华中科技大学《电磁场与电磁波》课程仿真实验报告

合集下载

电磁场与电磁波实验报告

电磁场与电磁波实验报告

电磁场与电磁波实验报告电磁场与电磁波实验报告引言:电磁场和电磁波是物理学中非常重要的概念。

电磁场是由电荷产生的一种物理场,它的存在和变化会影响周围空间中的其他电荷。

而电磁波则是电磁场的一种传播形式,它以电磁场的振荡和传播为基础,具有波动性质。

本次实验旨在通过实际操作和测量,深入了解电磁场和电磁波的特性。

实验一:测量电磁场强度在实验一中,我们使用了一个电磁场强度计来测量不同位置的电磁场强度。

首先,我们将电磁场强度计放置在一个固定的位置,记录下此时的电磁场强度。

然后,我们将电磁场强度计移动到其他位置,重复测量过程。

通过这些数据,我们可以得出不同位置的电磁场强度的分布情况。

实验结果显示,电磁场强度随着距离的增加而逐渐减弱。

这符合电磁场的特性,即电荷产生的电磁场在空间中以一定的规律传播,而传播的强度会随着距离的增加而减弱。

这一实验结果验证了电磁场的存在和变化对周围环境的影响。

实验二:测量电磁波频率和波长在实验二中,我们使用了一个频率计和一个波长计来测量电磁波的频率和波长。

首先,我们将频率计和波长计设置好,并将它们与电磁波源连接。

然后,我们观察频率计和波长计的测量结果,并记录下来。

通过这些数据,我们可以得出电磁波的频率和波长的数值。

实验结果显示,不同频率的电磁波具有不同的波长。

频率越高的电磁波,波长越短;频率越低的电磁波,波长越长。

这符合电磁波的特性,即电磁波的振荡频率和波长之间存在一定的关系。

这一实验结果验证了电磁波的波动性质,以及频率和波长之间的关系。

实验三:观察电磁波的干涉和衍射现象在实验三中,我们使用了一块光栅和一个狭缝装置来观察电磁波的干涉和衍射现象。

首先,我们将光栅放置在光源前方,并调整光源的位置和光栅的角度。

然后,我们观察到在光栅后方的屏幕上出现了一系列明暗相间的条纹。

这些条纹是由电磁波的干涉和衍射效应引起的。

实验结果显示,当电磁波通过光栅时,会发生干涉和衍射现象。

干涉现象表现为明暗相间的条纹,而衍射现象表现为条纹的扩散和交替。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。

2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。

点电荷q 在无限大真空中产生的电场强度E 的数学表达式为(1-1)真空中点电荷产生的电位为(1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为4= (1-3) 电位为4= (1-4) 本章模拟的就是基本的电位图形。

4.实验内容及步骤(1)点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图。

程序1:负点电荷电场示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;E=(-q./m1).*r;surfc(x,y,E);负点电荷电势示意图clear[x,y]=meshgrid(-10:1.2:10); E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;z=-q./m1surfc(x,y,z);xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('负点电荷电势示意图','fontsize',10)程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10)); R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));Z=q*k*(1./R2-1./R1);[ex,ey]=gradient(-Z);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');hold onquiver(X,Y,ex,ey,0.7);clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));U=q*k*(1./R2-1./R1);[ex,ey]=gradient(-U);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念。

电磁场与电磁波实验报告 2

电磁场与电磁波实验报告 2

电磁场与电磁波实验报告实验一 电磁场参量的测量一、 实验目的1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。

2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β和波速υ。

二、 实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。

本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λπβ2=,βωλν==f得到电磁波的主要参量:β和ν等。

本实验采取了如下的实验装置设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在分界面上产生反射波r E 和折射波t E 。

设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。

在一次近似的条件下,接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+∆+=+=;其中12L L L -=∆。

又因为1L 为定值,2L 则随可动板位移而变化。

当2r P 移动L ∆值,使3r P 有零指示输出时,必有1r E 与2r E 反相。

故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。

从而测出电磁波的波长λ和相位常数β。

下面用数学式来表达测定波长的关系式。

在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+=或写成 ()⎪⎭⎫ ⎝⎛+-∆Φ-=200212cos 2φφj i c r eE T RT E (1-2)式中L ∆=-=∆Φβφφ221为了测量准确,一般采用3r P 零指示法,即02cos =∆φ或π)12(+=∆Φn ,n=0,1,2......这里n 表示相干波合成驻波场的波节点(0=r E )数。

