四川宜宾中考数学试题及答案中考.doc
2019年四川宜宾中考数学试卷及详细答案解析(word版)
2019年四川宜宾中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。
1.(3分)2的倒数是( ) A .12B .﹣2C .−12D .±122.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( ) A .5.2×10﹣6B .5.2×10﹣5C .52×10﹣6D .52×10﹣53.(3分)如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE 绕着点A 顺时针旋转到与△ABF 重合,则EF =( )A .√41B .√42C .5√2D .2√134.(3分)一元二次方程x 2﹣2x +b =0的两根分别为x 1和x 2,则x 1+x 2为( ) A .﹣2B .bC .2D .﹣b5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A .10B .9C .8D .76.(3分)如表记录了两位射击运动员的八次训练成绩:次数 环数 运动员第1次第2次第3次第4次第5次第6次第7次第8次甲 10 7 7 8 8 8 9 7 乙1055899810根据以上数据,设甲、乙的平均数分别为x 甲、x 乙,甲、乙的方差分别为s 甲2,s 乙2,则下列结论正确的是( ) A .x 甲=x 乙,s 甲2<s 乙2 B .x 甲=x 乙,s 甲2>s 乙2 C .x 甲>x 乙,s 甲2<s 乙2D .x 甲<x 乙,s 甲2<s 乙27.(3分)如图,∠EOF 的顶点O 是边长为2的等边△ABC 的重心,∠EOF 的两边与△ABC 的边交于E ,F ,∠EOF =120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是( )A .√32B .2√35C .√33D .√348.(3分)已知抛物线y =x 2﹣1与y 轴交于点A ,与直线y =kx (k 为任意实数)相交于B ,C 两点,则下列结论不正确的是( ) A .存在实数k ,使得△ABC 为等腰三角形B .存在实数k ,使得△ABC 的内角中有两角分别为30°和60° C .任意实数k ,使得△ABC 都为直角三角形D .存在实数k ,使得△ABC 为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。
初中毕业升学考试(四川宜宾卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(四川宜宾卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】﹣5的绝对值是()A. B. 5 C. D. ﹣5【答案】B【解析】试题分析:根据负数的绝对值是它的相反数,得|﹣5|=5.故选B.考点:绝对值.【题文】科学家在实验中检测出某微生物细胞直径约为0.0000035米,将0.0000035用科学记数法表示为( )A. 3.5×106B. 3.5×10-6C. 3.5×10-5D. 35×10-5【答案】A【解析】试题分析:0.0000035=3.5×10﹣6,故选A.考点:科学记数法—表示较小的数.【题文】如图,立体图形的俯视图是()A. B. C. D.【答案】C.【解析】试题分析:立体图形的俯视图是C.故选C.考点:简单组合体的三视图.【题文】半径为6,圆心角为120°的扇形的面积是()A. 3πB. 6πC. 9πD. 12π【答案】D评卷人得分【解析】试题分析:S==12π,故选D.考点:扇形面积的计算.【题文】如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B. C.3 D.【答案】A.【解析】试题分析:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选A.考点:旋转的性质.【题文】如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2【答案】A.【解析】试题分析:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA •PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选A.考点:矩形的性质;和差倍分;定值问题.【题文】宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.7【答案】B.【解析】试题分析:设生产甲产品x件,则乙产品(20﹣x)件,根据题意得:,解得:8≤x≤12,∵x为整数,∴x=8,9,10,11,12,∴有5种生产方案:方案1,A产品8件,B产品12件;方案2,A产品9件,B产品11件;方案3,A产品10件,B产品10件;方案4,A产品11件,B产品9件;方案5,A产品12件,B产品8件;故选B.考点:二元一次方程组的应用;方案型.【题文】如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度【答案】C.【解析】试题分析:A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.考点:函数的图象.【题文】分解因式:=.【答案】.【解析】试题分析:原式==.故答案为:.考点:提公因式法与公式法的综合运用.【题文】如图,直线a∥b,∠1=45°,∠2=30°,则∠P=°.【答案】75.【解析】试题分析:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,故答案为:75.考点:平行线的性质.【题文】已知一组数据:3,3,4,7,8,则它的方差为.【答案】4.4.【解析】试题分析:这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为: [(3﹣5)2+(3﹣5)2+(4﹣5)2+(7﹣5)2+(8﹣5)2]=4.4.故答案为:4.4.考点:方差.【题文】今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.【答案】.【解析】试题分析:设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组:.故答案为:.考点:由实际问题抽象出二元一次方程组.【题文】在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是.【答案】(0,3),(0,﹣1).【解析】试题分析:以(1,1)为圆心,为半径画圆,与y轴相交,构成直角三角形,用勾股定理计算得另一直角边的长为2,则与y轴交点坐标为(0,3)或(0,﹣1).故答案为:(0,3),(0,﹣1).考点:坐标与图形性质.【题文】已知一元二次方程的两根为、,则=.【答案】13.【解析】试题分析:根据题意得,,所以==.故答案为:13.考点:根与系数的关系.【题文】规定:logab(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:logaan=n.logNM=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=_____.【答案】.【解析】试题分析:===.故答案为:.考点:实数的运算;新定义.【题文】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP 翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为;⑤当△ABP≌△ADN时,BP=.【答案】①②⑤.【解析】试题分析:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BPA,∴,∴CM=x(4﹣x),∴S四边形AMCB=[4+x(4﹣x)]×4==,∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,设ND=NE=y,在RT△PCN中,解得,∴NE≠EP,故③错误,作MG⊥AB于G,∵AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=,∴x=1时,AG最小值=3,∴AM的最小值==5,故④错误.∵△ABP≌△ADN时,∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KPA=∠KAP=22.5°.∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=,∴PB=故⑤正确.故答案为:①②⑤.考点:相似形综合题.【题文】(1)计算;;(2)化简:.【答案】(1)4;(2).【解析】试题分析:(1l试题分析:先根据题意得出∠DAB=∠CBA,再由ASA定理可得出△ADB≌△BCA,由此可得出结论.试题解析:∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,∵∠CAB=∠DBA,AB=AB ,∠DAB=∠CBA,∴△ADB≌△BCA(ASA),∴BC=AD.考点:全等三角形的判定与性质.【题文】某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:根据图中提供的信息,解答下列问题:(1)a=,b=;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】(1)16,17.5;(2)90;(3).【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为:16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为:90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.考点:列表法与树状图法;用样本估计总体;扇形统计图.【题文】2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?【答案】20.【解析】试题分析:设第一批花每束的进价是x元/束,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.试题解析:设第一批花每束的进价是x元/束,依题意得:,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.考点:分式方程的应用.【题文】如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)【答案】.【解析】试题分析:作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF的长,在直角△ABE 中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.试题解析:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF==,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE==(x+4)米.∵CF﹣BE=DE,即.解得:x=,则AB=+4=(米).答:树高AB是米.考点:解直角三角形的应用-仰角俯角问题.【题文】如图,一次函数y=kx+b的图象与反比例函数(x>0)的图象交于A(2,﹣1),B(,n )两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.【答案】(1)y=2x﹣5,;(2).【解析】试题分析:(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)利用两点间的距离公式求出AB的长,利用点到直线的距离公式求出点C到直线AB的距离,即可确定出三角形ABC面积.试题解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式为,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=﹣5,则一次函数解析式为y=2x﹣5;(2)∵A(2,﹣1),B(,﹣4),直线AB解析式为y=2x﹣5,∴AB==,原点(0,0)到直线y=2x﹣5的距离d==,则S△ABC=AB•d=.考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用.【题文】如图1,在△APE中,∠PAE=90°,PO是△APE的角平分线,以O为圆心,OA为半径作圆交AE于点G.(1)求证:直线PE是⊙O的切线;(2)在图2中,设PE与⊙O相切于点H,连结AH,点D是⊙O的劣弧上一点,过点D作⊙O的切线,交PA于点B,交PE于点C,已知△PBC的周长为4,tan∠EAH=,求EH的长.【答案】(1)证明见解析;(2).【解析】试题分析:(1)作OH⊥PE,由PO是∠APE的角平分线,得到∠APO=∠EPO,判断出△PAO≌△PHO,得到OH=OA ,用“圆心到直线的距离等于半径”来得出直线PE是⊙O的切线;(2)先利用切线的性质和△PBC的周长为4求出PA=2,再用三角函数求出OA,AG,然后用三角形相似,得到EH=2EG,AE=2EH,用勾股定理求出EG,最后用切割线定理即可.试题解析:(1)如图1,作OH⊥PE,∴∠OHP=90°,∵∠PAE=90,∴∠OHP=∠OAP,∵PO是∠APE的角平分线,∴∠APO=∠EPO,在△PAO和△PHO中,∵∠OHP=∠OAP,∠OPH=∠OPA,OP=OP,∴△PAO≌△PHO,∴OH=OA,∵OA是⊙O的半径,∴OH是⊙O的半径,∵OH⊥PE,∴直线PE是⊙O的切线.(2)如图2,连接GH,∵BC,PA,PB是⊙O的切线,∴DB=DA,DC=CH,∵△PBC的周长为4,∴PB+PC+BC=4,∴PB+PC+DB+DC=4,∴PB+AB+PC+CH=4,∴PA+PH=4,∵PA,PH是⊙O的切线,∴PA=PH,∴PA=2,由(1)得,△PAO≌△PHO,∴∠OFA=90°,∴∠EAH+∠AOP=90°,∵∠OAP=90°,∴∠AOP+∠APO=90°,∴∠APO=∠EAH,∵tan∠EAH=,∴tan∠APO==,∴OA=PA=1,∴AG=2,∵∠AHG=90°,∵tan∠EAH==,∵△EGH∽△EHA,∴==,∴EH=2EG,AE=2EH,∴AE=4EG,∵AE=EG+AG,∴EG+AG=4EG,∴EG=AG=,∵EH是⊙O的切线,EGA是⊙O的割线,∴=EG×EA=EG×(EG+AG)==,∴EH=.考点:切线的判定与性质.【题文】如图,已知二次函数过(﹣2,4),(﹣4,4)两点.(1)求二次函数的解析式;(2)将沿x轴翻折,再向右平移2个单位,得到抛物线,直线y=m(m>0)交于M、N两点,求线段MN 的长度(用含m的代数式表示);(3)在(2)的条件下,、交于A、B两点,如果直线y=m与、的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与、的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.【答案】(1);(2);(3)证明见解析.【解析】试题分析:(1)根据待定系数法即可解决问题.(2)先求出抛物线y2的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.(3)用类似(2)的方法,分别求出CD、EF即可解决问题.试题解析:(1)∵二次函数过(﹣2,4),(﹣4,4)两点,∴,解得:,∴二次函数的解析式.(2)∵=,∴顶点坐标(﹣3,),∵将沿x轴翻折,再向右平移2个单位,得到抛物线,∴抛物线的顶点坐标(﹣1,),∴抛物线为,由,消去y 整理得到,设,是它的两个根,则MN===;(3)由,消去y整理得到,设两个根为,,则CD===,由,消去y得到,设两个根为,,则EF===,∴EF=CD,EF∥CD,∴四边形CEFD是平行四边形.考点:二次函数综合题.。
2022年四川省宜宾市中考数学试卷(解析版)
