2010高考数学知识点易错梳理
2010年高考数学知识点总结
2010年高考数学知识点总结第一篇:2010年高考数学知识点总结2010年高考数学知识点总结1.平面向量考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移.考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.2.集合、简易逻辑考试内容:集合.子集.补集.交集.并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.理解逻辑联结词“或”、“且”、“非”的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.3.函数考试内容:映射.函数.函数的单调性.奇偶性.反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数.函数的应用.考试要求:了解映射的概念,理解函数的概念.了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.4.不等式不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式.(4)掌握简单不等式的解法.(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│.5.三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+)的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法.考试要求:(1)理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.(3)掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+)的简图,理解A,ω, 的物理意义.(6)会由已知三角函数值求角,并会用符号arcsin x、arccos x、arctanx表示.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.6.数列考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.7.直线和圆的方程考试内容:直线的倾斜角和斜率.直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.用二元一次不等式表示平面区域.简单的线性规划问题.曲线与方程的概念.由已知条件列出曲线方程.圆的标准方程和一般方程.圆的参数方程.考试要求:(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域.(4)了解线性规划的意义,并会简单的应用.(5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.8.圆锥曲线方程考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.抛物线及其标准方程.抛物线的简单几何性质.考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.(4)了解圆锥曲线的初步应用.9(A).①直线、平面、简单几何体考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.平行平面的判定与性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定与性质.多面体.正多面体.棱柱.棱锥.球.考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想像它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.(3)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理和性质定理.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体、凸多面体的概念,了解正多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.9(B).直线、平面、简单几何体考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.两个平面的位置关系.空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.多面体.正多面体.棱柱.棱锥.球.考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.(2)掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念,掌握直线和平面垂直的判定定理;掌握三垂线定理及其逆定理.(3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.(4)了解空间向量的基本定理;理解空间向量坐标的概念,掌握空间向量的坐标运算.(5)掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式.(6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离.掌握直线和平面垂直的性质定理.掌握两个平面平行、垂直的判定定理和性质定理.(8)了解多面体、凸多面体的概念,了解正多面体的概念.(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(10)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(11)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.(考生可在9(A)和9(B)中任选其一)10.排列、组合、二项式定理考试内容:分类计数原理与分步计数原理.排列.排列数公式.组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质.考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.11.概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生k次的概率.12.统计考试内容:抽样方法.总体分布的估计.总体期望值和方差的估计.考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样.(2)会用样本频率分布估计总体分布.(3)会用样本估计总体期望值和方差.13.导数考试内容:导数的背景.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(4)会利用导数求某些简单实际问题的最大值和最小值.第二篇:2021年高考数学知识点归纳总结2021年高考数学知识点归纳总结你知道吗?高中数学在学习的过程中,有很多知识点常考点。
