2018年中考数学19--21题专练
【中考复习】2018届甘肃中考数学《专题聚焦》总复习练习题含答案

题型一 规律探索类型一 数与式规律探索 1.(2017·百色)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是(B )A .-121B .-100C .100D .121 2.(2017·武汉)按照一定规律排列的n 个数:-2、4、-8、16、-32、64、…,若最后三个数的和为768,则n 为(导学号 35694235)(B )A .9B .10C .11D .123.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…,第n 个三角形数记为x n ,则x n +x n+1=__(n +1)2__.4.若x 是不等于1的实数,我们把11-x 称为x 的差倒数,如2的差倒数是11-2=-1,-1的差倒数为11-(-1)=12,现已知x 1=-13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,以此类推,则x 2018=__34__.5.观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=__1016064__.6.小明写出如下一组数:15,-39,717,-1533,…,请用你发现的规律,猜想第2014个数为__-22014-122015+1__.7.(2017·云南)观察下列各个等式的规律: 第一个等式:22-12-12=1,第二个等式:32-22-12=2,第三个等式:42-32-12=3,…请用上述等式反映出的规律解决下列问题: (1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的. 解:(1)第四个等式为:52-42-12=4;(2)第n 个等式为:(n +1)2-n 2-12=n;证明如下:∵(n +1)2-n 2-12=n 2+2n +1-n 2-12=2n 2=n ,∴左边=右边,等式成立.类型二 图形规律探索 1.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图①);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图②,图③…),则图⑥中挖去三角形的个数为(导学号 35694236)(C )A .121B .362C .364D .7292.如图,在△ABC 中,BC =1,点P 1,M 1分别是AB ,AC 边的中点,点P 2,M 2分别是AP 1,AM 1的中点,点P 3,M 3分别是AP 2,AM 2的中点,按这样的规律下去,P n M n 的长为__12n__(n 为正整数).3.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2016BC 和∠A 2016CD 的平分线交于点A 2017,则∠A 2017=__m22017__°.4.如图,是一组按照某种规律摆放成的图案,则图⑤中三角形的个数是(C )A .8B .9C .16D .17 5.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,依此规律,第11个图案需(B )根火柴.A .156B .157C .158D .1596.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为__(n +1)2__(用含n 的代数式表示).(导学号 35694237)类型三 与坐标系结合的规律探索1.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0),B (0,4),则点B 2016的横坐标为(D )A .5B .12C .10070D .100802.如图,在平面直角坐标系中有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)…,根据这个规律探索可得第100个点的坐标为(D )A .(14,0)B .(14,-1)C .(14,1)D .(14,2)3.如图,已知菱形OABC 的两个顶点O (0,0),B (2,2),若将菱形绕点O 以每秒45°的速度逆时针旋转,则第2017秒时,菱形两对角线交点D 的坐标为.4.(2017·赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P ′(-y +1,x +2),我们把点P ′(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为__(2,0)__.(导学号 35694238)5.如图,在平面直角坐标系中有一菱形OABC,且∠A=120°,点O、B在y轴上,OA =1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B1、B2、B3…,连续翻转2017次,则B2017的坐标为__(1345.5,2)__.题型二尺规作图类型一作与两条直线距离有关的点1.(2017·陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)(导学号35694239)解:如解图,点P即为所求.2.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)解:如解图所示,作CD的垂直平分线,∠AOB的平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.3.(2017·绥化)如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)解:如解图,连接AC,作线段AC的垂直平分线MN,直线MN交AB于点P.点P即为所求的点.4.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)解:如解图,点D即为所求.类型二作角平分线和垂直平分线1.(2017·福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D,求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.2.(2017·赤峰)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.(1)解:如解图所示,AF即为所求;(2)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.3.如图,△ABC中,AB=AC,∠A=40°.(1)作边AB的垂直平分线MN;(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连接BD,求∠DBC的度数.(导学号35694240)解:(1)如解图①即为所求垂直平分线MN;(2)如解图②,连接BD,∵AB的垂直平分线MN交AC于点D,∴AD=BD,∵∠A=40°,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC =∠C =12(180°-∠A)=70°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°. 4.如图,已知△ABC 中,∠ABC =90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①作线段AC 的垂直平分线l ,交AC 于点O ;②连接BO 并延长,在BO 的延长线上截取OD ,使得OD =OB ; ③连接DA 、DC ;(2)判断四边形ABCD 的形状,并说明理由. (1)①②③如解图所示; (2)四边形ABCD 是矩形,理由:∵在Rt △ABC 中,∠ABC =90°,BO 是AC 边上的中线, ∴BO =12AC ,∵BO =DO ,AO =CO ,∴AO =CO =BO =DO ,∴四边形ABCD 是矩形.类型三 作圆1.如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)解:如解图所示,⊙P 即为所作的圆.2.如图,已知在△ABC 中,∠A =90°.(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明);(2)若∠B =60°,AB =3,求⊙P 的面积.解:(1)如解图所示, ⊙P 为所求作的圆; (2)∵∠B =60°, BP 平分∠ABC ,∴∠ABP =30°, ∵tan ∠ABP =AP AB, ∴AP =3, ∴S ⊙P =3π.3.(2017·舟山)如图,已知△ABC ,∠B =40°.(1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F(保留痕迹,不必写作法);(2)连接EF ,DF ,求∠EFD 的度数. 解:(1)如解图①,⊙O 即为所求;(2)如解图②,连接OD ,OE , ∴OD ⊥AB ,OE ⊥BC , ∴∠ODB =∠OEB =90°, ∵∠B =40°,∴∠DOE =140°,∴∠EFD =70°.4.已知△ABC 中,∠A =25°,∠B =40°.(1)求作:⊙O ,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上(要求尺规作图,保留作图痕迹,不必写作法);(2)求证:BC 是(1)中所作⊙O 的切线. (1)解:作图如解图①;(2)证明:如解图②,连接OC ,∵OA =OC ,∠A =25°,∴∠BOC =50°, 又∵∠B =40°,∴∠BOC +∠B =90°, ∴∠OCB =90°,∴OC ⊥BC ,∴BC 是⊙O 的切线.5.如图,在直角三角形ABC 中,∠ABC =90°. (1)先作∠ACB 的平分线,设它交AB 边于点O ,再以点O 为圆心OB 为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)证明:AC 是所作⊙O 的切线;(3)若BC =3,sin A =12,求△AOC 的面积.(1)解:作图如解图所示:(2)证明:过点O 作OE ⊥AC 于点E , ∵FC 平分∠ACB ,∴OB =OE ,∴AC 是所作⊙O 的切线;(3)解:∵sin A =12,∠ABC =90°,∴∠A =30°,∴∠ACO =∠OCB =12∠ACB =30°,∵BC =3,∴AC =23,BO =BC tan 30°=3³33=1, ∴S △AOC =12AC·OE =12³23³1= 3.题型三 与三角形、四边形有关的证明与计算类型一 与三角形有关的证明与计算 1.(2017·黄冈)已知:如图,∠BAC =∠DAM ,AB =AN ,AD =AM ,求证:∠B =∠ANM.证明:∵∠BAC =∠DAM ,∠BAC =∠BAD +∠DAC ,∠DAM =∠DAC +∠NAM , ∴∠BAD =∠NAM , 在△BAD 和△NAM 中,⎩⎨⎧AB =AN ,∠BAD =∠NAM ,AD =AM ,∴△BAD ≌△NAM(SAS ),∴∠B =∠ANM. 2.(2017·孝感)如图,已知AB =CD ,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F ,BF =DE ,求证:AB ∥CD.证明:∵AE ⊥BD , CF ⊥BD ,∴∠AEB =∠CFD =90°, ∵BF =DE ,∴BF +EF =DE +EF , ∴BE =DF.在Rt △AEB 和Rt △CFD 中,⎩⎨⎧AB =CD ,BE =DF ,∴Rt △AEB ≌Rt △CFD(HL ), ∴∠B =∠D ,∴AB ∥CD. 3.(2017·连云港)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB 、AC 上,且AD =AE ,连接BE 、CD ,交于点F.(1)判断∠ABE 与∠ACD 的数量关系,并说明理由;(2)求证:过点A 、F 的直线垂直平分线段BC.(1)解:∠ABE =∠ACD ;理由如下:在△ABE 和△ACD 中,⎩⎨⎧AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD(SAS ),∴∠ABE =∠ACD ; (2)证明:∵AB =AC , ∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD , ∴∠FBC =∠FCB , ∴FB =FC , ∵AB =AC ,∴点A 、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC. 4.(2017·荆门)已知:如图,在Rt △ACB 中,∠ACB =90°,点D 是AB 的中点,点E 是CD 的中点,过点C 作CF ∥AB 交AE 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠DCF =120°,DE =2,求BC 的长.(1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF ,∴∠BAF =∠AFC , 在△ADE 与△FCE 中,⎩⎨⎧∠DAF =∠AFC ,∠AED =∠FEC ,DE =CE ,∴△ADE ≌△FCE(AAS ); (2)解:由(1)得,CD =2DE , ∵DE =2,∴CD =4.∵点D 为AB 的中点,∠ACB =90°, ∴AB =2CD =8,AD =CD =12AB.∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12³60°=30°,∴BC =12AB =12³8=4.5.(2017·重庆A )在△ABM 中,∠ABM =45°,AM ⊥BM ,垂足为M ,点C 是BM 延长线上一点,连接AC.(1)如图①,若AB =32,BC =5,求AC 的长;(2)如图②,点D 是线段AM 上一点,MD =MC ,点E 是△ABC 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF.(导学号 35694241)(1)解:AC =13;(2)证明:如解图,延长EF 到点G ,使得FG =EF ,连接BG. ∵DM =MC ,∠BMD =∠AMC , BM =AM ,∴△BMD ≌△AMC(SAS ), ∴AC =BD ,又∵CE =AC ,∴BD =CE , ∵BF =FC ,∠BFG =∠CFE , FG =FE ,∴△BFG ≌△CFE(SAS ),∴BG =CE ,∠G =∠CEF ,∴BD =CE =BG ,∴∠BDG =∠G =∠CEF. 6.(2017·呼和浩特)如图,等腰三角形ABC 中,BD ,CE 分别是两腰上的中线. (1)求证:BD =CE ;(2)设BD 与CE 相交于点O ,点M ,N 分别为线段BO 和CO 的中点,当△ABC 的重心到顶点A 的距离与底边长相等时,判断四边形DEMN 的形状,无需说明理由.(1)证明:由题意得,AB =AC , ∵BD ,CE 分别是两腰上的中线, ∴AD =12AC ,AE =12AB ,∴AD =AE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠A =∠A ,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE ; (2)解:四边形DEMN 是正方形,证明:略7.△ABC 的三条角平分线相交于点I ,过点I 作DI ⊥IC ,交AC 于点D. (1)如图①,求证:∠AIB =∠ADI ;(2)如图②,延长BI ,交外角∠ACE 的平分线于点F. ①判断DI 与CF 的位置关系,并说明理由; ②若∠BAC =70°,求∠F 的度数.(1)证明:∵AI 、BI 分别平分∠BAC ,∠ABC , ∴∠BAI =12∠BAC ,∠ABI =12∠ABC ,∴∠BAI +∠ABI =12(∠BAC +∠ABC)=12(180°-∠ACB)=90°-12∠ACB ,∴在△ABI 中,∠AIB =180°-(∠BAI +∠ABI)=180°-(90°-12∠ACB)=90°+12∠ACB ,∵CI 平分∠ACB ,∴∠DCI =12∠ACB ,∵DI ⊥IC ,∴∠DIC =90°,∴∠ADI =∠DIC +∠DCI =90°+12∠ACB ,∴∠AIB =∠ADI ;(2)解:①结论:DI ∥CF.理由:∵∠IDC =90°-∠DCI =90°-12∠ACB ,∵CF 平分∠ACE ,∴∠ACF =12∠ACE =12(180°-∠ACB)=90°-12∠ACB ,∴∠IDC =∠ACF ,∴DI ∥CF ;②∵∠ACE =∠ABC +∠BAC ,∴∠ACE -∠ABC =∠BAC =70°, ∵∠FCE =∠FBC +∠F , ∴∠F =∠FCE -∠FBC ,∵∠FCE =12∠ACE ,∠FBC =12∠ABC ,∴∠F =12∠ACE -12∠ABC =12(∠ACE -∠ABC)=35°.8.(8分)(2017·北京)在等腰直角△ABC 中,∠ACB =90°,P 是线段BC 上一动点(与点B 、C 不重合),连接AP ,延长BC 至点Q ,使得CQ =CP ,过点Q 作QH ⊥AP 于点H ,交AB 于点M.(1)若∠PAC =α,求∠AMQ 的大小(用含α的式子表示);(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.(导学号 35694242)解:(1)∠AMQ =45°+α;理由如下:∵∠PAC =α,△ACB 是等腰直角三角形, ∴∠BAC =∠B =45°,∠PAB =45°-α, ∵QH ⊥AP , ∴∠AHM =90°, ∴∠AMQ =180°-∠AHM -∠PAB =45°+α;(2)PQ =2MB.理由如下:如解图,连接AQ ,作ME ⊥QB , ∵AC ⊥QP ,CQ =CP , ∴∠QAC =∠PAC =α, ∴∠QAM =45°+α=∠AMQ ,∴AP =AQ =QM , 在△APC 和△QME 中,⎩⎨⎧∠MQE =∠PAC ,∠ACP =∠QEM ,AP =QM ,∴△APC ≌△QME(AAS ),∴PC =ME , ∴△MEB 是等腰直角三角形,∴12PQ =22MB ,∴PQ=2MB.类型二 与四边形有关的证明与计算1.在▱ABCD 中,点E 、F 分别在AB 、CD 上,且AE =CF. (1)求证:△ADE ≌△CBF ;(2)若DF =BF ,求证:四边形DEBF 为菱形.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =BC ,∠A =∠C , 在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠A =∠C ,AE =CF ,∴△ADE ≌△CBF(SAS );(2)∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD , ∵AE =CF ,∴DF =EB ,∴四边形DEBF 是平行四边形,又∵DF =FB ,∴四边形DEBF 为菱形.2.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC.(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB =5,AD =6,求AC 的长. (导学号 35694243)(1)证明:∵AE ⊥AC ,BD 垂直平分AC , ∴AE ∥BD ,∵∠ADE =∠BAD , ∴DE ∥AB ,∴四边形ABDE 是平行四边形; (2)解:∵DA 平分∠BDE , ∴∠BAD =∠ADB , ∴AB =BD =5,设BF =x ,则52-x 2=62-(5-x)2, 解得x =75,∴AF =AB 2-BF 2=245,∴AC =2AF =485. 3.(2017·上海)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =E C .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 和△CDE 中,⎩⎨⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE ≌△CDE(SSS ), ∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD , ∴∠CDE =∠CBD ,∴BC =CD , ∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形; (2)∵BE =BC ,∴∠BCE =∠BEC , ∵∠CBE ∶∠BCE =2∶3, ∴∠CBE =180°³22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°, ∴∠ABC =90°,∴四边形ABCD 是正方形.4.如图,在▱ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.(1)求证:四边形ABCD 是矩形;(2)若AB =14,DE =8,求sin ∠AEB 的值.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠DAF =∠F =45°.∵AE 是∠BAD 的平分线, ∴∠EAB =∠DAE =45°, ∴∠DAB =90°,又∵四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形;(2)解:如解图,过点B 作BH ⊥AE 于点H , ∵四边形ABCD 是矩形, ∴AB =CD ,AD =BC , ∠DCB =∠D =90°,∵AB =14,DE =8,∴CE =6. 在Rt △ADE 中,∠DAE =45°, ∴AD =DE =8,∴BC =8. 在Rt △BCE 中,由勾股定理得BE =BC 2+CE 2=10, 在Rt △AHB 中,∠HAB =45°, ∴BH =AB·sin 45°=72, ∵在Rt △BHE 中,∠BHE =90°, ∴sin ∠AEB =BH BE =7210.5.(2017·大庆)如图,以BC 为底边的等腰△ABC ,点D ,E ,G 分别在BC ,AB ,AC 上,且EG ∥BC ,DE ∥AC ,延长GE 至点F ,使得BE =BF.(1)求证:四边形BDEF 为平行四边形; (2)当∠C =45°,BD =2时,求D ,F 两点间的距离.(导学号 35694244) (1)证明:∵△ABC 是等腰三角形, ∴∠ABC =∠C ,∵EG ∥BC ,DE ∥AC , ∴∠AEG =∠ABC =∠C ,∴四边形CDEG 是平行四边形, ∴∠DEG =∠C , ∵BE =BF ,∴∠BFE =∠BEF =∠AEG =∠ABC , ∴∠F =∠DEG ,∴BF ∥DE , ∴四边形BDEF 为平行四边形; (2)解:∵∠C =45°,∴∠ABC =∠BFE =∠BEF =45°, ∴△BDE 、△BEF 是等腰直角三角形,∴BF =BE =22BD =2, 作FM ⊥BD 于点M ,连接DF ,如解图所示,则△BFM 是等腰直角三角形, ∴FM =BM =22BF =1, ∴DM =3,在Rt △DFM 中,由勾股定理得: DF =12+32=10,即D ,F 两点间的距离为10. 6.(2017·张家界)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠AEG =∠BFG , ∵EF 垂直平分AB , ∴AG =BG ,在△AGE 和△BGF 中,⎩⎨⎧∠AEG =∠BFG ,∠AGE =∠BGF ,AG =BG ,∴△AGE ≌△BGF(AAS );(2)解:四边形AFBE 是菱形,理由如下: ∵△AGE ≌△BGF ,∴AE =BF ,∵AD ∥BC ,∴四边形AFBE 是平行四边形, 又∵EF ⊥AB ,∴四边形AFBE 是菱形.7.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°.(1)求证:四边形ABCD 是矩形.(2)若∠ADF ∶∠FDC =3∶2,DF ⊥AC ,则∠BDF 的度数是多少?(1)证明:∵AO =CO ,BO =DO∴四边形ABCD 是平行四边形, ∴∠ABC =∠ADC ,∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADC =90°,∴四边形ABCD 是矩形;(2)解:∵∠ADC =90°,∠ADF ∶∠FDC =3∶2, ∴∠FDC =36°,∵DF ⊥AC ,∴∠DCO =90°-36°=54°, ∵四边形ABCD 是矩形, ∴OC =OD ,∴∠ODC =54°,∴∠BDF =∠ODC -∠FDC =18°. 8.(2017·娄底)如图,在▱ABCD 中,各内角的平分线分别相交于点E ,F ,G ,H. (1)求证:△ABG ≌△CDE ;(2)猜一猜:四边形EFGH 是什么样的特殊四边形?证明你的猜想; (3)若AB =6,BC =4,∠DAB =60°,求四边形EFGH 的面积.(1)证明:∵GA 平分∠BAD ,EC 平分∠BCD , ∴∠BAG =12∠BAD ,∠DCE =12∠DCB ,∵在▱ABCD 中,∠BAD =∠DCB ,AB =CD ,∴∠BAG =∠DCE ,同理可得,∠ABG =∠CDE ,∵在△ABG 和△CDE 中,⎩⎨⎧∠BAG =∠DCE ,AB =CD ,∠ABG =∠CDE ,∴△ABG ≌△CDE(ASA ); (2)解:四边形EFGH 是矩形.证明:∵GA 平分∠BAD ,GB 平分∠ABC , ∴∠GAB =12∠BAD ,∠GBA =12∠ABC ,∵在▱ABCD 中,∠DAB +∠ABC =180°,∴∠GAB +∠GBA =12(∠DAB +∠ABC)=90°,即∠AGB =90°,同理可得,∠DEC =90°,∠AHD =90°=∠EHG , ∴四边形EFGH 是矩形;(3)解:依题意得:∠BAG =12∠BAD =30°,∵AB =6,∴BG =12AB =3,AG =33=CE ,∵BC =4,∠BCF =12∠BCD =30°,∴BF =12BC =2,CF =23,∴EF =33-23=3,GF =3-2=1, ∴S 矩形EFGH 的面积=EF·GF = 3.题型四解直角三角形的实际应用1.(2017·镇江)如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15 m,求实验楼的垂直高度即CD长.(精确到1 m,参考值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:作AE⊥CD于E,如解图,∵AB=15 m,∴DE=AB=15 m,∵∠DAE=45°,∴AE=DE=15 m,在Rt△ACE中,tan∠CAE=CE AE,则CE=AE·tan37°=15³0.75≈11 m,∴CD=CE+DE=11+15=26 m.答:实验楼的垂直高度CD长为26 m.2.(2017·宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C测得∠α=30°,∠β=45°,量得BC长为100米,求河的宽度.(结果保留根号)解:过点A作AD⊥BC于点D,如解图,∵∠β=45°,∠ADC=90°,∴AD=DC,设AD=DC=x m,则tan 30°=x x +100=33, 解得x =50(3+1).答:河的宽度为50(3+1) m . 3.(2017·宿迁)如图所示,飞机在一定高度上沿水平直线飞行,先在点A 处测得正前方小岛C 的俯角为30°,面向小岛方向继续飞行10 km 到达B 处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度.(结果保留根号)(导学号 35694245)解:过点C 作CD ⊥AB 于点D ,如解图,设CD =x , ∵∠CBD =45°, ∴BD =CD =x ,在Rt △ACD 中, ∵tan ∠CAD =CDAD,∴AD =CD tan ∠CAD =x tan 30°=x33=3x ,由AD +BD =AB 可得3x +x =10,解得x =53-5.答:飞机飞行的高度为(53-5) km . 4.(2016·菏泽)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B 处时,测得该岛位于正北方向20(1+3)海里的C 处,为了防止某国海巡警干扰,就请求我A 处的渔监船前往C 处护航,已知C 位于A 处的北偏东45°方向上,A 位于B 的北偏西30°的方向上,求A 、C 之间的距离.解:如解图,作AD ⊥BC ,垂足为D ,由题意得,∠ACD =45°, ∠ABD =30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=3x,又∵BC=20(1+3),CD+BD=BC,即x+3x=20(1+3),解得:x=20,∴AC=2x=202(海里).答:A、C之间的距离为20 2 海里.5.(2017·荆门)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)解:如解图,过点C作CM⊥AB于M.则四边形MEDC是矩形,∴ME=DC=3,CM=ED,在Rt△AEF中,∠AFE=60°,设EF=x,则AF=2x,AE=3x,在Rt△FCD中,CD=3,∠CFD=30°,∴DF=33,在Rt △AMC 中, ∠ACM =45°,∴∠MAC =∠ACM =45°,∴MA =MC , ∵ED =CM ,∴AM =ED ,∵AM =AE -ME ,ED =EF +DF , ∴3x -3=x +33,解得x =6+33, ∴AE =3(6+33)=63+9,∴AB =AE -BE =9+63-1≈18.4米. 答:旗杆AB 的高度约为18.4米. 6.(2016·贺州)如图,是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面10米处有一建筑物HQ ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角∠BDC =30°,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数.参考数据:2≈1.414,3≈1.732)(导学号 35694246)解:由题意得,AH =10米,BC =10米, 在Rt △ABC 中,∠CAB =45°, ∴AB =BC =10,在Rt △DBC 中,∠CDB =30°, ∴DB =BCtan ∠CDB=103,∴DH =AH -AD =AH -(DB -AB)=10-103+10=20-103≈2.7(米), ∵2.7米<3米,∴该建筑物需要拆除.7.(2017·鄂州)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A 处,测得树顶端E 的仰角为30°,他又继续走下台阶到达C 处,测得树的顶端E 的仰角是60°,再继续向前走到大树底D 处,测得食堂楼顶N 的仰角为45°.已知A 点离地面的高度AB =2米,∠BCA =30°,且B 、C 、D 三点在同一直线上.(1)求树DE 的高度;(2)求食堂MN 的高度. 解:(1)如解图,设DE =x ,∵AB =DF =2,∴EF =DE -DF =x -2, ∵∠EAF =30°, ∴AF =EFtan ∠EAF =x -233=3(x -2),又∵CD =DE tan ∠DCE =x 3=33x ,BC =AB tan ∠ACB =233=23,∴BD =BC +CD =23+33x , 由AF =BD 可得3(x -2)=23+33x , 解得:x =6,∴树DE 的高度为6米;(2)延长NM 交DB 延长线于点P ,如解图,则AM =BP =3, 由(1)知CD =33x =33³6=23,BC =23, ∴PD =BP +BC +CD =3+23+23=3+43,∵∠NDP =45°,且MP =AB =2, ∴NP =PD =3+43,∴NM =NP -MP =3+43-2=1+43, ∴食堂MN 的高度为1+4 3 米.题型五 与圆有关的证明与计算类型一 与切线判定有关的证明与计算1.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC 、AC 交于点D 、E ,过点D 作DF ⊥AC 于点F.(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为2,BC =22,求DF 的长. (导学号 35694247)(1)证明:连接OD ,如解图,∵OB =OD ,∴∠ABC =∠ODB , ∵AB =AC ,∴∠ABC =∠ACB , ∴OD ∥AC ,∵DF ⊥AC ,∴DF ⊥OD ,∴DF 是⊙O 的切线;(2)解:连接AD ,如解图, ∵AB 是⊙O 的直径, ∴AD ⊥BC ,又∵AB =AC ,∴BD =DC =2,∴AD =AB 2-BD 2=42-(2)2=14, ∵DF ⊥AC ,∴△ADC ∽△DFC ,∴AD DF =AC DC ,∴14DF =42,∴DF =72. 2.如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点D ,∠ABD =∠ACB. (1)求证:AB 是⊙O 的切线;(2)若点E 是BC 上一点,已知BE =4,tan ∠AEB =53,AB ∶BC =2∶3,求⊙O 的直径.(1)证明:∵BC 是直径, ∴∠BDC =90°,∴∠ACB +∠DBC =90°,∵∠ABD =∠ACB , ∴∠ABD +∠DBC =90°, ∴∠ABC =90°, ∴AB ⊥BC , ∴AB 是⊙O 的切线;(2)解:在Rt △AEB 中,tan ∠AEB =53,∴AB BE =53,即AB =53BE =203, 在Rt △ABC 中,AB BC =23,∴BC =32AB =10,∴⊙O 的直径为10.3.如图,AB 为⊙O 的直径,C 为⊙O 上一点,点D 是BC ︵的中点,DE ⊥AC 于点E ,DF ⊥AB 于点F.(1)求证:DE 是⊙O 的切线; (2)若OF =2,求AC 的长度.(导学号 35694248)(1)证明:如解图①,连接OD 、AD , ∵点D 是BC ︵的中点,∴BD ︵=CD ︵,∴∠DAO =∠DAC , ∵OA =OD ,∴∠DAO =∠ODA ,图①∴∠DAC =∠ODA ,∴OD ∥AE , ∵DE ⊥AE ,∴∠AED =90°, ∴∠AED =∠ODE =90°, ∴OD ⊥DE , ∴DE 是⊙O 的切线;图②(2)解:如解图②,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥AE,∴∠DOB=∠EAB,∵∠DFO=∠ACB=90°,∴△DFO∽△BCA,∴OFAC=ODAB=12,即2AC=12,∴AC=4.4.(2017·张家界)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.(1)证明:连接OD,如解图所示,∵AC=BC,OB=OD,∴∠ABC=∠A,∠ABC=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:∵AC=BC,∠A=60°,∴△ABC是等边三角形,∴∠ABC=60°,∵OD=OB,∴△OBD是等边三角形,∴∠BOD =60°,∵DF ⊥OD ,∴∠ODG =90°,∴∠G =30°, ∴DG =3OD =63,∴S 阴影部分=S △ODG -S 扇形OBD =12³6³63-60π³62360=183-6π.5.(2017·安顺)如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连接BE.(1)求证:BE 与⊙O 相切;(2)设OE 交⊙O 于点F ,若DF =1,BC =23,求阴影部分的面积.(1)证明:连接OC ,如解图, ∵CE 为切线,∴OC ⊥CE , ∴∠OCE =90°,∵OD ⊥BC ,∴CD =BD , 即OD 垂中平分BC , ∴EC =EB ,在△OCE 和△OBE 中,⎩⎨⎧OC =OB ,OE =OE ,EC =EB ,∴△OCE ≌△OBE ,∴∠OBE =∠OCE =90°, ∴OB ⊥BE ,∴BE 与⊙O 相切;(2)解:设⊙O 的半径为r ,则OD =r -1, 在Rt △OBD 中,BD =CD =12BC =3,∴(r -1)2+(3)2=r 2,解得r =2, ∵tan ∠BOD =BDOD =3,∴∠BOD =60°,∴∠BOC =2∠BOD =120°, 在Rt △OBE 中,BE =3OB =23, ∴S 阴影部分=S 四边形OBEC -S 扇形BOC =2S △OBE -S 扇形BOC=2³12³2³23-120π³22360=43-43π.类型二 与切线性质有关的证明与计算 1.(2017·绵阳)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的⊙O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N.(1)求证:CA =CN ;(2)连接OF ,若cos ∠DFA =45,AN =210,求⊙O 的直径的长度.(1)证明:连接OF ,则∠OAF =∠OFA ,如解图①所示, ∵ME 与⊙O 相切, ∴OF ⊥ME. ∵CD ⊥AB ,∴∠M +∠FOH =180°.∵∠BOF =∠OAF +∠OFA =2∠OAF ,∠FOH +∠BOF =180°, ∴∠M =2∠OAF. ∵ME ∥AC ,∴∠M =∠C =2∠OAF.∵CD ⊥AB ,∴∠ANC +∠OAF =∠BAC +∠C =90°, ∴∠ANC =90°-∠OAF ,∠BAC =90°-∠C =90°-2∠OAF , ∴∠CAN =∠OAF +∠BAC =90°-∠OAF =∠ANC , ∴CA =CN ;(2)解:连接OC ,如解图②所示. ∵cos ∠DFA =45,∠DFA =∠ACH , ∴CH AC =45. 设CH =4a ,则AC =5a ,AH =3a , ∵CA =CN ,∴NH =a ,∴AN =AH 2+NH 2=(3a )2+a 2=10a =210, ∴a =2,AH =3a =6,CH =4a =8. 设⊙O 的半径为r ,则OH =r -6,在Rt △OCH 中,OC =r ,CH =8,OH =r -6, ∴OC 2=CH 2+OH 2,r 2=82+(r -6)2, 解得:r =253,∴⊙O 的直径的长度为2r =503.2.(2017·大连)如图,AB 是⊙O 直径,点C 在⊙O 上,AD 平分∠CAB ,BD 是⊙O 的切线,AD 与BC 相交于点E.(1)求证:BD =BE ;(2)若DE =2,BD =5,求CE 的长. (导学号 35694249)(1)证明:设∠BAD =α,∵AD 平分∠BAC ,∴∠CAD =∠BAD =α,∵AB 是⊙O 的直径,点C 在⊙O 上,∴∠ACB =90°, ∴∠ABC =90°-2α,∵BD 是⊙O 的切线,∴BD ⊥AB ,∴∠DBE =2α,∠BED =∠BAD +∠ABC =90°-α, ∴∠D =180°-∠DBE -∠BED =90°-α, ∴∠D =∠BED ,∴BD =BE ;(2)解:设AD 交⊙O 于点F ,CE =x ,则AC =2x ,连接BF ,如解图, ∵AB 是⊙O 的直径, ∴∠AFB =90°,∵BD =BE ,DE =2,∴FE =FD =1,∵BD =5,∴BF =2, ∵∠BAD +∠D =90°,∠D +∠FBD =90°, ∴∠FBD =∠BAD =α,∴tan α=FD BF =12,∴AB =BF sin α=255=25,在Rt △ABC 中,由勾股定理可知(2x)2+(x +5)2=(25)2, 解得x =-5(舍去)或x =355,∴CE =355.3.(2017·南京)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D.(1)求证:PO 平分∠APC ; (2)连接DB ,若∠C =30°,求证:DB ∥AC.证明:(1)如解图,连接OB , ∵PA ,PB 是⊙O 的切线, ∴OA ⊥AP ,OB ⊥BP , 又OA =OB ,∴PO 平分∠APC ;(2)∵OA ⊥AP ,OB ⊥BP , ∴∠CAP =∠OBP =90°,∵∠C =30°, ∴∠APC =90°-30°=60°, ∵PO 平分∠APC ,∴∠OPC =12∠APC =12³60°=30°,∴∠POB =90°-∠OPC =90°-30°=60°,又∵OD =OB ,∴△ODB 是等边三角形, ∴∠OBD =60°,∴∠DBP =∠OBP -∠OBD =90°-60°=30°, ∴∠DBP =∠C ,∴DB ∥AC.4.如图,直线l 经过点A(4,0),B(0,3).(1)求直线l 的函数表达式;(2)若圆M 的半径为2,圆心M 在y 轴上,当圆M 与直线l 相切时,求点M 的坐标.(1)∵A(4,0),B(0,3),∴直线l 的解析式为:y =-34x +3;(2)作MH ⊥AB ,垂足为H ,如解图所示, ∵M 在y 轴上,∴设M(0,t),2S △ABM =BM·AO =AB·MH , ∴|3-t|³4=5³2, 解得t 1=12,t 2=112,∴M 1(0,12),M 2(0,112).题型六 二次函数与几何图形综合题类型一 探究特殊三角形的存在性问题 1.(2017·乌鲁木齐)如图,抛物线y =ax 2+bx +c(a ≠0)与直线y =x +1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.①当PE =2ED 时,求P 点坐标;②是否存在点P ,使△BEC 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(导学号 35694250)解:(1)∵点B(4,m)在直线y =x +1上, ∴m =4+1=5,∴B(4,5),把A 、B 、C 三点坐标代入抛物线解析式可得 ⎩⎨⎧a -b +c =0,16a +4b +c =5,25a +5b +c =0, 解得⎩⎨⎧a =-1,b =4,c =5,∴抛物线的解析式为y =-x 2+4x +5;(2)①设P(x ,-x 2+4x +5),则E(x ,x +1),D(x ,0),则PE =|-x 2+4x +5-(x +1)|=|-x 2+3x +4|,DE =|x +1|, ∵PE =2ED ,∴|-x 2+3x +4|=2|x +1|,当-x 2+3x +4=2(x +1)时,解得x =-1或x =2,但当x =-1时,P 与A 重合不合题意,舍去,∴P(2,9);当-x 2+3x +4=-2(x +1)时,解得x =-1或x =6,但当x =-1时,P 与A 重合,不合题意,舍去,∴P(6,-7);综上可知,P 点坐标为(2,9)或(6,-7);②点P 的坐标为(34,11916)或(4+13,-413-8)或(4-13,413-8)或(0,5)时,△BEC 为等腰三角形.2.(2017·阜新)如图,抛物线y =-x 2+bx +c 的图象与x 轴交于A(-5,0),B(1,0)两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D.(1)求抛物线的函数表达式;(2)如图①,点E(x ,y)为抛物线上一点,且-5<x<-2,过点E 作EF ∥x 轴,交抛物线的对称轴于点F ,作EH ⊥x 轴于点H ,得到矩形EHDF ,求矩形EHDF 周长的最大值;(3)如图②,点P 为抛物线对称轴上一点,是否存在点P ,使以点P ,A ,C 为顶点的三角形是直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)把A(-5,0),B(1,0)代入y =-x 2+bx +c ,得到⎩⎨⎧-25-5b +c =0,-1+b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =5.∴抛物线的函数表达式为y =-x 2-4x +5;(2)如解图①,∵抛物线的对称轴为直线x =-2,E(x ,-x 2-4x +5), ∴EH =-x 2-4x +5, EF =-2-x ,∴矩形EFDH 的周长=2(EH +EF)=2(-x 2-5x +3)=-2(x +52)2+372,∵-2<0,∴x =-52时,矩形EHDF 的周长最大,最大值为372;(3) 如解图②,设P(-2,m),①当∠ACP =90°时, AC 2+PC 2=PA 2,∴(52)2+22+(m -5)2=32+m 2, 解得m =7, ∴P 1(-2,7).②当∠CAP =90°时, AC 2+PA 2=PC 2,∴(52)2+32+m 2=22+(m -5)2, 解得m =-3,∴P 2(-2,-3).③当∠APC =90°时,PA 2+PC 2=AC 2,∴32+m 2+22+(m -5)2=(52)2, 解得m =6或m =-1,∴P 3(-2,6),P 4(-2,-1),综上所述,满足条件的点P 坐标为(-2,7)或(-2,-3)或(-2,6)或(-2,-1). 3.(2017·重庆A )如图,在平面直角坐标系中,抛物线y =33x 2-233x -3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E(4,n)在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE.当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线y =33x 2-233x -3沿x 轴正方向平移得到抛物线y′,y ′经过点D ,y ′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q ,使得△FGQ为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.解:(1)直线AE 的解析式为y =33x +33.(2)设直线CE 的解析式为y =mx -3, ∴直线CE 的解析式为y =233x - 3. 过点P 作PF ∥y 轴,交CE 于点F.如解图①, 设点P 的坐标为(x ,33x 2-233x -3), 则点F(x ,233x -3),则FP =-33x 2+433x.∴△EPC 的面积=-233x 2+833x.∴当x =2时,△EPC 的面积最大.∴P(2,-3).如解图②,作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 于N 、M.∵K 是CB 的中点,∴K(32,32).∴tan ∠KCP =33.∵OD =1,OC =3, ∴tan ∠OCD =33. ∴∠OCD =∠KCP =30°. ∴∠KCD =30°.∵K 是BC 的中点,∠OCB =60°, ∴OC =CK.∴点O 与点K 关于CD 对称. ∴点G 与点O 重合. ∴点G(0,0).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,-332).∴KM +MN +NK =MH +MN +GN.当点G 、N 、M 、H 在一条直线上时,KM +MN +NK 有最小值,最小值=GH. ∴GH =(32)2+(332)2=3. ∴KM +MN +NK 的最小值为3.(3)点Q 的坐标为(3,-43+2213)或(3,-43-2213)或(3,23)或(3,-235).类型二 探究特殊四边形的存在性问题1.(2017·宜宾)如图,抛物线y =-x 2+bx +c 与x 轴分别交于A(-1,0),B(5,0)两点. (1)求抛物线的解析式;(2)在第二象限内取一点C ,作CD 垂直x 轴于点D ,连接AC ,且AD =5,CD =8,将Rt △ACD 沿x 轴向右平移m 个单位,当点C 落在抛物线上时,求m 的值;(3)在(2)的条件下,当点C 第一次落在抛物线上记为点E ,点P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q ,使以点B 、E 、P 、Q 为顶点的四边形是平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.(导学号 35694251)解:(1)抛物线的解析式为y =-x 2+4x +5; (2)∵AD =5,且OA =1,∴OD =6, 又∵CD =8,∴C(-6,8),设平移后的点C 的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=-x 2+4x +5,解得x =1或x =3,∴C ′点的坐标为(1,8)或(3,8), ∵C(-6,8),∴当点C 落在抛物线上时,向右平移了7或9个单位,∴m 的值为7或9;(3)Q 点的坐标为(-2,-7)或(6,-7)或(4,5)时,以点B 、E 、P 、Q 四点为顶点的四边形为平行四边形.。
2018-2019年大连市中考数学真题(附答案)