电磁场与电磁波实验报告(一)2024

电磁场与电磁波实验报告(一)2024

电磁场与电磁波实验报告(一)引言概述:电磁场与电磁波是近代物理学中的重要概念,对于理解电磁现象和应用电磁技术具有重要意义。

本实验报告旨在通过实验来探究电磁场和电磁波的基本特性,并深入了解其在不同情境下的行为和应用。

一、电磁场的产生与性质1. 静电场与磁场的产生机制2. 静电场与磁场的区别与联系3. 电磁场的力线分布与场强的概念4. 高斯定律与安培定律的应用5. 电磁场的矢量表示及其运算规则二、电磁辐射和电磁波的特性1. 辐射的概念与特点2. 电磁波的定义和分类3. 电磁波的传播速度和能量传播方式4. 电磁波的频率和波长关系5. 电磁波与物质的作用及与光的关系三、电磁波的实验测量1. 等幅比波法测量电磁波的速度2. 利用扩散法测量电磁波的波长3. 利用光栅光谱仪测量电磁波的频率和波长4. 利用双缝干涉测量电磁波的波长5. 利用驻波法测量电磁波的频率四、电磁波在通信中的应用1. 电磁波在无线通信中的传输原理2. 电磁波的调制与解调技术3. 电磁波的天线和传输介质选择4. 电磁波在卫星通信中的应用5. 电磁波在无线电和电视广播中的应用五、电磁波对人体健康的影响1. 电磁波对人体的生物效应与健康风险2. 电磁辐射的安全标准与防护措施3. 电磁波辐射源的评估与监测4. 电磁波辐射对儿童和孕妇的影响5. 电磁波辐射与癌症的关系研究总结:通过本实验的开展,我们深入了解了电磁场和电磁波的产生机制和特性,探讨了其在实验测量、通信技术和健康影响等方面的应用。

电磁场与电磁波作为现代科技中的基础理论和技术手段,对于推动科学技术发展和提高人们的生活水平具有重要意义。

在未来的研究中,我们将继续深入探索电磁场和电磁波的更多应用和相关问题,为推动科学进步和提高人类福祉做出贡献。

最新电磁场与电磁波实验报告

最新电磁场与电磁波实验报告

最新电磁场与电磁波实验报告
在本次实验中,我们深入研究了电磁场与电磁波的基本特性,并进行了一系列的实验来验证理论和观测实际现象。

以下是实验的主要部分和观察结果的概述。

实验一:静电场的建立与测量
我们首先建立了一个简单的静电场,通过使用高压电源对两个相对的金属板进行充电。

通过改变电源的电压,我们观察到金属板上的电荷积累情况,并使用电位差计测量了电场强度。

实验数据显示,电场强度与电压成正比,这与库仑定律的预测一致。

实验二:电磁波的产生与传播
接下来,我们通过振荡电路产生了电磁波。

在一个封闭的微波腔中,我们使用电磁波发生器产生不同频率的电磁波,并通过特殊的探测器来测量波的传播特性。

实验结果表明,电磁波的传播速度在不同的介质中有所变化,这与介质的电磁特性有关。

实验三:电磁波的极化与干涉
在这部分实验中,我们研究了电磁波的极化现象。

通过使用不同极化的波前,我们观察到了波的干涉效应。

特别是在双缝干涉实验中,我们观察到了明显的干涉条纹,这证明了电磁波的波动性质。

实验四:电磁波的吸收与反射
最后,我们探讨了电磁波与物质相互作用的过程。

通过将电磁波照射在不同材料的样品上,我们测量了波的吸收和反射率。

实验发现,吸收和反射率与材料的电磁性质密切相关,并且可以通过改变波的频率来调整这些性质。

通过这些实验,我们不仅验证了电磁场与电磁波的基本理论,而且加深了对这些现象在实际应用中的理解。

这些实验结果对于无线通信、雷达技术以及其他相关领域的研究和开发具有重要的指导意义。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

电磁场与电磁波实验报告09024126 张亦驰一.实验目的使用简单迭代法与超松弛迭代法求解电磁场金属槽边值问题二.实验步骤1.简单迭代法:源程序:#include<xxgc.h>main(){int i;double a[50][3][3];a[0][0][0]=a[0][1][0]=a[0][2][0]=25;a[0][0][1]=a[0][1][1]=a[0][2][1]=50;a[0][0][2]=a[0][1][2]=a[0][2][2]=75;for(i=0;i<50;i++){printf("a[%d][0][0]=%.3f,a[%d][1][0]=%.3f,a[%d][2][0]=%.3f\n",i,a[i][0][0],i,a[i][1][0],i,a[i ][2][0]);printf("a[%d][0][1]=%.3f,a[%d][1][1]=%.3f,a[%d][2][1]=%.3f\n",i,a[i][0][1],i,a[i][1][1],i,a[i ][2][1]);printf("a[%d][0][2]=%.3f,a[%d][1][2]=%.3f,a[%d][2][2]=%.3f\n\n",i,a[i][0][2],i,a[i][1][2],i,a[i][2][2]);getch();a[i+1][0][0]=0.25*(0+0+a[i][1][0]+a[i][0][1]);a[i+1][0][1]=0.25*(0+a[i][0][0]+a[i][1][1]+a[i][0][2]);a[i+1][0][2]=0.25*(0+a[i][0][1]+a[i][1][2]+100);a[i+1][1][0]=0.25*(a[i][0][0]+0+a[i][2][0]+a[i][1][1]);a[i+1][1][1]=0.25*(a[i][0][1]+a[i][1][0]+a[i][2][1]+a[i][1][2]);a[i+1][1][2]=0.25*(a[i][0][2]+a[i][1][1]+a[i][2][2]+100);a[i+1][2][0]=0.25*(a[i][1][0]+0+0+a[i][2][1]);a[i+1][2][1]=0.25*(a[i][1][1]+a[i][2][0]+0+a[i][2][2]);a[i+1][2][2]=0.25*(a[i][1][2]+a[i][2][1]+0+100);}getch();}实验结果如图2.超松弛迭代法源程序:#include<stdio.h>#include<math.h> #include<iostream> using namespace std;#define pi 3.1415926void Boundary_conditions_initialize(float Boundary_areas[5][5]) {for(int j=0;j<5;j++){ Boundary_areas[0][j]=0;Boundary_areas[4][j]=100; }for(int i=0;i<5;i++){Boundary_areas[i][0]=0;Boundary_areas[i][4]=0;j =100 Vj =0j =0}}void nodes_Field_region_Initialization(float Field_region[5][5]) {for(int i=1;i<4;i++){ for(int j=1;j<4;j++){Field_region[i][j]=0; }}}void Output_nodes_value (float all_nodes[5][5],int count){if(count==0){cout<<"场内各点的初始值为:"<<'\n' ;}else{cout<<"迭代次数N="<< count<<'\n'<<"迭代最终结果为:" <<'\n'; }for(int i=4;i>=0;i--){ for(int j=0;j<5;j++){cout<<all_nodes[i][j]<<'\t'<<'\t';}cout<<'\n';}}void main(void){int a=4 ;int h=a/4;float areas[5][5] ;int N=0 ;const float e=0.00001;float Maxerror ;float a0=2/(1+sin(pi/4));Boundary_conditions_initialize(areas);nodes_Field_region_Initialization(areas);Output_nodes_value (areas,N) ;cout<<"加速因子a="<<a0<<'\n';do{ N=N+1 ;for(int i=1;i<4;i++){ for(int j=1;j<4;j++){ float areasK=areas[i][j];areas[i][j]=areas[i][j]+(a0/4)*(areas[i-1][j]+areas[i][j-1]+areas[i+1 ][j]+areas[i][j+1]-4*areas[i][j]);float error=fabs(areas[i][j]-areasK);if(i==1&&j==1){Maxerror=error; }else{if (Maxerror<error) Maxerror=error ;}}}} while(Maxerror>e) ;Output_nodes_value(areas,N);}。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