2022年四川省宜宾市中考数学试卷(真题)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1.(4分)(2022•宜宾)4的平方根是()A.2 B.﹣2 C.±2 D.162.(4分)(2022•宜宾)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.3.(4分)(2022•宜宾)下列计算不正确的是()A.a3+a3=2a6B.(﹣a3)2=a6C.a3÷a2=a D.a2•a3=a5 4.(4分)(2022•宜宾)某校在中国共产主义青年团成立100周年之际,举行了歌咏比赛,七位评委对某个选手的打分分别为:91,88,95,93,97,95,94.这组数据的众数和中位数分别是()A.94,94 B.95,95 C.94,95 D.95,94 5.(4分)(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5 B.10 C.15 D.206.(4分)(2022•宜宾)2020年12月17日,我国嫦娥五号返回器携带着月球样本玄武岩成功着陆地球.2021年10月19日,中国科学院发布了一项研究成果:中国科学家测定,嫦娥五号带回的玄武岩形成的年龄为20.30±0.04亿年.用科学记数法表示此玄武岩形成的年龄最小的为(单位:年)()A.2.034×108B.2.034×109C.2.026×108D.2.026×109 7.(4分)(2022•宜宾)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x 套桌凳,则所列方程正确的是()A.﹣=3 B.﹣=3C.﹣=3 D.﹣=38.(4分)(2022•宜宾)若关于x的一元二次方程ax2+2x﹣1=0有两个不相等的实数根,则a的取值范围是()A.a≠0 B.a>﹣1且a≠0 C.a≥﹣1且a≠0 D.a>﹣1 9.(4分)(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD 沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()A.B.C.D.10.(4分)(2022•宜宾)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.0 B.﹣10 C.3 D.1011.(4分)(2022•宜宾)已知抛物线y=ax2+bx+c的图象与x轴交于点A(﹣2,0)、B(4,0),若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是()A.a≥B.a>C.0<a<D.0<a≤12.(4分)(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④二、填空题:本大题共6个小题,每小题4分,共24分.请把答案直接填在答题卡对应题中横线上.13.(4分)(2022•宜宾)分解因式:x3﹣4x=.14.(4分)(2022•宜宾)不等式组的解集为.15.(4分)(2022•宜宾)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若BC=4,AF=2,CF=3,则EF=.16.(4分)(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c =4:3:2,则用以上给出的公式求得这个三角形的面积为.17.(4分)(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.18.(4分)(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为.三、解答题:本大题共7个小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.(10分)(2022•宜宾)计算:(1)﹣4sin30°+|﹣2|;(2)(1﹣)÷.20.(10分)(2022•宜宾)已知:如图,点A、D、C、F在同一直线上,AB∥DE,∠B=∠E,BC=EF.求证:AD=CF.21.(10分)(2022•宜宾)在4月23日世界读书日来临之际,为了解某校九年级(1)班同学们的阅读爱好,要求所有同学从4类书籍中(A:文学类;B:科幻类;C:军事类;D:其他类),选择一类自己最喜欢的书籍进行统计.根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息回答问题:(1)求九年级(1)班的人数并补全条形统计图;(2)在扇形统计图中,求m的值;(3)如果选择C类书籍的同学中有2名女同学,其余为男同学,现要在选择C类书籍的同学中选取两名同学去参加读书交流活动,请你用画树状图或列表的方法求出恰好是一男一女同学去参加读书交流活动的概率.22.(10分)(2022•宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B 处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:≈1.7,≈1.4)23.(12分)(2022•宜宾)如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.24.(12分)(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB 的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC 的延长线于点E,且EG=EC.(1)求证:DE是⊙O的切线;(2)若点F是OA的中点,BD=4,sin∠D=,求EC的长.25.(14分)(2022•宜宾)如图,抛物线y=ax2+bx+c与x轴交于A(3,0)、B(﹣1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC.(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值.2022年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1.(4分)(2022•宜宾)4的平方根是()A.2 B.﹣2 C.±2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(4分)(2022•宜宾)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看,底层是三个相邻的小正方形,上层的右边是一个小正方形.故选:D.【点评】本题考查了三视图的知识.注意主视图是指从物体的正面看物体得到的图形.3.(4分)(2022•宜宾)下列计算不正确的是()A.a3+a3=2a6B.(﹣a3)2=a6C.a3÷a2=a D.a2•a3=a5【分析】利用合并同类项法则、幂的乘方法则、同底数幂的乘除法则逐个计算,根据计算结果得结论.【解答】解:A.a3+a3=2a3≠2a6,故选项A计算不正确;B.(﹣a3)2=a6,故选项B计算正确;C.a3÷a2=a,故选项C计算正确;D.a2•a3=a5,故选项D计算正确.故选:A.【点评】本题考查了整式的运算,掌握合并同类项法则、同底数幂的乘除法法则、幂的乘方法则是解决本题的关键.4.(4分)(2022•宜宾)某校在中国共产主义青年团成立100周年之际,举行了歌咏比赛,七位评委对某个选手的打分分别为:91,88,95,93,97,95,94.这组数据的众数和中位数分别是()A.94,94 B.95,95 C.94,95 D.95,94【分析】先将这组数据从小到大重新排列,再根据众数和中位数的概念求解可得.【解答】解:将这组数据从小到大排列为88,91,93,94,95,95,97,所以这组数据的众数是95,中位数是94.故选:D.【点评】本题主要考查众数和中位数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(4分)(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5 B.10 C.15 D.20【分析】由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明▱AFDE的周长等于AB+AC.【解答】解:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∠B=∠EDC,∠FDB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDF,∴BF=FD,DE=EC,∴▱AFDE的周长=AB+AC=5+5=10.故选:B.【点评】本题考查了等腰三角形的性质,平行四边形的判定与性质,根据平行四边形的性质,找出对应相等的边,利用等腰三角形的性质把四边形周长转化为已知的长度去解题.6.(4分)(2022•宜宾)2020年12月17日,我国嫦娥五号返回器携带着月球样本玄武岩成功着陆地球.2021年10月19日,中国科学院发布了一项研究成果:中国科学家测定,嫦娥五号带回的玄武岩形成的年龄为20.30±0.04亿年.用科学记数法表示此玄武岩形成的年龄最小的为(单位:年)()A.2.034×108B.2.034×109C.2.026×108D.2.026×109【分析】先求出此玄武岩形成的年龄最小值,再运用科学记数法进行表示.【解答】解:∵20.30﹣0.04=20.26(亿),且20.26亿=2026000000=2.026×109,故选:D.【点评】此题考查了运用科学记数法表示较大数的能力,关键是能准确理解相关知识,并能进行相关计算.7.(4分)(2022•宜宾)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x 套桌凳,则所列方程正确的是()A.﹣=3 B.﹣=3C.﹣=3 D.﹣=3【分析】设原计划每天完成x套桌凳,则实际每天完成(x+2)套,根据原计划完成的时间﹣实际完成的时间=3天列出方程即可.【解答】解:设原计划每天完成x套桌凳,则实际每天完成(x+2)套,根据原计划完成的时间﹣实际完成的时间=3天得:﹣=3,故选:C.【点评】本题考查了由实际问题抽象出分式方程,根据原计划完成的时间﹣实际完成的时间=3天列出方程是解题的关键.8.(4分)(2022•宜宾)若关于x的一元二次方程ax2+2x﹣1=0有两个不相等的实数根,则a的取值范围是()A.a≠0 B.a>﹣1且a≠0 C.a≥﹣1且a≠0 D.a>﹣1【分析】根据根的判别式即可列不等式,计算即可得答案,注意a≠0.【解答】解:由题意可得:,∴a>﹣1且a≠0,故选:B.【点评】本题主要考查根的判别式,解题关键是熟练掌握根的判别式.9.(4分)(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD 沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()A.B.C.D.【分析】利用矩形和折叠的性质可得BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中利用勾股定理列方程,即可求出x的值,进而可得cos∠ADF.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,∴∠BDC=∠DBF,由折叠的性质可得∠BDC=∠BDF,∴∠BDF=∠DBF,∴BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中,32+(5﹣x)2=x2,∴x=,∴cos∠ADF=,故选:C.【点评】本题主要考查矩形的性质、解直角三角形、折叠的性质、勾股定理等,解题关键是利用矩形和折叠的性质得到DF=BF.10.(4分)(2022•宜宾)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.0 B.﹣10 C.3 D.10【分析】由于m、n是一元二次方程x2+2x﹣5=0的两个根,根据根与系数的关系可得m+n=﹣2,mn=﹣5,而m是方程的一个根,可得m2+2m﹣5=0,即m2+2m=5,那么m2+mn+2m=m2+2m+mn,再把m2+2m、m+n的值整体代入计算即可.【解答】解:∵m、n是一元二次方程x2+2x﹣5=0的两个根,∴m+n=﹣2,mn=﹣5,∵m是x2+2x﹣5=0的一个根,∴m2+2m﹣5=0,∴m2+2m=5,∴m2+mn+2m=m2+2m+mn=5﹣5=0.故选:A.【点评】本题考查了根与系数的关系,解题的关键是熟练掌握一元二次方程ax2+bx+c=0(a≠0)两根x、x2之间的关系:x1+x2=﹣,x1x2=.111.(4分)(2022•宜宾)已知抛物线y=ax2+bx+c的图象与x轴交于点A(﹣2,0)、B(4,0),若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是()A.a≥B.a>C.0<a<D.0<a≤【分析】把A、B两点坐标代入二次函数解析式,用a表示b、c,进而把抛物线的解析式用a表示,设抛物线在x轴下方一点P的横坐标为t,由CP≥AB,列出a与t的不等式式,进而根据不等式的性质求得结果.【解答】解:把A(﹣2,0)、B(4,0)代入y=ax2+bx+c得,,解得,∴抛物线的解析式为:y=ax2﹣2ax﹣8a=a(x﹣1)2﹣9a,设P(t,a(t﹣1)2﹣9a)为x轴下方的抛物线上的点,则﹣2<t<4,设C为AB的中点,则C(1,0),∵以AB为直径的圆与在x轴下方的抛物线有交点,∴CP≥,即CP≤3,∴(t﹣1)2+[a(t﹣1)2﹣9a]2≥9,∴,∴a≤﹣或a≥,∵以AB为直径的圆与在x轴下方的抛物线有交点,∴抛物线开口向上,即a>0,∴a≥,∵,即,∴a≥.故选:A.【点评】本题主要考查了二次函数的图象与性质,点与圆的位置关系的应用,关键是根据点与圆的位置关系列出不等式.12.(4分)(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④【分析】①正确.证明△BAD≌△DAE(SAS),可得结论;②正确.证明A,D,C,E四点共圆,利用圆周角定理证明;③正确.设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,求出AO,CJ,可得结论;④错误.将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC=∠BPC=120°,PB=PC,AD⊥BC,设PD=t,则BD=AD=t,构建方程求出t,可得结论.【解答】解:如图1中,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△DAE(SAS),∴BD=EC,∠ADB=∠AEC,故①正确,∵∠ADB+∠ADC=180°,∴∠AEC+∠ADC=180°,∴∠DAE+∠DCE=180°,∴∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,∴A,D,C,E四点共圆,∴∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,∵tan∠CDF===2,∴CJ=m,∵AO⊥DE,CJ⊥DE,∴AO∥CJ,∴===,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴PA+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC=∠BPC=120°,PB=PC,AD⊥BC,∴∠BPD=∠CPD=60°,设PD=t,则BD=AD=t,∴2+t=t,∴t=+1,∴CE=BD=t=3+,故④错误.故选:B.【点评】本题考查等腰直角三角形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共6个小题,每小题4分,共24分.请把答案直接填在答题卡对应题中横线上.13.(4分)(2022•宜宾)分解因式:x3﹣4x=x(x+2)(x﹣2).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.14.(4分)(2022•宜宾)不等式组的解集为﹣4<x≤﹣1 .【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:,解不等式①,得:x≤﹣1,解不等式②,得:x>﹣4,故原不等式组的解集为﹣4<x≤﹣1,故答案为:﹣4<x≤﹣1.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.15.(4分)(2022•宜宾)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若BC=4,AF=2,CF=3,则EF=.【分析】由∠1=∠2,∠A=∠A,得出△AEF∽△ABC,再由相似三角形的性质即可得出EF的长度.【解答】解:∵∠1=∠2,∠A=∠A,∴△AEF∽△ABC,∴,∵BC=4,AF=2,CF=3,∴,∴EF=,故答案为:.【点评】本题考查了相似三角形的判定与性质,根据已知条件求证△AEF∽△ABC是解决问题的关键.16.(4分)(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c =4:3:2,则用以上给出的公式求得这个三角形的面积为3.【分析】根据题意先求出a、b、c,再代入公式进行计算即可.