2018年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x64.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.37.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32x+b的图象与反比例函数y=的9.(分)(2018•大连)如图,一次函数y=k1图象相交于A(2,3),B(6,1)两点,当kx+b<时,x的取值范围为()1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6 10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= .12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣218.(分)(2018•大连)解不等式组:19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m 的值.2018年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第二象限内点的符号特点进而得出答案.【解答】解:点(﹣3,2)所在的象限在第二象限.故选:B.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x6【分析】根据幂的乘方运算性质,运算后直接选取答案.【解答】解:(x3)2=x6,故选:D.【点评】本题主要考查幂的乘方,底数不变,指数相乘的性质,熟练掌握性质是解题的关键.4.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°【分析】先利用等腰直角三角形的性质得出∠1=45°,再利用平行线的性质即可得出结论;【解答】解:如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选:A.【点评】此题主要考查了等腰直角三角形的性质,平行线的性质,求出∠1=45°是解本题的关键.5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体【分析】由常见几何体的三视图即可判断.【解答】解:由三视图知这个几何体是三棱柱,故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是熟练掌握常见几何体的三视图.6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.7.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出两次摸出小球标号为偶数的情况数,即可求出概率.【解答】解:列表得:所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为,故选:D.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.【点评】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(分)(2018•大连)如图,一次函数y=kx+b的图象与反比例函数y=的1x+b<时,x的取值范围为()图象相交于A(2,3),B(6,1)两点,当k1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6【分析】根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.x+b<时,x的取值范围为0<x<2或x 【解答】解:由图象可知,当k1>6.故选:D.【点评】此题考查了反比例函数与一次函数的交点问题以及待定系数法求解析式.此题难度适中,注意掌握数形结合思想与方程思想的应用.10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α【分析】根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.【解答】解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α,故选:C.【点评】本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= x(x﹣1).【分析】提取公因式x即可.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是189 .【分析】根据中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这5名学生跳绳次数从小到大排列为163、184、189、195、201,所以该组数据的中位数是189,故答案为:189.【点评】本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为9 cm.【分析】根据弧长公式L=求解即可.【解答】解:∵L=,∴R==9.故答案为:9.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°,∵BC=DE=6m,∴AE=DE•tan53°≈6×≈,∴AB=AE+BE=AE+CD=+=≈,故答案为:【点评】此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为6﹣2.【分析】如图作A′H⊥BC于H.由△CDF∽△A′HC,可得=,延长构建方程即可解决问题;【解答】解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣,∵△CDF∽△A′HC,∴=,∴=,∴DF=6﹣2,故答案为6﹣2.【点评】本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣2【分析】根据完全平方公式和零指数幂的意义计算.【解答】解:原式=3+4+4﹣4+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(分)(2018•大连)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.【分析】只要证明△BEO≌△DFO即可;【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵AE=CF,∴OE=OF,在△BEO和△DFO中,,∴△BEO≌△DFO,∴BE=DF.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有 4 人,最喜欢篮球的学生数占被调查总人数的百分比为32 %;(2)被调查学生的总数为50 人,其中,最喜欢篮球的有16 人,最喜欢足球的学生数占被调查总人数的百分比为24 %;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.【分析】(1)依据统计图表中的数据即可得到结果;(2)依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比;(3)依据最喜欢排球的学生数占被调查总人数的百分比,即可估计该校最喜欢排球的学生数.【解答】解:(1)由题可得,被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%,故答案为:4;32;(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比=×100%=24%;故答案为:50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为×450=54人.【点评】本题考查统计表、扇形统计图、样本估计总体等知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.解题的关键是灵活运用所学知识解决问题.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.【分析】设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据题意得:=,解得:x=60,经检验,x=60是原分式方程的解.答:甲平均每分钟打60个字.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为625 ;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50 .【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为900 ,并用你学过的知识加以证明.【分析】【发现】(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;【类比】由于m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【解答】解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点评】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.【解答】解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD,∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=4,在Rt△BCD中,BD==4同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2AF=.【点评】此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.【分析】(1)由图2结合平移即可得出结论;(2)判断出△AOB≌△CEA,得出AE=OB,CE=OA,再由图2知,点C的纵坐标是点B纵坐标的2倍,即可利用三角形ABC的面积求出OB,OA,即可得出结论;(3)分两种情况,利用三角形的面积公式或三角形的面积差即可得出结论.【解答】解:(1)结合△ABC的移动和图2知,点B移动到点A处,就是图2中,m=a时,S=S △A'B'D=,点C移动到x轴上时,即:m=b时,S=S△A'B'C '=S△ABC=,故答案为,(2)如图2,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90°,∵∠BAC=90°,∴∠OAB+∠CAE=90°,∵∠OAB+∠OBA=90°,∴∠OBA=∠CAE,由旋转知,AB=AC,∴△AOB≌△CEA,∴AE=OB,CE=OA,由图2知,点C的纵坐标是点B纵坐标的2倍,∴OA=2OB,∴AB2=5OB2,由(1)知,S==AB2=×5OB2,△ABC∴OB=1,∴OA=2,∴A(2,0),B(0,1),∴直线AB的解析式为y=﹣x+1;(3)由(2)知,AB2=5,∴AB=,①当0≤m≤时,如图3,∵∠AOB=∠AA'F,∠OAB=∠A'AF,∴△AOB∽△AA'F,∴,由运动知,AA'=m,∴,∴A'F=m,∴S=AA'×A'F=m2,②当<m≤2时,如图4同①的方法得,A'F=m,∴C'F=﹣m,过点C作CE⊥x轴于E,过点B作BM⊥CE于E,∴BM=3,CM=1,易知,△ACE∽△FC'H,∴,∴∴C'H=,在Rt△FHC'中,FH=C'H=由平移知,∠C'GF=∠CBM,∵∠BMC=∠GHC',∴△BMC∽△GHC',∴,∴∴GH=,∴GF=GH﹣FH=∴S=S△A'B'C '﹣S△C'FG=﹣××=﹣(2﹣m)2,即:S=.【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,三角形的面积公式,平移的性质,相似三角形的判定和性质,构造相似三角形是解本题的关键.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.【分析】(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.想办法证明△AEC≌△AED即可;方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.想办法证明∠ACD=∠ADC即可;(2)①如图4中,结论:∠DEF=∠FDG.理由三角形内角和定理证明即可;②结论:BD=k•DE.如图4中,如图延长AC到K,使得∠CBK=∠ABC.首先证明△DFE∽△BAK,推出==,推出BK=k•DE,再证明△BCD≌△BCK,可得BD=BK;【解答】解:(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.∵∠CAE=∠DAE,∠CAB=2∠DCB,∴∠CAE=∠CDB,∵∠CDB+∠ACD=90°,∴∠CAE+∠ACD=90°,∴∠AEC=90°,∵AE=AE,∠AEC=∠AED=90°,∴△AEC≌△AED,∴AC=AD.方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.∵∠DCF=∠DCB,∠A=2∠DCB,∴∠A=∠BCF,∵∠BCF+∠ACF=90°,∴∠A+∠ACF=90°,∴∠AFC=90°,∵∠ACF+∠BCF=90°,∠BCF+∠B=90°,∴∠ACF=∠B,∵∠ADC=∠DCB+∠B=∠DCF+∠ACF=∠ACD,∴AC=AD.(2)①如图4中,结论:∠DEF=∠FDG.理由:在△DEF中,∵∠DEF+∠EFD+∠EDF=180°,在△DFG中,∵∠GFD+∠G+∠FDG=180°,∵∠EFD=∠GFD,∠G=∠EDF,∴∠DEF=∠FDG.②结论:BD=k•DE.理由:如图4中,如图延长AC到K,使得∠CBK=∠ABC.∵∠ABK=2∠ABC,∠EDF=2∠ABC,∴∠EDF=∠ABK,∵∠DFE=∠A,∴△DFE∽△BAK,∴==,∴BK=k•DE,∴∠AKB=∠DEF=∠FDG,∵BC=BC,∠CBD=∠CBK,∴△BCD≌△BCK,∴BD=BK,∴BD=k•DE【点评】本题考查三角形综合题、三角形内角和定理、三角形外角的性质、全等三角形的判定和性质.相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(m,2m﹣5)(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=4,可得出点B的坐标为(m+2,4a+2m﹣5),设BD=t,则点C的坐标为(m+2+t,4a+2m﹣5﹣t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC 的值;(3)由(2)的结论结合S=2可求出a值,分三种情况考虑:①当m>2m△ABC﹣2,即m<2时,x=2m﹣2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m﹣5,即m>5时,x=2m﹣5时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB•CD=﹣.(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.【点评】本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤5及m>5三种情况考虑.2019年辽宁省大连市中考数学真题(附答案)副标题题号一二三总分得分一、选择题(本大题共9小题,共分)1.-2的绝对值是()A. 2B. 12C. −12D. −22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()3.A. B. C. D.4. 2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg ,将数58000用科学记数法表示为( ) A. 58×103 B. 5.8×103 C. 0.58×105 D. 5.8x1045. 在平面直角坐标系中,将点P (3,1)向下平移2个单位长度,得到的点P ′的坐标为( ) A. (3,−1) B. (3,3) C. (1,1) D. (5,1) 6. 不等式5x +1≥3x -1的解集在数轴上表示正确的是( )A. B. C.D.7. 下列所述图形中,既是轴对称图形又是中心对称图形的是( )A. 等腰三角形B. 等边三角形C. 菱形D. 平行四边形 8. 计算(-2a )3的结果是( )A. −8x 3B. −6x 3C. 6x 3D. 8x 3 9. 不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )A. 23B. 12C. 13D. 1410. 如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若AB =4,BC =8.则D ′F 的长为( )A. 2√5B. 4C. 3D. 2二、填空题(本大题共7小题,共分)11. 如图,抛物线y =-14x 2+12x +2与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 在抛物线上,且CD ∥AB .AD 与y 轴相交于点E ,过点E 的直线PQ 平行于x 轴,与拋物线相交于P ,Q 两点,则线段PQ 的长为______.。
2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。
x=2B。
x=-2C。
x1=2,x2=-2D。
x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。
(x-2)^2+7B。
(x-2)^2-1C。
(x+2)^2+7D。
(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。
变小B。
变大C。
不变D。
以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。
5/4B。
4/5C。
3/5D。
4/37.下列性质中正方形具有而矩形没有的是()A。
对角线互相平分B。
对角线相等C。
对角线互相垂直D。
四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。
12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。
13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。
15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。
2018年黑龙江齐齐哈尔市中考数学试卷(含解析)