电磁场与电磁波实验报告实验题目:电磁场与电磁波实验实验目的:1.了解电磁场的产生原理和特性。

2.理解电磁波的概念和基本特性。

3.掌握测量和分析不同电磁波的实验方法。

实验器材:1.U形磁铁2.电磁铁3.直流电源4.交流电源5.电磁感应器6.示波器7.微波源8.微波接收器9.光栅片10.各种电磁波滤波器实验原理:1.电磁场的产生:电流通过电线时,会在周围产生磁场。

在一对平行导线中,当电流方向相同时,导线之间的磁场是叠加的;当电流方向相反时,导线之间的磁场互相抵消。

2.电磁场的特性:电磁场具有两种性质,即不能长距离传播和具有作用力。

通过电磁感应现象,可以观察到电磁场的作用力。

3.电磁波的产生与传播:当电场和磁场变化时,会激发并产生电磁波。

电磁波可根据频率不同被分为不同波段,如:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

实验步骤:实验1:观察电磁场的产生和作用1.将磁铁插入U形磁铁中,并将直流电源连接到U形磁铁的两端;2.在U形磁铁下方放置一根金属杆,并用电磁感应器在金属杆上方测量磁感应强度;3.开启直流电源,记录不同电流强度下的磁感应强度,并绘制电流与磁感应强度的图线;4.在磁铁两端放置一磁性物体,观察其受力情况。

实验2:测量电磁波的特性1.将微波源和微波接收器分别连接至交流电源和示波器;2.将微波源调至一定频率,并记录该频率;3.调整示波器至合适的量程和垂直偏置,观察示波器上的微波信号;4.更换不同频率和波长的电磁波,重复步骤3;5.将光栅片放置在微波源与接收器之间,观察光栅片的衍射效应。

实验结果与分析:实验1:观察电磁场的产生和作用根据实验数据,绘制出电流与磁感应强度的图线,可以观察到磁感应强度与电流之间呈现线性关系,并且磁性物体受到磁力的作用。

实验2:测量电磁波的特性根据实验数据,可以观察到不同频率和波长的电磁波在示波器上表现出不同的振动形态,频率越高,波长越短。

通过光栅片的衍射效应,可以观察到电磁波的波长。

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验

年《电磁场与电磁波》仿真实验————————————————————————————————作者:————————————————————————————————日期:《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。

受目前实验室设备条件的限制,目前主要利用MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。

本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像 (12)四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。

二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。

(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。

点运算符有.*、./、.\和.^。

两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。

例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与电磁波实验报告电磁波反射和折射实验实验目的:1. 探究电磁波在不同介质中的反射和折射规律;2. 学习使用测量工具和观察现象,从实验中深化对电磁波的认知。

实验器材:1. 实验室用的电磁波发生器、接收器和天线;2. 不同介质的板子,如玻璃、塑料、水等;3. 直尺、支架、测角器等测量工具。

实验原理:1. 电磁波反射规律当电磁波从空气传播到介质边界时,如果介质的折射率大于空气,那么电磁波会被反射回来。

反射角等于入射角,即角度相等。

2. 电磁波折射规律当电磁波传播到介质边界时,如果两侧的折射率不同,电磁波会发生折射。

角度满足斯涅尔定律,即入射角和折射角的正弦之比在两个不同介质中是常数,即:sinθ1/sinθ2=n2/n1,其中θ1是入射角,θ2是折射角,n1和n2分别是两个介质的折射率。