【解答】解:根据a:b:c=4:3:2,设a=4k,b=3k,c=2k,则4k+3k+2k=18,解得:k=2,∴a=4k=4×2=8,b=3k=3×2=6,c=2k=2×2=4,∴S===3,故答案为:3.【点评】本题考查了二次根式的运算,要注意运算顺序,解答的关键是对相应的运算法则的熟练掌握.17.(4分)(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为289 .【分析】如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,然后利用内切圆和直角三角形的性质得到AC+BC=AB+6,(BC﹣AC)2=49,接着利用完全平方公式进行代数变形,最后解关于AB的一元二次方程解决问题.【解答】解:如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,∴OE=OD=3=,∴AC+BC﹣AB=6,∴AC+BC=AB+6,∴(AC+BC)2=(AB+6)2,∴BC2+AC2+2BC×AC=AB2+12AB+36,而BC2+AC2=AB2,∴2BC×AC=12AB+36①,∵小正方形的面积为49,∴(BC﹣AC)2=49,∴BC2+AC2﹣2BC×AC=49②,把①代人②中得AB2﹣12AB﹣85=0,∴(AB﹣17)(AB+5)=0,∴AB=17(负值舍去),∴大正方形的面积为 289.故答案为:289.【点评】本题主要考查了三角形的内切圆的性质,正方形的性质及勾股定理的应用,同时也利用了完全平方公式和一元二次方程,综合性强,能力要求高.18.(4分)(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为9.【分析】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,设OC=b,通过解直角三角形和等边三角形的性质用b表示出A、B两点的坐标,进而代入反比例函数的解析式列出b的方程求得b,便可求得k的值.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,∵△OMN是边长为10的等边三角形,∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°,设OC=b,则BC=,OB=2b,∴BM=OM﹣OB=10﹣2b,B(b,b),∵∠M=60°,AB⊥OM,∴AM=2BM=20﹣2b,∴AN=MN﹣AM=10﹣(20﹣2b)=2b﹣10,∵∠AND=60°,∴DN==b﹣5,AD=AN=b﹣5,∴OD=ON﹣DN=15﹣b,∴A(15﹣b,b﹣5),∵A、B两点都在反比例函数数y=(x>0)的图象上,∴k=(15﹣b)(b﹣5)=b•b,解得b=3或5,当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,∴b=3,∴k=b•b=9,故答案为:9.【点评】本题主要考查了反比例函数的图象与性质,等边三角形的性质,解直角三角形,关键是列出b的方程.三、解答题:本大题共7个小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.(10分)(2022•宜宾)计算:(1)﹣4sin30°+|﹣2|;(2)(1﹣)÷.【分析】(1)先计算二次根式、特殊角的三角函数值和绝对值,再计算乘法,最后计算加减;(2)先计算括号里面的,再变除法为乘法进行分式的乘法运算.【解答】解:(1)﹣4sin30°+|﹣2|=2﹣4×+2﹣=2﹣2+2﹣=;(2)(1﹣)÷=().==a﹣1.【点评】此题考查了实数与分式的混合运算能力,关键是能准确确定运算顺序与方法,并能进行正确的计算.20.(10分)(2022•宜宾)已知:如图,点A、D、C、F在同一直线上,AB∥DE,∠B=∠E,BC=EF.求证:AD=CF.【分析】利用平行线的性质和全等三角形的判定与性质解答即可.【解答】证明:∵AB∥DE,∴∠A=∠EDF.在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).∴AC=DF,∴AC﹣DC=DF﹣DC,即:AD=CF.【点评】本题主要考查了平行线的性质和全等三角形的判定与性质,准确利用全等三角形的判定定理解答是解题的关键.21.(10分)(2022•宜宾)在4月23日世界读书日来临之际,为了解某校九年级(1)班同学们的阅读爱好,要求所有同学从4类书籍中(A:文学类;B:科幻类;C:军事类;D:其他类),选择一类自己最喜欢的书籍进行统计.根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息回答问题:(1)求九年级(1)班的人数并补全条形统计图;(2)在扇形统计图中,求m的值;(3)如果选择C类书籍的同学中有2名女同学,其余为男同学,现要在选择C类书籍的同学中选取两名同学去参加读书交流活动,请你用画树状图或列表的方法求出恰好是一男一女同学去参加读书交流活动的概率.【分析】(1)根据选择A类书籍的同学的人数和百分比计算,求出九年级(1)班的人数,求出选择C类书籍的人数,补全条形统计图;(2)求出选择B类书籍的人数,求出m;(3)根据题意画出画树状图,求出恰好是一男一女同学去参加读书交流活动的概率.【解答】解:(1)九年级(1)班的人数为:12÷30%=40(人),选择C类书籍的人数为:40﹣12﹣16﹣8=4(人),补全条形统计图如图所示;(2)m%=×100%=40%,则m=40;(3)∵选择C类书籍的同学共4人,有2名女同学,∴有2名男同学,画树状图如图所示:则P(一男一女)==.【点评】本题考查的是求随机事件的概率、条形统计图和扇形统计图,能够正确从统计图中获取相关的信息是解题的关键.22.(10分)(2022•宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B 处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:≈1.7,≈1.4)【分析】根据锐角三角函数和勾股定理,可以得到AF和BF的值,然后根据题目中的数据,可以计算出DE的值.【解答】解:由已知可得,tan∠BAF==,AB=25米,∠DBE=60°,∠DAC=45°,∠C=90°,设BF=7a米,AF=24a米,∴(7a)2+(24a)2=252,解得a=1,∴AF=24米,BF=7米,∵∠DAC=45°,∠C=90°,∴∠DAC=∠ADC=45°,∴AC=DC,设DE=x米,则DC=(x+7)米,BE=CF=x+7﹣24=(x﹣17)米,∵tan∠DBE==,∴tan60°=,解得x≈40,答:东楼的高度DE约为40米.【点评】本题考查解直角三角形的应用—仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.23.(12分)(2022•宜宾)如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.【分析】(1)求出A,B两点坐标,代入直线的解析式求出a,b,再求出点C 的坐标,求出k即可;(2)构建方程组求出点D的坐标,再利用割补法求出三角形面积.【解答】解:(1)在Rt△AOB中,tan∠BAO==2,∵A(4,0),∴OA=4,OB=8,∴B(0,8),∵A,B两点在直线y=ax+b上,∴,∴,∴直线AB的解析式为y=﹣2x+8,过点C作CE⊥OA于点E,∵BC=3AC,∴AB=4AC,∴CE∥OB,∴==,∴CE=2,∴C(3,2),∴k=3×2=6,∴反比例函数的解析式为y=;(2)由,解得或,∴D(1,6),过点D作DF⊥y轴于点F,∴S△OCD=S△AOB﹣S△BOD﹣S△COA=•OA•OB﹣•OB•DF﹣•OA•CE=×4×8﹣×8×1﹣×4×2=8【点评】本题考查一次函数与反比例函数的交点,解直角三角形等知识,解题的关键是熟练掌握待定系数法,属于中考常考题型.24.(12分)(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB 的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC 的延长线于点E,且EG=EC.(1)求证:DE是⊙O的切线;(2)若点F是OA的中点,BD=4,sin∠D=,求EC的长.【分析】(1)要证明DE是⊙O的切线,只要证明OC⊥CD即可,根据题目中的条件和等腰三角形的性质、直角三角形的性质,可以得到∠OCD=90°,从而可以证明结论成立;(2)根据相似三角形的判定与性质和题目中的数据,可以求得DE和CD的长,从而可以得到EC的长.【解答】(1)证明:连接OC,如图所示,∵EF⊥AB,AB为⊙O的切线,∴∠GFA=90°,∠ACB=90°,∴∠A+∠AGF=90°,∠A+∠ABC=90°,∴∠AGF=∠ABC,∵EG=EC,OC=OB,∴∠EGC=∠ECG,∠ABC=∠BCO,又∵∠AGF=∠EGC,∴∠ECG=∠BCO,∵∠BCO+∠ACO=90°,∴∠ECG+∠ACO=90°,∴∠ECO=90°,∴DE是⊙O的切线;(2)解:由(1)知,DE是⊙O的切线,∴∠OCD=90°,∵BD=4,sin∠D=,OC=OB,∴=,即=,解得OC=2,∴OD=6,∴DC===4,∵点E为OA的中点,OA=OC,∴OF=1,∴DF=7,∵∠EFD=∠OCD,∠EDF=∠ODC,∴△EFD∽△OCD,∴,即,解得DE=,∴EC=ED﹣DC=﹣4=,即EC的长是.【点评】本题考查相似三角形的判定与性质、圆周角定理、切线的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.(14分)(2022•宜宾)如图,抛物线y=ax2+bx+c与x轴交于A(3,0)、B (﹣1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC.(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值.【分析】(1)利用待定系数法,把问题转化为解方程组即可;(2)过点F作FG⊥DE于点G,证明△OAC≌△GFE(AAS),推出OA=FG=3,设F(m,﹣m2+2m+3),则G(1,﹣m2+2m+3),可得FG=|m﹣1|=3,推出m=﹣2或m=4,即可解决问题;(3)由题意,M(1,﹣1),F1(4,﹣5),F2(﹣2,﹣5)关于对称轴直线x =1对称,连接F1F2交对称轴于点H,连接F1M,F2M,过点F2作F2N⊥F1M于点N,交对称轴于点P,连接PF.则MH=4,HF1=3,MF1=5,证明PN=PM,1由PF2=PF1,推出PF+PM=PF1+PN=FN2为最小值.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(3,0)、B(﹣1,0),C(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)设直线AC是解析式为y=kx+b,把A(3,0),C(0,3)代入,得,∴,∴直线AC的解析式为y=﹣x+3,过点F作FG⊥DE于点G,∵以A,C,E,F为顶点的四边形是以AC为边的平行四边形,∴AC=EF,AC∥EF,∵OA∥FG,∴∠OAC=∠GFE,∴△OAC≌△GFE(AAS),∴OA=FG=3,设F(m,﹣m2+2m+3),则G(1,﹣m2+2m+3),∴FG=|m﹣1|=3,∴m=﹣2或m=4,当m=﹣2时,﹣m2+2m+3=﹣5,∴F1(﹣2,﹣5),当m=时,﹣m2+2m+3=﹣5,∴F2(4,﹣5)综上所述,满足条件点点F的坐标为(﹣2,﹣5)或(4,﹣5);(3)由题意,M(1,﹣1),F1(4,﹣5),F2(﹣2,﹣5)关于对称轴直线x =1对称,连接F1F2交对称轴于点H,连接F1M,F2M,过点F2作F2N⊥F1M于点N,交对称轴于点P,连接PF.则MH=4,HF1=3,MF1=5,1在Rt△MHF1中,sin∠HMF1==,则在RtMPN中,sin∠PMN==,∴PN=PM,∵PF2=PF1,∴PF+PM=PF1+PN=FN2为最小值,∵=×6×4=×5×F2N,∴F2N=,∴PF+PM的最小值为.【点评】本题属于二次函数综合题,考查了二次函数的性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,学会用转化的思想思考问题,属于中考压轴题.。
(中考精品)四川省宜宾市中考数学真题(解析版)
宜宾市2022年初中学业水平考试暨高中阶段学校招生考试数学一、选择题:本大题共12个小题,每小题4分,共48分.1. 4的平方根是( )A. ±2B. 2C. ﹣2D. 16【答案】A【解析】【详解】【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的一个平方根.【详解】∵(±2 )2=4,∴4的平方根是±2,故选A .【点睛】本题主要考查平方根定义,熟练掌握平方根的定义是解题的关键. 2. 如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是( )A. B. C. D.【答案】D【解析】【分析】根据所给几何体判断即可.【详解】解:从正面看,所看到的图形是:故选:D .的【点睛】考查几何体的三视图的知识,从正面看到的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图.掌握以上知识是解题的关键.3. 下列计算不正确的是( )A. 3362a a a +=B. ()236a a -=C. 32a a a ÷=D. 235a a a ⋅=【答案】A【解析】【分析】根据合并同类项法则判定A ;根据幂的乘方法则计算并判定B ;根据同底数幂相除法则计算并判定C ;根据同底数幂相乘运算法则计算并判定D .【详解】解:A 、a 3+a 3=2a 3,故此选项符合题意;B 、(-a 3)2=a 6,故此选项不符合题意;C 、32a a a ÷=,故此选项不符合题意;D 、235a a a ⋅=,故此选项不符合题意;故选:A .【点睛】本题考查合并同类项,幂的乘方,同底数幂相除法,同底数幂相除法,熟练掌握合并同类项、幂的乘方 、,同底数幂相除法、同底数幂相除法运算法则是解题的关键. 4. 某校在中国共产主义青年团成立100周年之际,举行了歌咏比赛,七位评委对某个选手的打分分别为:91,88,95,93,97,95,94.这组数据的众数和中位数分别是( )A. 94,94B. 95,95C. 94,95D. 95,94 【答案】D【解析】【分析】将这组数据从小到大重新排列,再根据中位数的定义以及众数的定义求解即可.【详解】将这组数据从小到大重新排列为88,91,93,94,95,95,97,∴这组数据的中位数为94,95出现了2次,次数最多,故众数为95故选:D .【点睛】本题主要考查中位数和众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数的平均数就是这组数据的中位数.众数:在一组数据中出现次数最多的数.5. 如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,那么四边形AFDE 的周长是( )A. 5B. 10C. 15D. 20【答案】B【解析】 【分析】由于DE ∥AB ,DF ∥AC ,则可以推出四边形AFDE 是平行四边形,然后利用平行四边形的性质可以证明□AFDE 的周长等于AB +A C .【详解】∵DE ∥AB ,DF ∥AC ,则四边形AFDE 是平行四边形,∠B =∠EDC ,∠FDB =∠C∵AB =AC ,∴∠B =∠C ,∴∠B =∠FDB ,∠C =∠EDF ,∴BF =FD ,DE =EC ,所以□AFDE 的周长等于AB +AC =10.故答案为B【点睛】本题考查了平行四边形的性质、等腰三角形的性质、平行四边形的判定,熟练掌握这些知识点是本题解题的关键.6. 2020年12月17日,我国嫦娥五号返回器携带着月球样本玄武岩成功着陆地球.2021年10月19日,中国科学院发布了一项研究成果:中国科学家测定,嫦娥五号带回的玄武岩形成的年龄为20.300.04±亿年.用科学记数法表示此玄武岩形成的年龄最小的为( )(单位:年)A 82.03410⨯ B. 92.03410⨯ C. 82.02610⨯ D. 92.02610⨯【答案】D【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,看小数点移动了多少位,n 的绝对值与小数点移动的位数相同.小数点向左移动时,n 是正整数;小数点向右移动时,n 是负整数.【详解】解:20.30亿-0.04亿=20.26亿=2026000000=2.026×109,故选:D ..【点睛】本题主要考查科学记数法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.解题关键是正确确定a 的值以及n 的值.7. 