2018年黑龙江省齐齐哈尔市初中毕业、升学考试数学学科(满分120分,考试时间120分钟)一、选择题(每小题3分,满分30分)2. (2018黑龙江省齐齐哈尔市,题号2,分值3)下列计算正确的是( )A. 236a a a =gB.224()a a =C.842a a a ÷=D.33()ab ab = 【答案】B 【解析】选项A ,根据同底数幂的乘法可知,23235a a a a +==g,此选项错误;选项B ,根据幂的乘方可知,22224()a a a ⨯==,故此选项正确;选项C,根据同底数幂的除法可知,84844a a a a -÷==,故此选项错误;选项D ,根据积的乘方可知,333()ab a b =,故此选项错误.故选B. 【知识点】同底数幂的乘法,幂的乘方,同底数幂的除法,积的乘方.3. (2018黑龙江省齐齐哈尔市,题号3,分值3)“厉害了,我的国!” 2018年1月18日,国家统计周对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶.把82万亿用科学记数法表示为 ( )A. 8.2xlO 13B. 8.2xl012C. 118.210⨯ D. 8.2xlO9 【答案】A【解析】由科学记数法的定义可知,82万亿=82000000000000= 8.2xlO 13 .【知识点】科学记数法.4. (2018黑龙江省齐齐哈尔市,题号4,分值3)一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A. 10°B. 15°C. 18°D. 30°【答案】B【解析】由图可知,∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∠EDF 是△BCD 的外角,∴∠ABC=∠BCD=30°,∠EDF=∠DBC+∠BCD ,解得∠DBC=15°.故选B.【知识点】平行线的性质,三角板各角的度数,互为补角的性质,三角形内角和定理,三角形外角的性质.5. (2018黑龙江省齐齐哈尔市,题号5,分值3)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某1. (2018黑龙江省齐齐哈尔市,题号1,分值3)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A.1个B.2个C.3个D.4个【答案】C【解析】由轴对称图形的定义可知,图形0,1,8有对称轴所以是轴对称图形,由中心对称图形的定义可知,4个图形均有对称中心,均是中心对称图形,∴既是轴对称图形,又是中心对称图形是图形0,1,8,即有3个,故选C .【知识点】轴对称图形的性质,中心对称图形的性质.天气温T 如何随时间t 的变化而变化.下列从图象中得到的信息正确的是( )A. 0点时气温达到最低B.最低气温是零下4℃C. 0点到14点之间气温持续上升D.最高气温是8℃ 【答案】D【解析】选项A ,由图象可知,最低点在4点时出现,故此选项错误;选项B ,由图象可知,最低点表示的是4点时,气温是-3℃,故此选项错误;选项C ,由图象可知,0点到14点气温的变化是先降温到-3℃再升温,故此选项错误;选项D ,由图可知,图象的最高点在14点时出现,此时气温是8℃,故此选项正确. 故选D.【知识点】折现统计图的应用.6. (2018黑龙江省齐齐哈尔市,题号6,分值3)我们家乡的黑土地全国特有,肥沃的土壤、绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎.小明在平价米店记录了一周中不同包装(10 kg, 20 kg, 50 kg)的大米的销售量(单位:袋)如下:10 kg 装100袋;2kg 装 220袋;50 kg 装80袋.如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这呰数据(袋数)中的 ( )A.众数B.平均数C.中位数D.方差【答案】A【解析】此题考查的是数据分析的能力,在每千克大米的进价和销售价都相同的情况下,作为米店老板最应该关注的是哪种包装的大米销售量最高,即众数.平均数表示销售的平均情况,不能凸显应该多进哪种包装的大米.中位数只能表示销售情况的中间量,不能帮米店老板分析多进哪种包装的大米.方差表示数据的离散程度,在此问题中不适用.故答案选A.【知识点】数据的集中趋势,数据的离散程度.7. (2018黑龙江省齐齐哈尔市,题号6,分值3)我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不.正确..的是 ( ) A. 若葡萄的价格是3元/千克,则3a 表示买a 千克葡萄的金额B. 若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C. 将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a 表示桌面受 到的压强,则3a 表示小木块对桌面的压力D.若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数【答案】D【解析】选项A ,根据“单价×数量=总价”可知3a 表示买a 千克葡萄的金额,此选项不符合题意;选项B ,由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;选项C ,由压强=压力接触面积得压力=压强×接触面积,可知3a 表示小木块对桌面的压力,此选项不符合题意;选项D ,由题可知,这个两位数用字母表示为10×3+a=30+a ,此选项符合题意.故选D.【知识点】用字母表示数的实际应用.8. (2018黑龙江省齐齐哈尔市,题号8,分值3)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有 ( )A, 1种 B. 2种 C. 3种 D. 4种【答案】C【解析】由题可知,设参加活动的男生有a 人,参加活动的女生有b 人,可得5a+4b=56,解得4(14)5b b a -==56-45,∵a ,b 均为非负整数,∴b 只能被5整除,即为4,9,14.∴小张可以安排学生参加活动的方案共有3种.故选C.【知识点】二元一次方程的应用,能被5整除的数的特点.9.(2018黑龙江省齐齐哈尔市,题号9,分值3)下列成语中,表示不可能事件的是 ( )A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【答案】A【解析】不可能事件表示在生活中不可能出现的情况,即概率为0的事件,选项B 、C 、D 在生活中都能出现,只有选项A 在生活中不可能出现。
2018年黑龙江省哈尔滨市中考数学试卷(带答案解析)

2018年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)﹣57的绝对值是( )A .57B .75C .−57D .−75【解答】解:|−57|=57,故选:A .2.(3分)下列运算一定正确的是( ) A .(m +n )2=m 2+n 2 B .(mn )3=m 3n 3C .(m 3)2=m 5D .m•m 2=m 2【解答】解:A 、(m +n )2=m 2+2mn +n 2,故此选项错误; B 、(mn )3=m 3n 3,正确; C 、(m 3)2=m 6,故此选项错误; D 、m•m 2=m 3,故此选项错误; 故选:B .3.(3分)下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A 、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B 、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C 、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D 、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意; 故选:C .4.(3分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.5.(3分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3√3 C.6 D.9【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.6.(3分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y=﹣5(x +1)2﹣1B .y=﹣5(x ﹣1)2﹣1C .y=﹣5(x +1)2+3D .y=﹣5(x ﹣1)2+3【解答】解:将抛物线y=﹣5x 2+1向左平移1个单位长度,得到y=﹣5(x +1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x +1)2﹣1. 故选:A .7.(3分)方程12x =2x+3的解为( )A .x=﹣1B .x=0C .x=35 D .x=1【解答】解:去分母得:x +3=4x , 解得:x=1,经检验x=1是分式方程的解, 故选:D .8.(3分)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,tan ∠ABD=34,则线段AB 的长为( )A .√7B .2√7C .5D .10【解答】解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,AO=CO ,OB=OD , ∴∠AOB=90°, ∵BD=8, ∴OB=4,∵tan ∠ABD=34=AOOB,∴AO=3,在Rt △AOB 中,由勾股定理得:AB=√AO 2+OB 2=√32+42=5, 故选:C .9.(3分)已知反比例函数y=2k−3x的图象经过点(1,1),则k 的值为( )A .﹣1B .0C .1D .2【解答】解:∵反比例函数y=2k−3x的图象经过点(1,1), ∴代入得:2k ﹣3=1×1, 解得:k=2, 故选:D .10.(3分)如图,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论一定正确的是( )A .AB AE =AG AD B .DF CF =DG ADC .FG AC =EG BD D .AE BE =CF DF【解答】解:∵GE ∥BD ,GF ∥AC , ∴△AEG ∽△ABD ,△DFG ∽△DCA ,∴AE AB =AG AD ,DG DA =DF DC , ∴AE BE =AG DG =CF DF. 故选:D .二、填空题(每小题3分,共计30分)11.(3分)将数920000000科学记数法表示为 9.2×108 . 【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×10812.(3分)函数y=5xx−4中,自变量x 的取值范围是 x ≠4 .【解答】解:由题意得,x ﹣4≠0, 解得,x ≠4, 故答案为:x ≠4.13.(3分)把多项式x 3﹣25x 分解因式的结果是 x (x +5)(x ﹣5) 【解答】解:x 3﹣25x =x (x 2﹣25) =x (x +5)(x ﹣5).故答案为:x (x +5)(x ﹣5).14.(3分)不等式组{x −2≥15−2x >3x −15的解集为 3≤x <4 .【解答】解:{x −2≥1①5−2x >3x −15②∵解不等式①得:x ≥3, 解不等式②得:x <4,∴不等式组的解集为3≤x <4, 故答案为;3≤x <4.15.(3分)计算6√5﹣10√15的结果是 4√5 .【解答】解:原式=6√5﹣10×√55=6√5﹣2√5=4√5,故答案为:4√5.16.(3分)抛物线y=2(x +2)2+4的顶点坐标为 (﹣2,4) . 【解答】解:∵y=2(x +2)2+4, ∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).17.(3分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是 13.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:26=13.故答案为:13.18.(3分)一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是 6π cm 2.【解答】解:设扇形的半径为Rcm , ∵扇形的圆心角为135°,弧长为3πcm ,∴135π×R 180=3π,解得:R=4, 所以此扇形的面积为135π×42360=6π(cm 2),故答案为:6π.19.(3分)在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为 130°或90° . 【解答】解:∵在△ABC 中,AB=AC ,∠BAC=100°, ∴∠B=∠C=40°,∵点D 在BC 边上,△ABD 为直角三角形, ∴当∠BAD=90°时,则∠ADB=50°, ∴∠ADC=130°, 当∠ADB=90°时,则 ∠ADC=90°,故答案为:130°或90°.20.(3分)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB=OB ,点E 、点F 分别是OA 、OD 的中点,连接EF ,∠CEF=45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN=√10,则线段BC 的长为 4√2 .【解答】解:设EF=x ,∵点E 、点F 分别是OA 、OD 的中点, ∴EF 是△OAD 的中位线, ∴AD=2x ,AD ∥EF , ∴∠CAD=∠CEF=45°,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC=2x , ∴∠ACB=∠CAD=45°, ∵EM ⊥BC , ∴∠EMC=90°,∴△EMC 是等腰直角三角形, ∴∠CEM=45°, 连接BE , ∵AB=OB ,AE=OE ∴BE ⊥AO ∴∠BEM=45°, ∴BM=EM=MC=x , ∴BM=FE ,易得△ENF ≌△MNB ,∴EN=MN=12x ,BN=FN=√10,Rt △BNM 中,由勾股定理得:BN 2=BM 2+MN 2,∴(√10)2=x 2+(12x)2,x=2√2或﹣2√2(舍),∴BC=2x=4√2.故答案为:4√2.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣1a−2)÷a2−6a+92a−4的值,其中a=4cos30°+3tan45°.【解答】解:当a=4cos30°+3tan45°时,所以a=2√3+3原式=a−3a−2•2(a−2)(a−3)2=2 a−3=√3 322.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2√2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求,CE=4.23.(8分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×40120=320人.24.(8分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点G,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a ,EG=DE=a ,∴S △ADE =12AE•DE=12•2a•a=a 2,∵BH 是△ABE 的中线, ∴AH=HE=a , ∵AD=CD 、AC ⊥BD , ∴CE=AE=2a ,则S △ADC =12AC•DE=12•(2a +2a )•a=2a 2=2S △ADE ;在△ADE 和△BGE 中, ∵{∠AED =∠BEGDE =GE ∠ADE =∠BGE ,∴△ADE ≌△BGE (ASA ), ∴BE=AE=2a ,∴S △ABE =12AE•BE=12•(2a )•2a=2a 2,S △BCE =12CE•BE=12•(2a )•2a=2a 2,S △BHG =12HG•BE=12•(a +a )•2a=2a 2,综上,面积等于△ADE 面积的2倍的三角形有△ACD 、△ABE 、△BCE 、△BHG .25.(10分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;若购买4个A 型放大镜和6个B 型放大镜需用152元. (1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A 型放大镜?【解答】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:{8x +5y =2204x +6y =152,解得:{x =20y =12,答:每个A 型放大镜和每个B 型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.26.(10分)已知:⊙O是正方形ABCD的外接圆,点E在AB̂上,连接BE、DE,点F在AD̂上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为74,求线段BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H 作HM ⊥KD ,垂足为点M , ∵∠F=90°, ∴HF ⊥FD , ∵DA 平分∠EDF , ∴HM=FH , ∵FH=BP , ∴HN=BP , ∵KH ∥BN , ∴∠DKH=∠DLN , ∴∠ELP=∠DLN , ∴∠DKH=∠ELP , ∵∠BED=∠A=90°, ∴∠BEP +∠LEP=90°, ∵EP ⊥BN ,∴∠BPE=∠EPL=90°, ∴∠LEP +∠ELP=90°, ∴∠BEP=∠ELP=∠DKH , ∵HM ⊥KD ,∴∠KMH=∠BPE=90°, ∴△BEP ≌△HKM , ∴BE=HK ;(3)解:如图3,连接BD , ∵3HF=2DF ,BP=FH , ∴设HF=2a ,DF=3a , ∴BP=FH=2a ,由(2)得:HM=BP ,∠HMD=90°, ∵∠F=∠A=90°,∴tan ∠HDM=tan ∠FDH ,∴HM DM =FH DF =23,∴DM=3a ,∵四边形ABCD 为正方形, ∴AB=AD ,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE ,∠DBF=45°﹣∠ABF ,∠BDE=45°﹣∠ADE , ∴∠DBF=∠BDE , ∵∠BED=∠F ,BD=BD , ∴△BED ≌△DFB , ∴BE=FD=3a ,过H 作HS ⊥BD ,垂足为S ,∵tan ∠ABH=tan ∠ADE=AH AB =23,∴设AB=3√2m ,AH=2√2m ,∴BD=√2AB=6m ,DH=AD ﹣AH=√2m ,∵sin ∠ADB=HS DH =√22,∴HS=m ,∴DS=√DH 2−HS 2=m , ∴BS=BD ﹣DS=5m ,∴tan ∠BDE=tan ∠DBF=HS BS =15,∵∠BDE=∠BRE ,∴tanBRE=BP PR =15,∵BP=FH=2a , ∴RP=10a ,在ER 上截取ET=DK ,连接BT ,由(2)得:∠BEP=∠HKD , ∴△BET ≌△HKD , ∴∠BTE=∠KDH , ∴tan ∠BTE=tan ∠KDH ,∴BP PT =23,即PT=3a , ∴TR=RP ﹣PT=7a ,∵S △BER ﹣S △DHK=74,∴12BP•ER ﹣12HM•DK=74, ∴12BP•(ER ﹣DK )=12BP•(ER ﹣ET )=74, ∴12×2a ×7a=74, 解得:a=12(负值舍去),∴BP=1,PR=5, 则BR=√12+52=√26.27.(10分)已知:在平面直角坐标系中,点O 为坐标原点,点A 在x 轴的负半轴上,直线y=﹣√3x +72√3与x 轴、y 轴分别交于B 、C 两点,四边形ABCD 为菱形.(1)如图1,求点A 的坐标;(2)如图2,连接AC ,点P 为△ACD 内一点,连接AP 、BP ,BP 与AC 交于点G ,且∠APB=60°,点E 在线段AP 上,点F 在线段BP 上,且BF=AE ,连接AF 、EF ,若∠AFE=30°,求AF 2+EF 2的值;(3)如图3,在(2)的条件下,当PE=AE 时,求点P 的坐标.【解答】解:(1)如图1中,∵y=﹣√3x+7√3 2,∴B(72,0),C(0,7√32),∴BO=72,OC=7√32,在Rt△OBC中,BC=√OC2+OB2=7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣72=72,∴A(﹣72,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠APB=60°,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACE≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT=√AP2−TP2=√3m,在Rt△ABT中,∵AT2+TB2=AB2,∴(√3m)2+(2m)2=72,解得m=√7或﹣√7(舍弃),∴BF=√7,AT=√21,BP=3√7,sin∠ABT=ATAB =√217,∵OK=PQ=BP•sin∠PBQ=3√7×√217=3√3,BQ=√BP2−PQ2=6,∴OQ=BQ﹣BO=6﹣72=52,∴P(﹣52,3√3)。
中考数学专题《二次根式》复习试卷含答案解析