实验步骤:1. 将电磁波发生器的天线对准接收器,并调整距离,使得接收器接收到最大强度的信号。

2. 选择一个介质板,将其放置在天线和接收器之间。

记录下入射角和反射角的值。

3. 更换不同的介质板,如玻璃、水、塑料等,重复步骤2。

4. 对于折射实验,将介质板斜放,入射光线从上方斜射入水中,观察折射出来的角度。

5. 测量介质板的厚度,并计算出介质的折射率。

实验结果:1. 反射实验中,记录下了不同介质的入射角和反射角。

通过比较不同介质的反射角可以发现,当折射率越大的时候,反射角越小,反之越大。

2. 折射实验中,记录下了入射角和折射角的值,并计算出了水的折射率。

分析与讨论:通过实验发现,电磁波的反射和折射规律与光学的规律相同,具有相似的物理原理。

另外,实验中需要注意精确度,例如使用测角器来测量角度,要保证角度的精确度,以免影响结果。

此外,实验中不同介质的反射、折射规律的不同也需要谨慎对待。

2016年《电磁场与电磁波》仿真实验

2016年《电磁场与电磁波》仿真实验

2016年《电磁场与电磁波》仿真实验《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。

受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。

本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像………………………………………………………………………………………12四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。

二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。

(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。

点运算符有.*、./、.\和.^。

两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。

例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。

程序:x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)(二)几个绘图命令1. doc命令:显示在线帮助主题调用格式:doc 函数名例如:doc plot,则调用在线帮助,显示plot函数的使用方法。

华中科技大学电磁场与电磁波课程仿真实验报告

华中科技大学电磁场与电磁波课程仿真实验报告

《电磁场与电磁波》课程仿真实验报告学号*********姓名Crainax专业光学与电子信息学院院(系)******2016 年11月27日1.实验目的1)理解均匀波导中电磁波的分析方法,TEM/TE/TM 模式的传输特性;2)了解HFSS 仿真的基本原理、操作步骤;3)会用HFSS 对金属波导的导波特性进行仿真;4)画出波导主模的电磁场分布;5)理解波导中的模式、单模传输、色散与截止频率等概念。

2.实验原理2.1导波原理如图1,z轴与金属波导管的轴线重合。

假设:1)波导管内填充的介质是均匀、线性、各向同性的;2)波导管内无自由电荷和传导电流;3)波导管内的场是时谐场。

图1 矩形波导以电场为例子,将上式代入亥姆霍兹方程 2E+k2E=0,并在直角坐标内展开,即有:其中k c表示电磁波在与传播方向相垂直的平面上的波数。

如果导波沿z方向传播,则对波导中传播的电磁波进行分析可知:1)场的横向分量可由纵向分量表示;2)既满足亥姆霍兹方程有满足边界条件的解很多,每个解对应一个波形(或称之为模式)3)k c是在特定边界条件下的特征值,当相移常数β=0 时,意味着波导系统不在传播,此时k c=k,k c称为截止波数。

2.2 矩形波导中传输模式的纵向传输特性波导中的电磁波在传输方向的波数β由下式给出:式中k为自由空间中同频率的电磁波的波数。

要使波导中存在导波,则β必须为实数,即如上式不满足,则电磁波不能在波导内传输,即截止。

矩形波导中TE10模的截止波长最长,故称它为最低模式,其余模式均称为高次模。

由于TE10模的截止波长最长且等于2a,用它来传输可以保证单模传输。

当波导尺寸给定且有a>2b时,则要求电磁波的工作波长满足a<λ<2a λ>2b当工作波长给定时,则波导尺寸必须满足3.实验内容在HFSS中完成圆波导的设计与仿真,要求画出电场分布,获得色散曲线。

模型半径为:4.20mm.1)探讨圆波导的横截面尺寸发生变化时,主模(TE11模)的场分布和传播特性如何变化;2)探讨圆波导的填充介质发生变化时,主模(TE11模)的场分布和传播特性如何变化;3)比较圆波导中前两个模式的差别(提示:TE11模和TM01模式,两者的截止波长分别为3.41a,2.62a)4.仿真实验步骤1)理论计算(给出截止频率计算过程及结果);圆波导中的TM波:容易得到TM模式下对应截至频率(c)TM01=(h)TM01/2 = (HZ)即为TM模式下的极限频率。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