高考数学易错的知识点总结
高考数学易错的知识点总结高考数学易错的知识点总结求函数奇偶性的常见错误错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
抽象函数中推理不严密致误错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。
解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。
抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
函数零点定理使用不当致误错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b) 混淆两类切线致误错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。
因此求解曲线的切线问题时,首先要区分是什么类型的切线。
混淆导数与单调性的关系致误错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。
研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
2010高考数学知识总结
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点11 简易逻辑
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点12 圆锥曲线与方程
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点13 空间向量与立体几何
<<返回目录
<<返回目录
<<返回目录
要点2 函数概念与基本初等函数
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点3 立体几何初步
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点17 概率
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
高考数学易错点知识归纳
高考数学易错点知识概括高考数学易错点知识【一】一次函数的定义一次函数,也作线性函数,在 _,y 坐标轴中能够用一条直线表示,当一次函数中的一个变量的值确准时,能够用一元一次方程确立另一个变量的值。
函数的表示方法列表法:了如指掌,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
分析式法:简单了然,能够正确地反应整个变化过程中自变量与函数之间的相依关系,但有些实质问题中的函数关系,不可以用分析式表示。
图象法:形象直观,但只好近似地表达两个变量之间的函数关系。
一次函数的性质一般地,形如y=k_+b(k ,b 是常数,且k≠0) ,那么 y 叫做_的一次函数,当b=0 时,y=k_+b 即 y=k_,所以说正比率函数是一种特别的一次函数注:一次函数一般形式y=k_+b(k 不为 0)a)k 不为 0b)_ 的指数是 1c)b 取随意实数一次函数y=k_+b 的图像是经过(0 ,b) 和(-b/k ,0) 两点的一条直线,我们称它为直线 y=k_+b,它能够看做直线 y=k_平移 |b| 个单位长度获得。
( 当 b0 时,向上平移 ;b0 时,向下平移 )【二】不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号“”“”连结的不等式称为严格不等式,用不小于号 ( 大于或等于号 ) 、不大于号 ( 小于或等于号 ) “≥” ( 大于等于符号)“≤”( 小于等于符号) 连结的不等式称为非严格不等式,或称广义不等式。
往常不等式中的数是实数,字母也代表实数,不等式的一般形式为 F(_, y,, z) ≤G(_,y,, z)( 此中不等号也可认为,≥,中某一个 ) ,两边的分析式的公共定义域称为不等式的定义域,不等式既能够表达一个命题,也能够表示一个问题。
【三】变化前的点坐标 (_ ,y)坐标变化变化后的点坐标图形变化平移横坐标不变,纵坐标加上( 或减去)n(n0)个单位长度(_ , y+n) 或(_ ,y-n)图形向上 ( 或向下 ) 平移了 n 个单位长度纵坐标不变,横坐标加上( 或减去 )n(n0) 个单位长度(_+n ,y) 或(_-n , y)图形向右 ( 或向左 ) 平移了 n 个单位长度伸长横坐标不变,纵坐标扩大 n(n1) 倍(_ ,ny) 图形被纵向拉长为本来的n 倍纵坐标不变,横坐标扩大 n(n1) 倍 (n_ ,y) 图形被横向拉长为本来的 n 倍压缩横坐标不变,纵坐标减小 n(n1) 倍 (_ , ) 图形被纵向缩短为本来的纵坐标不变,横坐标减小n(n1) 倍 ( ,y) 图形被横向缩短为本来的放大横纵坐标同时扩大n(n1) 倍 (n_ ,ny) 图形变成本来的n2 倍减小横纵坐标同时减小n(n1) 倍 ( ,) 图形变成本来的78、求与几何图形联系的特别点的坐标,常常是向_轴或 y 轴引垂线,转变成求线段的长,再依据点所在的象限,醒上相应的符号。
2010届高考数学知识点总结精华
注⑴:当 时, .
⑵:当 时,取“+”,当 是偶数时且 时, ,而 ,故取“—”.
例如: 中x>0而 中x∈R).
⑵ ( )与 互为反函数.
当 时, 的 值越大,越靠近 轴;当 时,则相反.
(四)方法总结
⑴.相同函数的判定方法:定义域相同且对应法则相同.
⑴对数运算:
(以上 )
4、四种命题的形式:
原命题:若P则q; 逆命题:若q则p;
否命题:若┑P则┑q;逆否命题:若┑q则┑p。
(1)交换原命题的条件和结论,所得的命题是逆命题;
(2)同时否定原命题的条件和结论,所得的命题是否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.
5、四种命题之间的相互关系:
(2) 等价关系:
(3) 集合的运算律:
交换律:
结合律:
分配律:.
0-1律:
等幂律:
求补律:A∩CUA=φ A∪CUA=U ?CUU=φ ?CUφ=U
反演律:CU(A∩B)= (CUA)∪(CUB) CU(A∪B)= (CUA)∩(CUB)
4. ①n个元素的子集有2n个. ②n个元素的真子集有2n -1个. ③n个元素的非空真子集有2n-2个.
5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题 逆命题.
②一个命题为真,则它的逆否命题一定为真. 原命题 逆否命题.