2018年中考数学专题复习卷: 二次根式一、选择题1.下列计算正确的是()A. B. C. D.2.下列四个数中,是负数的是( )A. B. C. D.3.函数y= 中自变量x的取值范围是()A. x≥-1且x≠1B. x≥-1C. x≠1D. -1≤x<14.下列各式化简后的结果为3 的是()A. B. C. D.5.下列计算正确的是()A. a5+a2=a7B. × =C. 2-2=-4D. x2·x3=x66.计算|2﹣|+|4﹣|的值是()A. ﹣2B. 2C. 2 ﹣6D. 6﹣27.计算之值为何()A. 5B. 33C. 3D. 98.下列运算正确的是()A. B. C. D.9.已知,则代数式的值是()A. 0B.C.D.10.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A. 3个B. 4个C. 5个D. 6个11.化简为()A. 5﹣4B. 4 ﹣lC. 2D. 112.下列计算:①;②;③;④.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.函数y=的自变量x的取值范围是________.14.计算:=________.15.计算:________。
16.当x=2时,二次根式的值为________.17.计算的结果是________.18.计算(+1)2016(﹣1)2017=________.19.已知实数a在数轴上的位置如图所示,化简的结果是________.20.若实数a、b满足|a+2|+ =0,则=________.21.计算:=________.22.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.三、解答题23.24.计算:()﹣1﹣6cos30°﹣()0+ .25.在平面直角坐标系中,点P(- ,-1)到原点的距离是多少?26.若b为实数,化简|2b-1|- 。
2018年吉林省长春市中考数学试题及参考答案案

2018年长春市初中毕业学业水平考试数学一、选择题(本大题共8小题,每小题3分,共24分)1.(2018吉林长春中考,1,3分,★☆☆)﹣15的绝对值是()A.﹣15B.15C.﹣5 D.52.(2018吉林长春中考,2,3分,★☆☆)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2 500 000 000元,2 500 000 000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010 C.2.5×109D.25×1083.(2018吉林长春中考,3,3分,★☆☆)下列立体图形中,主视图是圆的是()A. B.C.D.4.(2018吉林长春中考,4,3分,★☆☆)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.5.(2018吉林长春中考,5,3分,★☆☆)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°6.(2018吉林长春中考,6,3分,★☆☆)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前.其中有首歌谣:今有竿不知其长,量得影长一丈五尺.立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺7.(2018吉林长春中考,7,3分,★☆☆)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B 两地之间的距离为()A.800sinα米B.800tanα米C.800sinα米D.800tanα米8.(2018吉林长春中考,8,3分,★★☆)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上.若AB=2,则k的值为()A.4 B.2C.2 D2二、填空题(本大题共6小题,每小题3分,共18分)9.(2018吉林长春中考,9,3分,★☆☆)比较大小:103.(填“>”、“=”或“<”)10.(2018吉林长春中考,10,3分,★☆☆)计算:a2•a3=.11.(2018吉林长春中考,11,3分,★☆☆)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3).若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)12.(2018吉林长春中考,12,3分,★☆☆)如图,在△ABC中,AB=A C.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB 的大小为度.13.(2018吉林长春中考,13,3分,★★☆)如图,在□ABCD中,AD=7,AB=23,∠B=60°.E 是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为.14.(2018吉林长春中考,14,3分,★★☆)如图,在平面直角坐标系中,抛物线y=x2+mx 交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C 的长为.三、解答题(本大题共10小题,共78分)x yOAC A′B15.(2018吉林长春中考,15,6分,★☆☆)先化简,再求值:221xx--+11x-,其中x=5﹣1.16.(2018吉林长春中考,16,6分,★☆☆)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱.现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)17.(2018吉林长春中考,17,6分,★☆☆)图①、图②均是8×8的正方形网格.每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18.(2018吉林长春中考,18,7分,★☆☆)学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本.(2)求商店获得的利润.19.(2018吉林长春中考,19,7分,★☆☆)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求AD的长.(结果保留π)20.(2018吉林长春中考,20,7分,★☆☆)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数.数据如下:20 21 19 16 27 18 31 29 21 2225 20 19 22 35 33 19 17 18 2918 35 22 15 18 18 31 31 19 22整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23 m21根据以上信息,解答下列问题:(1)上表中众数m的值为.(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据________来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.(2018吉林长春中考,21,8分,★★☆)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从一某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(2018吉林长春中考,22,9分,★★★)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM.若CM=1,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.(2018吉林长春中考,23,10分,★★★)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4.动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P 作PD⊥AC于点D(点P不与点A、B重合).作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长.(2)当点Q与点C重合时,求t的值.(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.24.(2018吉林长春中考,24,12分,★★★)如图,在平面直角坐标系中,矩形ABCD 的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣12x2+mx+1(x≥0)的图象记为G1,函数y=﹣12x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值.(2)求L与m之间的函数关系式.(3)当G2与矩形ABCD恰好有两个公共点时,求L的值.(4)设G在﹣4≤x≤2上最高点的纵坐标为y0.当32≤y0≤9时,直接写出L的取值范围.2018年长春市初中毕业学业水平考试数学试题答案全解全析1.答案:B解析:|-15|=15.故选B.考查内容:绝对值.命题意图:本题主要考查实数的基本概念的掌握,难度较低.2.答案:C解析:2500000000用科学记数法表示为2.5×109.考查内容:科学记数法.命题意图:本题主要考查用科学记数法记数的能力,难度较低.归纳总结:用科学记数法表示数的关键是确定a 和n 的值:a 是只有一位整数的数,即1≤a <10;n 是整数,n 的绝对值等于从原数到a ,小数点移动的位数;当用来表示较大数时,n 是正整数;当用来表示较小数时,n 是负整数. 3.答案:D解析:圆锥的主视图是三角形,圆柱的主视图是矩形,圆台的主视图是梯形,球的主视图是圆,故选D .考查内容:简单几何体的三视图.命题意图:本题主要考查三视图的判断,难度较低. 4.答案:B解析:移项,得3x ≥6;系数化为1,得 x ≥2.将不等式的解集表示在数轴上如下图,故选B .考查内容:在数轴上表示不等式的解集;解一元一次不等式.命题意图:本题主要考查一元一次不等式的解法,不等式的解集在数轴上的表示,难度较低. 5.答案:C解析:∵∠A =54°,∠B =48°,∴∠ACB =180°-∠A -∠B =180°﹣54°﹣48°=78°. ∵CD 平分∠ACB ,∴∠BCD =12∠ACB =12×78°=39°. ∵DE ∥AB ,∴∠CDE =∠BCD =39°.考查内容:平行线的性质;角平分线的定义;三角形内角和定理.命题意图:本题主要考查平行线的性质的应用,三角形内角和定理的应用,难度较低. 6.答案:B解析:1丈五尺=15尺,一尺五寸=1.5尺,五寸=0.5尺.设竹竿的长度为x 尺,∵=竹竿的长度标杆的长度竹竿的影长标杆的影长,即 1.5=150.5x ,解得x =45.45尺=四丈五尺.故选B . 考查内容:相似三角形的应用.命题意图:本题主要考查相似三角形的应用能力,难度中等偏下. 7.答案:D解析:在Rt △ABC 中,∵∠CAB =90°,∠B =α,AC =800米,∴tan α=ACAB,∴AB =tan AC α=800tan α.故选D . 考查内容:解直角三角形的应用﹣仰角俯角问题.命题意图:本题主要考查解直角三角形的应用能力,难度较低. 8.答案:A解析:如图,作BD ⊥AC 于D .∵△ABC 为等腰直角三角形,∴AC =2AB =22. ∴BD =AD =CD =2.∵AC ⊥x 轴,∴C (2,22). 把C (2,22)代入y =kx得k =2×22=4.故选A . 一题多解:连结OC ,∵△ABC 为等腰直角三角形,AB =2,∴S △ABC =12×2×2=2.∵CA ⊥x 轴,∴S △AOC = S △ABC =2.∵点C 在函数xk y =(x > 0)的图象上,∴2k=2,又k >0,∴k=4.故选A .考查内容:反比例函数图象上点的坐标特征;等腰直角三角形.命题意图:本题主要考查反比例函数与几何图形的综合应用,数形结合思想,难度中等. 9.答案:>解析:∵32=9<10,∴10>3. 考查内容:实数的大小比较.命题意图:本题主要考查实数大小比较能力,实数的估算,难度较低. 10.答案:a 5D解析:a 2•a 3=a 2+3=a 5. 考查内容:同底数幂的乘法.命题意图:本题主要考查幂的运算能力,难度较低. 11.答案:不唯一,只要n ≥32即可,如2. 解析:由点A 、B 的坐标分别为(1,3)、(n ,3)可知,线段AB // x 轴;把y =3代入y =2x ,解得x =23. ∴当x ≥23时,直线y =2x 与线段AB 有公共点,故取n ≥23的数即可. 考查内容:一次函数图象上点的坐标特征.命题意图:本题主要考查一次函数图象上点的坐标特征的应用,难度较低. 12.答案:37解析:∵AB =AC ,∠A =32°,∴∠ABC =∠ACB =74°. 又∵BC =DC ,∴∠CDB =∠CBD =12∠ACB =37°. 考查内容:等腰三角形的性质;尺规作图;三角形内角和定理及推论. 命题意图:本题主要考查等腰三角形性质的应用,难度较低. 13.答案:20解析:当AE ⊥BC 时,四边形AEFD 的周长最小.∵AE ⊥BC ,AB B =60°,∴AE =AB ·sin60°=3. ∵△ABE 沿BC 方向平移到△DCF 的位置, ∴EF =BC =AD =7.∴四边形AEFD 周长的最小值为14+6=20.考查内容:平行四边形的性质;平移的性质;垂线的性质;解直角三角形.命题意图:本题主要考查平行四边形及平移的性质的应用,动手操作能力,难度中等. 14.答案:3解析:当y =0时,x 2+mx =0,解得x 1=0,x 2=﹣m ,则A (﹣m ,0).∵点A 关于点B 的对称点为A ′,点A ′的横坐标为1,∴点A 的坐标为(﹣1,0). ∴抛物线解析式为y =x 2+x .当x =1时,y =x 2+x =2,则A ′(1,2).当y =2时,x 2+x =2,解得x 1=﹣2,x 2=1,则C (﹣2,2). ∴A ′C 的长为1﹣(﹣2)=3.考查内容:二次函数图象上点的坐标特征;抛物线与x 轴的交点;对称的性质.命题意图:本题主要考查二次函数有关知识的应用,中心对称的性质的应用,难度中等.15.解析:221xx--+11x-=2211xx-+-=211xx--=()()111x xx+--=x+1.当x=5﹣1时,原式=5﹣1+1=5.考查内容:分式的化简求值.命题意图:本题主要考查分式的运算能力,难度较低.16.解析:列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.一题多解:画树状图如下:由树状图可知,共有9种等可能的结果,其中两次抽取的卡片上都是“金鱼”的结果有4种,所以P(两张都是“金鱼”)=49.考查内容:列表法与画树状图法求概率.命题意图:本题主要考查概率的计算能力,难度较低.17.解析:答案不唯一,如图所示.考查内容:网格内的轴对称画图.命题意图:本题主要考查网格特点的掌握,轴对称图形特征的掌握,难度较低.18.解析:(1)设每套课桌椅的成本为x元,根据题意,得60×100﹣60x=72×(100﹣3)﹣72x,解得x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.考查内容:一元一次方程的应用.命题意图:本题主要考查一元一次方程的应用能力,难度较低.19.解析:(1)∵AB是⊙O的直径,AC切⊙O于点A,∴∠BAC=90°.∵∠C=40°,∴∠B=180°-∠BAC-∠C=50°.(2)如图,连结OD.∵∠B=50°,∴∠AOD=2∠B=100°.∴AD的长为1006180π⨯=103π.考查内容:圆周角定理;切线的性质;弧长的计算.命题意图:本题主要考查圆的基础知识的掌握与应用,难度较低.20.解析:(1)18.(2)中位数.(3)300×11231230+++++=100( 名),答:该部门生产能手有100名工人.考查内容:用样本估计总体;条形统计图;平均数;中位数;众数.命题意图:本题主要考查统计量的计算,统计分析能力,样本估计总体思想,难度较低. 21.解析:(1)每分钟向储存罐内注入的水泥量为15÷3=5(立方米); (2)设y =kx +b (k ≠0),把(3,15),(5.5,25)代入,得 15325 5.5.k b k b =+⎧⎨=+⎩,解得43.k b =⎧⎨=⎩,∴当3≤x ≤5.5时,y 与x 之间的函数关系式为y =4x +3. (3)1;11.解法提示:由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为25155.53--=4立方米/分,则每分钟输出量为5﹣4=1(立方米).若要输出的水泥总量达到8立方米,则输出口需打开8分钟,所以从打开输入口到关闭输出口共用的时间为8+3=11(分钟). 考查内容:一次函数的应用.命题意图:本题主要考查一次函数的实际应用能力,数形结合思想,难度中等. 22.解析:探究:(1)如图,过点G 作GP ⊥BC 于P .∵四边形ABCD 是正方形,∴AB =BC ,∠A =∠ABC =∠BCD = 90°. ∴四边形ABPG 是矩形. ∴PG =AB ,∴PG =BC .∵∠PGF =∠CBE =90°﹣∠BFG ,又∠GPF =∠BCD =90°,∴△PGF ≌△CBE (ASA ). ∴BE =FG . (2)2.解法提示:由(1)知,FG=BE.连接CM,∵∠BCE=90°,点M是BE的中点,∴BE=2CM=2.∴FG=2.【应用】9.解法提示:BE=2CM=2ME=6,CG=BE=6.∴ME=3.∵BE⊥CG,∴S四边形CEGM=12CG×ME=12×6×3=9.考查内容:正方形的性质;全等三角形的性质与判定;直角三角形的性质;四边形面积的计算.命题意图:本题主要考查正方形性质的应用,全等三角形性质与判定的应用,直角三角形性质的应用等,难度中等.23.解析:(1)在Rt△ABC中,∠A=30°,AB=4,∴AC=23.∵PD⊥AC,∴∠ADP=∠CDP=90°.在Rt△ADP中,AP=2t,∴DP=t,AD=AP cos A=2t×32=3t.∴CD=AC﹣AD=23﹣3t(0<t<2).(2)在Rt△PDQ中,∵∠DPQ=60°,∴∠PQD=30°=∠A,∴PA=PQ.∵PD⊥AC,∴AD=DQ.当点Q和点C重合时,∴AD+DQ=AC.∴2×3t=23,∴t=1.(3)当0<t≤1时,S=S△PDQ=12DQ×DP=12×3t×t=32t2.当1<t<2时,如图1.图1CQ=AQ﹣AC=2AD﹣AC3﹣33t﹣1).在Rt △CEQ 中,∠CQE =30°, ∴CE =CQ ·tan ∠CQE =23( t ﹣1)×33=2( t ﹣1). ∴S =S △PDQ ﹣S △ECQ =12×3t ×t ﹣12×23( t ﹣1)×2( t ﹣1)=﹣332t 2+43t ﹣23.∴S =()()22301233432312.2t t t t t ⎧⎪⎪⎨⎪-+⎩≤-⎪,<<<(4)12或34或54. 解法提示:第一种情况:如图2,当PQ 的垂直平分线过AB 的中点F 时.图2∴∠PGF =90°,PG =12PQ =12AP =t ,AF =12AB =2. ∵∠A =∠AQP =30°,∴∠FPG =60°. ∴∠PFG =30°,∴PF =2PG =2t . ∴AP +PF =2t +2t =2,∴t =12. 第二种情况:如图3,当PQ 的垂直平分线过AC 的中点N 时.图3∴∠QMN =90°,AN =12AC 3QM =12PQ =12AP =t , 在Rt △NMQ 中,NQ =30oMQ cos 23. ∵AN +NQ =AQ , 3233,∴t =34. 第三种情况:如图4,当PQ 的垂直平分线过BC 的中点F 时,图4∴BF=12BC=1,PE=12PQ=t,∠H=30°.∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1.在Rt△PEH中,PH=2PE=2t.∴AH=AP+PH=AB+BH,∴2t+2t=5. ∴t=54.综上,当线段PQ的垂直平分线经过△ABC一边中点时,t的值为12或34或54.考查内容:三角形综合题;解直角三角形;函数解析式;图形面积;线段垂直平分线的性质.命题意图:本题主要考查三角形与函数的综合应用,解直角三角形的应用,数形结合思想,分类讨论思想,方程思想,难度较大.24.解析:(1)∵四边形ABCD是矩形,∴AB∥CD,BC∥AD,AB=CD,BC=A D.∵矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E,∴BC⊥y轴,AB⊥x轴,CD⊥x轴,DE=AE.把x=0代入y=﹣12x2+mx+1得y=1,∴点E的坐标是(0,1).当点A的横坐标为﹣1时,点A的坐标为(﹣1,1).∴D(1,1),把D(1,1)代入y=﹣12x2+mx+1中,得1=﹣12+m+1,∴m=12.(2)∵抛物线y=﹣12x2+mx+1的对称轴x=﹣1m=m,∴AE=ED=2m,E的坐标为(0,1).∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m.AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G 2的顶点M (﹣m ,12m 2﹣1)在线段AE 上, ∴12m 2﹣1=1. ∴m =2或﹣2(不合题意,舍去). ∴L =8×2+4=20. (4)12≤L ≤40.解法提示:由题意G 1的顶点坐标为(m ,2112m ),G 2的顶点坐标为(-m ,2112m ). ①若0<m ≤2,当最高点是抛物线G 1的顶点N (m ,12m 2+1)时, 若12m 2+1=32,解得m =1或﹣1(不合题意,舍去), 若12m 2+1=9时,m =4或﹣4(不合题意,舍去). ∴32≤2112m ≤9,解得1≤m ≤4, 又∵m ≤2,观察图象可知满足条件的m 的取值范围为1≤m ≤2.②若2<m ≤4,G 1在x=2处的取值为:y=-12×22+2m+1=2m -1,结合m 的范围比较G 1的顶点纵坐标值,可知(2,2m ﹣1)为最高点,则32≤2m ﹣1≤9,解得54≤m ≤5.∴2<m ≤4.③若m >4,G 2在x=-4处的取值为:y=-12×(-4)2-2×(-4)-1=4m -9, 比较G 在x=2和x=-4的纵坐标值,并结合m 的取值范围得到32≤4m ﹣9≤9,解得218≤m ≤92,∴4<m ≤92.综上可知:1≤m ≤92,则12≤L ≤40.考查内容:二次函数的与几何图形综合题;矩形的性质;不等式组等.命题意图:本题主要考查二次函数的图象、性质、解析式的应用,矩形性质的应用,方程思想,分类讨论思想,难度较大.。
2018中考数学题----找规律

