供暖系统中常见问题

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

供暖系统运行中的常见问题分析

摘要:我国集中供热事业发展,特别是近年来城市集中供热发展较快,但在实际运行中也存在很多的问题,根据调研及近二十年的设计和运行管理经验,就我国目前供暖系统普遍存在的共性问题,如水力失调、系统积气、系统失水以及系统压力不稳定等做了简要分析,提出了解决方案,并列举了供暖系统改造的工程实例。

关键词:供暖系统水力失调压力波动

1、问题的提出

供热工程是利用热媒(如水、蒸汽或其它介质)将热能从热源输送到各热用户的工程技术。通常的供暖系统由热源、热网、热用户的三部分组成,其能否正常运行主要取决于系统设计、施工、运行管理水平等三个方面,并且这三个方面相互影响、相互制约,其中的任何一个环节出现问题都会影响到整个系统的正常运行,使供暖的质量无法满足用户的要求。根据调研,我国目前的供暖系统在设计、施工、运行管理等方面均不同程度的存在着问题,主要表现为系统冷热不均、失调严重、运行中的水、煤、电

等的能耗严重,运行故障时有发生,严重的威胁着热网的正常运行,供热质量难以保证。

一个供暖系统若按规范进行设计施工,其正常运行是

有保障的。但是,我国的采暖系统大部分都不是很合理,集中表现为热负荷选取过大,造成设备选型过大,输送设备大,备用率高,经济效益差。在实际工程中还常常出现这样的情况,供热系统若按规范和节能标准设计,由于施工和运行管理中的种种问题,使得系统往往满足不了热用户的需求,造成设计者不能按常规的设计理论进行设计,出现了节能建筑不节能的尴尬局面,即建筑的墙体是节能

墙体,而供暖系统未能按节能标准设计。尤其在改扩建工程中表现得尤为突出,设计者必须按原有的老建筑的供暖设计负荷进行设计,否则将造成系统的不平衡;在对原有系统的运行状况缺乏了解,或根本无从了解时,设计者只能利用大负荷进行弥补。久而久之,不合理反而变得合理,为人们所接受。就我国的供暖现状而言,采取何种措施,在保证供暖质量的同时,尽可能的减少浪费,提高现有供热系统的效率是工程设计和运行管理人员所面临的一个重大课题。

2、存在的问题及对策

2.1水力失调

2.1.1系统水力失调的分类及原因

系统水力失调可分为水平失调和垂直失调两种。前者表现为水平面上用户流量偏离设计值,近端热、远端冷;后者表现为垂直面上散热器流量偏离设计值,楼层上下冷热不均。为了解决不利用户的供热问题,通常是配置大流量、高扬程水泵,导致近端的热用户更加过热,由于大流量小温差运行,热量浪费严重,电耗增加,运行成本很高。

(a)水平失调的原因可归纳为:

1)热网设计一般只注意最不利点所必需的资用压头,而其它点的资用压头总是大于实际需要值,越近热源位置资用压头的余量就越大。在热网投入运行时若没有及时调节,必然出现流量分配偏离设计值,导致用户冷热不均。

2)供热面积扩大,热网的某些管段流通能力不够,没有及时改造管网,而只更换水泵,可能导致系统的水力失调。

3)热网在设计合理的情况下,水泵选型过大,运行流量偏离设计值也会导致热网水力失调。

(b)垂直失调的原因可归纳为:

供热系统各立管之间、各层之间存在水力不平衡,由于管道系列规格的限制,设计一般是无法使之完全平衡,各环路的自然压头差别影响到它们的不平衡程度。

2.1.2系统水力失调的处理办法

解决供热系统水力失调问题主要在于改善二次水系统和户内系统,以改善小区内建筑物之间和建筑物内部房屋冷热不均的状况,并通过运行调节实现按用户热负荷分配流量,即“按需分配”使每个用户室温达到一致且满足要求。

(a)水平失调的处理方法

1)在每个用户引入口安装调节性能较好的调节阀,于系统正式运行前进行初调节。

2)在热用户引入口安装自立式压差调节阀、流量调节阀或自立式平衡阀,对其初调节并锁定,可以有效的解决小区内建筑物之间冷热不均的问题。

3)有条件的设置热源和热网的微机监控系统,对系统进行有效的监视、调整和控制,可实行最优化的运行调节和控制。

(b)垂直失调的处理方法

1)在供热系统立管和散热器入口支管上设置调节性能好的阀门,并对系统进行初调节,投资少,国内应用较多。

2)在供热系统立管设置平衡阀平衡各立管之间的流量,散热器入口支管上设置温控阀控制室内温度,能够有效地解决建筑物内部房屋冷热不均的问题,不仅节约能源,还为计量收费,用户自由调节室温打下了基础。

2.2系统积气

2.2.1系统积气的主要原因

(a)系统积气的主要原因有两个:

热水中溶解的气体在系统的低速低压部位自动析出,积存在散热器内或系统的局部高点,补水量越大析出的气体可能就越多,影响管道内热媒的流动和散热效果。

(b)系统倒空,即室内系统的局部形成真空,使大量的气体进入系统。对失水量比较大的采暖系统,若系统丢水后不能及时补水,倒空则不可避免。

2.2.2系统积气的处理方法

减少系统的跑、冒、滴、漏,控制系统丢水,从而减少了系统的补水,把系统的补水率控制在2%以下,可有

效减少溶解在补水中的气体析出。如某系统的补水率通常在10%~15%,系统总有排不完的气体,当补水量降下来以后,积气量明显减少。

在系统运行中,如果系统丢水应及时补水,目前常用的定压方式有以下几种:膨胀水箱定压、定压罐定压、间歇补水定压、连续补水定压和变频调速补水定压方式。

采用膨胀水箱定压易加重系统腐蚀,膨胀水箱必须安装在系统最高处,很不方便,在实际运行中往往由于压力表精度、人为的观测误差等因素容易造成系统倒空、进气,空气被循环水带到系统之中在压力大的部位溶解在水中,在压力小的部位析出,增加了积气。同时热媒中的气体过多加剧了热源、管道、散热器的氧化腐蚀,缩短了设备的使用寿命。系统中的积气需要及时排出,增加了运行管理人员的工作量,否则系统不但不能正常运行,还可能出现冻裂管道和散热器的事故。

定压罐体积大占地大,每隔一段时间要充一次气,充气工作非常繁琐。

间歇补水定压是根据系统的压力变化控制其补水,即系统压力低于某值时补水泵启动,高于某值时补水泵关闭。这种方式比较节能,但是系统压力波动大,运行不稳定。

相关文档
最新文档