例:①若 应是真命题.
解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真.
(1)标准化:移项通分化为 >0(或 <0); ≥0(或 ≤0)的形式,
高考数学数列易错知识点总结
高考数学数列易错知识点总结14易错点用错差不多公式致误错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1 -pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。
在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的全然,用错了公式,解题就失去了方向。
15易错点an,Sn关系不清致误错因分析:在数列问题中,数列的通项an与其前n项和Sn之间存在关系:那个关系是对任意数列都成立的,但要注意的是那个关系式是分段的,在n=1和n≥2时那个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地点,在使用那个关系式时要牢牢记住其“分段”的特点。
当题目中给出了数列{an}的an与Sn之间的关系时,这两者之间能够进行相互转换,明白了an的具体表达式能够通过数列求和的方法求出Sn,明白了Sn能够求出an,解题时要注意体会这种转换的相互性。
16易错点对等差、等比数列的性质明白得错误错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。
一样地,有结论“若数列{an}的前N项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。
解决这类题目的一个差不多动身点确实是考虑问题要全面,把各种可能性都考虑到里面去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。
在等比数列中公比等于-1时是一个专门专门的情形,在解决有关问题时要注意那个专门情形。
17易错点数列中的最值错误错因分析:数列的通项公式、前n项和公式差不多上关于正整数的函数,要善于从函数的观点认识和明白得数列问题。
高考数学数列易错知识点总结
高考数学数列易错知识点总结高考数学中,数列是一个重要的考点,也是学生易错的地方之一。
在解题过程中,经常会遇到一些易错的知识点。
下面总结了一些高考数学数列易错知识点,希望能够帮助到你:1. 数列的递推公式与通项公式的区别:很多学生容易混淆数列的递推公式和通项公式。
递推公式是用前一项的表达式来表示后一项的公式,通项公式是用项数n的表达式来表示第n项的公式。
在解题时,要明确区分递推公式和通项公式的用法和含义。
2. 数列的基本性质:数列的基本性质包括数列的有界性、单调性和有限性。
有界性指的是数列的项都在一定的范围内,可以是上界或下界;单调性指的是数列的项是递增或递减的;有限性指的是数列的项是有限的,不存在无限项。
在解题时,要注意数列的基本性质,根据题目中给出的条件判断数列的性质。
3. 等差数列和等差数列的前n项和公式:等差数列是指数列中相邻两项之间的差值相等的数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
等差数列的前n项和公式为Sn = (a1 + an)n/2,其中Sn为前n项和。
在解题时,要熟练掌握等差数列的相关公式,并进行灵活运用。
4. 等比数列和等比数列的前n项和公式:等比数列是指数列中相邻两项之间的比值相等的数列。
等比数列的通项公式为an = a1 *r^(n-1),其中a1为首项,r为公比,n为项数。
等比数列的前n项和公式为Sn = a1 * (1 - r^n)/(1 - r),其中Sn为前n项和。
在解题时,要熟练掌握等比数列的相关公式,并进行灵活运用。
5. 通项公式的证明与应用:在解题过程中,有时会遇到需要证明通项公式的问题。
要能够灵活运用数学归纳法和代数方法,进行通项公式的证明。
同时,要能够根据通项公式,求解具体的问题,包括求某一项的值、判断第n项的性质等。