-4-
21、下面的图形是由边长为 l 的正方形按照某种规律排列而组成的. (1)观察图形,填写下表: 图形 正方形的个数 图形的周长 ① 8 18 ② ③
(2)推测第 n 个图形中, 正方形的个数为________, 周长为______(都用含 n 的代数式表示). 22、观察下图,我们可以发现:图⑴中有 1 个正方形;图⑵中有 5 个正方形,图⑶中共有 14 个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。
15、图 1 是棱长为 a 的小正方体,图 2、图 3 由这样的小正方体摆放而成.按照这样的方 法继续摆放,由上而下分别叫第一层、第二层、…、第 n 层,第 n 层的小正方体的个数 为 s.解答下列问题:
图1
图2
-3-
图3
(1)按照要求填表:
n s
1 1
2 3
3 6
4
… …
(2)写出当 n=10 时,s=
)
-5-
A. <1>和<2>
B. <2>和<3>
C. <2>和<4>
D. <1>和<4>
26、某体育馆用大小相同的长方形木块镶嵌地面,第 1 次铺 2 块,如图 1;第 2 次把第 1 次铺的完全围起来,如图 2;第 3 次把第 2 次铺的完全围起来,如图 3;…依此方法, 第 n 次铺完后,用字母 n 表示第 n 次镶嵌所使用的木块块数为 正整数) . (n 为
……
①1=12; ②1+3=22; ③1+3+5=32
④
;
⑤
;
;
……
(2)通过猜想写出与第 n 个点阵相对应的等式_____________________。
山东省济南市2018年中考数学试卷(含答案解析)

山东省济南市2018年中考数学试卷一、选择题1.4的算术平方根为( )A. 2B. -2C. ±2D. 162.如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A. 50°B. 60°C. 140°D. 150°3.下列运算中,结果是的是( )A. B. a10÷a2 C. (a2)3 D. (-a)54.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为()A. 3.7×102B. 3.7×103C. 37×102D. 0.37×1045.下列图案既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A. 从前面看到的形状图的面积为5B. 从左面看到的形状图的面积为3C. 从上面看到的形状图的面积为3D. 三种视图的面积都是47.化简的结果是()A. B. C. D.8.下列命题中,真命题是()A. 两对角线相等的四边形是矩形B. 两对角线互相平分的四边形是平行四边形C. 两对角线互相垂直的四边形是菱形D. 两对角线相等的四边形是等腰梯形9.若一次函数的函数值随的增大而增大,则()A. B. C. D.10.在▱ABCD中,延长AB到E,使BE=AB,连结DE交BC于F,则下列结论不一定成立的是( )A. ∠E=∠CDFB. EF=DFC. AD=2BFD. BE=2CF11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A. B. C. D.12.如图,直线与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是()A. (,3)B. (,)C. (2,)D. (,4)13.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A. 2B.C.D.14.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A. (1,2,1,2,2)B. (2,2,2,3,3)C. (1,1,2,2,3)D. (1,2,1,1,2)15.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A. t≥﹣1B. ﹣1≤t<3C. ﹣1≤t<8D. 3<t<8二、填空题16.|﹣7﹣3|=________.17.分解因式:x2+2x+1=________18.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为________.19.若和的值相等,则________.20.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.21.如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,若,则的值为________.三、解答题22.(1)化简:(a+3)(a-3)+a(4-a)(2)解不等式组:.23.(1)如图,在四边形ABCD是矩形,点E是AD的中点,求证:EB=EC.(2)如图,AB与相切于C,,⊙O的半径为6,AB=16,求OA的长.24. 2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?25.在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:(1)统计表中的x=________,y=________;(2)被调查同学劳动时间的中位数是________时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.26.如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1,),射线AC与轴交于点C,轴,垂足为D.(1)求和a的值;(2)直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值.27.如图1,有一组平行线,正方形的四个顶点分别在上,过点D且垂直于于点E,分别交于点F,G,.(1)AE=________,正方形ABCD的边长=________;(2)如图2,将绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上.①写出与的函数关系并给出证明;②若=30°,求菱形的边长.28.如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积 ;(2)如图2,直线AB 与 轴相交于点P ,点M 为线段OA 上一动点, 为直角,边MN 与AP 相交于点N ,设 ,试探求: ① 为何值时为等腰三角形;② 为何值时线段PN 的长度最小,最小长度是多少.答案解析部分一、选择题1.【答案】A【解析】【解答】解:4的平方根是±2,所以4的算术平方根是2.【分析】一个正数有两个平方根,其中正的平方根是算术平方根。
2018年中考数学真题知识分类练习试卷:代数式(含答案)

代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
中考数学考前50天得分专练21

中考数学考前50天得分专练(21)一、填空题:(本大题共11题,满分33分) 1.计算:2= .2.分解因式:222a ab -= .3.化简:111x x -=+ . 4.已知函数3()2f x x =+,则(1)f = .5.函数y =的定义域是 .6.若方程2210x x --=的两个实数根为1x ,2x ,则12x x += .72=的根是 .8.如图1,正比例函数图象经过点A ,该函数解析式是 .9.如图2,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE , 交边CD 于点F .在不添加辅助线的情况下, 请写出图中一对相似三角形: .10.如图3,在直角坐标平面内,线段AB 垂直于y 轴,垂足为B , 且2AB =,如果将线段AB 沿y 轴翻折,点A 落在点C 处, 那么点C 的横坐标是 .11.图4是44⨯正方形网格,请在其中选取一个白色的单位正方形并涂黑, 使图4中黑色部分是一个中心对称图形.二、选择题:(本大题共4题,满分16分) 12)ABCD13.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <图1图2B图3图414.已知四边形ABCD 中,90A B C === ∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( ) A .90D = ∠B .AB CD =C .AD BC =D .BC CD =15.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A .第①块 B .第②块 C .第③块 D .第④块三、解答题16.解不等式组:3043326x x x ->⎧⎪⎨+>-⎪⎩,,并把解集在数轴上表示出来.17.如图6,在直角坐标平面内,O 为原点,点A 的坐标为(100),,点B 在第一象限内,5BO =,3sin 5BOA =∠.求:(1)点B 的坐标;(2)cos BAO ∠的值.图6图518.(本题满分10分,第(1)小题满分4分,第(2),(3)小题满分各3分)初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样数据,如表一所示.请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答: ; 估计该校全体初二学生平均每周上网时间为 小时;(2)根据具体代表性的样本,把图7中的频数分布直方图补画完整; (3)在具有代表性的样本中,中位数所在的时间段是 小时/周.(每组可含最低值,不含最高值) 表一图7 (每组可含最低值,不含最高值) /周参考答案一、填空题(本大题共12题,满分36分) 1.3 2.2()a a b - 3.1(1)x x + 4.1 5.2x ≥ 6.2 7.3x =-8.3y x = 9.AFD EFC △∽△(或EFC EAB △∽△,或EAB AFD △∽△) 10.1 11.2- 12.答案见图1 二、选择题(本大题共4题,满分16分) 13. C 14.B 15.D 16.B 三、解答题17.解:由30x ->,解得3x <. ····················································································· 3分由43326x x+>-,解得1x >-. ························································································· 3分 ∴不等式组的解集是13x -<<. ························································································ 1分 解集在数轴上表示正确. ······································································································ 2分 18.解:去分母,得23(21)(1)0x x x x -+-+=, ··························································· 3分 整理,得23210x x --=, ·································································································· 2分解方程,得12113x x ==-,.······························································································ 2分 经检验,11x =是增根,213x =-是原方程的根,∴原方程的根是13x =-. ················· 2分19.解:(1)如图2,作BH OA ⊥,垂足为H , ····························································· 1分在Rt OHB △中,5BO = ,3sin 5BOA ∠=,3BH ∴=. ··························································································································· 2分 4OH ∴=.……………………………… 1分∴点B 的坐标为(43),.……………………2分 (2) 10OA =,4OH =,6AH ∴=.………………1分在Rt AHB △中,3BH =,AB ∴= 1分cos AH BAO AB ∴∠==2分图1x20.(1)小杰;1.2. ···································································································2分,2分(2)直方图正确.················································································································ 3分(3)0~1. ····························································································································· 3分。
2018年河北省中考数学试题及参考答案案

2018年河北省初中毕业生升学文化课考试数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分.每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018河北中考,1,3分,★☆☆)下列图形具有稳定性的是( )A.B.C.D.2.(2018河北中考,2,3分,★☆☆)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A.4B.6C.7D.103.(2018河北中考,3,3分,★☆☆)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A.l1B.l2C.l3D.l44.(2018河北中考,4,3分,★☆☆)将9.52变形正确的是( )A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(2018河北中考,5,3分,★☆☆)图中三视图对应的几何体是( )A.B.C.D.6.(2018河北中考,6,3分,★☆☆)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.(2018河北中考,7,3分,★☆☆)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )A.B.C.D.8.(2018河北中考,8,3分,★☆☆)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(2018河北中考,9,3分,★☆☆)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x 乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是( )A.甲B.乙C.丙D.丁10.(2018河北中考,10,3分,★☆☆)图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个B.3个C.4个D.5个11.(2018河北中考,11,2分,★★☆)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2018河北中考,12,2分,★★☆)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按如图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )A.4cm B.8cm C.(a+4)cm D.(a+8)cm13.(2018河北中考,13,2分,★★☆)若2n+2n+2n+2n=2,则n=( )A.﹣1B.﹣2C.0D.1 414.(2018河北中考,14,2分,★★☆)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2018河北中考,15,2分,★★★)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.(2018河北中考,16,2分,★★★)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值.”甲的结果是c=1,乙的结果是c=3或4,则( )A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(2018河北中考,17,3分,★☆☆)计算:123--= .18.(2018河北中考,18,3分,★☆☆)若a,b互为相反数,则a2﹣b2= .19.(2018河北中考,19,4分,★★☆)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902︒=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(2018河北中考,20,8分,★☆☆)嘉淇准备完成题目:化简(x2+6x+8)-(6x+5x2+2).发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(2018河北中考,21,9分,★☆☆)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(2018河北中考,22,9分,★★☆)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试 (1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(2018河北中考,23,9分,★★☆)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.24.(2018河北中考,24,10分,★★★) 如图,直角坐标系,xOy 中,一次函数y =-21x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AO C -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.25.(2018河北中考,25,10分,★★★)如图,点A 在数轴上对应的数为26,以原点O为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且tan ∠AOB =43,在优弧AB 上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连结OP .(1)若优弧AB 上一段AP 的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(2018河北中考,26,11分,★★★)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5;M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省初中毕业生升学文化课数学试卷试题答案全解全析1.答案:A解析:因为三角形具有稳定性,四边形和其他多边形具有不稳定性,故选A.考查内容:三角形的稳定性.命题意图:本题主要考查了学生对三角形具有稳定性和四边形具有不稳定性的识记,难度较低.2.答案:B解析:∵8.1555×1010=81 555 000 000,∴81 555 000 000中“0”的个数为6个.故选B.一题多解:10次幂相当于把8.1555的小数点向右移动10位,然后可以发现结果为6个0.考查内容:科学记数法.命题意图:本题考查了学生把用科学记数法表示的数还原成原数的能力,难度较低.3.答案:C解析:根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析可得,该图形的对称轴是直线l3,故选C.考查内容:轴对称图形对称轴的判断.命题意图:本题主要考查了学生对轴对称图形和其对称轴的理解,难度较低.4.答案:C解析:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选C.考查内容:完全平方公式.命题意图:本题考查了学生应用完全平方公式进行计算的能力,难度较低.5.答案:C解析:首先可画出各个图形的三视图,然后对照给出的三视图,观察图形可知选项C符合三视图的要求,故选C.考查内容:由三视图判断几何体.命题意图:本题主要考查了学生由三视图判断几何体的能力,难度较低.6.答案:D解析:Ⅰ是过直线外一点作这条直线的垂线;Ⅱ是作线段的垂直平分线;Ⅲ是过直线上一点作这条直线的垂线;Ⅳ是作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选D.考查内容:尺规作图—基本作图.命题意图:本题主要考查了学生对这四种基本尺规作图方法的掌握,难度较低.7.答案:A解析:设的质量为x,的质量为y,的质量为Z,假设A正确,则x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选A.考查内容:等式的性质.命题意图:本题是代数式和方程的结合,考查学生对代数式和方程的实际应用能力,难度较低.8.答案:B解析:∵PA=PB,∴△APB是等腰三角形.在等腰三角形中,顶角的平分线、底边上的中线、底边上的高线重合(即“三线合一”),故作其中的任何一线均可使结论得到证明.A项中作的是顶角平分线,C项中作的是底边的中线,D项中作的是底边的高线,B项中的作法使点C同时满足两个条件:①是AB的中点;②PC⊥AB,不一定能实现,故B项错误.故选B.考查内容:等腰三角形性质的应用.命题意图:本题主要考查学生对等腰三角形的性质(三线合一)的掌握情况,同时考查运用全等三角形的判定来加以证明的能力,难度不大.9.答案:D解析:∵x乙=x丁>x甲=x丙,∴乙、丁的麦苗比甲、丙要高,∵s 甲2=s 丁2<s 乙2=s 丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐, 综上,麦苗又高又整齐的是丁.故选D . 考查内容:算术平均数;方差.命题意图:本题主要考查了学生对方差的意义的理解和应用掌握,难度较小. 10.答案:B解析:①﹣1的倒数是﹣1,原题错误,该同学判断正确; ②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误; ④20=1,原题正确,该同学判断正确;⑤2m 2÷(﹣m )=﹣2m ,原题正确,该同学判断正确.故选B . 考查内容:绝对值;倒数;整式的除法;零指数幂;众数.命题意图:本题主要考查学生对倒数的定义、绝对值的性质、众数的定义、零指数幂的定义及单项式除以单项式的法则的掌握和运用,难度较小. 11.答案:A解析:如图.∵AP ∥BC ,∴∠EBF =∠DAB =50°.∴∠FBG =∠EBG ﹣∠EBF =80°﹣50°=30°,此时的航行方向为北偏东30°,故选A .考查内容:方位角的知识.命题意图:本题主要考查学生对方位角的辨识和运用,难度适中. 12.答案:B解析:∵原正方形的周长为acm , ∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a +8(cm ),因此需要增加的长度为a +8﹣a =8cm .一题多解:将小正方形的各边分别延长,交大正方形的各边于一点,在各个顶点处形成边长为1的正方形,原正方形周长为a cm ,所以新正方形的周长为(a +8)cm ,所以需增加8cm . 考查内容:正方形的周长; 列代数式.命题意图:本题主要考查学生根据图形的数量关系列代数式的能力,难度适中. 13.答案:A解析:∵2n +2n +2n +2n =2,∴4×2n =2,∴2×2n =1,∴21+n =1,∴1+n =0,∴n =﹣1.故选A . 考查内容:同底数幂的乘法.命题意图:本题考查了学生对同底数幂的乘法的理解和运用,难度适中. 14.答案:D解析::∵221x x x --÷21x x -=221x x x --•21xx - =221x x x --•()21x x-- =()21x x x --•()21x x --=()2x x--=2x x-, ∴出现错误是在乙和丁,故选D . 考查内容:分式的乘除法.命题意图:本题主要考查学生运用分式的乘除法法则进行运算,难度适中. 15.答案:B解析::如图,连接AI 、BI .∵点I 为△ABC 的内心,∴AI 平分∠CAB ,∴∠CAI =∠BAI ,由平移得:AC ∥DI ,∴∠CAI =∠AID ,∴∠BAI =∠AID ,∴AD =DI , 同理可得:BE =EI ,∴△DIE 的周长=DE +DI +EI =DE +AD +BE =AB =4, 即图中阴影部分的周长为4,故选B .考查内容:三角形的内切圆与内心、平移的性质.命题意图:本题主要考查了学生对三角形内心的定义、平移的性质及角平分线的定义等知识的掌握和运用,难度较大. 16.答案:D解析:对于抛物线L :y =-x (x -3)+c (0≤x ≤3),当x =0时,y =c ;当x =3时,y =c .如图(1),当L 与l 相切时,则关于x 的一元二次方程-x (x -3)+c =x +2,即x 2-2x +2-c =0有两个相等的实数根,即△=(-2)2-4×(2-c )=0,解得c =1.如图(2),当直线l 恰好经过点(0,c )时,则c =0+2=2;如图(3),当直线l 恰经过点(3,c )时,则c =3+2=5,故当2<c ≤5时,L 与l 相交,且有唯一公共点.综上可知,满足条件的c 的值为1,3,4,5,即甲、乙的结果合在一起也不正确.故选D .考查内容:一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.命题意图:本题主要考查了学生对二次函数图象上点的坐标特征和一次函数图象上点的坐标特征和一元二次方程的根的判别式等知识点的灵活运用,难度较大. 17.答案:2 123--4=2. 考查内容:算术平方根的求法.命题意图:本题主要考查学生对算术平方根的理解和掌握,难度较小.18.答案:0解析:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.考查内容:相反数;运用公式法进行因式分解.命题意图:本题主要考查了学生运用公式法分解因式的能力以及对相反数的定义的理解和运用,难度较低.19.答案:1421解析:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:3601802x-=18090x-,以∠APB为内角的正多边形的边数为:360x,∴图案外轮廓周长是=18090x-﹣2+360x﹣2+360x﹣2=18090x-+720x﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时的图案定为会标,∴会标的外轮廓周长是=1809030-+72030﹣6=21.考查内容:正多边形和圆.命题意图:本题主要考查了学生阅读理解问题的能力和对正多边形的边数与内角、外角的关系理解和运用,难度较大.20.解析:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6.(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得,a=5.考查内容:整式的加减运算.命题意图:本题主要考查学生对整式的加减运算的掌握,难度较低.21.解析:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率=1024=512;(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.故答案为3.考查内容:扇形统计图;条形统计图;中位数;概率公式.命题意图:本题主要考查了学生对统计与概率的掌握与运用,难度较低.22.解析:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.考查内容:图形的变化规律型问题.命题意图:本题主要考查了学生对图形的变化规律的探究能力,难度适中.23.解析:(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵,,,A BAPM BPNPA PB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.考查内容:三角形全等的判定及性质;三角形外接圆.命题意图:本题主要考查学生解决三角形和圆的综合题的能力,难度适中.24.解析:(1)把C(m,4)代入一次函数y=﹣12x+5,可得4=﹣12m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣12x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=32;当l2,l3平行时,k=2;当11,l3平行时,k=﹣12;故k的值为32或2或﹣12.考查内容:三角形全等的判定及性质;三角形外接圆.命题意图:本题主要考查学生对一次函数的综合应用的掌握,难度较大.25.解析:(1)如图1中,由26180nπ⋅⋅=13π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB=43=OPOQ,∴OQ=392,∴x=392.(2)如图当直线PQ与⊙O相切时时,x的值最小.在Rt△OPQ中,OQ=OP÷45=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设OH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k 2﹣3k ﹣20.79=0, 解得k =6.3或﹣3.3(舍弃), ∴OQ =5k =31.5不合题意舍弃. 此时x 的值为﹣31.5.综上所述,满足条件的x 的值为﹣16.5或31.5或﹣31.5. 考查内容:几何综合.命题意图:本题主要考查学生对几何知识的综合应用能力,同时考查学生对分类讨论思想的应用,难度较大.26.解析:(1)由题意,点A (1,18)代入y =k x ,得18=1k,∴k =18. 设h =at 2,把t =1,h =5代入,得a =5,∴h =5t 2. (2)∵v =5,AB =1, ∴x =5t +1. ∵h =5t 2,OB =18, ∴y =﹣5t 2+18.由x =5t +1,则t =()115x -, ∴y =﹣2211289(1)185555x x x -+=-++.当y =13时,13=﹣21(1)185x -+,解得x =6或﹣4. ∵x ≥1, ∴x =6. 把x =6代入y =18x,得y =3, ∴运动员在与正下方滑道的竖直距离是13﹣3=10(米). (3)把y =1.8代入y =﹣5t 2+18,得t 2=8125, 解得t =1.8或﹣1.8(负值舍去), ∴x =10,∴甲坐标为(10,1.8)恰号落在滑道y =18x上, 此时,乙的坐标为(1+1.8v 乙,1.8).由题意:1+1.8v乙﹣(1+5×1.8)>4.5,∴v乙>7.5.考查内容:二次函数和反比例函数的综合.命题意图:本题主要考查二次函数和反比例函数的待定系数法以及函数图象上的临界点问题,难度较大.- 21 -。
(完整word版)2019年中考数学计算题题 (2)

