数5.实数可分为正实数,零和.正实数又可分为和,负实数又可分为和.6.把下列各数填在相应的表示集合的大括号内.2 22-6,π,- ,-|-3|,,-0.4,1.6,6 ,0,1.101 001 000 1…3 7整数:{ ,…},负分数:{ ,…},无理数:{ ,…}.27.下列结论正确的是( )A.数轴上任一点都表示唯一的有理数B.数轴上任一点都表示唯一的无理数C.两个无理数之和一定是无理数D.数轴上任意两点之间还有无数个点8.若将三个数- 3 ,7 ,17 表示在数轴上,其中能被如图所示的墨迹覆盖的数是.9.如图,直径为1 个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O′,点O′所对应的数值是.10.下列实数是无理数的是( )A.-2B.13C.4D. 511.下列各数:,0,29 ,0.23 ,22,0.303 003…(相邻两个3 之间多一个0),1-72 中,无理数的个数为( )A.2个B.3 个C.4 个D.5 个12.有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④-的平方根.其中正确的有( )A.0 个B.1 个C.2 个D.3 个17 是17参考答案1.A2.B3.答案不唯一,如:- 34.D5.负实数正有理数正无理数负有理数负无理数6.-6,-|-3|,0 - 2,-0.4 π,36 ,1.101 001 000 1…7.D 8. 7 9.π10.D 11.B 12.B《实数》同步练习3 课堂作业21.的相反数是( )2A.-2 2B.2 2C.-2D.22.2 7 -A.77 的值为( )B. 3 7C.2D.03.与1+A.4B.3C.2D.15 最接近的整数是( )4.比较大小:7 -121 (填“>”“<”或“=”).5.2 -3 的相反数是,|3.14-π|=.6.绝对值大于 3 而小于21 的整数是.7.计算下面各式的值;(1) 3 3 -323 + 2 3 ;(2) | 2 -1| + | 2 - 3 | + | 3 - 2 | .8.求下列各数的相反数和绝对值:(1) -(2)11 ;3 - 2 ;(3) 3 -1 125课后作业9.下列说法正确的是( )A.两个无理数的和一定是无理数B.无理数的相反数是无理数C.两个无理数的积一定是无理数D.无理数与有理数的乘积是无理数10.已知三个数:-π,-3,- 7 ,它们按从小到大的顺序排列为( )A. -3 <-π<- 7B.-π<-3 <- 7C. - 7 <-3 <-πD.-π<- 7 <-311.设实数a、b 在数轴上对应的位置如图所示,且|a|>|b|,则化简a2- | a +b | 的结果是( )A.2a+bB.-2a+bC.b D.2a-b12.计算:(1) 3 5 + 2 5 =;(2) 34 - | -3 4 |=.13.7-52 的相反数是,绝对值是.14.已知a 是小于3 + 5 的整数,且|2-a|=a-2,那么a 的所有可能值是.15.如图,一只蚂蚁从点A 沿数轴向右爬行了2 个单位长度到达点B,点A 表示-为m,则|m-1|的值是.2 ,设点B 所表示的数16.求下列各式的值:(1) 6 3 + 2 3 - 4 3 ;(2) 5- | 3 - 5 | ;(3) (2 3 - 3 2) - (3 3 - 2 2) ;(4)110 -32 + 23 (精确到0.01).17.设x、y 是有理数,且x、y 满足等式x + 2 y - 2 y = 17 + 4 2 ,求(x +y)2016 的值.答案[课堂作业]1.A113.B4.<5. 3 - 2 π-3.146.±2,±3,±47.(1) 7 32(2)18.(1) - 11 的相反数是 11 ,绝对值是 11(2) 3 - 2 的相反数是2 - 3 ,绝对值是2 - 3(3) 3 - 1 125 1 1 的相反数是 ,绝对值是 5 5[课后作业]9.B10.B11.C12.(1) 5 5 (2)013. 13. 2 - 7 5 2 - 7 514.2、3、4、515. 2 -116.(1) 4 3 (2) 3 (3) - 3 - 2 (4)3.1017.由题意,知 x +2y =17,-y =4,解得 x =25,y =-4.∴ ( x + y )2016 = ( 25 - 4)2016 = (5 - 4)2016 = 1“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。