6. 数列极限的计算与判断:数列极限是数列中项随着项数增大而趋于的值。
在解题过程中,要能够根据给定的数列,计算出数列的极限值,并进行判断。
知识点 高考数学易错
知识点高考数学易错高考数学易错知识点解析在高考数学中,有些知识点容易让考生疏忽或者理解不透彻,导致易错。
以下将对其中几个常见的易错知识点进行解析,希望对广大考生有所帮助。
一、比例与相似比例与相似是高中数学中的重要概念,在高考中经常涉及到。
其中,一些易错点主要集中在比例与相似的性质和计算上。
比例的性质要牢记:首先是比例的定义,即两个比例相等;其次是比例的运算规则,如比值的倒置是否合理等。
相似的性质要注意理解:相似三角形的性质有比例性质、对应边比例、对应角相等等。
在解题过程中,应根据题目提供的已知条件判断相似的三角形关系,并灵活运用这些性质。
二、函数函数是高中数学的核心内容,也是高考数学的难点之一。
易错知识点主要涉及函数的定义、性质和运算。
一是函数的定义:要理解函数的定义及其符号表示,明确自变量和因变量的概念。
二是函数的性质:如定义域、值域、奇偶性等。
在解题时,需灵活应用函数的性质,注意确定函数的取值范围,排除错误选项。
三是函数的运算:要熟悉函数的四则运算和复合函数的概念。
在运算过程中,尤其是复合函数的运算中,一定要注意正确写出函数的表达式、代入正确的值进行计算。
三、立体几何立体几何是数学中的重要分支,也是高考数学中的难点部分。
易错知识点主要涉及立体几何的空间概念、立体图形的计算等。
一是空间概念的理解:如几何体的名称、性质、包容关系等。
在解题时,需根据已知条件,灵活应用空间几何的性质。
二是立体图形的计算:如表面积、体积等。
对于不同的几何体,计算公式不尽相同,考生要熟悉各类几何体的计算方法,并能根据题目特点选用合适的公式进行计算。
四、概率概率是高中数学的重要内容,也是高考数学中易出错的部分。
主要涉及基本概念的理解和概率计算的方法。
一是基本概念的理解:如样本空间、事件等。
理解事件的概念及其关系,注意事件之间的互斥与独立性质。
二是概率计算的方法:要掌握计算概率的基本方法,如几何概率、频率概率、条件概率等。
高考数学总复习易错易混知识点总结
高考数学总复习易错易混知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!高考数学总复习易错易混知识点总结离高考还有不到一个月的时间。
高考数学中容易混淆和出错的知识点
高考数学中容易混淆和出错的知识点高考数学易混淆易错知识点总结1.设置和功能1.在进行集合的交、并、补运算时,不要忘记完备集和空集的特例,也不要忘记借助数轴和文氏图求解。
2.在应用条件时,很容易忽略空集的情况。
3.用补集的思想能解决相关问题吗?4.简单命题和复合命题有什么区别?这四个命题之间是什么关系?如何判断充分必要条件?你知道“无命题”和“命题的否定形式”的区别。
6.在解决与功能相关的问题时,很容易忽略域优先原则。
7.在判断一个函数的奇偶性时,很容易忽略检查函数域关于原点是否对称。
8.在求解函数的解析表达式和函数的反函数时,很容易忽略标记函数的定义域。
9.如果原函数在区间[-a,a]内单调递增,则必然存在反函数,反函数也单调递增;但函数中有反函数,不一定单调。
10.熟练掌握函数单调性的证明方法了吗?定义法(取值、求异、判断正负)和求导法1.在求函数的单调性时,容易在多个单调区间之间误加符号“”和“或”;单调区间不能用集合或不等式表示。
12.要找到函数的取值范围,必须先找到函数的定义范围。
13.如何应用函数的单调性和奇偶性解决问题?比较函数值;求解抽象函数不等式;求参数范围(常数问题)。
这些基础应用你掌握了吗?14.在解对数函数问题时,有没有注意到实数和基数的限制?(实数大于零,基数大于零不等于1)字母基数需要讨论。
15.三次方(哪三次方?)你掌握了关系和应用吗?如何用二次函数求x值?16.用代换法解题时,容易忽略代换前后的等价性和参数的取值范围。
17.在“实数解的实系数二次方程”的转化过程中,你有没有注意到:当时“有解的方程”还不能转化为。