某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x 套桌凳,则所列方程正确的是( ) A. 54054032x x -=- B. 54054032x x -=+ C. 54054032x x -=+ D. 54054032x x -=- 【答案】C【解析】分析】设原计划每天完成x 套桌凳,根据“提前3天完成任务”列出分式方程即可.【详解】解:设原计划每天完成x 套桌凳,根据题意得,54054032x x -=+. 故选:C .【点睛】本题考查了列分式方程,理解题意是解题的关键.8. 若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是( )A. 0a ≠B. 1a >-且0a ≠C. 1a ≥-且0a ≠D. 1a >-【答案】B【解析】【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根,∴a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根. 9. 如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( ) 【A. 817B. 715C. 1517D. 815【答案】C【解析】【分析】先根据矩形的性质和折叠的性质,利用“AAS ”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∵四边形ABCD 为矩形,∴CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∴在△AFD 和△EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∴AFD EFB ∆∆≌(AAS ),∴AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∴315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.10. 已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( )A. 0B. -10C. 3D. 10 【答案】A【解析】【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=两个根,∴mn =-5,m 2+2m -5=0,∴m 2+2m =5,∴22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键.11. 已知抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,若以AB 为直径的圆与在x 轴下方的抛物线有交点,则a 的取值范围是( ) A. 13a ≥ B. 13a > C. 103a << D. 103a <≤ 【答案】A【解析】【分析】根据题意,设抛物线的解析式为()()24y a x x =+-,进而求得顶点的的坐标,结合图形可知当顶点纵坐标小于或等于-3满足题意,即可求解.【详解】解: 抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B , 设抛物线的解析式为()()24y a x x =+-()222819y ax ax a a x a ∴=--=--顶点坐标为()1,9a -, 6AB = ,以AB 为直径的圆与在x 轴下方的抛物线有交点,则圆的半径为3,如图,的93a ∴-≤- 解得13a ≥ 故选:A【点睛】本题考查了圆的的性质,二次函数图象的性质,求得抛物线的顶点纵坐标的范围是解题的关键.12. 如图,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC 内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则2CE = )A. ①②④B. ①②③C. ①③④D. ①②③④【答案】B【解析】【分析】证明BAD CAE ≌,即可判断①,根据①可得ADB AEC ∠=∠,由180ADC AEC ∠+∠=︒可得,,,A D C E 四点共圆,进而可得DAC DEC ∠=∠,即可判断②,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,证明FAH FCE ∽,根据相似三角形的性质可得45CF AF =,即可判断③,将APC △绕A 点逆时针旋转60度,得到AB P ''△,则APP ' 是等边三角形,根据当,,,B P P C ''共线时,PA PB PC ++取得最小值,可得四边形ADCE 是正方形,勾股定理求得DP , 根据CE AD AP PD ==+即可判断④.【详解】解: ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒, ,,AB AC AD AE BAD CAE ∴==∠=∠BAD CAE ∴△≌△BD CE ∴=故①正确;BAD CAE ≌ADB AEC ∴∠=∠180ADC AEC ∴∠+∠=︒,,,A D C E ∴四点共圆,CD CD =DAC DEC ∴∠=∠故②正确;如图,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,BAD CAE ≌,45,45ACE ABD ACB ∴∠=∠=︒∠=︒90DCE ∴∠=︒FC AH ∴∥2BD CD =,BD CE =1tan 2DC DEC CE ∴∠==,13CD BC = 设6BC a =,则2DC a =,132AG BC a ==,24EC DC a == 则32GD GC DC a a a =-=-=FC AH ∥1tan 2GD H GH ∴== 22GH GD a ∴==325AH AG GH a a a ∴=+=+=AH ∥CE ,FAH FCE ∴ ∽CF CE AF AH ∴= 4455CF a AF a ∴== 则45CF AF =; 故③正确如图,将ABP 绕A 点逆时针旋转60度,得到AB P ''△,则APP ' 是等边三角形,PA PB PC PP P B PC B C '''+++∴'+=≥,当,,,B P P C ''共线时,PA PB PC ++取得最小值,此时180********CPA APP '∠=-∠=︒-=︒︒︒,180********APB AP B AP P ∠=∠=︒-∠=︒-︒='''︒,360360*********BPC BPA APC ∠=︒-∠-∠=︒-︒-︒=︒,此时120APB BPC APC ∠=∠=∠=︒,AC AB AB '== ,AP AP '=,APC AP B ''∠=∠,AP B APC ''∴ ≌,PC P B PB ''∴==,60APP DPC '∠=∠=︒ ,DP ∴平分BPC ∠,PD BC ∴⊥,,,,A D C E 四点共圆,90AEC ADC ∴∠=∠=︒,又AD DC BD ==,BAD CAE ≌,AE EC AD DC ∴===,则四边形ADCE 是菱形,又90ADC ∠=︒,∴四边形ADCE 是正方形,9060150B AC B AP PAC P AP ''''∠=∠+∠+∠=︒+︒=︒ ,则'B A BA AC ==,()1180152B ACB B AC '''∠=∠=︒-∠=︒, 30PCD ∠=︒ ,DC ∴=,DC AD = ,2AP =,则)12AP AD DP DP =-=-=,1DP ∴==+, 2AP = ,3CE AD AP PD ∴==+=,故④不正确,故选B .【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键.二、填空题:本大题共6个小题,每小题4分,共24分.13. 分解因式:34x x -=______.【答案】x (x +2)(x ﹣2).【解析】【详解】解:34x x -=2(4)x x -=x (x+2)(x ﹣2). 故答案为x (x+2)(x ﹣2).14. 不等式组325,212x x -≥⎧⎪⎨+>-⎪⎩的解集为______.【答案】41x -<≤- 【解析】【分析】先分别求出不等式组中每一个不等式的解集,再根据确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”确定出不等式组的公共解集即可.【详解】解:325212x x -≥⎧⎪⎨+>-⎪⎩①②,解①得:x ≤–1, 解②得:x >-4, ∴-4<x ≤-1.故答案为:-4<x ≤-1.【点睛】本题考查解不等式组,掌握确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”是解题的关键.15. 如图,ABC 中,点E 、F 分别在边AB 、AC 上,12∠=∠.若4BC =,2AF =,3CF =,则EF =______.【答案】85【解析】【分析】易证△AEF ∽△ABC ,得EF AFBC AC =即EF AF BC AF CF=+即可求解. 【详解】解:∵∠1=∠2,∠A =∠A , ∴△AEF ∽△ABC , ∴EF AFBC AC =,即EF AF BC AF CF =+ ∵4BC =,2AF =,3CF =, ∴2423EF =+, ∴EF =85, 故答案为:85. 【点睛】本题考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质定理是解题的关键.16. 《数学九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a 、b 、c 求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S =.现有周长为18的三角形的三边满足::4:3:2a b c =,则用以上给出的公式求得这个三角形的面积为______.【答案】 【解析】【分析】根据周长为18的三角形的三边满足::4:3:2a b c =,求得8,6,4a b c ===,代入公式即可求解.【详解】解:∵周长为18的三角形的三边满足::4:3:2a b c =,设4,3,2a k b k c k ===∴43218k k k ++= 解得2k =∴8,6,4a b c ===∴S =====故答案为:【点睛】本题考查了化简二次根式,正确的计算是解题的关键.17. 我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.【答案】289 【解析】【分析】设直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,由切线长定理可得,直角三角形的内切圆的半径等于2a b c+-,即6a b c +-=,根据小正方的面积为49,可得()249a b -=,进而计算2c 即22a b +即可求解.【详解】解:设四个全等的直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,直角三角形的内切圆半径为3,小正方形的面积为49,∴()23492a b c a b +-=-=,, ∴6a b c +-=①,7a b -=②,131,22c c a b +-∴==, 222ab c += ③,22213122c c c +-⎛⎫⎛⎫∴+= ⎪ ⎪⎝⎭⎝⎭, 解得=17c 或5c =-(舍去), 大正方形的面积为2217289c ==, 故答案为:289.【点睛】本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆的半径等于2a b c+-是解题的关键. 18. 如图,△OMN 是边长为10的等边三角形,反比例函数y =kx(x >0)的图象与边MN 、OM 分别交于点A 、B (点B 不与点M 重合).若AB ⊥OM 于点B ,则k 的值为______.【答案】【解析】【分析】过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥x 轴于点D ,设OC =x ,利用含30度角的直角三角形的性质以及勾股定理求得点B (x ),点A (15-2x ,,再利用反比例函数的性质列方程,解方程即可求解.【详解】解:过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥x 轴于点D ,如图:∵△OMN 是边长为10的等边三角形,∴OM =MN =ON =10,∠MON =∠MNO =∠M =60°, ∴∠OBC =∠MAB =∠NAD =30°,设OC =x ,则OB =2x ,BC x ,MB =10-2x ,MA =2MB =20-4x ,∴NA =10-MA =4x -10,DN =12NA =2x -5,AD DN (2x x , ∴OD =ON -DN =15-2x ,∴点B (x x ),点A (15-2x ,x ), ∵反比例函数y =kx(x >0)的图象与边MN 、OM 分别交于点A 、B ,∴x x =(15-2x x , 解得x =5(舍去)或x =3,∴点B (3,),∴k .故答案为:【点睛】本题是反比例函数的综合题,考查了等边三角形的性质,含30度角的直角三角形的性质以及勾股定理,解题的关键是学会利用参数构建方程解决问题.三、解答题:本大题共7个小题,共78分.19. 计算:(14sin 302--;(2)21111aa a ⎛⎫-÷ ⎪+-⎝⎭.【答案】(1(2)1a - 【解析】【分析】(1)先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可;(2)先计算括号,再运用除法法则转化成乘法计算即可求解. 【小问1详解】解:原式1422=-⨯+=【小问2详解】解:原式211111a a a a a+-⎛⎫=-⋅ ⎪++⎝⎭()()111a a a a a+-=⋅+ 1a =-.【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算与分式混合运算法则,熟记特殊角的三角函数值.20. 已知:如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,B E ∠=∠,BC EF =. 求证:AD CF =.【答案】见解析 【解析】【分析】根据AB DE ∥,可得A EDF ∠=∠,根据AAS 证明ABC DEF △≌△,进而可得AC DF =,根据线段的和差关系即可求解. 【详解】证明:∵AB DE ∥, ∴A EDF ∠=∠, 在ABC 与DEF 中,A EDFB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS ABC DEF ≌△△, ∴AC DF =,∴AC DC DF DC -=-, ∴AD CF =.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,掌握全等三角形的性质与判定是解题的关键.21. 在4月23日世界读书日来临之际,为了解某校九年级(1)班同学们的阅读爱好,要求所有同学从4类书籍中(A :文学类;B :科幻类;C :军事类;D :其他类),选择一类自己最喜欢的书籍进行统计.根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息回答问题:(1)求九年级(1)班的人数并补全条形统计图; (2)在扇形统计图中,求m 的值;(3)如果选择C 类书籍的同学中有2名女同学,其余为男同学,现要在选择C 类书籍的同学中选取两名同学去参加读书交流活动,请你用画树状图或列表的方法求出恰好是一男一女同学去参加读书交流活动的概率. 【答案】(1)40人,见解析(2)40 (3)23【解析】【分析】(1)根据A 类的人数与占比即可求得总人数,进而即可求得C 类的人数,补全统计图;(2)根据B 的人数与总人数即可求解.(3)用画树状图或列表的方法求概率即可求解. 【小问1详解】九(1)班人数:1230%40÷=(人), ∴C 类的人数()40121684=-++=(人), ∴补全的条形统计图为:【小问2详解】16%100%40%40m =⨯=,∴40m =, 【小问3详解】 (方法一)画树状图:共有12种等可能性结果,其中一男一女的机会有8种, ∴()82123P ==一男一女. (方法二)列表:1女2女 1男 2男 1女1女2女1女1男 1女2男 2女 2女1女2女1男2女2男 1男 1男1女 1男2女1男2男2男2男1女2男2女2男1男共有12种等可能性结果,其中一男一女的机会有8种, ∴()82123P ==一男一女. 【点睛】本题考查是条形统计图和扇形统计图的综合运用,样本估计总体,画树状图或列表的方法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. .22. 宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A 处(如图2)测得楼顶D 的仰角为45°,沿坡比为7:24的斜坡AB 前行25米到达平台B 处,测得楼顶D 的仰角为60°,求东楼的高度DE .