电磁场与电磁波实验报告班级:学号:姓名:实验一:验证电磁波的反射和折射定律1学时1、实验目的验证电磁波在媒质中传播遵循反射定理及折射定律;1研究电磁波在良好导体表面上的全反射;2研究电磁波在良好介质表面上的反射和折射;3研究电磁波全反射和全折射的条件;2、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角;3、实验结果:图1.1 电磁波在介质板上的折射图1.2 电磁波在良导体板上的反射实验二:电磁波的单缝衍射实验、双缝干涉实验;1、实验目的1研究当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象;在缝后面出现的衍射波强度不是均匀的,中央最强;2研究当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源;由两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象;2、实验原理单缝衍射实验原理见下图 5:当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象;在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ是波长,λ是狭缝宽度;两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至一级极大值,角度为:图 5 单缝衍射实验原理图如图 8:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源,由于两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象;当然电磁波通过每个缝也有狭缝现象;因此实验将是衍射和干涉两者结合的结果;为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽α接近入,例如:,这时单缝的一级极小接近53°;因此取较大的b,则干涉强受单缝衍射影响大;干涉加强的角度为:干涉减弱的角度为:3、实验结果图2.1 单缝衍射的I-α曲线图2.2双缝干涉的I-α曲线实验三:布朗格衍射的实验1、实验目的本实验是仿造X射线入射真实晶体发生衍射的基本原理,人为的制作了一个方形点阵的模拟晶体,以微波代替X射线,使微波向模拟晶体入射,观察从不同晶面上点阵的反射波产生干涉应符合的条件;这个条件就是布拉格方程;1掌握100面,110面点阵的反射波产生干涉的条件,得出布拉格方程;2了解直线极化和圆极化波特性参数的测试方法;2、实验原理任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关;晶体内的离子、原子或分子占据着点阵的结构, 两相邻结点的距离叫晶体的晶格常数;真实晶体的晶格常数约在10−8厘米的数量级,X 射线的波长与晶体的常数属于同一数量级,实际上晶体是起着衍射光栅的作用,因此可以利用 X 射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构得了解;本实验是仿造 X 射线入射真实晶体发生衍射的基本原理,人为的制作了一个方形点阵的模拟晶体,以微波代替 X 射线,使微波向模拟晶体入射,观察从不同晶面上点阵的反射波产生干涉应符合的条件,这个条件就是布拉格方程;它是这样说的,当波长为入的平面波射到间距为α的晶面上,入射角为Θ°,当满足条件时n为整数发生衍射;衍射线在所考虑的晶面反射线方向;在布拉格衍射实验中采用入射线与晶面的夹角即通称的入射角,是为了在实验时方便,因为当被研究晶面的法线与分光仪上度盘的 0 度刻度一致时,入射线与反射线的方向在度盘上有相同的示数,不容易搞错,操作方便;3、实验结果图3.1 布拉格衍射I-θ关系曲线由实验数据可得,两侧发生衍射的角度大约在34°和65°附近;根据布拉格方程nλ=2aCOSθ,将λ=32mm,a=40mm代入得:当n=1时,θ=66.42°;当n=2时,θ=36.87°.实验测得数据与理论计算值比较接近,可验证布拉格方程;69°附近产生的峰值可能是由其他实验组影响造成的,不计入考虑;实验四:均匀无损耗媒质参量的测量2学时1、实验目的了解电磁波在真空中传播特性和相干原理;1在学习均匀平面电磁波的基础上,观察电磁波传播特性,E、H、S互相垂直;2推导相干波理论数学模型,自行调节测量仪器,测量基本参量;3测定自由空间内电磁波波长λ、频率f,并确定电磁波的相位常数β和波速υη的测量;4了解电磁波的其他参量,如波阻抗5利用相干波接点位移法推导测量均匀无损耗媒质参量的ε和μ的数学模型6了解均匀无损耗媒质参量λ、β、的差别7熟悉均匀无损耗媒质分界面对电磁波的反射和折射的特性;2、实验原理迈克尔逊干涉试验的基本原理见下图 13 所示:在平面波前进的方向上放置一个成45°的半透射板,由于该板的作用,将入射波分成两束波:一束由于反射向 A 方向传播;另一束透过半透射板向B 方向传播;由于A﹑B 处全反射板的作用,两列波就再次回到半透射板并到达接收喇叭处,于是接收喇叭收到两束同频率且振动方向一致的两个波;如果这两个波的位相差为2π的整数倍,则干涉加强;当相位差为π的奇数倍则干涉减弱;因此在 A 处放一固定板,让 B 处的反射板移动,当表头指示从一次极小变到又一次极小时,则 B 处的反射板就移动λ⁄2的距离,因此有这个距离就可求得平面波的波长;3、实验结果()()mm 32.341-443.5-91.5621n 0L -3L 2=⨯=-⨯=λ实验五:利用微波衰减测量湿度、厚度2学时1、实验目的学习介质特性参量:相移常数和衰减常数的测量方法,自行推导出介质厚度和湿度的数学模型,设计实验方法;1了解被测量的物质所用波为TEM 波,TEM 波产生的条件; 2相移常数和衰减常数测量方法; 3湿度、厚度测量方法 4信号处理方法 2、实验原理同迈克尔干涉实验原理 3、实验结果491.5602.5592.4067.4172.2357.2643.532.13-+-+-+-=91.2=n33221100L L L L L L L L L -'+-'+-'+-'=∆()()mm80.271-432.13-2.05521n 0-32ˊ=⨯=-''⨯'L L λ()d L /1/∆+= λλ()d /91.21/32.3480.27+=mmd 6.12≈。

电磁场与电磁波实验报告

电磁场与电磁波实验报告

电磁场与电磁波实验报告
实验目的:通过实验探究电磁场和电磁波的相关性质,加深对电磁
学原理的理解,掌握相关实验操作技巧。

一、实验仪器与材料
本次实验所用仪器设备包括:
1. 电磁场产生装置;
2. 电场仪表;
3. 磁场仪表;
4. 信号发生器;
5. 示波器等。

二、实验步骤
1. 观察并记录电磁场产生装置的工作原理,了解电磁场的形成过程;
2. 利用电场仪表和磁场仪表分别测量电磁场的电场分量和磁场分量,并记录实验数据;
3. 通过调节信号发生器的频率和幅度,产生不同频率的电磁波,并
利用示波器观察并记录波形;
4. 将电磁场和电磁波的实验数据整理,形成图表和曲线。