如果原问题没有表明是二次方程、二次函数或二次不等式,你考虑过二次项的系数可能为零吗?第二,不平等18.你注意到了吗:“一个是积极的;第二,设定;第三”。
19.绝对不等式的解法及其几何意义是什么?20.解分式不等式要注意什么?用“根轴法”解代数表达式(分式)不等式应注意什么?21.带参数不等式求解的一般方法是“定义域是前提,函数单调性是基础,分类讨论是关键”。
高考数学易混淆知识点总结
高考数学易混淆知识点总结易错点求函数定义域忽视细节致误错因分析:函数的定义域是使函数有意义的自变量的取值范畴,因此要求定义域就要依照函数解析式把各种情形下的自变量的限制条件找出来,列成不等式组,不等式组的解集确实是该函数的定义域。
在求一样函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。
函数的定义域是非空的数集,在解决函数定义域时不要不记得了这点。
关于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
易错点带有绝对值的函数单调性判定错误错因分析:带有绝对值的函数实质上确实是分段函数,关于分段函数的单调性,有两种差不多的判定方法:一是在各个段上依照函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出那个分段函数的图象,结合函数图象、性质进行直观的判定。
研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,查找解决问题的方案。
关于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
易错点求函数奇偶性的常见错误错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判定方法不当等。
判定函数的奇偶性,第一要考虑函数的定义域,一个函数具备奇偶性的必要条件是那个函数的定义域区间关于原点对称,假如不具备那个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再依照奇偶函数的定义进行判定,在用定义进行判定时要注意自变量在定义域区间内的任意性。
易错点抽象函数中推理不严密致误错因分析:专门多抽象函数问题差不多上以抽象出某一类函数的共同“特点”而设计出来的,在解决问题时,能够通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。
高考数学中易错、易漏、易忘的方法
解: y 4( x 2) 8 4 x a (2,0).
正解: y t 4( x h) 8 y 4 x t 4h 8. 令t 4h 8 0, 得t 4h 8 a (h,4h 8).
知识点拨:知道 ( x t , y h) 0的平移方法 F , 如 : y 2 log2 ( x 1).
lg(1 x2 ) 6、判断函数f ( x) 的奇偶性。 x2 2
lg(1 x ) 解: f ( x) f ( x), 得为非奇非偶。 x2 2 lg(1 x 2 ) 错因:没有考虑定义域 ,从f ( x) f ( x) x2 2
2
得为非奇非偶的错误结 论。
x1 x2 2 4 x1 x2,不成立。
8、设全集U R,集合A x log 2 (2 x 3) 2 求:CU A 解:由 log 2 (2 x 3) 2补集得 log 2 (2 x 3) 2即log 2 (2 x 3) log 2 4 0 2 x 3 4所以 7 3 CU A x x 2 2
10、(1)已知抛物线y 2 4 x, 直线k过点(0, 1 )与 抛物线有一个公共点。 求:直线k的方程。
y2 4x 解: 得k 2 x 2 (2k 4) x 1 0 y kx 1 由 0得(2k 4) 2 4k 2 0, k 1 方程为y x 1. 错因: 1 )点在抛物线外应有两条切线。
7、已知实数m,使方程x 2 (m 4i) x 1 2mi 0有实根, 求m的取值范围
解: 方程有实根, (m 4i)2 4(1 2mi) m2 20 0 m 2 5, m 2 5.