2018年中考数学复习计算题专练1.(2013十堰中考17题.6分)化简:2222112x x x x x xx x .2.(2014十堰中考17题。
6分)化简:22221x x xxx3。
(2015十堰中考17题。
6分)化简:2121a aaa4. (2016十堰中考17题。
6分)化简:.5.(5分)(2017•十堰)计算:|﹣2|+﹣(﹣1)2017.6.(6分)(2017•十堰)化简:(+)÷.2017年湖北其它市中考计算题7.(8分)(2017•鄂州市)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.8.(8分)(2017•恩施州)先化简,再求值:÷﹣,其中x=.9.(5分)(2017•黄冈市)解不等式组.10.(7分)(2017•黄石市)计算:(﹣2)3++10+|﹣3+|.11。
(7分)(2017•黄石市)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.12。
(7分)(2017•黄石市)已知关于x的不等式组恰好有两个整数解,求实数a13.(7分)(2017•荆门)先化简,再求值:(2x+1)2﹣2(x﹣1)(x+3)﹣2,其中x=.14.(10分)(2017•荆州)(1)解方程组:(2)先化简,再求值:﹣÷,其中x=2.15。
(5分)(2017•随州)计算:()﹣2﹣(2017﹣π)0+﹣|﹣2|.16.(6分)解分式方程:+1=.17.(8分)(2017•武汉市) 4x﹣3=2(x﹣1) 18。
(6分)(2017•仙桃市)化简:﹣.19.(6分)(2017•仙桃市)解不等式组,并把它的解集在数轴上表示出来.20.(8分)(1)计算:|﹣|﹣+20170;(2)解方程:=.21.(6分)(2017•襄阳)先化简,再求值:(+)÷,其中x=+2,y=﹣2.22.(6分)计算:﹣22++•cos45°. 24。
北京市2018年中考数学试题(含答案)

2018年北京市高级中等学校招生考试数学试卷姓名 准考证号 考场号 座位号一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个。
1. 下列几何体中,是圆柱的为2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是(A )>4a (B )>0b c - (C )>0ac (D )>0c a +3. 方程式⎩⎨⎧=-=-14833y x y x 的解为(A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。
已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为 (A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯ (D )26105.2m ⨯ 5. 若正多边形的一个外角是o60,则该正多边形的内角和为(A )o360 (B )o540 (C )o720 (D )o9006. 如果32=-b a ,那么代数式b a ab a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为(A )3 (B )32 (C )33 (D )34 7. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()02≠=+=a c bx ax y 。
下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(A )10m (B )15m (C )20m (D )22.5m8. 上图是老北京城一些地点的分布示意图。
在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-;②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-;④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-。
2018年江西省中考数学试卷-答案

江西省2018年中等学校招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】2-的绝对值是2,故选B . 【考点】绝对值的概念 2.【答案】A 【解析】2222()b b a a b a a-==,故选A . 【考点】分式的运算 3.【答案】D【解析】从左面看该几何图,看到的是一个矩形,且看不到的棱用虚线表示,故选D . 【考点】几何体的左视图 4.【答案】C【解析】A 中,最喜欢足球的人数最多,故错误;B 中,最喜欢羽毛球的人数是最喜欢乒乓球人数的43,故错误;C 中,全班学生总人数为122084650++++=(名),故正确;D 中,最喜欢田径的人数占总数的4100%8%50⨯=,故错误,故选C . 【考点】频数分布直方图 5.【答案】C【解析】如图所示,正方形ABCD 可以向上、向下、向右以及沿AC 所在直线、沿BD 所在直线平移,且平移前后的两个正方形可组成轴对称图形,故选C . 【考点】利用轴对称设计图案,平移的性质 6.【答案】D【解析】A 中,因为双曲线3y x=的图象位于第一、三象限,且m 与2m +不全为0,所以直线1l 和2l 中总有一条与双曲线相交,故正确;B 中,当1m =时,直线1l 与双曲线交点为(1,3)2l 与双曲线交点为(3,1)1m =时两直线与双曲线的交点到原点的距离相等,故正确;C 中,当20m -<<时,直线2l 与双曲线的交点位于第三象限,在y 轴的左侧,直线2l 与双曲线的交点位于第一象限,在y 轴的右侧,故正确;D 中,反比例函数3y x=的图象是曲线,根据直角三角形中斜边长大于直角边长,故当两直线与双曲线都有交点时,这两交点的最短距离必大于2,故错误,故选D . 【考点】反比例函数的图象与性质第Ⅱ卷二.填空题 7.【答案】1x ≠【解析】依题意,10x -≠,解得1x ≠. 【考点】分式有意义的条件 8.【答案】4610⨯ 【解析】460000610=⨯. 【考点】科学记数法9.【答案】5210258x y x y +=⎧⎨+=⎩【解析】由5头牛、2只羊、值金10量可得5210x y +=,由2头牛、5只羊、值金8量可得258x y +=,可列出方程组5210258x y x y +=⎧⎨+=⎩,.【考点】二元一次方程组的应用10.【答案】【解析】∵四边形ABCD 为矩形, ∴AD BC =,o 90D ∠=由旋转的性质可知AB AE =,BC EF = ∴3EF AD ==. ∵DE EF = ∵3DE =.在Rt ADE △中,AE =∴AB =【考点】矩形的性质,旋转的性质,勾股定理 11.【答案】2【解析】把1x x =代入一元二次方程2420x x -+=中, 得211420x x -+=,∴21142x x -=- 根据根与系数的关系, 得122x x =,∴2222=-+⨯=原式.【考点】一元二次方程根与系数的关系,代数式求值12.【答案】2,【解析】(1)当点P 在正方形的边上时, ①当点P 在AD 边上时,如图1,11233AP AD AB ===; ②当点P 在AB 边上时,如图2,设AP x =,则2PD x =, ∴2226(2)x x +=解得x =③点P 不可能在BC ,CD 上.(2)当点P 在对角线上时,①当点P 在对角线BD 上时(不与点B 重合),如图3, ∵2PD OA <,AP OA ≥, ∴点P 在BD 上不存在2PD AP =;②当点P 在对角线AC 上时,如图4,设AP x =,则2PD x =,OP x =,OD =在Rt OPD △中,222)(2)x x +=,解得1x 2x =.综上所述,2AP =,.【考点】正方形的性质、勾股定理、分类讨论思想 三、解答题13.【答案】(1)45a - (2)6x ≥【解析】(1)221(44)45a a a a =---+=-原式.(2)去分母,得2226x x --+≥ 解得6x ≥.【考点】整式的混合运算,一元一次不等式的解法 14.【答案】4AE =【解析】∵BD 平分ABC ∠. ∴ABD CBD ∠=∠ ∵AB CD ∥,∴ABD D ∠=∠,ABE CDE ~△△. ∴CBD D ∠=∠,AB AECD EC=∴BC CD =∵8AB =,6CA =,4CD BC ==, ∴846AEAE=-. ∴4AE =.【考点】平分线的定义、平分线的性质、相似三角形的判定与性质 15.【答案】画法如图所示. (1)AF 即为所求(2)BF 即为所求【解析】画法如图所示. (1)AF 即为所求(2)BF 即为所求【考点】考查作图、全等三角形的判定与性质、三角形的重心. 16.【答案】(1)不可能,随机,14. (2)解法一:根据题意,可以画出如下的树状图:由树状图可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,小悦小悦 小惠小悦 小悦小艳 小倩 小艳 小艳小艳小悦 小悦 小惠小惠 小惠 小倩 小倩所以61()122P ==小惠被抽中.由上表可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中. 【解析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)用列表法或树状图法得到所有等可能的结果,再找出符合条件的结果,根据概率公式求解即可。
2018年中考数学真题知识分类练习试卷:方程(含答案)

方程一、单选题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A2.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A3.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.4.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2018年中考数学试题5.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A7.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C8.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网9.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2018年浙江省舟山市中考数学试题12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【来源】山东省泰安市2018年中考数学试题【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【来源】山东省淄博市2018年中考数学试题15.分式方程的解是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。
2018年江苏省苏州市中考数学试题及参考答案案

2018年苏州市初中毕业暨升学考试数学试卷本试卷由选择题、填空题和解答题三大题组成.共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.(2018江苏苏州中考,1,3分,★☆☆)在下列四个实数中,最大的数是()A.-3 B.0 C.32D.342.(2018江苏苏州中考,2,3分,★☆☆)地球与月球之间的平均距离大约为384 000km,384 000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1063.(2018江苏苏州中考,3,3分,★☆☆)下列四个图案中,不是轴对称图案的是()A.B.C.D.4.(2018江苏苏州中考,4,3分,★☆☆)若2x 在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A BC D 5.(2018江苏苏州中考,5,3分,★☆☆)计算2121(1)x x x x+++÷的结果是( ) A .x +1 B .11x + C .1x x + D .1x x+ 6.(2018江苏苏州中考,6,3分,★☆☆)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A .12B .13C .49D .59第 6题图7.(2018江苏苏州中考,7,3分,★★☆)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是C A 上的点.若∠BOC =40°,则∠D 的度数为( )A .100°B .110°C .120°D .130°第7题图8.(2018江苏苏州中考,8,3分,★★☆)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏两30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之问的距离(即PC 的长)为( )A .40海里B .60海里C .3D .3第8题图9.(2018江苏苏州中考,9,3分,★★☆)如图,在△ABC中,延长BC至D,使得CD=12BC.过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD.连接DF,若AB=8,则DF的长为()A.3 B.4 C.23D.32第9题图10.(2018江苏苏州中考,10,3分,★★☆)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=kx在第一象限内的图像经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为()A.3 B.23C.6 D.12第10题图二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上.11.(2018江苏苏州中考,11,3分,★☆☆)计算:a4÷a=.12.(2018江苏苏州中考,12,3分,★☆☆)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.13.(2018江苏苏州中考,13,3分,★☆☆)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m +n = .14.(2018江苏苏州中考,14,3分,★☆☆)若a +b =4,a -b =1,则(a +1)2-(b -1)2的值为 .15.(2018江苏苏州中考,15,3分,★☆☆)如图,△ABC 是一块直角三角板,∠BAC =90°,∠B =30°.现将三角板叠放在一把直尺上,使得点A 落在直尺的一边上,AB 与直尺的另一边交于点D ,BC 与直尺的两边分别交于点E ,F .若∠CAF =20°,则∠BED 的度数为 °.第15题图16.(2018江苏苏州中考,16,3分,★★☆)如图,8×8的正方形网格纸上有扇形OAB 和扇形OCD ,点O ,A ,B ,C ,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为r 1;若用扇形OCD 围成另一个圆锥的侧面,记这个圆锥的底面半径为r 2,则12r r 的值为 .第16题图17.(2018江苏苏州中考,17,3分,★★☆)如图,在Rt △ABC 中,∠B =90°,AB =5BC 5将△ABC 绕点A 按逆时针方向旋转90°得到△AB C '',连接B C ',则sin ∠ACB '= .第17题图18.(2018江苏苏州中考,18,3分,★★☆)如图,已知AB =8,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,∠DAP =60°.M ,N 分别是对角线AC ,BE 的中点.当点P 在线段AB 上移动时,点M ,N 之问的距离最短为 (结果保留根号).第18题图三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(2018江苏苏州中考,19,5分,★☆☆)(本题5分)计算:2129(2-.20.(2018江苏苏州中考,20,5分,★☆☆)解不等式组:3242(21)x x x x ≥+⎧⎨+<-⎩.21.(2018江苏苏州中考,21,6分,★☆☆)如图,点A,F,C,D在一条直线上,AB ∥DE,AB=DE,AF=DC.求证:BC∥EF.第21题图22.(2018江苏苏州中考,22,6分,★★☆)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为__________;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).第22题图23.(2018·江苏苏州中考,23,8分★★☆)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?24.(2018江苏苏州中考,24,8分,★★☆)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多l台,那么该学校至多能购买多少台B型打印机?25.(2018江苏苏州中考,25,8分,★★☆)如图,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C为顶点.直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C'.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC'平行于直线AD,求新抛物线对应的函数表达式.第25题图26.(2018江苏苏州中考,26,10分,★★☆)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.第26题图27.(2018江苏苏州中考,27,10分,★★★)问题1:如图①,在△ABC中,AB=4,D 是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S'.(1)当AD=3时,SS'=_______;(2)设AD=m,请你用含字母m的代数式表示SS'.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=12BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S'.请你利用问题1的解法或结论,用含字母n的代数式表示SS'.第27题图28.(2018江苏苏州中考,28,10分,★★★)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上.小明从点A出发,沿公路l向两走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE =x米(其中x>0),GA=y米.已知y与x之间的函数关系如图②所示.(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.第28题图苏州市2018年初中毕业生学业考试数学试题答案全解全析1.答案:C解析:将各数按照从小到大顺序排列,找出最大的数即可.得::-3<0<34<32,则最大的数是32.故选C.考查内容:有理数大小比较命题意图:此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.难度较小2.答案:C解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于384 000有6位,所以可以确定n=6﹣1=5.384 000=3.84×105.故选C.考查内容:科学记数法表示较大的数的方法命题意图:此题考查科学记数法表示较大的数的方法,确定n的值是易错点.难度较小3.答案:B解析:根据轴对称的概念对各选项分析判断利用排除法求解.A是轴对称图形,故本选项错误;B不是轴对称图形,故本选项正确;C是轴对称图形,故本选项错误;D是轴对称图形,故本选项错误.故选B.考查内容:轴对称图形命题意图:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.难度较小4.答案:D解析:根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.得x+2≥0,解得x≥﹣2.故选D.考查内容:二次根式有意义的条件、用数轴表示解集命题意图:本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.难度较小5.答案:B解析:先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.(1+1x)÷221x xx++=(xx+1x)÷2(1)xx+=1xx+•2(1)xx+=11x+,,故选B.考查内容:分式的混合运算命题意图:本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.难度中等6.答案:C解析:根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,飞镖落在阴影部分的概率是49,故选C.考查内容:几何概率命题意图:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.难度较小7.答案:B解析:根据互补得出∠AOC的度数,再利用圆周角定理解答即可.∠BOC=40°,∠AOC=180°﹣40°=140°,∠D=12×(360°-140°)=110°,故选B.考查内容:圆周角定理命题意图:本题考查圆周角定理,关键是根据互补得出∠AOC的度数.难度适中8.答案:D解析:首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;在Rt△PAB 中,∠APB=30°,PB=2AB,BC=2AB,PB=BC,∠C=∠CPB,∠ABP=∠C+∠CPB=60°,∠C=30°,PC=2PA,PA=AB•tan60°,PC=2×20×3=403(海里),故选D.考查内容:解直角三角形的应用命题意图:本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.难度适中9.答案:B解析:取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.故选B.第9题答图考查内容:平行四边形的判定和性质、三角形中位线定理命题意图:本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.难度适中10.答案:A解析:∵tan∠AOD=34ADOA,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=13BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=kx经过点D、E,∴k=12a2=(4+4a)a,解得:a=12或a=0(舍),则k=12×14=3.故选A.考查内容:反比例函数图象上点的坐标特征命题意图:本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.难度适中11.答案:a3解析:根据同底数幂的除法解答即可.a4÷a=a3,故答案为:a3考查内容:同底数幂的除法命题意图:此题主要考查了同底数幂的除法,对于相关的同底数幂的除法的法则要求学生很熟练,才能正确求出结果.难度较小12.答案:8解析:根据众数的概念解答.在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多,这组数据的众数是8.考查内容:众数命题意图:本题考查的是众数的确定,一组数据中出现次数最多的数据叫做众数.难度较小13.答案:-2解析:根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.考查内容:一元二次方程的解(根)命题意图:本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.难度适中14.答案:12解析:对所求代数式运用平方差公式进行因式分解,然后整体代入求值.a+b=4,a﹣b=1,(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b )(a ﹣b+2)=4×(1+2)=12. 考查内容:分解因式命题意图:本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.难度适中知识归纳: 因式分解常用的方法有“提公因式法”和“公式法”.如果所给的多项式是三项,有公因式时,那么应先提取公因式,那么一般应考虑直接用公式a 2±2ab+b 2=(a±b)2来分解 15.答案:80解析:依据DE ∥AF ,可得∠BED=∠BFA ,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°. 考查内容:平行线的性质命题意图:本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.难度适中 16.答案:23解析:∵2πr 1=180AOB OA π⋅⋅∠、2πr 2=180AOB OCπ⋅⋅∠,∴r 1=360AOB OA ⋅∠,r 2=360AOB OC ⋅∠,∴12r r =OA OC =22222436++=2535=23. 考查内容:圆锥的计算、勾股定理命题意图:本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理.难度中等偏上 17.答案:45解析:在Rt △ABC 中,由勾股定理得:AC =22(25)(5)+=5,过C 作CM ⊥AB ′于M ,过A 作AN ⊥CB ′于N , ∵根据旋转得出AB ′=AB =25,∠B ′AB =90°, 即∠CMA =∠MAB =∠B =90°. ∴CM =AB =25,AM =BC =5. ∴B ′M =25-5=5.在Rt △B ′MC 中,由勾股定理得B ′C =22'CM B M +=22(25)(5)+=5. ∴S △AB ′C =12×CB ’×AN =12×CM ×AB ’, ∴5×AN =25×25, 解得AN =4. ∴sin ∠ACB ′=AN AC =45. 考查内容:解直角三角形、勾股定理、矩形的性质和判定命题意图:本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键.难度中等偏上 18.答案:23 解析:连接PM 、PN .第18题答图∵四边形APCD ,四边形PBFE 是菱形,∠DAP =60°, ∴∠APC =120°,∠EPB =60°.∵M ,N 分别是对角线AC ,BE 的中点, ∴∠CPM =12∠APC =60°,∠EPN =12∠EPB =30°. ∴∠MPN =60°+30°=90°.设PA =2a ,则PB =8-2a ,PM =a ,PN 34-a ), ∴MN 22[3(4a)]a +-242448a a -+24(a 3)12-+.∴a=3时,MN有最小值,最小值为考查内容:菱形的性质、勾股定理命题意图:本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.难度中等偏上.19.解析:原式=12+3-12=3.考查内容:实数的运算命题意图:本题考查实数的运算,解题的关键是熟练运用运算法则,本题属于基础题型.难度较小20.解析:南3x>x+2,解得x≥1,由x+4<2(2x-1),解得x>2,∴不等式组的解集是x>2.考查内容:解一元一次不等式组命题意图:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.难度中等方法技巧:求不等式组的解集,通常采用“分开解”、“集中判”的方法,“分开解”就是分别求不等式组中各个不等式的解集;“集中判”就是利用数轴求出各个不等式的解集的公共部分. 21.解析:证明:∵AB∥DE,∴∠A=∠D.∵AF=DC,∴AC=DF.在△ABC和△DEF中,AB=DE,∠A=∠D,AC=DF,∴△ABC≌△DEF(SAS).∴∠ACB=∠DFE,∴BC∥EF.考查内容:全等三角形的判定和性质命题意图:本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.难度适中22.解析:(1)23;(2)用“树状图”或利用表格列出所有可能的结果∴P(两个数字之和是3的倍数)=39=13.考查内容:列表法或树状图法求概率命题意图:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.难度中等偏上23.解析:(1)1428%=50,答:参加这次调查的学生人数为50人,补全条形统计图如图所示:(2)1050×360°=72°.答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.(3)600×850=96.答:估计该校选择“足球”项目的学生有96人.考查内容:条形统计图和扇形统计图命题意图:本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.难度适中24.解析:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元.根据题意得:25900229400x y x y +=⎧⎨+=⎩,解这个方程组,得x =3500,y =1200.答:每台A 型电脑的价格为3500元,每台B 型打印机的价格为1200元. (2)设学校购买胛台B 型打印机,则购买A 型电脑为(n -l )台, 根据题意得:3500(n -1)+1200n ≤20000, 解这个不等式,得n ≤5.答:该学校至多能购买5台B 型打印机. 考查内容:一元一次不等式与二元一次方程组的应用命题意图:本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.难度中等偏上 25.解析:(1)由x 2-4=0解得x 1=2,x 2=-2.∵点A 位于点B 的左侧,∴A (-2,0). ∵直线y =x +m 经过点A ,∴-2+m =0,∴m =2,∴D (0,2).∴AD .(2)解法一:设新抛物线对应的函数表达式为y =x 2+bx +2,∴y =x 2+bx +2=(x +2b )2+2-24b . ∵直线CC '平行于直线AD ,并且经过点C (0,-4),∴直线CC '的函数表达式为y =x -4.∴2-24b =-2b -4,整理得b 2-2b -24=0,解得b 1=-4,b 2=6.∴新抛物线对应的函数表达式为y =x 2-4x +2或y =x 2+6x +2. 解法二:∵直线CC '平行于直线AD ,并且经过点C (0,-4), ∴直线CC '的函数表达式为y =x -4.∵新抛物线的顶点C '在直线y =x -4上,∴设顶点C '的坐标为(n ,n -4), ∴新抛物线对应的函数表达式为y =(x -n )2+n -4. ∵新抛物线经过点D (0,2),∴n 2+n -4=2,解得n 1=-3,n 2=2.∴新抛物线对应的函数表达式为y =(x +3)2-7或y =(x -2)2-2. 考查内容:抛物线与x 轴的交点、待定系数法求函数解析式命题意图:本题考查的是抛物线与x 轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.难度中等偏上26.解析:(1)连接AC.∵CD为OO的切线,∴OC⊥CD.又∵AD⊥CD,∴∠DCO=∠D=90°.∴AD∥OC,∴∠DAC=∠ACO.又∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO.又∵CE⊥AB,∴∠CEA=90°.在△CDA和△CEA中,∵∠D=∠CEA,∠DAC=∠EAC,AC=AC,∴△CDA≌△CEA(AAS),∴CD=CE.(2)证法一:连接BC.∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG.∴∠ECA=∠ECG.∵AB是⊙O直径,∴∠ACB=90°.又∵CE⊥AB,∴∠ACE=∠B.又∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG.又∵∠D=90°.∴∠DCF+∠F=90°.∴∠F=∠DCA=∠ACE=∠ECG=22.5.∴∠AOC=2∠F=45°.∴△CEO是等腰直角三角形,证法二:设∠F=x°.则∠AOC=2∠F=2x°.∵AD∥OC,∴∠OAF=∠AOC=2x°.∴∠CGA=∠ECA+∠F=3x°.∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x°.义∵∠DAC +∠EAC +∠OAF =180°. ∴3x °+3x °+2x °=180°. ∴x =22.5,∴∠AOC =2x °=45°. ∴△CEO 是等腰直角三角形. 考查内容:圆的有个性质命题意图:本题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.难度中等偏上 27.解析:问题1:(1)316; (2)解法一:∵AB =4,AD =m .∴BD =4-m . 又∵CE ∥BC ,∴4CE BD mEA DA m-==,∴4DEC ADES mS m-=. 又∵CE ∥BC ,∴△ADE ∽△ABC ,∴216ADE ABCSm S=. ∴22441616DEC DEC ADE ABCADEABCSS S m m m m SSSm --+=⨯=⨯=.即2416S m m S -+=′.解法二:过点B 作BH ⊥AC ,垂足为H ,过点D 作DF ⊥AC ,垂足为F . 则DF ∥BH ,∴△ADF ∽△ABH .∴4DF AD mBH AB ==. ∵DE ∥BC ,∴44CE BD mCA BA -==, ∴21442144162DEC ABCCE DFSm m m m SCA BH ⋅--+==⨯=⋅.即2416S m m S -+=′.问题2:解法一:分别延长BA ,CD ,相交于点D . ∵AD ∥BC ,∴△OAD ∽△OBC ,∴12OA AD OB BC ==. ∴OA =AB =4,∴OB =8.∵AE =n ,∴OE =4+n .∵EF ∥BC .由问题1的解法可知24416()4864CEFCEF OEFOBC OEF OBC S S S n n n S S S n -+-=⨯=⨯=+,∵21()4OADABCD S OAS OB ==.∴23()4ABCD OBC S OA S OB ==.∴22416163364484CEF CEF ABCD OBCS S n n S S --==⨯=△△△,即S S =′21648n -.解法二:连接AC 交EF 于M .∵AD ∥BC ,且AD =12BC ,∴12ADCABCS S =△△.∴S △ADC =13S ,S △ABC =23S .由问题1的结论可知,EMC ABC S S =2416n n-+.∴S △EMC =2416n n -+×23S =2424n nS -+.∵MF ∥AD ,∴△CFM ∽△CDA ,∴243()143CFM CFM CFM CDA S S S n S S S-==⨯=△△△△,∴S△CFM=2 (4)48nS -.∴S△EFC=S△EMC+S△CFM=2424n nS-++2(4)48nS-=21648nS-,∴SS=′21648n-.考查内容:相似三角形的性质和判定命题意图:本题考查了相似三角形的性质和判定、平行线分线段成比例定理,熟练掌握相似三角形的性质:相似三角形面积比等于相似比的平方是关键,并运用了类比的思想解决问题,难度较大28.解析:(1)设线段MN所在直线的函数表达式为y=kx+b.∵M,N两点的坐标分别为(30,230),(100,300),∴30230100300k bk b+=⎧⎨+=⎩,解这个方程组,得1200kb=⎧⎨=⎩.∴线段MN所在直线的函数表达式为y=x+200.(2)①第一种情况:考虑FE=FG是否成立,连接EC.∵AE=x,AD=100,GA=x+200,∴ED=GD=x+100.又∵CD⊥EG,∴CE=CG,∴∠CGE=∠CEG,∴∠FEG>∠CGE.∴FE≠FG.②第二种情况:考虑FG=EG是否成立,∵四边形ABCD是正方形,∴BC∥EG,∴△FBC≌△FEG.假设FG=EG成立,则FC=BC亦成立.∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG-FC=2x+200-100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,解这个方程,得x1=-100,x2=1003.∵x>0,∴x=1003.③第三种情况:考虑EF=EG是否成立.与②同理,假设EF=EG成立,则FB=BC亦成立.∴BE=EF-FB=2x+200-100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,解这个方程,得x1=0,x2=-4003(不合题意,均舍去).综上所述,当x=1003时,△EFG是一个等腰三角形.考查内容:待定系数法求一次函数解析式、等腰三角形的判定与性质、相似三角形的判定与性质、正方形的性质以及勾股定理命题意图:本题考查了待定系数法求一次函数解析式、等腰三角形的判定与性质、相似三角形的判定与性质、正方形的性质以及勾股定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)分FE=FG、FG=EG及EF=EG三种情况求出x的值.难度较大。
中考数学真题 (13)