(结果精确到1米.参1.7≈ 1.4≈)的【答案】40m 【解析】【分析】根据7:24i =,25AB =,设7BF a =,则24AF a =,根据勾股定理求得1a =,又设BE x =,则FC BE x ==,7CE BF ==,求出DE ,根据AC DC =列出方程,解方程进而根据DE =即可求解.【详解】解:在Rt ABF 中,7:24i =,25AB =, 设7BF a =,则24AF a =,由222AF BF AB +=, 得()()22224725a a +=, 解得:1a =, ∴7BF =,24AF =又设BE x =,则FC BE x ==,7CE BF == 在Rt BDE 中,60DBE ∠=︒,则DE ==,∴7DC DE EC =+=+,在Rt ACD △中,45DAC ∠=︒,则AC DC =, ∴24AF FC x +=+,∴247x +=+,解得:(1712x =+,∴173402DE ==⨯≈. ∴东楼的高度约为40m .【点睛】本题考查了解直角三角形的实际应用,掌握三角形中的边角关系是解题的关键.23. 如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.(1)求一次函数和反比例函数的表达式; (2)求OCD 的面积. 【答案】(1)28y x =-+,6y x= (2)8 【解析】【分析】(1)根据tan 2BAO ∠=,可得出B 点的坐标,运用待定系数法即可求出AB 的解析式;再通过比例关系解出点C 的坐标,可得反比例函数表达式; (2)过D 作DF y ⊥轴,垂足为点F ,联列方程组解出点D 的坐标,再根据OCD AOB ODB OAC S S S S =--△△△△即可求出OCD 的面积.【小问1详解】在Rt AOB 中,∵tan 2BAO ∠=, ∴2BO OA =,∵()40A ,,∴()08B ,, ∵A 、B 两点在函数y ax b =+上,将()40A ,、()08B ,代入y ax b =+得 408a b b +=⎧⎨=⎩解得2a =-,8b =, ∴28y x =-+设()11C x y ,,过点C 作CE x ⊥轴,垂足为E ,则CE BO ,∴AC CEAB BO=, 又∵3BC AC =,∴14AC CE AB BO ==, 即184CE =,2CE =,即12y =, ∴1282x -+=,∴13x =,∴()32C ,∴11326k x y ==⨯=, ∴6y x=; 【小问2详解】 解方程组286y x y x =-+⎧⎪⎨=⎪⎩,得1116x y =⎧⎨=⎩,2232x y =⎧⎨=⎩ ∴()32C ,,()16D , 过D 作DF y ⊥轴,垂足为点F∵OCD AOB ODB OAC S S S S =--△△△△ ∴111222OCD S OA OB BO DF OA CE =⋅-⋅-⋅△ ()14881422=⨯-⨯-⨯ 8=.【点睛】本题考查反比例函数的性质,涉及反比例函数与一次函数的交点问题,反比例函数中的面积问题,熟练运用反比例函数的性质,以及灵活运用面积计算的方法是解题的关键.24. 如图,点C 是以AB 为直径的O 上一点,点D 是AB 的延长线上一点,在OA 上取一点F ,过点F 作AB 的垂线交AC 于点G ,交DC 的延长线于点E ,且EG EC =.(1)求证:DE 是O 的切线;(2)若点F 是OA 的中点,4BD =,1sin 3D ∠=,求EC 的长.【答案】(1)见解析(2【解析】 【分析】(1)连结OC ,利用等腰三角形的性质和圆周角定理证90OCE ∠=︒,即可由切线的判定定理得出结论;(2)解Rt OCD △,求出2CO =,从而求得6OD =,则可求得CD =,再证OCD EFD ∽△△,得OD CD ED FD =,即可求得ED =,即可由EC ED CD =-求解.【小问1详解】 证明:如图,连结OC ,∵OA OC =,∴1A ∠=∠,又∵EG EC =,∴32∠=∠,又∵34∠=∠,∴42∠=∠,又∵EF AB ⊥,∴490A ∠+∠=︒,∴1290∠+∠=︒,即90OCE ∠=︒,∴OC DE ⊥,∴DE 是O 的切线;【小问2详解】解:在Rt OCD △中,4BD =,1sin 3CO D OD ∠==, ∴143CO CO CO OD OB BD OB ===++, ∴2CO =,∴6OD =,∴CD ===又∵点F 为AO 中点, ∴112122FO AO ==⨯=, ∴7FD FO OD =+=,∵D D ∠=∠,90OCD EFD ∠=∠=︒∴OCD EFD ∽△△,∴OD CD ED FD =,即6ED =∴ED =,∴EC ED CD =-=-=. 【点睛】本题考查切线的判定,圆周角定理,等腰三角形的性质,解直角三角形,相似三角形的判定与性质,熟练掌握相关性质与判定是解题的关键.25. 如图,抛物线2y ax bx c =++与x 轴交于()3,0A 、()1,0B -两点,与y 轴交于点()0,3C ,其顶点为点D ,连结AC .(1)求这条抛物线所对应的二次函数的表达式及顶点D 的坐标;(2)在抛物线的对称轴上取一点E ,点F 为抛物线上一动点,使得以点A 、C 、E 、F 为顶点、AC 为边的四边形为平行四边形,求点F 的坐标;(3)在(2)的条件下,将点D 向下平移5个单位得到点M ,点P 为抛物线的对称轴上一动点,求35PF PM +的最小值. 【答案】(1)2y x 2x 3=-++,顶点D 的坐标为()1,4(2)()2,5F --或()4,5F -(3)245【解析】【分析】(1)用待定系数法求解二次函数解析式,再化成顶点式即可得出顶点坐标; (2)先用待定系数法求直线AC 解析式为3y x =-+,再过点F 作FG DE ⊥于点G ,证OAC GFE ≌△△,得3OA GF ==,设F 点的坐标为()2,23m m m -++,则G 点的坐标为()21,23m m -++,所以13FG m =-=,即可求出2m =-或4m =,从而求得点F 坐标;(3),是平移得得点M 的坐标为()1,1-,则(2)知点()14,5F -与点()22,5F --关于对称轴1x =对称,连结12F F ,对称轴于点H ,连结1F M 、2F M ,过点2F 作21F N F M ⊥于点N ,交对称轴于点P ,则4MH =,13HF =,15MF =.在1Rt MHF 中,1113sin 5F H HMF MF ∠==,则在Rt MPN 中,13sin 5PN HMF PM ∠==,所以35PN PM =,所以1235PF PM PF PN F N +=+=为最小值,根据1221164522MF F S F N =⨯⨯=⨯⋅△,所以2245F N =,即可求出35PF PM +. 【小问1详解】解:∵抛物线2y ax bx c =++经过点()3,0A ,()1,0B -,()0,3C ,∴9330303a b a b c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为:2y x 2x 3=-++=-(x -1)2+4,∴顶点D 的坐标为()1,4;【小问2详解】解:设直线AC 的解析式为:y kx b =+,把点()3,0A ,()0,3C 代入得:1k =-,3b =,∴直线AC 解析式为:3y x =-+,过点F 作FG DE ⊥于点G ,∵以A 、C 、E 、F 四点为顶点的四边形是以AC 为边的平行四边形,∴AC EF ∥,AC =EF ,又∵OA FG ,∴OAC GFE ∠=∠∴OAC GFE ≌△△,∴3OA GF ==,设F 点的坐标为()2,23m m m -++,则G 点的坐标为()21,23m m -++, ∴13FG m =-=,∴2m =-或4m =,当2m =-时,2235m m -++=-,∴()12,5F --,当4m =时,2235m m -++=-∴()24,5F -,∴()2,5F --或()4,5F -;【小问3详解】解:由题意,得点M 的坐标为()1,1-,由题意知:点()14,5F -与点()22,5F --关于对称轴1x =对称,连结12F F ,对称轴于点H ,连结1F M 、2F M ,过点2F 作21F N F M ⊥于点N ,交对称轴于点P ,则4MH =,13HF =,15MF =.在1Rt MHF 中,1113sin 5F H HMF MF ∠==,则在Rt MPN 中,13sin 5PN HMF PM ∠== ∴35PN PM =, 又∵21PF PF = ∴1235PF PM PF PN F N +=+=为最小值, 又∵1221164522MF F S F N =⨯⨯=⨯⋅△, ∴2245F N =, ∴求得35PF PM +的最小值为245. 【点睛】本题考查用待定系数法求函数解析式,二次函数图象性质,平行四边形的性质,解直角三角形,利用轴对称求最小值,本题属二次函数综合题目,掌握二交次函数图象性质和灵活运用是解题的关键。
2023年四川省宜宾市中考数学试卷(含答案)164304
2023年四川省宜宾市中考数学试卷试卷考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 下列各对数中,互为相反数的是 A.与B.与C.与D.与2. 下列计算正确的是( )A.B.C.D.3. 下列交通标识,既是中心对称图形,又是轴对称图形的是( )A.B.C.D.4. 年人口普查显示,河南某市户籍人口约为人,则该市户籍人口数据用科学记数法可表示为( )A.人B.人C.人D.人5. 如图, ,若,,则等于( )()+(−1)−3−(+3)−3−(−3)−3−(−3)+34a +3b =7ab+=a 3a 2a 5−2−=−a 2a 2a 24b −b =b a 272a 212a 2201725360002.536×1042.536×1052.536×1062.536×107BC//DE ∠A =35∘∠C =24∘∠EA.B.C.D.6. 某班学生分组搞活动,若每组人,则余下人;若每组人,则有一组少人.设全班有学生人,分成 个小组,则可得方程组( )A.B.C.D.7. 已知:如图,是 的直径,点是圆上一点,连接,,,若 , 则( )A.B.C.D.8. 解分式方程,去分母得( )A.B.C.D.9. 如图,扇形是圆锥的侧面展开图,若小正方形方格的边长为,则这个圆锥的底面半径为( )24∘59∘60∘69∘7483x y {7x+4=y 8x−3=y{7y =x+48y+3=x{7y =x−48y =x+3{7y =x+48y =x+3AB ⊙O C CA CO BC ∠ACO =28∘∠ABC =56∘72∘28∘62∘−2=1x−131−x 1−2(x−1)=−31−2(x−1)=31−2x−2=−31−2x+2=3OAB 1cm m2–√A.B.C.D.10. 如图,已知正方形边长为,连接、,平分交于点,则长为( )A.B.C.D. 11. 如图,双曲线=经过斜边上的中点,且与交于点,若=,则的值为( )A.B.C.D.12. 如图,在中,,于点,平分交于点,,,则的长为( )A.B.cm 2–√4cm2–√cm 2–√2cm 12ABCD 1AC BD CE ∠ACD BD E DE 2−2−1−12−y Rt △BOC A BC D S △BOD 6k 2468Rt △ABC ∠ACB =90∘CD ⊥AB D AE ∠CAB CD E AD =4BD =9DE 24−813−−√35C.D.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13. 数据,,,,,,的中位数是________.14. 分解因式:________.15. 若,是一元二次方程的两根,则的值是________.16. 不等式组:的整数解有三个,则的取值范围是________.17. 如图,菱形,对角线 于点,则的长为________.18. 如图,在正方形中,是等边三角形,,的延长线分别交于点,,连接,,与相交于点.给出下列结论:①=; ②=;③; ④=,其中正确的是________.(填写正确结论的序号)三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19. 计算:.20. 如图,已知, 直线经过点,过点作于, 于.我们把这种常见图形称为“”字图.悟空同学对图进行一番探究后,得出结论:,现请你替悟空同学完成证明过程;悟空同学进一步对类似图形进行探究,在图中,若,,则结论还成立吗?如果成立,请证明之.21. 年是决战决胜扶贫攻坚之年,为走好走稳“最后一公里”,某社区为了加强社区居民对“脱贫攻坚知识”的了解,通过微信宣传脱贫攻坚知识,并鼓励社区居民在线参与作答《脱贫攻坚知识竞赛》,社区管理员随机从有人的某小区抽取出位居民的答卷成绩,并对他们的成绩(单位:分)统计如下:522−413−−√78807575808083m−m =n 2x 1x 25+x−5=0x 2+x 1x 2{x−a >0,1−x >2x−5a ABCD AC =8cm ,DB =6cm ,DH ⊥AB H DH cm ABCD △BPC BP CP AD E F BD DP BD CF H AF DE ∠ADP 15∘PD 2PH ⋅PB (−1+2sin −|1−|+)201660∘3–√π01AB =AC AB ⊥AC.m A B BD ⊥m D CE ⊥m E K (1)1DE =BD+CE(2)2AB =AC ∠BAC =∠BDA =∠AEC DE =BD+CE 2020202080040按如下分段整理样本数据:等级成绩频数频率________________合计补全条形统计图;表中, .根据抽样调查结果,请估计该小区答题成绩为“级”的有多少人?该社区有名男管理员和名女管理员,现从中随机挑选名管理员参加“脱贫攻坚”宣传活动,请用列表法或画树状图法求出恰好选中“一男一女”的概率.22. 如图,已知水平地面上有两栋大楼,,它们之间相距,小王在地面处测得楼顶的仰角为,在楼顶处测得点的仰角为.小王说他知道这两栋楼的高度了,你认为他说的有道理吗?如果能够,请帮他求出来;如果不能,请说明理由. 23. 如图,直线与双曲线相交于点.已知,,连接、,将沿方向平移,使点移动到点,得到.过点作轴交双曲线于点,连接.求与的值.求直线的解析式.直接写出线段扫过的面积.858095100909585657585909070901008080909575806080958510090858580957580907080957510090(x)A 90<x ≤100100.25B 80<x ≤90a C 70<x ≤80120.3D 60<x ≤70b 401(1)(2)a =______b =________(3)A (4)222AB CD 30m B C 45∘A C 30∘y =x(x ≤0)k 1y =(x <0)k 2x P (−3,2)A(−1,2)B(−2,0)AB AO △ABO OP O P △P A ′B ′B ′C ⊥x B ′C CP (1)k 1k 2(2)CP (3)AB24. 如图,是的直径,点是上一点,点是上一点,连接并延长至点,使,与交于点.求证:为的切线;若平分,求证:.25. 如图,在平面直角坐标系中,直线交轴于点,交轴于点,经过点的交直线于另一点,且点到轴的距离为.求抛物线的解析式;点是直线上方的抛物线上一动点(不与点、重合),过点作于点,过点作轴交于点,设的周长为,点的横坐标为,求与的函数关系式,并直接写出自变量的取值范围;在()的条件下,当最大时,连接,将沿直线方向平移,点、、的对应点分别为、、,当的顶点在抛物线上时,求点的横坐标,并判断此时点是否在直线上.AB ⊙O E ⊙O D AEˆAE C ∠CBE=∠BDE BD AE F (1)BC ⊙O (2)BD ∠ABE AD 2=DF ⋅DB y =x−3432x A y B A y =−+bx+c 14x 2AB D D y 8(1)(2)P AD A D P PE ⊥AD E P PF//y AD F △PEF L P m L m m (3)2L PD △PED PE P E F Q M N △QMN M M N PF参考答案与试题解析2023年四川省宜宾市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】C【考点】相反数【解析】本题考查了相反数的知识,比较简单,注意掌握互为相反数的两数之和为.根据相反数的定义,只有符号不同的两个数互为相反数,的相反数是,且一对相反数的和为,即可解答.【解答】解:只有符号不同的两个数叫做互为相反数.互为相反数的两数之和为.,,故本选项错误;,,故本选项错误;,,故本选项正确;,,故本选项错误.故选.2.【答案】D【考点】合并同类项【解析】此题暂无解析【解答】解:,与不是同类项,不能合并,故此选项错误;,与不是同类项,不能合并,故此选项错误;,,故故此选项错误;,,故此选项正确.故选.3.