高考数学易错知识点
高考数学易错知识点高考数学易错知识点13篇在平日的学习中,是不是听到知识点,就立刻清醒了?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
掌握知识点是我们提高成绩的关键!以下是店铺帮大家整理的高考数学易错知识点,仅供参考,欢迎大家阅读。
高考数学易错知识点1一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
例如:。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二、不等式1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.2.绝对值不等式的解法及其几何意义是什么?3.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.5. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
2010年高考数学易错题集大全(10年高考试卷)
第一章 集合、简易逻辑、充要条件研究集合要搞清集合的代表元素是数集(常涉及函数的定义域、值域、方程的解、不等式的解集)、点集(常涉及函数的图像、直线与圆锥曲线位置关系);注意集合的互异性、空集的讨论;遇到集合问题应化到最简形式,再进行运算;集合多与函数、方程、不等式、解析几何、数列联系,常用的数学思想有:①数形结合(数轴、函数的图象、解几知识、文氏图) ②分类讨论(空集、参数) ③函数方程思想。
复合命题的真值表:p 或q (p ∨q )是有一真则真,与集合的并集联系;p 且q (p ∧q )是有一假则假,与集合的交集联系;非P(┓P) 与p 的真假相反,是命题的否定形式,与集合的补集联系,注意它只否定结论,而否命题是既否定条件又否定结论。
原命题(若p 则q )⇔逆否命题(若┓q 则┓p ),因此判断命题的真假经常通过它的等价命题来判断。
注意原命题为真,其逆命题、否命题都不一定为真。
判断充要条件时要分清条件与结论,注意将命题进行等价变形(如用其逆否命题),同时应注意与集合联系:若A ⊆B 时,则A 是B 的充分条件,若A B 时,A 是B 的充分不必要条件,若A =B 时,A 是B 的充要条件。
一、选择题1、含有三个实数的集合可表示为{}{}的值为,则,,也可表示为,,2005200520,1b a b a a a ab ++( )A 、0B 、1C 、-1D 、 12、已知集合{}的真子集个数为,3|1| 0 |N x x x A ∈-= A 、7 B 、8 C 、15 D 、16 ( )3、已知集合=⋂∈+-==∈+-==Q P R x x y y Q R x x y y P 则},,, ,2|{ } 2|{2( )A 、(0,2) , (1, 1)B 、{(0,2),(1,1)}C 、{1,2}D 、{y |y ≤2}4、集合M={x |x =2k,k ∈Z} , N={x |x =2k +1,k ∈Z}, Q={x |x =4k +1,k ∈Z}.又a ∈M, b ∈N, 则一定有A 、a +b ∈MB 、a +b ∈NC 、a +b ∈QD 、a +b ∉M,N,Q 中任一个 ( )5、若B A ⌝⇔⌝,B C ⌝⇒⌝,则A 为C 的 ( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 6、设集合M =(){}),0(,sin |,π∈=x x y y x ,N =(){}R a a y y x ∈=,|,,则集合N M ⋂的子集最多有 A 、2个 B 、3个 C 、4个 D 、8个 ( )7、若“┓p 或┓q ”是真命题,则 ( )A 、“p 或q ”是真命题B 、“┓p 且┓q ”是真命题C 、“p 或q ”是假命题D 、“p 且q ”是假命题8、已知a x f R x x x f <若|4)(|),(13)(-∈+=成立的充分条件是均为正实数)、<b a b x (|1|-,则a 、b 间的关系为 A 、3ba >B 、3b a ≤C 、 3a b <D 、 3a b ≤9、A 、B 为第一象限角,则A >B 是sinA >sinB 成立的 (若改为△ABC 中又如何?)A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 10、集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A 且A x ∉+1,则称x 为A的一个“孤立元素”,那么S 中无“孤立元素”的4元子集的个数是 ( ) A 、4个 B 、5个 C 、6个 D 、7个11、若集合A 1、A 2满足),(,2121A A A A A 则称=⋃为集合A 的一种分拆,规定当且仅当A 1=A 2时,),()(1221A A A A 与,为集合A 的同一分拆,则集合A ={a ,b ,c }的不同分拆数为A 、9B 、18C 、27D 、36 二、填空题12、对于M 、P 两个非空集合,定义{} P x M x |x P -M ,且∉∈=若}|,cos |5|{,3|1||{R x x P x x M ∈==≤-=αα )(P M M --则= ;13、已知的取值范围为实数的必要不充分条件,则是若;命题a q p a a x a x q x p ⌝⌝≤+++-≤-,0)1()12(:1|34:|214、设{}{}的范围则实数若,a B B A a x a x x B x x x A ,01)1(2|,04|222=⋂=-+++==+= 