2018年辽宁省阜新市中考数学试卷一、选择题1.2的相反数是( ) A .﹣2 B .﹣ C . D .22.如图所示,是一个空心圆柱,它的俯视图是( )A .B .C .D .3.某支青年排球队有12名队员,队员年龄情况如图所示,那么球队队员年龄的众数、中位数分别是( )A .19,19B .19,20C .20,20D .22,19 4.不等式组的解集,在数轴上表示正确的是( ) A . B . C .D .5.反比例函数y=的图象上有两点(﹣2,y 1)(1,y 2),那么y 1与y 2的关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定6.如图,点A,B,C是⊙O上的三点,已知∠ACB=50°,那么∠AOB 的度数是()A.90°B.95°C.100°D.120°7.如图,AD为△ABC的BC边上的中线,沿AD将△ACD折叠,C的对应点为C′,已知∠ADC=45°,BC=4,那么点B与C′的距离为()A.3 B.2C.2D.48.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是()A.160元B.180元C.200元D.220元9.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(2,2) B.(﹣2,4) C.(﹣2,2)D.(﹣2,2)10.二次函数y=ax2+bx+c的图象如图所示,下列选项中正确的是()A.a>0B.b>0C.c<0D.关于x的一元二次方程ax2+bx+c=0没有实数根二、填空题11.分解因式:x2﹣3x= .12.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是.13.如图,直线a∥b,且被直线c所截,已知∠1=110°,那么∠2的度数为.14.如图,AB∥CD,AD与BC交于点O,已知AB=4,CD=3,OD=2,那么线段OA的长为.15.如图,在高出海平面120m的悬崖顶A处,观测海面上的一艘小船B ,并测得它的俯角为30°,那么船与观测者之间的水平距离为 米.(结果用根号表示)16.一辆汽车由A 地开往B 地,它距离B 地的路程s (km )与行驶时间t (h )的关系如图所示,如果汽车一直快速行驶,那么可以提前 小时到达B 地.三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)17.计算:|﹣1|+(﹣2016)0﹣2sin60°; (2)先化简,再求值:÷(1﹣),其中x=﹣3.18.如图,△ABC 在平面直角坐标系内,顶点的坐标分别为A (﹣1,6),B (﹣4,2),C (﹣1,2)(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕点B 顺时针旋转90°后得到△A 2BC 2,请画出△A 2BC 2,并求出线段AB 在旋转过程中扫过的图形面积(结果保留π).19.我市某中学为了解学生的体质健康状况,随机抽取若干名学生进行测试,测试结果分为A:良好、B:合格、C:不合格三个等级.并根据测试结果绘制成如下两幅尚不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)此次调查共抽取了人,扇形统计图中C部分圆心角的度数为;(2)补全条形统计图;(3)若该校共有1800名学生,请估计体质健康状况为“合格”的学生有多少人?20.有一个运输队承包了一家公司运送货物的业务,第一次运送18t,派了一辆大卡车和5辆小卡车;第二次运送38t,派了两辆大卡车和11辆小卡车,并且两次派的车都刚好装满.(1)两种车型的载重量各是多少?(2)若大卡车运送一次的费用为200元,小卡车运送一次的费用为60元,在第一次运送过程中怎样安排大小车辆,才能使费用最少?(直接写出派车方案)21.如图,在正方形ABCD中,点E为对角线AC上的一点,连接BE,DE.(1)如图1,求证:△BCE≌△DCE;(2)如图2,延长BE交直线CD于点F,G在直线AB上,且FG=FB.①求证:DE⊥FG;②已知正方形ABCD的边长为2,若点E在对角线AC上移动,当△BFG 为等边三角形时,求线段DE的长(直接写出结果,不必写出解答过程).22.如图,已知二次函数y=﹣x2+bx+c的图象交x轴于点A(﹣4,0)和点B,交y轴于点C(0,4).(1)求这个二次函数的表达式;(2)若点P在第二象限内的抛物线上,求四边形AOCP面积的最大值和此时点P的坐标;(3)在平面直角坐标系内,是否存在点Q,使A,B,C,Q四点构成平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.2018年辽宁省阜新市中考数学试卷参考答案与试题解析一、选择题1.2的相反数是()A.﹣2 B.﹣C.D.2【考点】相反数.【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是﹣2.故选:A.【点评】此题主要考查了相反数的概念,正确把握定义是解题关键.2.如图所示,是一个空心圆柱,它的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:它的俯视图为:故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.某支青年排球队有12名队员,队员年龄情况如图所示,那么球队队员年龄的众数、中位数分别是()A.19,19 B.19,20 C.20,20 D.22,19【考点】众数;中位数.【专题】统计与概率.【分析】根据条形统计图可以的这组数据的中位数和众数,本题得以解决.【解答】解:由条形统计图可知,某支青年排球队12名队员年龄的众数是19,中位数是19,故选A.【点评】本题考查中位数和众数的定义,解题的关键是明确众数和中位数的定义,会找一组数据的中位数和众数.4.不等式组的解集,在数轴上表示正确的是()A .B .C .D .【考点】在数轴上表示不等式的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可. 解不等式组得:,再分别表示在数轴上即可得解.【解答】解:由1﹣x ≤0,得x ≥1,又x <3, 则不等式组的解集为1≤x <3. A 选项代表x ≤1; B 选项代表1≤x <3; C 选项代表x ≤1或x >3; D 选项代表x >3. 故选B .【点评】本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.反比例函数y=的图象上有两点(﹣2,y 1)(1,y 2),那么y 1与y 2的关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定 【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣2,y 1)(1,y 2)代入反比例函数y=,求出y 1与y 2的值,并比较大小即可.【解答】解:∵点(﹣2,y 1)(1,y 2)在反比例函数y=上, ∴y 1==﹣3,y 2==6.∵﹣3<6, ∴y 1<y 2. 故选C .【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.6.如图,点A ,B ,C 是⊙O 上的三点,已知∠ACB=50°,那么∠AOB 的度数是( )A .90°B .95°C .100°D .120° 【考点】圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠ACB 与∠AOB 是同弧所对的圆周角与圆心角,∠ACB=50°,∴∠AOB=100°.故选C.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.7.如图,AD为△ABC的BC边上的中线,沿AD将△ACD折叠,C的对应点为C′,已知∠ADC=45°,BC=4,那么点B与C′的距离为()A.3 B.2C.2D.4【考点】翻折变换(折叠问题).【分析】根据折叠前后角相等可知∠CDC′=90°,从而得∠BDC′=90°,在Rt△BDC′中,由勾股定理得BC′=2.【解答】解:∵把△ADC沿AD对折,点C落在点C′,∴△ACD≌△AC′D,∴∠ADC=∠ADC′=45°,DC=DC′,∴∠CDC′=90°,∴∠BDC′=90°.又∵AD为△ABC的中线,BC=4,∴BD=CD=BC=2.∴BD=DC′=2,即三角形BDC′为等腰直角三角形,在Rt△BDC′中,由勾股定理得:BC′===2.故选B.【点评】本题考查图形的翻折变换以及勾股定理的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是()A.160元B.180元C.200元D.220元【考点】一元一次方程的应用.【分析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.【解答】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=200.所以该商品的原价为200元;故选:C.【点评】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.9.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(2,2) B.(﹣2,4) C.(﹣2,2)D.(﹣2,2)【考点】坐标与图形变化-旋转;等边三角形的性质.【分析】作BC⊥x轴于C,如图,根据等边三角形的性质得OA=OB=4,AC=OC=2,∠BOA=60°,则易得A点坐标和O点坐标,再利用勾股定理计算出BC=2,然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,则点A′与点B重合,于是可得点A′的坐标.【解答】解:作BC⊥x轴于C,如图,∵△OAB是边长为4的等边三角形∴OA=OB=4,AC=OC=1,∠BOA=60°,∴A点坐标为(﹣4,0),O点坐标为(0,0),在Rt△BOC中,BC==2,∴B点坐标为(﹣2,2);∵△OAB按顺时针方向旋转60°,得到△OA′B′,∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,∴点A′与点B重合,即点A′的坐标为(﹣2,2),故选:D.【点评】本题考查了坐标与图形变化﹣旋转:记住关于原点对称的点的坐标特征;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°;解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.10.二次函数y=ax2+bx+c的图象如图所示,下列选项中正确的是()A.a>0B.b>0C.c<0D.关于x的一元二次方程ax2+bx+c=0没有实数根【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.【解答】解:①∵开口向下,∴a<0,A错误;②对称轴在y轴的右侧和a<0,可知b>0,B正确;③抛物线与y轴交于正半轴,c>0,C错误;④因为与x轴有两个交点,所以关于x的一元二次方程ax2+bx+c=0有两个实数根,D错误;故选:B.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题11.分解因式:x2﹣3x= x(x﹣3).【考点】因式分解-提公因式法.【专题】计算题;因式分解.【分析】原式提取x即可得到结果.【解答】解:原式=x(x﹣3),故答案为:x(x﹣3)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是.故答案为.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.如图,直线a∥b,且被直线c所截,已知∠1=110°,那么∠2的度数为70°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再根据平角的定义即可求出∠2的度数.【解答】解:∵直线a∥b,∠1=110°,∴∠3=∠1=110°,∴∠2=180°﹣∠3=180°﹣110°=70°.故答案为:70°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.14.如图,AB∥CD,AD与BC交于点O,已知AB=4,CD=3,OD=2,那么线段OA的长为.【考点】平行线分线段成比例.【专题】计算题.【分析】根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到OA:OD=AB:CD,然后利用比例性质计算OA的长.【解答】解:∵AB∥CD,∴OA:OD=AB:CD,即OA:2=4:3,∴OA=.故答案为.【点评】本题考查了平行线分线段成比例:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.15.如图,在高出海平面120m的悬崖顶A处,观测海面上的一艘小船B,并测得它的俯角为30°,那么船与观测者之间的水平距离为120米.(结果用根号表示)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据解直角三角形的应用,测得它的俯角为30°,得出tan30°=,整理代入计算即可得出答案.【解答】解:∵在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为30°,∴tan30°=,∴船与观测者之间的水平距离BC==120米.故答案为:120.【点评】此题主要考查了解直角三角形的应用,根据已知得出BC=是解决问题的关键.16.一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)的关系如图所示,如果汽车一直快速行驶,那么可以提前 2 小时到达B地.【考点】一次函数的应用.【分析】由题意可知汽车2小时形式的路程为160千米,从而可求得汽车行驶的速度,然后依据路程÷速度=时间可求得按照原来速度形式所需要的时间,故此可求得提前的时间.【解答】解:320﹣160=160千米,160÷2=80千米/小时.320÷80=4小时.6﹣4=2.故答案为:2.【点评】本题主要考查的是一次函数的应用,依据函数的图形求得汽车原来的速度是解题的关键.三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)17.(1)计算:|﹣1|+(﹣2016)0﹣2sin60°;(2)先化简,再求值:÷(1﹣),其中x=﹣3.【考点】分式的化简求值;零指数幂;特殊角的三角函数值.【分析】(1)分别根据绝对值的性质、0指数幂的运算法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可; (2)先算括号里面的,再算除法,最后把x 的值代入进行计算即可. 【解答】解:(1)原式=﹣1+1﹣2×=﹣ =0;(2)原式=÷=•=,当x=﹣3时,原式==﹣.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.18.如图,△ABC 在平面直角坐标系内,顶点的坐标分别为A (﹣1,6),B (﹣4,2),C (﹣1,2)(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕点B 顺时针旋转90°后得到△A 2BC 2,请画出△A 2BC 2,并求出线段AB 在旋转过程中扫过的图形面积(结果保留π).【考点】作图-旋转变换;扇形面积的计算;作图-轴对称变换. 【分析】(1)分别画出A 、B 、C 关于y 轴对称点即可解决问题. (2)将△ABC 绕点B 顺时针旋转90°后得到△A 2BC 2,只要分别画出A 2、C 2即可,再根据线段AB 在旋转过程中扫过的图形面积==计算即可.【解答】解:(1)△ABC 关于y 轴对称的△A 1B 1C 1图象如图1所示.(2)将△ABC 绕点B 顺时针旋转90°后得到△A 2BC 2图象如图2所示,线段AB在旋转过程中扫过的图形面积==•π•52=.【点评】本题考查旋转变换、轴对称变换、扇形的面积等知识,解题的关键是正确画好图形,记住扇形的面积公式,属于中考常考题型.19.我市某中学为了解学生的体质健康状况,随机抽取若干名学生进行测试,测试结果分为A:良好、B:合格、C:不合格三个等级.并根据测试结果绘制成如下两幅尚不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)此次调查共抽取了120 人,扇形统计图中C部分圆心角的度数为36 ;(2)补全条形统计图;(3)若该校共有1800名学生,请估计体质健康状况为“合格”的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由B等级人数及百分比即可得被调查总人数,用360°乘以C等级所占比例可得其对应扇形圆心角度数;(2)总人数减去B、C等级人数可得A等级人数即可补全统计图;(3)用总人数乘以样本中B等级对应百分比即可得.【解答】解:(1)此次调查共抽取了72÷60%=120(人),扇形统计图中C部分圆心角的度数为:360°×=36°,故答案为:120,36°;(2)A等级人数为:120﹣72﹣12=36,补全图形如下:(3)1800×60%=1080(人),答:估计体质健康状况为“合格”的学生有1080人.【点评】此题考查了条形统计图和扇形统计图的综合应用,用到的知识点是用样本估计总体、频数、总数之间的关系等,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20.有一个运输队承包了一家公司运送货物的业务,第一次运送18t,派了一辆大卡车和5辆小卡车;第二次运送38t,派了两辆大卡车和11辆小卡车,并且两次派的车都刚好装满.(1)两种车型的载重量各是多少?(2)若大卡车运送一次的费用为200元,小卡车运送一次的费用为60元,在第一次运送过程中怎样安排大小车辆,才能使费用最少?(直接写出派车方案)【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设大卡车的载重量为x吨,小卡车的载重量为y吨,根据一辆大卡车和5辆小卡车一次运货18吨以及两辆大卡车和11辆小卡车一次运货38吨,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据一辆大卡车及一辆小卡车的载重量可得出一辆大卡车的载重量是小卡车的4倍,结合运费之间的关系即可得出运费最低的派车方案.【解答】解:(1)设大卡车的载重量为x吨,小卡车的载重量为y吨,根据题意得:,解得:.答:大卡车的载重量为8吨,小卡车的载重量为2吨.(2)∵8÷2=4,60×4=240>200,∴尽可能多的派大卡车.当派3大卡车时,运费为200×3=600(元);当派2辆大卡车、1辆小卡车时,运费为200×2+60=460(元),∵600>460,∴安排2辆大卡车1辆小卡车,才能使费用最少.【点评】本题考查了二元一次方程组的应用,根据数量关系列出关于x、y的二元一次方程组是解题的关键.21.如图,在正方形ABCD中,点E为对角线AC上的一点,连接BE,DE.(1)如图1,求证:△BCE≌△DCE;(2)如图2,延长BE交直线CD于点F,G在直线AB上,且FG=FB.①求证:DE⊥FG;②已知正方形ABCD的边长为2,若点E在对角线AC上移动,当△BFG 为等边三角形时,求线段DE的长(直接写出结果,不必写出解答过程).【考点】四边形综合题.【专题】压轴题.【分析】(1)利用判定定理(SAS)可证;(2)①利用(1)的结论与正方形的性质,只需证明∠FDE+∠DFG=90°即可;②由DE⊥FG可构造直角三角形,利用等边三角形的性质及三角函数可求DE的长.【解答】解:(1)∵四边形ABCD是正方形,AC是其对角线,∴∠DCE=∠BCE,CD=CB在△BCE与△DCE中,∴△BCE≌△DCE(SAS).(2)①证明:∵由(1)可知△BCE≌△DCE,∴∠FDE=∠FBC又∵四边形ABCD是正方形,∴CD∥AB,∴∠DFG=∠BGF,∠CFB=∠GBF,又∵FG=FB,∴∠FGB=∠FBG,∴∠DFG=∠CFB,又∵∠FCB=90°,∴∠CFB+∠CBF=90°,∴∠EDF+∠DFG=90°,∴DE⊥FG②解:如下图所示,∵△BFG为等边三角形,∴∠BFG=60°,∵由(1)知∠DFG=∠CFB=60°,在Rt△FCB中,∠FCB=90°,∴FC=CB•cot60°=,DF=2﹣,又∵DE⊥FG,∴∠FDE=∠FED=30°,OD=OE,在Rt△DFO中,OD=DF•cos30°=﹣1,∴DE=2(﹣1)【点评】本题考查了正方形、等边三角形、直角三角形及三角函数等知识点,解题的关键是掌握三角形全等的判定定理、两直线垂直的条件及综合应用所学知识的能力.22.如图,已知二次函数y=﹣x2+bx+c的图象交x轴于点A(﹣4,0)和点B,交y轴于点C(0,4).(1)求这个二次函数的表达式;(2)若点P在第二象限内的抛物线上,求四边形AOCP面积的最大值和此时点P的坐标;(3)在平面直角坐标系内,是否存在点Q,使A,B,C,Q四点构成平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式,(2)先判断出四边形AOCP面积的最大值时,点P的位置,求出点P 的坐标,再用面积差,求出四边形AOCP面积的最大值为16,(3)①当AB平行四边形的边时,CQ∥AB,CQ=AB,求出AB,从而得到CQ,求出点Q的坐标,②当AB为对角线时,CQ必过AB中点,且被AB平分,先求出CQ解析式,利用对角线互相平分求出点Q的坐标.【解答】解:(1)∵二次函数y=﹣x2+bx+c的图象交x轴于点A(﹣4,0)和点B,交y轴于点C(0,4).∴,∴,∴二次函数的表达式为y=﹣x2﹣3x+4,(2)如图1,由(1)有,二次函数的表达式为y=﹣x2﹣3x+4,令y=0,得x=﹣4,或x=1,∴B(1,0)连接AC,PA,PC,∴点P是直线AC平移之后和抛物线只有一个交点时,点P到直线AC的距离最大,所以S△PAC 最大,即:S四边形AOCP最大;∵A(﹣4,0),C(0,4),∴直线AC解析式为y=x+4,设直线AC平移后的直线解析式为y=x+4+b,∴,∴x2+4x+b=0,∴△=16﹣4b=0,∴b=4,∴点P(﹣2,6),过点P作PD⊥y轴∴PD=2,OD=4,∵A (﹣4,0),C (0,4)∴OA=4,OC=4,∴CD=2,∴S 四边形AOCP =S 梯形AODP ﹣S △PCD =(PD+OA )×OD ﹣PD ×CD=(2+4)×6﹣×2×2=16.(3)存在点Q ,使A ,B ,C ,Q 四点构成平行四边形,理由:①以AB 为边时,CQ ∥AB ,CQ=AB过点C ,平行于AB 的直线l ,∵C (0,4),∴直线l 解析式为y=4,∴点Q 在直线l 上,设Q (d ,4),∴CQ=|d|∵A (﹣4,0),B (1,0),∴AB=5,∴|d|=5,∴d=±5,∴Q (﹣5,4)或(5,4),②以AB 为对角线时,CQ 必过线段AB 中点,且被AB 平分,即:AB 的中点也是CQ 的中点,∵A (﹣4,0),B (1,0),∴线段AB 中点坐标为(﹣,0),∵C(0,4),∴直线CQ解析式为y=x+4,设点Q(m, m+4),∴=,∴m=0(舍)或m=﹣3,∴Q(﹣3,﹣4),即:满足条件的点Q的坐标为Q(﹣5,4)或(5,4)或(﹣3,﹣4).【点评】此题是二次函数综合题,主要考查了待定系数法,三角形面积的计算,平行四边形的性质,极值的确定,中点坐标,解本题的关键是确定出抛物线解析式,难点是分类讨论和点P的位置和坐标的确定.关注数学的解题过程数学是一门非常严谨的科目,在平时的学习中,同学们应该养成积极思考、重视细节、严谨计算、活学活用的好习惯,这是学好数学的前提高效学习经验——注重解答过程中考状元XX在中考中仅仅丢掉了6分。
2018年江苏省徐州市中考数学试题及参考答案案