三、实验结果与分析
根据实验数据,我们可以观察到电磁场和电磁波在不同频率下的表现。

电磁场的电场分量和磁场分量呈现出明显的变化规律,频率越高,波动频率越密集;而电磁波的波形随着频率的增加呈现出不同的特征,频率在一定范围内变化会引起频率响应的变化。

四、结论与思考
通过本次实验,我们深入了解了电磁场和电磁波的相关特性,了解
到电磁场和电磁波在不同频率下的表现差异。

同时,我们也发现了实
验过程中需要注意的细节问题,如仪器的校准和操作注意事项等。


过实验,我们不仅加深了对电磁学理论知识的理解,也提高了实验操
作的技巧和分析能力。

综上所述,电磁场与电磁波实验为我们提供了一个直观、具体的实
践平台,促进了电磁学知识的学习与应用,为我们日后的研究与工作
打下了坚实的基础。

电磁场与电磁波-点电荷模拟实验报告

电磁场与电磁波-点电荷模拟实验报告

重庆大学电磁场与电磁波课程实践报告题目:点电荷电场模拟实验日期:2013 年12 月7 日N=28《电磁场与电磁波》课程实践点电荷电场模拟实验1.实验背景电磁场与电磁波课程内容理论性强,概念抽象,较难理解。

在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。

MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。

为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。

2.实验目的应用MATLAB 模拟点电荷的电场线和等势线3.实验原理根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即:E V =-∇真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1212010244q q V V V R R πεπε=+=+本实验中,为便于数值计算,电势可取为1212q q V R R =+4.实验内容应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号:(1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷);(2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷);(3) 两个等量同号电荷的电场线和等势线;(4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2);(5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。

、n=28(1)电偶极子的电场线和等势线(等量异号点电荷对q2:q1 = 1,q2为负电荷);程序1:clear allq=1;xm=2.5;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4:0.5:4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=0.1;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);axis equal tighttitle('µãż¼«×ӵĵ糡Ïߺ͵ÈÊÆÏß','fontsize',12)(2)两个不等量异号电荷的电场线和等势线(q2:q1 = 1 + n/2,q2为负电荷);程序2:clear allq=15;xm=2.5;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4:0.5:4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=0.1;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);axis equal tighttitle('µãż¼«×ӵĵ糡Ïߺ͵ÈÊÆÏß','fontsize',12)(3)两个等量同号电荷的电场线和等势线;程序3:clear allq=-1;xm=2.5;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4:0.5:4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=0.1;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);axis equal tighttitle('µãż¼«×ӵĵ糡Ïߺ͵ÈÊÆÏß','fontsize',12)(4)两个不等量同号电荷的电场线和等势线(q2:q1 = 1 + n/2);程序4:clear allq=-15;xm=2.5;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4:0.5:4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=0.1;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);axis equal tighttitle('µãż¼«×ӵĵ糡Ïߺ͵ÈÊÆÏß','fontsize',12)(5)三个电荷,q1、q2为(1)中的电偶极子,q3为位于(0,0,0)的单位正电荷程序5:clear allq=1;q3=-1;xm=2.5;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);R3=sqrt(X.^2+Y.^2);U=1./R1-q./R2-q3./R3;u=-4:0.5:4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=0.1;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);dth3=11;th3=(dth3:dth3:360-dth3)*pi/180;x3=r0*cos(th3);y3=r0*sin(th3);streamline(X,Y,Ex,Ey,x3,y3);axis equal tighttitle('µãż¼«×ӵĵ糡Ïߺ͵ÈÊÆÏß','fontsize',12)从实验过程中学习到的东西:1.灵活学习,大胆求证,当不清楚E1,E2,前面符号的正负时,随便假设一个,再根据电荷的正负关系,看得到的图形是否正确,若不正确则再修改符号2.注意q的正负与两电荷是否异号有关,异号与同号q的正负不同3.学习初步使用matlab软件,为以后的学习打好基础4.更加深入地了解电荷的电场线与等势线。

2016年《电磁场与电磁波》仿真实验

2016年《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。

受目前实验室设备条件的限制,目前主要利用MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。

本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像 (12)四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。

二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。

(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。

点运算符有.*、./、.\和.^。

两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。

例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。

程序:x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)(二)几个绘图命令1. doc命令:显示在线帮助主题调用格式:doc 函数名例如:doc plot,则调用在线帮助,显示plot函数的使用方法。

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验

2016年《电磁场与电磁波》仿真实验《电磁场与电磁波》仿真实验2016年11月《电磁场与电磁波》仿真实验介绍《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。

受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。

本课程仿真实验包含五个内容:一、电磁场仿真软件——Matlab的使用入门二、单电荷的场分布三、点电荷电场线的图像四、线电荷产生的电位五、有限差分法处理电磁场问题目录一、电磁场仿真软件——Matlab的使用入门 (4)二、单电荷的场分布 (10)三、点电荷电场线的图像………………………………………………………………………………………12四、线电荷产生的电位 (14)五、有限差分法处理电磁场问题 (17)实验一电磁场仿真软件——Matlab的使用入门一、实验目的1. 掌握Matlab仿真的基本流程与步骤;2. 掌握Matlab中帮助命令的使用。