【答案】D【考点】中心对称图形轴对称图形【解析】00000A +(−1)+(−3)=−4B −(+3)+(−3)=−6C −(−3)+(−3)=0D −(−3)+(+3)=6C A 4a 3b B a 3a 2C −2−=−3a 2a 2a 2D 4b −b =b a 272a 212a 2D根据轴对称图形与中心对称图形的概念求解.【解答】解:根据轴对称图形与中心对称图形的概念,知:,不是轴对称图形,也不是中心对称图形;,不是轴对称图形,也不是中心对称图形;,是轴对称图形,但不是中心对称图形;,既是中心对称图形,又是轴对称图形.故选.4.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】人=人,5.【答案】B【考点】三角形的外角性质平行线的性质【解析】先由三角形的外角性质求得的度数,再根据平行线的性质得出即可.【解答】解:,,,,.故选.6.【答案】C【考点】由实际问题抽象出二元一次方程组【解析】此题中的关键性的信息是:①若每组人,则余下人;②若每组人,则有一组少人.A B C D D a ×10n 1≤|a |<10n n a n >1n <1n 2536000 2.536×106∠CBE ∠E =∠CBE ∵∠A =35∘∠C =24∘∴∠CBE =∠A+∠C =59∘∵BC//DE ∴∠E =∠CBE =59∘B 7483解:根据若每组人,则余下人,得方程;根据若每组人,则有一组少人,得方程.可列方程组为故选.7.【答案】D【考点】圆周角定理圆心角、弧、弦的关系【解析】此题暂无解析【解答】解:∵是直径,且点C 在圆上,∴,.∴.故选.8.【答案】A【考点】解分式方程【解析】此题暂无解析【解答】解:分式方程同乘去分母得,故选.9.【答案】C【考点】弧长的计算勾股定理【解析】用“此扇形的弧长等于圆锥底面周长”作为相等关系,求圆锥的底面半径.747y =x−4838y =x+3{7y =x−4,8y =x+3.C AB ∠BAC =∠ACO =28∘∠ACB =90∘∠CBA =−∠CAB =−=90∘90∘28∘62∘D −2=1x−131−x x−11−2(x−1)=−3A解:由图可知,,,,所以是直角三角形,,设圆锥的底面半径为,则,所以.故选.10.【答案】C【考点】正方形的性质【解析】此题暂无解析【解答】此题暂无解答11.【答案】B【考点】反比例函数图象上点的坐标特征反比例函数系数k 的几何意义【解析】此题暂无解析【解答】此题暂无解答12.【答案】B【考点】勾股定理角平分线的性质全等三角形的性质与判定相似三角形的性质与判定【解析】设,首先证明求出的长,然后证明求出和的长,最后在OA =OB ==2+2222−−−−−−√2–√AB =4O +O =8+8=16=A A 2B 2B 2△AOB ∠AOB =90∘r 2πr =90π×22–√180r =cm 2–√2C DE =x △ADC ∼△CDB CD Rt △AFE ≅Rt △ADE AF DE中根据勾股定理即可求出的长.【解答】解:如图,过点作,垂足为.∵,∴,∴.∵,∴,∴,∴,∴,∴.在中,,,根据勾股定理,得.设,∵是的平分线,,,∴.∵,∴,∴,∴.在中,,,根据勾股定理,得.解方程,得.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】【考点】中位数【解析】中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).【解答】解:将这组数据从小到大的顺序排列为:,,,,,,,中位数是.故答案为:.14.【答案】Rt △EFC DE E EF ⊥AC F CD ⊥AB ∠ADC =∠CDB =90∘∠ACD+∠CAD =90∘∠CAD+∠B =90∘∠ACD =∠B △ADC ∼△CDB =AD CD CD BD =4CD CD 9CD =6Rt △ADC AD =4CD =6AC ===2A +C D 2D 2−−−−−−−−−−√+4262−−−−−−√13−−√DE =x AE ∠CAB EF ⊥AC CD ⊥AB EF =DE =x AE =AE Rt △AFE ≅Rt △ADE(HL)AF =AD =4CF =AC −AF =2−413−−√Rt △EFC CE =6−x CF =2−413−−√=+(6−x)2(2−4)13−−√2x 2x =4−813−−√3B 80757578808080838080m(1+n)(1−n)【考点】提公因式法与公式法的综合运用【解析】首先提取公因式,再利用平方差公式进行二次分解即可.【解答】解:.故答案为:.15.【答案】【考点】根与系数的关系【解析】由根与系数的关系,直接解答.【解答】解:根据根与系数的关系可知.故答案为:.16.【答案】【考点】一元一次不等式组的整数解【解析】先解出不等式组中的不等式,再根据三个整数解,得出的取值范围.【解答】解:由可得:有三个整数解,整数解为,.故答案为:.17.【答案】【考点】m m−m =m(1−)=m(1−n)(1+n)n 2n 2m(1−n)(1+n)−15+=−x 1x 215−15−2≤a ≤−1a {x−a >0,1−x >2x−5,{x >a ,x <2,∵∴1,0,−1∴−2≤a <−1−2≤a <−1245全等三角形的性质与判定菱形的性质角平分线的性质【解析】此题暂无解析【解答】解:四边形是菱形,.故答案为:.18.【答案】①②④【考点】正方形的性质等边三角形的性质全等三角形的性质与判定相似三角形的性质与判定【解析】先判断出==,===,再判断出==,===,进而得出==,即可判断出,即可得出结论;由等腰三角形的性质得出=,则可得出答案;证明,得出,设=,=,则=,得出=,则可求出答案;先判断出=,进而判断出,即可得出结论.【解答】∵是等边三角形,∴==,===,在正方形中,∵==,===,∴==,∴,∴=,∴=,∴=;故①正确;∵=,=,∴=,∴===.故②正确;∵==,∴是等边三角形,∴,∴,ABCD AC ⊥BD,OA =OC =AC =4cm,OB =OD =3cm 12AB =5cm =AC ⋅BD =AB ⋅DH S 菱形ABCD 12DH ==cm AC ⋅BD 2AB 245245BP PC BC ∠PBC ∠PCB ∠BPC 60∘AB BC CD ∠A ∠ADC ∠BCD 90∘∠ABE ∠DCF 30∘△ABE ≅△DCF(ASA)∠PDC 75∘△FPE ∽△CPB PF x PC y DC y y (x+y)∠DPH ∠DPC △DPH ∽△CPD △BPC BP PC BC ∠PBC ∠PCB ∠BPC 60∘ABCD AB BC CD ∠A ∠ADC ∠BCD 90∘∠ABE ∠DCF 30∘△ABE ≅△DCF(ASA)AE DF AE−EF DF −EF AF DE PC CD ∠PCD 30∘∠PDC 75∘∠ADP ∠ADC −∠PDC −90∘75∘15∘∠FPE ∠PFE 60∘△FEP △FPE ∽△CPB设=,=,则=,∵=,∴=,整理得:)=,解得:,则,故③错误;∵=,=,∴=,∵=,∴==,∵=,∴,∴,∴=,∵=,∴=;故④正确.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19.【答案】原式=.【考点】零指数幂实数的运算特殊角的三角函数值【解析】先计算乘方、代入三角函数值、去绝对值符号、计算零指数幂,再去括号,最后计算加减可得.【解答】原式=.20.【答案】证明:在和中,∴,∴,,∴.解:成立.理由如下:∵ ,PF x PC y DC y ∠FCD 30∘y (x+y)(1−y x PC CD ∠DCF 30∘∠PDC 75∘∠BDC 45∘∠PDH ∠PCD 30∘∠DPH ∠DPC △DPH ∽△CPD PD 2PH ⋅CP PB PC PD 2PH ⋅PB =1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3(1)△ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =A E AD =C E DE =AE+DA =BD+CE (2)∠BAC +∠BAD+∠EAC =180∘,,∴ ,在和 中,∴ ,∴,,∴ .【考点】全等三角形的性质与判定【解析】【解答】证明:在和中,∴,∴,,∴.解:成立.理由如下:∵ ,,,∴ ,在和 中,∴ ,∴,,∴ .21.【答案】解:补全条形统计图如图所示.,人.答:估计该小区答题为级的有人.由题意列出树状图,∠ADB+∠BAD+∠ABD =180∘∠BAC =∠BDA ∠ABD =∠EAC △ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =AE AD =CE DE =AE+DA =BD+CE (1)△ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =A E AD =C E DE =AE+DA =BD+CE (2)∠BAC +∠BAD+∠EAC =180∘∠ADB+∠BAD+∠ABD =180∘∠BAC =∠BDA ∠ABD =∠EAC △ABD △CAE ∠ABD =∠EAC ,∠BDA =∠AEC ,AB =AC ,△ABD ≅△CAE(AAS)BD =AE AD =CE DE =AE+DA =BD+CE (1)0.350.1(3)800×0.25=200A 200(4)所有可能的结果有种,恰好选中男女的有种,故概率为.【考点】条形统计图频数(率)分布表用样本估计总体列表法与树状图法【解析】根据题中数据即可求得、的值;根据中表格数据即可补全条形统计图;根据树状图法求即可求出恰好选中“男女”的概率.【解答】解:补全条形统计图如图所示.由题意可知:等级的频数,频率,∴等级的频数为,.故答案为:;.人.答:估计该小区答题为级的有人.由题意列出树状图,所有可能的结果有种,恰好选中男女的有种,故概率为.22.12118=81223(1)a b (2)(1)(4)11(1)(2)B 14a =14÷40=0.35D 4b =1−0.25−0.35−0.3=0.10.350.1(3)800×0.25=200A 200(4)12118=81223【答案】解:小王说得有道理.过点作的垂线,垂足为.,,.在中,,,故,且.高,高.【考点】解直角三角形的应用-仰角俯角问题【解析】通过等腰直角三角形的性质得出一个楼高,再通过解特殊三角形得出另一个.【解答】解:小王说得有道理.过点作的垂线,垂足为.,,.在中,,,故,且.高,高.23.【答案】解:把点代入直线中,得,.把点代入双曲线中,得,.如图,延长交轴于点,延长 交轴于点,,,点必在线段上.,A CD E ∵∠BDC =90∘∠CBD =45∘∴CD =BD =30m △ACE ∠A =30∘∴tan ∠A =CE AE =tan =30∘3–√3∴=CE 303–√3CE =10m 3–√AB =CD−CE =(30−10)m 3–√∴CD 30m AB (30−10)m 3–√A CD E ∵∠BDC =90∘∠CBD =45∘∴CD =BD =30m △ACE ∠A =30∘∴tan ∠A =CE AE =tan =30∘3–√3∴=CE 303–√3CE =10m 3–√AB =CD−CE =(30−10)m 3–√∴CD 30m AB (30−10)m 3–√(1)P (−3,2)y =x k 1−3=2k 1∴=−k 123P (−3,2)y =k 2x 2=k 2−3∴=−6k 2(2)C B ′x D P B ′y E ∵P (−3,2)A(−1,2)∴A E B ′∵A(−1,2)B(−2,0),.由平移得.,.轴,点的横坐标为,在中,令,得,.设直线 的解析式为,把,代入,得解得直线的解析式为.由平移可得,,,,,,∴四边形、四边形、四边形都是平行四边形.,,,,,又,线段 扫过的面积.【考点】待定系数法求反比例函数解析式待定系数法求一次函数解析式反比例函数与一次函数的综合平移的性质平行四边形的面积【解析】此题暂无解析【解答】解:把点代入直线中,∴BO =2OE =2P =BO =2B ′∵P (−3,2)∴(−5,2)B ′∵C ⊥x B ′∴C −5y =−6xx =−5y =65∴C(−5,)65CP y =kx+b P (−3,2)C(−5,)65{−3k +b =2,−5k +b =,65 k =,25b =,165∴CP y =x+25165(3)//AB A ′B ′=AB A ′B ′P//BO B ′P =BO B ′P//AO A ′P =AO A ′BA A ′B ′POA A ′POB B ′∵(−5,2)B ′P (−3,2)A(−1,2)∴D =OE =2B ′AP =2△ABO ≅△P A ′B ′∴AB =S ▱BA A ′B ′=+S ▱BOP B ′S ▱POA A ′=+2×S ▱BOP B ′S △APO =BO ×D+2××AP ×OE B ′12=2×2+2××2×2=812(1)P (−3,2)y =x k 1得,.把点代入双曲线中,得,.如图,延长交轴于点,延长 交轴于点,,,点必在线段上.,,.由平移得.,.轴,点的横坐标为,在中,令,得,.设直线 的解析式为,把,代入,得解得直线的解析式为.由平移可得,,,,,,∴四边形、四边形、四边形都是平行四边形.,,,,,又,线段 扫过的面积.24.【答案】证明:∵是的直径,∴,∴.−3=2k 1∴=−k 123P (−3,2)y =k 2x 2=k 2−3∴=−6k 2(2)C B ′x D P B ′y E ∵P (−3,2)A(−1,2)∴A E B ′∵A(−1,2)B(−2,0)∴BO =2OE =2P =BO =2B ′∵P (−3,2)∴(−5,2)B ′∵C ⊥x B ′∴C −5y =−6x x =−5y =65∴C(−5,)65CP y =kx+b P (−3,2)C(−5,)65{−3k +b =2,−5k +b =,65 k =,25b =,165∴CP y =x+25165(3)//AB A ′B ′=AB A ′B ′P//BO B ′P =BO B ′P//AO A ′P =AO A ′BA A ′B ′POA A ′POB B ′∵(−5,2)B ′P (−3,2)A(−1,2)∴D =OE =2B ′AP =2△ABO ≅△P A ′B ′∴AB =S ▱BA A ′B ′=+S ▱BOP B ′S ▱POA A ′=+2×S ▱BOP B ′S △APO =BO ×D+2××AP ×OE B ′12=2×2+2××2×2=812(1)AB ⊙O ∠AEB=90∘∠EAB+∠EBA =90∘∵,,∴,∴,即,∴.∵是的直径,∴是的切线.∵平分,∴.∵,∴.∵,∴,∴,∴.【考点】圆周角定理切线的判定相似三角形的性质与判定【解析】(1)根据圆周角定理即可得出=,再由已知得出=,则,从而证得是的切线;(2)通过证得,得出相似三角形的对应边成比例即可证得结论.【解答】证明:∵是的直径,∴,∴.∵,,∴,∴,即,∴.∵是的直径,∴是的切线.∵平分,∴.∵,∴.∵,∴,∴,∴.25.【答案】解:()由题意知.∵点到轴的距离为,∴点的横坐标为.∵点在上,∴ ∴.∵在抛物线上,∠CBE=∠BDE ∠BDE=∠EAB ∠EAB=∠CBE ∠EBA+∠CBE =90∘∠ABC=90∘CB ⊥AB AB ⊙O BC ⊙O (2)BD ∠ABE ∠ABD=∠DBE ∠DAF=∠DBE ∠DAF=∠ABD ∠ADB=∠ADF △ADF ∽△BDA =AD BD DF AD AD 2=DF ⋅DB ∠EAB+∠EBA 90∘∠ABE+∠CBE 90∘CB ⊥AB BC ⊙O △ADF ∽△BDA (1)AB ⊙O ∠AEB=90∘∠EAB+∠EBA =90∘∠CBE=∠BDE ∠BDE=∠EAB ∠EAB=∠CBE ∠EBA+∠CBE =90∘∠ABC=90∘CB ⊥AB AB ⊙O BC ⊙O (2)BD ∠ABE ∠ABD=∠DBE ∠DAF=∠DBE ∠DAF=∠ABD ∠ADB=∠ADF △ADF ∽△BDA =AD BD DF AD AD 2=DF ⋅DB 1A(2,0),B(0,−)32D y 8D −8D y =x−3432y =×(−8)−=−.3432152D(−8,−)152A(2,0),D(−8,−)152=−×+2b +c,1∴ 解得 ∴抛物线解析式为.∵,∴.∴ .∴的周长为.∵轴,∴,,.∴.又∵ ,∴ .∴ .∴ .∴..∵ ,∴当时,最大.∴.设交轴于点.∴.∵ ,∴ .∴.∴.∴.∵,∴.∴.∴点与点重合,如图.∵,∴直线的解析式为.设点的坐标为,∵点在抛物线上,∴ ,0=−×+2b +c,1422−=−×(−8−8b +c ,15214)2 b =−,34c =,52y =−−x+14x 23452(2)A(2,0),B(0,−)32OA =2,OB =32AB =52△AOB 6PF//y ∠PFE =∠AOB P (m,−−m+)14m 23452F (m,m−)3432PF =−−m+−(m−)=−−m+414m 23452343214m 232PE ⊥AD ∠PEF =∠AOB =90∘△PEF∽△ABO =L △AOB 的周长PF AB L =−−m+35m 2185485(−8<x <2)(3)L =−+1535(m+3)2−<035m=−3L P (−3,),F (−3,−)52154PF x KPK =,KF =,PF =52154254OB//FK △OAB ∼△KAF =AB AF OB KFAF =254BF =AF −AB =154△PEF ∽△ABO =EF OB PF AB EF =154B E P (−3,),B(0,−)5232PB y =−x−4332M (n,−n−)4332M y =−−x+14x 23452−n−4332=−−n+14n 2345216解得(舍),.