15、已知x m x f q R m x x p )37()(:|1|||:--=-+,的解集为>不等式是减函数,如果两个命题有且只有一个正确,则实数m 的取值范围为 ; 16、调查100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么既带感冒药又带胃药的人数范围是 ;17、若含有集合A ={1,2,4,8,16}中三个元素的所有子集依次记为)(,,,,321*∈N n B B B B n 其中 ,又将集合),,3,2,1(n i B i =的元素的和记为=++++n i a a a a a 321,则 186 ; 三、解答题18、设命题)lg()(:1612a x ax x f p +-=函数的定义域为R ,命题axx q ++112:<不等式对一切正实数均成立,如果命题p 或q 为真命题,命题p 且q 为假命题,试求实数a 的取值范围。
高考数学必考重点知识大全
高考数学必考重点知识大全高考数学必考重点知识大全一集合与简单逻辑1.易错点遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
2.易错点忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
在解题时也可以先确定字母参数的范围后,再具体解决问题。
3.易错点四种命题的结构不明致误错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。
4.易错点充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B 的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
5.易错点逻辑联结词理解不准致误错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,p∨q假<=>p假且q假(概括为一真即真);p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p假<=>p真(概括为一真一假)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识易错点梳理一、集合、简易逻辑、函数1.研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x|,y},且A=B,则x+y=2.研究集合,首先必须弄清代表元素,才能理解集合的意义。
已知集合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N;与集合M={(x,y)|y=x2 ,x∈R},N={(x,y)|y=x2+1,x∈R}求M∩N的区别。
3.集合 A、B,时,你是否注意到“极端”情况:或;求集合的子集时是否忘记. 例如:对一切恒成立,求a的取植范围,你讨论了a=2的情况了吗?4.对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为如满足条件的集合M共有多少个5.解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法?6.两集合之间的关系。
7.(CUA)∩( CU B) = CU(A∪B)(CUA)∪( CUB) = CU(A∩B);;8、可以判断真假的语句叫做命题.逻辑连接词有“或”、“且”和“非”.p、q形式的复合命题的真值表:p q P且q P或q真真真真真假假真假真假真假假假假9、命题的四种形式及其相互关系互逆互互互为互否逆逆否否否否否否互逆原命题与逆否命题同真同假;逆命题与否命题同真同假.10、你对映射的概念了解了吗?映射f:A→B中,A中元素的任意性和B中与它对应元素的唯一性,哪几种对应能够成映射?11、函数的几个重要性质:①如果函数对于一切,都有或f(2a-x)=f(x),那么函数的图象关于直线对称.②函数与函数的图象关于直线对称;函数与函数的图象关于直线对称;函数与函数的图象关于坐标原点对称.③若奇函数在区间上是递增函数,则在区间上也是递增函数.④若偶函数在区间上是递增函数,则在区间上是递减函数.⑤函数的图象是把函数的图象沿x轴向左平移a个单位得到的;函数(的图象是把函数的图象沿x轴向右平移个单位得到的;函数+a的图象是把函数助图象沿y轴向上平移a个单位得到的;函数+a的图象是把函数助图象沿y轴向下平移个单位得到的.12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗?13、求函数的定义域的常见类型记住了吗?函数y=的定义域是;复合函数的定义域弄清了吗?函数的定义域是[0,1],求的定义域. 函数的定义域是[],求函数的定义域14、含参的二次函数的值域、最值要记得讨论。
若函数y=asin2x+2cosx-a-2(a∈R)的最小值为m, 求m的表达15、函数与其反函数之间的一个有用的结论:设函数y=f(x)的定义域为A,值域为C,则①若a∈A,则a=f-1 [f(a)]; 若b∈C,则b=f[f-1 (b)]; ②若p∈C,求f-1 (p)就是令p=f(x),求x.(x∈A)即互为反函数的两个函数的图象关于直线y=x对称,16、互为反函数的两个函数具有相同的单调性;原函数在区间上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.17、判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗?在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数;18、根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数单调性的一种重要方法。