二、实验原理(一)MATLAB运算1.算术运算(1).基本算术运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。

(2).点运算在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。

点运算符有.*、./、.\和.^。

两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。

例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。

程序:x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)(二)几个绘图命令1. doc命令:显示在线帮助主题调用格式:doc 函数名例如:doc plot,则调用在线帮助,显示plot函数的使用方法。

电磁场与电磁波实训课程学习总结实验中理解电磁现象与波动特性的应用

电磁场与电磁波实训课程学习总结实验中理解电磁现象与波动特性的应用

电磁场与电磁波实训课程学习总结实验中理解电磁现象与波动特性的应用在电磁场与电磁波实训课程中,我有幸获得了丰富的实践经验和理论知识。

通过这门课程的学习,我对电磁现象与波动特性的应用有了更深入的理解。

本文将对我在实验中的所见所学做出总结。

首先,实验中我们研究了电磁波的基本特性。

电磁场的基础理论为我们提供了研究电磁波的理论基础,我们通过实验验证了电磁场的存在。

我们使用了霍尔电流传感器、磁感应强度测量装置等仪器,进行了一系列关于电场的实验。

通过实验我们验证了电磁波的传播速度是光速,电磁波具有横波性,电磁波由电磁场的相互作用产生。

这些实验为我们后续的学习奠定了基础。

其次,在实验中我们探讨了电磁波的传播与反射。

我们使用了反射定律测量装置、光栅实验装置等仪器,对电磁波在不同介质中传播和反射的特性进行了研究。

通过实验我们发现,电磁波在不同介质中传播速度会改变,并且会发生折射现象。

同时,我们还研究了电磁波的反射规律,验证了反射角等于入射角的现象。

这些实验让我们更加深入地理解了电磁波在实际应用中的特性。

再次,实验中我们研究了电磁波的干涉与衍射现象。

我们使用了干涉与衍射实验装置、单缝光栅等仪器,通过实验观察并解释了电磁波的干涉和衍射现象。

我们发现,当两束相干光经过干涉装置时,会出现明暗交替的干涉条纹,而当光通过狭缝或障碍物时,会发生衍射现象,产生波纹状的衍射图样。

这些实验让我们更加直观地认识到了电磁波的波动性质。

最后,在实验中我们还研究了电磁波的偏振与光的旋光现象。

我们使用了偏振片、旋光仪等仪器,通过实验验证了电磁波的偏振性质和光的旋光现象。

我们发现,通过偏振片可以选择性地使电磁波的振动方向发生变化,而光的旋光现象则让我们认识到了光在传播过程中的微妙性质。

通过这门实训课程的学习,我不仅掌握了电磁场与电磁波的基本原理和实验方法,还深入了解了电磁现象与波动特性的应用。

这门课程的学习让我对电磁学领域产生了浓厚的兴趣,并为我今后的学习和科研提供了坚实的基础。

HFSS波导仿真实验

HFSS波导仿真实验

条 件
求解设置:
求解频率,扫频设置
剖分细化网格 否
是 扫频分析
求解
结果是否收敛 是
是否需要扫频
否 数据后处理: 查看参数,场分布等
计算结果,项目的后处理
HFSS界面
矩形波导示意图
矩形波导的结构如图1,波导内传播的电磁波可分为TE模和 TM模。
矩形波导TE10模的电磁场分布
TE10 模, Ez 0 。
2)设置长方体属性 在屏幕中间模型列表中的 Box1 为画出的长方体(如图 7),双击 Box1, 在其出现的 Propoties:Project1 窗口中,将 Name 一栏的 value 由 Box1 改为 waveguide,材料选择为 air,透明度设置为 1。
HFSS设计流程
图7
HFSS设计流程
基于HFSS的金属波导电磁特性仿真实验
实验内容(2选1)
1.在HFSS中完成圆波导的设计与仿真,要求完成 电场、磁场、面电流分布、传输曲线、色散曲线和功 率的仿真计算。提示:
圆波导主模为
TE11,
fc11

kc
2
p '11
2 a
, a为半径,p '11 =1.841
2.横截面为任意形状的波导(矩形波导与圆波 导除外)仿真分析,要求同上。
HFSS设计流程
传输曲线
HFSS设计流程 2)色散曲线 在工程管理窗口中右键选择 Result,前面的操作与前面相同完成,后只是此时不再选 择 S Parameter,而是选择 Gamar,并在 Function 中选择 im,即取 Gamar 的虚部,完成后 点击 New Report。
色散曲线如右下图所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电磁场与电磁波》课程仿真实验报告
学号 *********
姓名 Crainax
专业光学与电子信息学院
院(系) ******
2016 年 11月27日
1.实验目的
1)理解均匀波导中电磁波的分析方法,TEM/TE/TM 模式的传输特性;
2)了解HFSS 仿真的基本原理、操作步骤;
3)会用HFSS 对金属波导的导波特性进行仿真;
4)画出波导主模的电磁场分布;
5)理解波导中的模式、单模传输、色散与截止频率等概念。