∵点的横坐标为,点的横坐标为,∴向右平移了个单位长度.∴点也向右平移了个单位长度得到点.∴点的横坐标为.∵直线上的点的横坐标都为–,∴点不在直线上.【考点】二次函数综合题【解析】此题暂无解析【解答】解:()由题意知.∵点到轴的距离为,∴点的横坐标为.∵点在上,∴∴.∵在抛物线上,∴解得 ∴抛物线解析式为.∵,∴.∴ .∴的周长为.∵轴,∴,,.∴.又∵ ,∴ .∴ .∴ .∴..∵ ,∴当时,最大.=−3n 1=n 2163E 0M 163△PED 163D 163N N −8+=−16383PF 3N PF 1A(2,0),B(0,−)32D y 8D −8D y =x−3432y =×(−8)−=−.3432152D(−8,−)152A(2,0),D(−8,−)1520=−×+2b +c,1422−=−×(−8−8b +c ,15214)2 b =−,34c =,52y =−−x+14x 23452(2)A(2,0),B(0,−)32OA =2,OB =32AB =52△AOB 6PF//y ∠PFE =∠AOB P (m,−−m+)14m 23452F (m,m−)3432PF =−−m+−(m−)=−−m+414m 23452343214m 232PE ⊥AD ∠PEF =∠AOB =90∘△PEF∽△ABO =L △AOB 的周长PF AB L =−−m+35m 2185485(−8<x <2)(3)L =−+1535(m+3)2−<035m=−3L (−3,),F (−3,−)515∴.设交轴于点.∴.∵ ,∴ .∴.∴.∴.∵,∴.∴.∴点与点重合,如图.∵,∴直线的解析式为.设点的坐标为,∵点在抛物线上,∴ ,解得(舍),.∵点的横坐标为,点的横坐标为,∴向右平移了个单位长度.∴点也向右平移了个单位长度得到点.∴点的横坐标为.∵直线上的点的横坐标都为–,∴点不在直线上.P (−3,),F (−3,−)52154PF x K PK =,KF =,PF =52154254OB//FK △OAB ∼△KAF =AB AF OB KF AF =254BF =AF −AB =154△PEF ∽△ABO =EF OB PF AB EF =154B E P (−3,),B(0,−)5232PB y =−x−4332M (n,−n−)4332M y =−−x+14x 23452−n−4332=−−n+14n 23452=−3n 1=n 2163E 0M 163△PED 163D 163N N −8+=−16383PF 3N PF。
2023年四川省宜宾中考数学真题(解析版)
2023年四川省宜宾中考数学真题学校:___________姓名:___________班级:___________考号:___________..C..【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把故选:D.【点睛】本题考查了平行线的性质,三角形外角性质,掌握三角形外角的性质是解题的关键.6.“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有只,兔有只,则所列方程组正确的是( )A .B .C .D .【答案】B【分析】根据题意,由设鸡有只,兔有只,则由等量关系有35个头和有94条腿列出方程组即可得到答案.【详解】解:设鸡有只,兔有只,则由题意可得,故选:B .【点睛】本题考查列二元一次方程组解决古代数学问题,读懂题意,找准等量关系列方程组是解决问题的关键.7.如图,已知点在上,为的中点.若,则等于( )A .B .C .D .【答案】A【分析】连接,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接,如图所示:x y 354294x y x y +=⎧⎨+=⎩352494x y x y +=⎧⎨+=⎩944235x y x y +=⎧⎨+=⎩942435x y x y +=⎧⎨+=⎩x y x y 352494x y x y +=⎧⎨+=⎩A B C 、、O C AB 35BAC ∠=︒AOB ∠140︒120︒110︒70︒OC OC点在上,,,A B C 、、O BC AC ∴=12BOC AOC AOB ∴∠=∠=∠ 35BAC ∠=︒A .B 【答案】B【分析】连接,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接,根据题意,得,∴点M ,N ,O 三点共线,∵,,∴是等边三角形,∴1123-ON ON ON AB ⊥4OA =60AOB ∠=︒OAB 4,60OA AB OAN ==∠=A .B 【答案】C【分析】先根据正方形的性质、的性质可得()331-DAM ∠=∠设点的坐标为,点,则,,A ()()0,0A a a >()(),0,0N m n m n >>(5,2C b :1:4OP BP = ,4OP b BP b ∴==二、填空题13.在“庆五四·展风采”的演讲比赛中,7位同学参加决赛,演讲成绩依次为:77,80,79,77,80,79,80.这组数据的中位数是___________.【答案】79【分析】根据有序数组中间的一个数据或中间两个数据的平均数是中位数计算即可.【详解】将这组数据从小到大排列为:77,77,79,79,80,80,80,中间数据是79,故中位数是79.故答案为:79.【点睛】本题考查了中位数的定义,熟练掌握定义是解题的关键.14.分解因式:x3﹣6x2+9x=___.【答案】x(x﹣3)2【详解】解:x3﹣6x2+9x=x(x2﹣6x+9)=x(x﹣3)2【答案】【分析】连接,将动轨迹是以为圆心,的运动轨迹是以为圆心,为半径的半圆,的运动轨迹是以为圆心,为半径的半圆,如图,当、、三点共线时,的值最小,四边形是正方形,2101-BM M P M 1∴Q E 1M Q E MQ ABCD∴设直线的解析式为,把,代入得:12ABM AMF BMF S S S MF AO =+=⨯⨯V V V AB ''y k x b =+()0,3B a -()30A -,3-⎧⎨则,为等边三角形,∴,,∴∵为等边三角形,三、解答题19.计算'AOA 'POP 'OP PP ='AP AP ='''+PA PO PB P A PP PB A B ++=+≥'AOA ()30A -,3【答案】见解析【分析】根据平行线的性质得出,根据全等三角形的性质即可得证.()SAS ABC DEF ≌△△班的学生共有___________人,补全条形统计图;(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;(3)已知E 类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.【答案】(1)50,条形统计图见解析(2)人(3)2083(2)由题意得,(人),即估计周末在家劳动时间在3小时及以上的学生人数为(3)列表如下:女1女2男1男2女1女1,女2女1,男1女1,男8580020850+⨯=【答案】的长度米【分析】上截取,使得,设,在,则,进而即可求解.【详解】解:如图所示,上截取,使得,∴,∵∴,CD 54AD AE AE EC =CD x =Rt 2EC x =()32AD AE ED x =+=+AD AE AE EC =EAC ECA =∠∠15CAD ∠=︒230CED EAC ∠=∠=︒(1)分别求反比例函数的表达式和直线(2)在x 轴上是否存在一点请说明理由.【答案】(1),∵点,,6y x =y =(5,0P ()30C ,()6B m ,∴点A 与点关于x 轴对称,∴,,A 'AP A P '=()2,3A '-(1)求证:是的切线;(2)求证:;(3)如果是的中点,且【答案】(1)见解析CD O EM EN =N CM AB∵,∴,∵∴,∵平分 BEEF =12∠=∠OA OE=13∠=∠CM ACD∠∵是的切线,∴,∵∴,CD O 90CEB OEB ∠+∠=︒90AEB AEO OEB ∠=∠+∠=AEO BEC ∠=∠设,∴,∴.综上所述,.233,642N m m m ⎛⎫--+ ⎪⎝⎭(91,4P m ⎛--- ⎝()()992724442PQ m m '=--++=127813224APQ S '=⨯⨯= 814APQ S '=31。
2020年四川省宜宾市中考数学试题及参考答案(word解析版)
宜宾市2020年初中学业水平暨高中阶段学校招生考试数学(考试时间:120分钟,全卷满分:150分)一、选择题:本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.6的相反数是()A.6 B.﹣6 C.D.﹣2.我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度约为7100米/秒.将7100用科学记数法表示为()A.7100 B.0.71×104C.71×102D.7.1×1033.如图所示,圆柱的主视图是()A.B.C.D.4.下列计算正确的是()A.3a+2b=5ab B.(﹣2a)2=﹣4a2C.(a+1)2=a2+2a+1 D.a3•a4=a125.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.7名学生的鞋号(单位:厘米)由小到大是:20,21,22,22,22,23,23,则这组数据的众数和中位数分别是()A.20,21 B.21,22 C.22,22 D.22,237.如图,M、N分别是△ABC的边AB、AC的中点,若∠A=65°,∠ANM=45°,则∠B=()A.20°B.45°C.65°D.70°8.学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+89.如图,AB是⊙O的直径,点C是圆上一点,连结AC和BC,过点C作CD⊥AB于点D,且CD=4,BD=3,则⊙O的周长是()A.π B.π C.π D.π10.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A.2种B.3种C.4种D.5种11.如图,△ABC和△ECD都是等边三角形,且点B、C、D在一条直线上,连结BE、AD,点M、N分别是线段BE、AD上的两点,且BM=BE,AN=AD,则△CMN的形状是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形12.函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是()①abc>0;②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.A.①③B.①②③C.①④D.②③④二、填空题:本大题共6个小题,每小题4分,共24分.13.分解因式:a3﹣a=.14.如图,A、B、C是⊙O上的三点,若△OBC是等边三角形,则cos∠A =.15.已知一元二次方程x2+2x﹣8=0的两根为x1、x2,则+2x1x2+=.16.如图,四边形ABCD中,DA⊥AB,CB⊥AB,AD=3,AB=5,BC=2,P是边AB上的动点,则PC+PD的最小值是.17.定义:分数(m,n为正整数且互为质数)的连分数(其中a1,a2,a3,…,为整数,且等式右边的每个分数的分子都为1),记作+++…,例如:======,的连分数为,记作+++,则++.18.在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分∠ABC交AC于点E,连结CD交BE于点O.若AC=8,BC=6,则OE的长是.三、解答题:本大题共7个小题,共78分,解答应写出文字说明,证明过程或演算步骤.19.(10分)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).20.(10分)如图,在△ABC中,点D是边BC的中点,连结AD并延长到点E,使DE=AD,连结CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.21.(10分)在疫情期间,为落实“停课不停学”,某校对本校学生某一学科在家学习情况进行抽样调查,了解到学生的学习方式有:电视直播、任课教师在线辅导、教育机构远程教学、自主学习.参与调查的学生只能选择一种学习方式,将调查结果绘制成不完整的扇形统计图和条形统计图.根据如图所示的统计图,解答下列问题.(1)本次接受调查的学生有名;(2)补全条形统计图;(3)根据调查结果,若本校有1800名学生,估计有多少名学生参与任课教师在线辅导?22.(12分)如图,AB和CD两幢楼地面距离BC为30米,楼AB高30米,从楼AB的顶部点A测得楼CD的顶部点D的仰角为45°.(1)求∠CAD的大小;(2)求楼CD的高度(结果保留根号).23.(12分)如图,一次函数y=kx+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣3,n),B(﹣1,﹣3)两点,过点A作AC⊥OP于点C.(1)求一次函数和反比例函数的表达式;(2)求四边形ABOC的面积.24.(12分)如图,已知AB是⊙O的直径,点C是圆上异于A、B的一点,连结BC并延长至点D,使CD=BC,连结AD交⊙O于点E,连结BE.(1)求证:△ABD是等腰三角形;(2)连结OC并延长,与以B为切点的切线交于点F,若AB=4,CF =1,求DE的长.25.(12分)如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.答案与解析一、选择题:本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.6的相反数是()A.6 B.﹣6 C.D.﹣【知识考点】相反数.【思路分析】求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解题过程】解:根据相反数的含义,可得6的相反数是:﹣6.故选:B.【总结归纳】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度约为7100米/秒.将7100用科学记数法表示为()A.7100 B.0.71×104C.71×102D.7.1×103【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:将7100用科学记数法表示为:7.1×103.故选:D.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示,圆柱的主视图是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据主视图是从正面看得到的图形,可得答案.【解题过程】解:从正面看,是一个矩形.故选:B.【总结归纳】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.4.下列计算正确的是()A.3a+2b=5ab B.(﹣2a)2=﹣4a2C.(a+1)2=a2+2a+1 D.a3•a4=a12【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路分析】根据完全平方公式,合并同类项、积的乘方、同底数幂的乘法的运算法则逐一计算可得.【解题过程】解:A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(﹣2a)2=4a2,原计算错误,故此选项不符合题意;C、(a+1)2=a2+2a+1,原计算正确,故此选项符合题意;D、a3•a4=a7,原计算错误,故此选项不符合题意;故选:C.【总结归纳】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项、积的乘方、同底数幂的乘法运算法则及同类项概念等知识点.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解题过程】解:不等式组,由①得:x<2,由②得:x≥﹣1,∴不等式组的解集为﹣1≤x<2.表示为:故选:A.【总结归纳】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.6.7名学生的鞋号(单位:厘米)由小到大是:20,21,22,22,22,23,23,则这组数据的众数和中位数分别是()A.20,21 B.21,22 C.22,22 D.22,23【知识考点】中位数;众数.