19、你知道函数的单调区间吗?(该函数在和上单调递增;在和上单调递减)这可是一个应用广泛的函数!20、解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀.21、对数的换底公式及它的变形,你掌握了吗?()22、你还记得对数恒等式吗?()23、“实系数一元二次方程有实数解”转化为“”,你是否注意到必须;当a=0时,“方程有解”不能转化为.若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?二、三角、不等式24、三角公式记住了吗?两角和与差的公式________________;二倍角公式:_________________ 万能公式 ______________正切半角公式____________________;解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次,25、在解三角问题时,你注意到正切函数、余切函数的定义域了吗?正切函数在整个定义域内是否为单调函数?你注意到正弦函数、余弦函数的有界性了吗?26、在三角中,你知道1等于什么吗?(这些统称为1的代换) 常数“1”的种种代换有着广泛的应用.(还有同角关系公式:商的关系,倒数关系,平方关系;诱导公试:奇变偶不变,符号看象限)27、在三角的恒等变形中,要特别注意角的各种变换.(如等)28、你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来)29、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次);你还记得降幂公式吗?cos2x=(1+cos2x)/2;sin2x=(1-cos2x)/230、你还记得某些特殊角的三角函数值吗?()31、你还记得在弧度制下弧长公式和扇形面积公式吗?()32、辅助角公式:(其中角所在的象限由a, b 的符号确定,角的值由确定)在求最值、化简时起着重要作用.33、三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴,取最值时的x值的集合吗?(别忘了kZ)三角函数性质要记牢。
函数y=k的图象及性质:振幅|A|,周期T=, 若x=x0为此函数的对称轴,则x0是使y取到最值的点,反之亦然,使y取到最值的x的集合为——————————,当时函数的增区间为—————,减区间为—————;当时要利用诱导公式将变为大于零后再用上面的结论。
五点作图法:令依次为求出x与y,依点作图34、三角函数图像变换还记得吗?平移公式(1)如果点 P(x,y)按向量平移至P′(x′,y′),则(2)曲线f(x,y)=0沿向量平移后的方程为f(x-h,y-k)=035、有关斜三角形的几个结论:(1) 正弦定理: (2) 余弦定理: (3)面积公式36、在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及意义?①异面直线所成的角、直线与平面所成的角、向量的夹角的取值范围依次是.②直线的倾斜角、到的角、与的夹角的取值范围依次是.③反正弦、反余弦、反正切函数的取值范围分别是.37、同向不等式能相减,相除吗?38、不等式的解集的规范书写格式是什么?(一般要写成集合的表达式)39、分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,奇穿偶回)40、解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零.)41、含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论)42、利用重要不等式以及变式等求函数的最值时,你是否注意到a,b(或a ,b非负),且“等号成立”时的条件,积ab或和a+b其中之一应是定值?(一正二定三相等)43、(当且仅当时,取等号); a、b、cR,(当且仅当时,取等号);44、在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解集是…….45、解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”46、对于不等式恒成立问题,常用的处理方式?(转化为最值问题)三、数列47、等差数列中的重要性质:(1)若,则;(2);(3)若三数成等差数列,则可设为a-d、a、a+d;若为四数则可设为a-、a-、a+、a+;(4)在等差数列中,求Sn 的最大(小)值,其思路是找出某一项,使这项及它前面的项皆取正(负)值或0,而它后面各项皆取负(正)值,则从第一项起到该项的各项的和为最大(小).即:当a1 >0,d<0,解不等式组an ≥0 an+1 ≤0可得Sn 达最大值时的n的值;当a1 <0,d>0,解不等式组an ≤0 an+1 ≥0可得Sn 达最小值时的n的值;(5).若an ,bn 是等差数列,Sn ,Tn 分别为an ,bn 的前n项和,则。
.(6).若{}是等差数列,则{}是等比数列,若{}是等比数列且,则{}是等差数列.48、等比数列中的重要性质:(1)若,则;(2),,成等比数列49、你是否注意到在应用等比数列求前n项和时,需要分类讨论.(时,;时,)。