2.实验原理
2.1导波原理
如图1,z轴与金属波导管的轴线重合。

假设:
1)波导管内填充的介质是均匀、线性、各向同性的;
2)波导管内无自由电荷和传导电流;
3)波导管内的场是时谐场。

图1 矩形波导
以电场为例子,将上式代入亥姆霍兹方程∇2E+k2E=0,并在直角坐标内展开,即有:
∇2E+k2E=ð2E
ðx2
+
ð2E
ðy2
+
ð2E
ðz2
+k2E
=ð2E
ðx2
+
ð2E
ðy2
−β2E+k2E =∇T2E+k c2E=0
其中{
∇T2E=ð2E
ðx2
+ð2E
ðy2
k c2=k2−β2
k c表示电磁波在与传播方向相垂直的平面上的波数。

如果导波沿z方向传播,则k c2=k x2+k y2
对波导中传播的电磁波进行分析可知:
1)场的横向分量可由纵向分量表示;
2)既满足亥姆霍兹方程有满足边界条件的解很多,每个解对应一个波形(或称之为模式)
3)k c是在特定边界条件下的特征值,当相移常数β=0 时,意味着波导系统不在传播,此时k c=k,k c称为截止波数。

2.2 矩形波导中传输模式的纵向传输特性
波导中的电磁波在传输方向的波数β由下式给出:
β2=k2−k c2=2π


c
式中k为自由空间中同频率的电磁波的波数。

要使波导中存在导波,则β必须为实数,即
k2>k c2或λ<λc(f>f c)
如上式不满足,则电磁波不能在波导内传输,即截止。

矩形波导中TE10模的截止波长最长,故称它为最低模式,其余模式均称为高次模。

由于TE10模的截止波长最长且等于2a,用它来传输可以保证单模传输。

当波导尺寸给定且有a>2b时,则要求电磁波的工作波长满足
a<λ<2a λ>2b
当工作波长给定时,则波导尺寸必须满足
λ2<a<λ b<
λ
2
3.实验内容
在HFSS中完成圆波导的设计与仿真,要求画出电场分布,获得色散曲线。

模型半径为:4.20mm.
1)探讨圆波导的横截面尺寸发生变化时,主模(TE11模)的场分布和传播特性如何变化;
2)探讨圆波导的填充介质发生变化时,主模(TE11模)的场分布和传播特性如何变化;
3)比较圆波导中前两个模式的差别(提示:TE11模和TM01模式,两者的截止波长分别为3.41a,2.62a)
4.仿真实验步骤
1)理论计算(给出截止频率计算过程及结果);
圆波导中的TM波:
容易得到TM模式下对应截至频率
(c)TM01=(h)TM01/2 =
a√με
(HZ)
即为TM模式下的极限频率。

圆波导中的TE波
容易得到TE模式下对应截至频率
(c)TE11=(h)TE11/2 =0.293
a√με
(HZ)
即为TE模式下的极限频率。

可以看出圆波导的主模为TE11模。

2)模型参数(半径,高等参数);
圆波导的半径为4.20mm,高为10mm
代入可以得到极限频率为20.8GHZ
圆波导参数设置
3)仿真模型(附图说明,给出仿真参数设置,比如求解频率设置和扫频频率设置等等)。

求解频率设置
扫频频率设置5.实验结果及分析
5.1 电场分布图和磁场分布图
1)画出主模(TE11模)的径向电磁场分布;
径向电场分布
径向磁场分布2)画出主模(TE11模)的纵向电磁场分布;
纵向电场分布
纵向磁场分布3)画出色散特性曲线(相位常数-频率曲线)。

5.2 圆波导的横截面尺寸变化对场分布和传播特性的影响(TE11)
4.2mm半径的传播特性
4.8mm半径的传播特性
可看出,随着波导半径的增大,极限频率会减小。

即圆波导半径越大,传输的范围越大。

4.2mm径向电场分布
4.2mm径向磁场分布
4.8mm径向磁场分布
4.8mm径向磁场分布
可看出,随着波导半径的增大,场分布并无太大变化.
5.3 圆波导的填充介质变化对场分布和传播特性的影响(TE11)
"Air"介质电场分布
"Air"介质磁场分布
"Arlon 25FR (tm)"介质电场分布
"Arlon 25FR (tm)"介质磁场分布
"Air"介质下和"Arlon 25FR (tm)"介质下的场分布有很大的不同,在后者中,波导可“容纳”的相同的电磁场数量更多,由图可以看出,且当介质的介电常数增大时,极限频率会降低。

5.4 圆波导TE11模和TM01模差别
TE11电场分布
TM01电场分布
TE11磁场分布
TM01磁场分布
TE11模式下和TM01模式下的场分布有很大的不同,由图可以看出.
TE11模式下的极限频率为20.8GHZ,TM01模式下的极限频率为27.2GHZ,两种模式相比下,TE11模式为圆波导的主模。

6.实验总结
本次仿真实验,让我将书本中学到的理论知识,通过软件仿真建立模型,进而使我对电磁波有了更加深刻的认识,并收获了不少东西:首先就是对波导的认识更加深刻了,更加地理解传输模式,清楚地了解了HFSS的应用原理,还有圆波导的传输模式下的两种传输模式——TM01和TE11模式的传播特性。

这不但使我掌握了软件的使用方法,还让我对课堂上所学老师所讲的内容有了更加深刻的理解,为今后的学习做了良好的铺垫,实现了理论与实践相结合,提高了动手能力。

相关文档
最新文档