徐州市2018年初中学业水平考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2018江苏徐州中考,1,3分,★☆☆)4的相反数是()A.14B.-14C.4 D.-42.(2018江苏徐州中考,2,3分,★☆☆)下列计算正确的是()A.2a2-a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a63.(2018江苏徐州中考,3,3分,★☆☆)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2018江苏徐州中考,4,3分,★☆☆)如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.5.(2018江苏徐州中考,5,3分,★☆☆)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于12B.等于12C.大于12D.无法确定6.(2018江苏徐州中考,6,3分,★★☆)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0 1 2 3人数13 35 29 23关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册7.(2018江苏徐州中考,7,3分,★★☆)如图,在平面直角坐标系中,函数y=kx与y=-2x的图像交于A,B两点,过A作y轴的垂线,交函数y=4x的图像于点C,连接BC,则△ABC的面积为()A.2 B.4 C.6 D.88.(2018江苏徐州中考,8,3分)若函数y=kx+b的图像如图所示,则关于x的不等式kx+2b <0的解集为()A.x<3 B.x>3 C.x<6 D.x>6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(2018江苏徐州中考,9,3分,★☆☆)五边形的内角和是__________°.10.(2018江苏徐州中考,10,3分,★☆☆)我国自主研发的某型号手机处理器采用10nm 工艺,已知1nm=0.000 000 001m,则10nm用科学记数法可表示为____________m.11.(2018江苏徐州中考,11,3分,★☆☆)化简:32|=__________.12.(2018江苏徐州中考,12,32x-x的取值范围是___________.13.(2018江苏徐州中考,13,3分,★★☆)若2m+n=4,则代数式6-2m-n的值为_________.14.(2018江苏徐州中考,14,3分,★☆☆)若菱形两条对角线的长分别是6cm和8cm,则其面积为___________cm2.15.(2018江苏徐州中考,15,3分,★★☆)如图,Rt△ABC中,∠ABC=90°,D为AC 的中点,若∠C=55°,则∠ABD=__________°.16.(2018江苏徐州中考,16,3分,★★☆)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为__________.17.(2018江苏徐州中考,17,3分,★★★)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多___________个.(用含n的代数式表示)18.(2018江苏徐州中考,18,3分,★★★)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为AC上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为___________.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(2018江苏徐州中考,19,10分,★★☆)计算:(1)-12+20180-(12)-138;(2)22a ba b--÷22a ba b+-.20.(2018江苏徐州中考,20,10分,★★☆)(1)解方程:2x2-x-1=0;(2)解不等式组:428,11.36x xx x-⎧⎪-+⎨≤⎪⎩>21.(2018江苏徐州中考,21,7分,★★☆)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于_________;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)22.(2018江苏徐州中考,22,7分,★★☆)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:家庭藏书情况统计表A 0≤m≤2520B 26≤m≤100 aC 101≤m≤20050D m≥20166根据以上信息,解答下列问题:(1)该调查的样本容量为_________,a=__________;(2)在扇形统计图中,“A”对应扇形的圆心角为_________°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.23.(2018江苏徐州中考,23,8分,★★☆)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(2018江苏徐州中考,24,8分,★★☆)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A 车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(2018江苏徐州中考,25,8分,★★☆)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求AD的长.26.(2018江苏徐州中考,26,8分,★★☆)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)27.(2018江苏徐州中考,27,10分,★★★)如图,在平面直角坐标系中,二次函数y=-x2+6x-5的图像与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.28.(2018江苏徐州中考,28,10分,★★★)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B 在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.徐州市2018年初中学业水平考试数学试题答案全解全析1.答案:D解析:4与-4只有符号不同,故4的相反数是-4.故选D.考查内容:相反数.命题意图:本题考查学生对相反数的识记,难度较小.2.答案:D解析:2a2-a2=(2-1)a2=a2≠1,故A错误;(ab)2=a2b2≠ab2,故B错误;a2与a3不是同类项,不能合并,故C错误;(a2)3=a2×3=a6,故D正确.故选D.考查内容:整式的加减;幂的乘方;积的乘方.命题意图:本题考查学生对整式运算的掌握,难度较小.3.答案:A解析:A既是轴对称图形,又是中心对称图形;B不是轴对称图形,是中心对称图形;C是轴对称图形,不是中心对称图形;D是轴对称图形,不是中心对称图形.故选A.考查内容:中心对称图形;轴对称图形.命题意图:本题考查学生对中心对称图形与轴对称图形的识记,难度较小.4.答案:A解析:从左边看底层有2个小正方形,最上面的一层左边有1个小正方形.故选A.考查内容:三视图.命题意图:本题考查学生对三视图的掌握,难度较小.5.答案:B解析:每次抛掷硬币都有两种可能:正面向上、反面向上,正面向上的概率是12.故选B.考查内容:概率的简单应用与计算.命题意图:此题主要考查学生对概率计算的掌握,难度较小.6.答案:B解析:在这组数据中,1出现了35次,故其众数是1册;将这组数据按从小到大排列后,第50、51个数的平均数是2,故其中位数是2册;这组数据的极差:3-0=3册;这组数据的平均数是(0×13+1×35+2×29+3×23)÷100=1.62册.故选B.考查内容:极差;众数;中位数;平均数.命题意图:本题考查学生对统计数据的计算,难度中等.7.答案:C解析:∵正比例函数y=kx与反比例函数y=-2x的交点关于原点对称,∴设A点坐标为(x,-2x),则B点坐标为(-x,2x),C(-2x,-2x),∴S△ABC=12×(-2x-x)•(-2x-2x)=12×(-3x)•(-4x)=6.故选C.一题多解:连接OC.由y=kx与y=-2x的图像都是中心对称图形可知,点A和点B关于原点对称,∴OA=OB.∵点A在反比例函数y=-2x的图像上,点C在反比例函数y=4x的图像上,且AC⊥y轴,∴S△AOC=12×2+12×4=3,∴S△ABC=2S△AOC=6.故选C.考查内容:反比例函数;正比例函数;轴对称的性质;全等三角形的性质与判定.命题意图:本题主要考查学生对函数图像对称的掌握,难度中等.8.答案:D解析:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=-3k,∴不等式为kx-6k<0,解得x>6.故选D.考查内容:一次函数;一元一次不等式.命题意图:本题主要考查学生掌握一次函数的图像与性质及解一元一次不等式的能力,难度中等.9.答案:540解析:(5-2)•180°=540°.考查内容:多边形的内角和.命题意图:本题考查学生多边形的内角和的掌握,难度较小.10.答案:1×10-8(或10-8)解析:10nm=10×0.000 000 001m=1×101×10-9m=1×10-8m.考查内容:科学记数法.命题意图:本题考查学生对科学记数法的掌握,难度较小.11.答案:23解析:32<0,∴32|=23.考查内容:绝对值;实数的大小比较.命题意图:本题主要考查学生对绝对值的掌握,难度较小.12.答案:x≥2解析:由题意,得x-2≥0,解得x≥2.考查内容:二次根式有意义的条件.命题意图:本题主要考查学生对二次根式有意义的条件的理解,难度较小.13.答案:2解析:∵2m+n=4,∴6-2m-n=6-(2m+n)=6-4=2.考查内容:代数式求值;整体代入.命题意图:本题主要考查学生代数式求值的能力,难度中等.14.答案:24解析:12×6×8=24(cm2).考查内容:菱形面积.命题意图:本题主要考查学生对菱形的性质及面积计算方法的掌握,难度较小.15.答案:35解析:在Rt△ABC中,∠ABC=90°,D为AC的中点,∴BD是中线,∴AD=BD=CD,∴∠DBC=∠C=55°,∴∠ABD=90°-55°=35°.考查内容:直角三角形的性质;等腰三角形的性质;三角形内角和定理.命题意图:本题主要考查学生对直角三角形性质的掌握,难度中等.16.答案:2解析:扇形的弧长=1206180π⨯=4π,∴圆锥的底面半径为4π÷2π=2.考查内容:扇形的弧长公式;圆锥的侧面展开图;圆的周长公式.命题意图:本题主要考查学生对圆锥的有关运算的掌握,难度中等.17.答案:4n+3解析:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个,……,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)-n个,即白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个.考查内容:几何图形的变化规律.命题意图:本题考查学生几何图形变化规律的掌握,难度较大.18.答案:4解析:如图1,连接AQ ,AP .∵AB 是直径,∴∠APB=90°.∵BP•BQ=AB 2,∴BP AB =ABBQ.又∵∠ABP=∠QBA ,∴△ABP ∽△QBA ,∴∠QAB=∠APB=90°,∴QA 始终与AB 垂直.如图2,连接OC .∵C 为半圆AB 的中点,∴OC 是△ABQ 的中位线,∴AQ=2OC=4,∴点Q 运动路径长为4.图1 图2考查内容:相似三角形的判定和性质;三角形中位线的性质定理;圆的性质. 命题意图:本题主要考查学生对相似三角形的判定和性质的掌握,难度较大. 19.解析:(1)原式=-1+1-2+2=0; (2)原式=()()a b a b a b+--·2()a b a b-+=2a -2b .考查内容:有理数的乘方;0次幂;立方根;分式的化简.命题意图:本题考查学生对有理数的运算法则和及分式运算的灵活应用,难度中等. 20.解析:(1)这里a=2,b=-1,c=-1, ∴b²-4ac=1-4×2×(-1)=9>0, ∴x=194=134±, ∴x 1=-12,x 2=1. (2)∵解不等式428x x ->,得x >-4. 解不等式1136x x -+≤,得x≤3. ∴不等式组的解集为-4<x≤3.考查内容:解一元二次方程;解一元一次不等式组.命题意图:本题考查学生解一元二次方程和解一元一次不等式组的能力,难度中等. 21.解析:(1)13.(2)画树状图:或列表如下:红球白球1 白球2 红球白球1 +红球白球2+红球白球1 红球+白球1 白球2+白球1 白球2 红球+白球2 白球1 +白球2∴共有6种等可能的结果数,含有红球的有4种情况,∴P(摸到红球)=46=23.答:从中同时摸出2个球,摸到红球的概率是23.考查内容:列举法求概率.命题意图:本题考查用列表法与画树状图求概率,难度中等.22.解析:(1)200 64解法提示:∵“C”有50人,占样本的25%,∴样本=50÷25%=200(人).∵“B”占样本的32%,∴a=200×32%=64(人).(2)36°解法提示:“A”对应的扇形的圆心角=20200×360°=36°.(3)∵D类66人,总共200人,∴全校学生中家庭藏书200本以上的人数为:2000×66200=660(人).答:全校学生中家庭藏书200本以上的人数为660人.考查内容:统计表;扇形统计图.命题意图:本题考查统计表和扇形统计图的综合运用.难度中等.23.解析:(1)证明:∵四边形CEFG是正方形,∴CE=EF ,∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°, ∴∠FEH=∠DCE . 在△FEH 和△ECD 中,,,,EF CE FEH DCE FHE D =⎧⎪∠=∠⎨⎪∠=∠⎩∴△FEH ≌△ECD (AAS ), ∴FH=ED .(2)设AE=a ,则ED=FH=4-a , ∴S △AEF =12AE•FH=12a (4-a )=-12(a -2)2+2, ∴当AE=2时,△AEF 的面积最大.考查内容:正方形的性质;矩形的性质;全等三角形的判定和性质;三角形的面积. 命题意图:本题考查学生对正方形、矩形、全等三角形等知识的掌握,难度中等. 24.解析:设B 车行驶的时间为t 小时,则A 车行驶的时间为1.4t 小时,根据题意,得700t -7001.4t=80, 解这个方程,得t=2.5.经检验,t=2.5是原方程的解,且符合题意, ∴1.4t=3.5.答:A 车行驶的时间为2.5小时,B 车行驶的时间为3.5小时. 考查内容:分式方程的应用.命题意图:本题考查分式方程的应用,难度中等. 25.解析:(1)相切.理由如下: 连接OD .∵BD 是∠ABC 的平分线, ∴∠CBD=∠ABD . 又∵OD=OB , ∴∠ODB=∠ABD , ∴∠ODB=∠CBD ,∴OD∥CB,∴∠ODC=∠C=90°,∴CD与⊙O相切.(2)若∠CDB=60°,可得∠ODB=30°,∴∠AOD=60°,又∵AB=6,∴AO=3,∴AD的长为:603 180π⨯⨯=π.考查内容:圆的切线的判定;等腰三角形的性质;圆周角定理.命题意图:本题主要考查与圆的切线的判定,难度中等偏上.26.解析:(1)如图,过点C作CE⊥PB,垂足为E,过点D作DF⊥PB,垂足为F,则∠CEP=∠PFD=90°.由题意可知,设AB=x,在Rt△PCE中,tan32.3°=PEx,∴PE=x•tan32.3°.同理可得:在Rt△PDF中,tan55.7°=PFx,∴PF=x•tan55.7°,由PF-PE=EF=CD=42,可得x•tan55.7°-x•tan32.3°=42,解得:x=50,∴楼间距AB=50m.(2)由(1)可得:PE=50•tan32.3°=31.5m,∴CA=EB=90-31.5=58.5m,由于2号楼每层3m,可知点C位于20层.归纳总结:锐角三角函数的实际问题,有图的要先将题干中的已知量在图中表示出来,再根据以下方法和步骤解决:根据题目中的已知条件,将实际问题抽象为解直角三角形的数学问题,画出平面几何图形,弄清已知条件中各量之间的关系;若三角形是直角三角形,根据边角关系进行计算,若三角形不是直角三角形,可通过添加辅助线构造直角三角形来解决.解直角三角形的实际应用问题关键是要根据实际情况建立数学模型,正确画出图形找准三角形.考查内容:解直角三角形的应用.命题意图:本题考查学生解直角三角形的应用能力,难度中等偏上.27.解析:(1)∵y=-x2+6x-5=-(x-3)2+4,∴顶点P(3,4),令x=0得到y=-5,∴C(0,-5).(2)令y=0,x2-6x+5=0,解得x=1或5,∴A(1,0),B(5,0).设直线PC的解析式为y=kx+b,则有5, 34,bk b=-⎧⎨+=⎩解得3,5. kb=⎧⎨=-⎩∴直线PC的解析式为y=3x-5.设直线PC与x轴相交于点D,可求得D(53,0).设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0).直线PE的解析式为y=-6x+22,∴Q(92,-5),直线PE′的解析式为y=-65x+385,∴Q′(212,-5).综上所述,满足条件的点Q(92,-5),Q′(212,-5).归纳总结:存在性问题是指在一定条件下探索发现某种数学关系是否存在的一类问题,解决此类问题的方法是:(1)对问题的结论作出肯定存在性的假设;(2)按题设条件和数学定理、性质等进行推理、计算;(3)若推出合理的结论,则说明假设成立,若推出不合理的结论或与已知、已证明的结论相矛盾,则假设不成立.考查内容:二次函数的性质;待定系数法;转化的思想;分类讨论.命题意图:本题是一道关于二次函数的综合题,主要考查学生应用二次函数解答问题的能力,难度较大.28.解析:(1)由题意可知BF=FM,则CF+FM=4,设CF=x,FM=4-x.在Rt△CFM中,CM=2,由勾股定理可得FM2=CF2+CM2,即(4-x)2=x2+22,解得x=32,即CF=32.(2)①△PFM的形状是等腰直角三角形,不会发生变化.理由如下:设PC与FM相交于O点,由折叠的性质可得,∠PMF=∠B=45°,∵CD是中垂线,∴∠ACD=∠DCF=45°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴POPM=OMMC.由∠EMC=∠AEM+∠A可得∠AEM=∠CMF,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=45°,∴△MPC∽△OFC,∴MPOF=MCOC,由POPM=OMMC和MPOF=MCOC可得OMPO=OCOF.∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=45°,∴△PFM是等腰直角三角形.②由①知△PFM是等腰直角三角形,设FM=y,由勾股定理可得,PF=PM=22y,∴△PFM的周长为(1+2)y,∵2<y<4,∴△PFM的周长满足:2+22<(1+2)y<4+42.考查内容:折叠的性质;等腰直角三角形的性质和判定;翻折变换;相似三角形的判定和性质;勾股定理.命题意图:本题是有关三角形综合题,主要考查学生综合应用三角形的相关知识解答问题的能力,难度较大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学复习--统计题真题专练
2017年湖北省十堰市中考数学试卷
19.(7分)(2017•十堰)如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?
【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,
如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,
∵∠CAD=30°,∠CAB=60°,
∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,
∴∠ABD=∠BAD,
∴BD=AD=12海里,
∵∠CAD=30°,∠ACD=90°,
∴CD=AD=6海里,
由勾股定理得:AC==6≈10.392>8,
即渔船继续向正东方向行驶,没有触礁的危险.
20.(9分)(2017•十堰)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是抽样调查(填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一
等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
故答案为抽样调查.
(2)所调查的4个班征集到的作品数为:6÷=24件,
平均每个班=6件,C班有10件,
∴估计全校共征集作品6×30=180件.
条形图如图所示,
(3)画树状图得:
∵共有20种等可能的结果,两名学生性别相同的有8种情况,
∴恰好抽中一男一女的概率为:=.
21.(7分)(2017•十堰)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.
【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,
∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,
解得:k≤,
∴实数k的取值范围为k≤.
(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,
∴x1+x2=1﹣2k,x1•x2=k2﹣1.
∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2,
∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,
解得:k=﹣2或k=6(不符合题意,舍去).
∴实数k的值为﹣2.
2017年湖北省鄂州市中考数学试卷
19.(8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:
根据以上信息解答下列问题:
(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?
(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.
20.(8分)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.
21.(9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.。