【思路分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解题过程】解:数据按从小到大的顺序排列为20,21,22,22,22,23,23,所以中位数是22;数据22出现了3次,出现次数最多,所以众数是22.故选:C.【总结归纳】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.如图,M、N分别是△ABC的边AB、AC的中点,若∠A=65°,∠ANM=45°,则∠B=()A.20°B.45°C.65°D.70°【知识考点】三角形中位线定理.【思路分析】根据三角形中位线定理得出MN∥BC,进而利用平行线的性质解答即可.【解题过程】解:∵M、N分别是△ABC的边AB、AC的中点,∴MN∥BC,∴∠C=∠ANM=45°,∴∠B=180°﹣∠A﹣∠C=180°﹣65°﹣45°=70°,故选:D.【总结归纳】此题考查三角形中位线定理,关键是根据三角形中位线定理得出MN∥BC解答.8.学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+8 【知识考点】由实际问题抽象出分式方程.【思路分析】设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,根据数量=总价÷单价结合用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等,即可得出关于x的分式方程,此题得解.【解题过程】解:设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,依题意,得:=.故选:B.【总结归纳】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.如图,AB是⊙O的直径,点C是圆上一点,连结AC和BC,过点C作CD⊥AB于点D,且CD =4,BD=3,则⊙O的周长是()A.π B.π C.π D.π【知识考点】勾股定理;垂径定理;圆周角定理.【思路分析】利用相似三角形的性质可得AB的长,利用周长公式可得结果.【解题过程】解:∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴Rt△ABC∽Rt△CBD,∴,∵CD=4,BD=3,∴BC===5∴,∴AB=,∴⊙O的周长是π,故选:A.【总结归纳】本题主要考查了圆周角定理和相似三角形的判定和性质定理,熟练掌握定理是解答此题的关键.10.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A 型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A.2种B.3种C.4种D.5种【知识考点】一元一次不等式的应用.【思路分析】设购买A型分类垃圾桶x个,则购买B型分类垃圾桶(6﹣x)个,根据总价=单价×数量,结合总费用不超过3100元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合x,(6﹣x)均为非负整数,即可得出x的可能值,进而可得出购买方案的数量.【解题过程】解:设购买A型分类垃圾桶x个,则购买B型分类垃圾桶(6﹣x)个,依题意,得:500x+550(6﹣x)≤3100,解得:x≥4.∵x,(6﹣x)均为非负整数,∴x可以为4,5,6,∴共有3种购买方案.故选:B.【总结归纳】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.11.如图,△ABC和△ECD都是等边三角形,且点B、C、D在一条直线上,连结BE、AD,点M、N分别是线段BE、AD上的两点,且BM=BE,AN=AD,则△CMN的形状是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形【知识考点】全等三角形的判定与性质;等边三角形的判定与性质.【思路分析】根据等边三角形的性质得出BC=AC,EC=CD,进而利用SAS证明△BCE与△ACD全等,进而利用全等三角形的性质解答即可.【解题过程】解:∵△ABC和△ECD都是等边三角形,∴BC=AC,EC=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,在△BCE与△ACD中,∴△BCE≌△ACD(SAS),∴∠MBC=∠NAC,BE=AD,∵BM=BE,AN=AD,∴BM=AN,在△MBC与△NAC中,∴△MBC≌△NAC(SAS),∴MC=NC,∠BCM=∠ACN,∵∠BCM+∠MCA=60°,∴∠NCA+∠MCA=60°,∴∠MCN=60°,∴△MCN是等边三角形,故选:C.【总结归纳】此题主要考查了全等三角形的判定与性质等知识,解题时注意:两边及其夹角分别对应相等的两个三角形全等.根据已知得出△BCE≌△ACD是解题关键.12.函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是()①abc>0;②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.A.①③B.①②③C.①④D.②③④【知识考点】一次函数的图象;一次函数的性质;一次函数图象上点的坐标特征;二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数的最值;抛物线与x轴的交点.【思路分析】根据待定系数法,方程根与系数的关系等知识和数形结合能力仔细分析即可解.【解题过程】解:依照题意,画出图形如下:∵函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.∴a<0,c>0,对称轴为x=﹣=﹣1,∴b=2a<0,∴abc>0,故①正确,∵对称轴为x=﹣1,∴x=1与x=﹣3的函数值是相等的,故②错误;∵顶点为(﹣1,n),∴抛物线解析式为;y=a(x+1)2+n=ax2+2ax+a+n,联立方程组可得:,可得ax2+(2a﹣k)x+a+n﹣1=0,∴△=(2a﹣k)2﹣4a(a+n﹣1)=k2﹣4ak+4a﹣4an,∵无法判断△是否大于0,∴无法判断函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象的交点个数,故③错误;当﹣3≤x≤3时,当x=﹣1时,y有最大值为n,当x=3时,y有最小值为16a+n,故④正确,故选:C.【总结归纳】本题主要考查了二次函数图象上点的坐标特征,抛物线与x轴的交点,一次函数的性质,二次函数与系数的关系等知识点的理解和掌握,能根据图象确定与系数有关的式子的符号是解题的关键.二、填空题:本大题共6个小题,每小题4分,共24分.13.分解因式:a3﹣a=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解题过程】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【总结归纳】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.14.如图,A、B、C是⊙O上的三点,若△OBC是等边三角形,则cos∠A=.【知识考点】等边三角形的性质;圆周角定理;解直角三角形.【思路分析】由△OBC是等边三角形可知∠BOC=60°,根据圆周角定理可求出∠A的度数,可得cos∠A.【解题过程】解:∵△OBC是等边三角形,∴∠BOC=60°,∴∠A=30°,∴cos∠A=cos30°=.故答案为:.【总结归纳】本题主要考查了圆周角定理和等边三角形的性质,熟练运用圆周角定理是解答此题的关键.15.已知一元二次方程x2+2x﹣8=0的两根为x1、x2,则+2x1x2+=.【知识考点】根与系数的关系.【思路分析】根据根与系数的关系得出x1+x2=﹣2,x1•x2=﹣8,再通分后根据完全平方公式变形,再代入求出即可.【解题过程】解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x2+=2x1x2+=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.【总结归纳】本题考查了根与系数的关系和求代数式的值,能熟记根与系数的关系的内容是解此题的关键.16.如图,四边形ABCD中,DA⊥AB,CB⊥AB,AD=3,AB=5,BC=2,P是边AB上的动点,则PC+PD的最小值是.【知识考点】轴对称﹣最短路线问题.【思路分析】要求PC+PD的和的最小值,PC,PD不能直接求,可考虑通过作辅助线转化PC,PD的值,从而找出其最小值求解.【解题过程】解:延长CB到C′,使C′B=CB=2,连接DC′交AB于P.则DC′就是PC+PD 的和的最小值.∵AD∥BC,∴∠A=∠PBC′,∠ADP=∠C′,∴△ADP∽△BC′P,∴AP:BP=AD:BC′=3:2,′∴PB=AP,∵AP+BP=AB=5,∴AP=5,BP=2,∴PD===3,PC′===2,∴DC′=PD+PC′=3+2=5,∴PC+PD的最小值是5,故答案为5.【总结归纳】此题考查了轴对称的性质、勾股定理的运用及相似三角形的判定和性质,解题时要注意找到对称点,并根据“两点之间线段最短”确定P点的位置.17.定义:分数(m,n为正整数且互为质数)的连分数(其中a1,a2,a3,…,为整数,且等式右边的每个分数的分子都为1),记作+++…,例如:======,的连分数为,记作+++,则++.【知识考点】有理数的混合运算;规律型:数字的变化类.【思路分析】根据连分数的定义列式计算即可解答.【解题过程】解:++====.故答案为:.【总结归纳】本题考查新定义连分数的化简,解答本题的关键是明确题意,利用题目中的新规定解答问题.18.在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分∠ABC交AC于点E,连结CD交BE于点O.若AC=8,BC=6,则OE的长是.【知识考点】角平分线的性质;直角三角形斜边上的中线;勾股定理;平行线分线段成比例.【思路分析】过A作AF∥BC,证明△AEF∽△CEB,求出AE、CE的值,根据勾股定理求出AB和BE长,求出M、N分别是BC、BE的中点,根据相似得出比例式,代入求出OE即可.【解题过程】解:在Rt△ACB中,∠ACB=90°,AC=8,BC=6,由勾股定理得:AB=10,过A作AF∥BC,交BE延长线于F,∵AF∥BC,∴∠F=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠F=∠ABE,∴AB=AF=10,∵AF∥BC,∴△AEF∽△CEB,∴=,∴=,解得:AE=5,CE=8﹣5=3,在Rt△ECB中,由勾股定理得:BE==3,过D作DM∥AC,交BC于M,交BE于N,∵D为AB的中点,∴M为BC的中点,N为BE的中点,∴DN=AE==2.5,BN=NE=BE=,∵DM∥AC,∴△DNO∽△CEO,∴=,∴=,解得:OE=,故答案为:.【总结归纳】本题考查了角平分线的性质,平行线分线段成比例定理,相似三角形的性质和判定等知识点,能正确作出辅助线是解此题的关键,题目比较好,难度偏大.三、解答题:本大题共7个小题,共78分,解答应写出文字说明,证明过程或演算步骤.19.(10分)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).【知识考点】实数的运算;分式的混合运算;零指数幂;负整数指数幂.【思路分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案;(2)直接将括号里面通分运算,再利用分式的基本性质分别化简得出答案.【解题过程】解:(1)()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020=4﹣1﹣3+1=1;(2)÷(1﹣)=÷=•=2.【总结归纳】此题主要考查了分式的混合运算以及实数运算,正确化简分式是解题关键.20.(10分)如图,在△ABC中,点D是边BC的中点,连结AD并延长到点E,使DE=AD,连结CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.【知识考点】全等三角形的判定与性质.【思路分析】(1)根据SAS证明△ABD≌△ECD即可;(2)根据全等三角形的性质和三角形中线的性质解答即可.【解题过程】证明:(1)∵D是BC中点,∴BD=CD,在△ABD与△CED中,∴△ABD≌△ECD(SAS);(2)在△ABC中,D是边BC的中点,∴S△ABD=S△ADC,∵△ABD≌△ECD,∴S△ABD=S△ECD,∵S△ABD=5,∴S△ACE=S△ACD+S△ECD=5+5=10,答:△ACE的面积为10.【总结归纳】此题考查全等三角形的判定和性质,关键是根据SAS证明△ABD≌△ECD解答.21.(10分)在疫情期间,为落实“停课不停学”,某校对本校学生某一学科在家学习情况进行抽样调查,了解到学生的学习方式有:电视直播、任课教师在线辅导、教育机构远程教学、自主学习.参与调查的学生只能选择一种学习方式,将调查结果绘制成不完整的扇形统计图和条形统计图.根据如图所示的统计图,解答下列问题.(1)本次接受调查的学生有名;(2)补全条形统计图;(3)根据调查结果,若本校有1800名学生,估计有多少名学生参与任课教师在线辅导?【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据A的人数和所占的百分比即可得出答案;(2)用总人数减去其他学习方式的人数,求出C学习方式的人数,从而补全统计图;(3)用本校的总人数乘以参与任课教师在线辅导的人数所占的百分比即可.【解题过程】解:(1)本次接受调查的学生有:9÷15%=60(名);故答案为:60;(2)选择C学习方式的人数有:60﹣9﹣30﹣6=15(人),补全统计图如下:(3)根据题意得:1800×=900(名),答:估计有900名学生参与任课教师在线辅导.【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(12分)如图,AB和CD两幢楼地面距离BC为30米,楼AB高30米,从楼AB的顶部点A测得楼CD的顶部点D的仰角为45°.(1)求∠CAD的大小;(2)求楼CD的高度(结果保留根号).【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】(1)过A作AE⊥CD于点E,可得AB=EC=30米,AE=BC=30米,在直角三角形中,利用锐角三角函数的定义求出∠CAE,进一步求得∠CAD的大小;(2)利用等腰直角三角形的性质求出DE的长,由CE+ED求出CD的长即可.【解题过程】解:(1)过A作AE⊥CD于点E,则AB=EC=30米,AE=BC=30米,在Rt△AEC中,tan∠CAE==,则∠CAE=30°,则∠CAD=30°+45°=75°;(2)在Rt△AED中,DE=AE=30米,CD=CE+ED=(30+30)米.【总结归纳】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解本题的关键.23.(12分)如图,一次函数y=kx+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣3,n),B(﹣1,﹣3)两点,过点A作AC⊥OP于点C.(1)求一次函数和反比例函数的表达式;(2)求四边形ABOC的面积.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)将点B坐标代入,确定反比例函数的关系式,进而确定点A坐标,把点A、B 的坐标代入求出一次函数的关系式;(2)将四边形ABOC的面积转化为S△BOM+S梯形ACMB,利用坐标及面积的计算公式可求出结果.【解题过程】解:(1)B(﹣1,﹣3)代入y=得,m=3,∴反比例函数的关系式为y=;把A(﹣3,n)代入y=得,n=﹣1∴点A(﹣3,﹣1);把点A(﹣3,﹣1),B(﹣1,﹣3)代入一次函数y=kx+b得,,解得:,∴一次函数y=﹣x﹣4;答:一次函数的关系式为y=﹣x﹣4,反比例函数的关系式为y=;(2)如图,过点B作BM⊥OP,垂足为M,由题意可知,OM=1,BM=3,AC=1,MC=OC ﹣OM=3﹣1=2,∴S四边形ABOC=S△BOM+S梯形ACMB=+(1+3)×2=.【总结归纳】本题考查一次函数、反比例函数的图象和性质,把点的坐标代入是常用的方法,将坐标与线段的长的相互转化是计算面积的关键.24.(12分)如图,已知AB是⊙O的直径,点C是圆上异于A、B的一点,连结BC并延长至点D,使CD=BC,连结AD交⊙O于点E,连结BE.(1)求证:△ABD是等腰三角形;(2)连结OC并延长,与以B为切点的切线交于点F,若AB=4,CF=1,求DE的长.【知识考点】等腰三角形的判定与性质;切线的性质;相似三角形的判定与性质.【思路分析】(1)由线段垂直平分线的性质可得AB=AD,可得结论;(2)通过证明△OBF∽△AEB,可得,即可求解.【解题过程】证明:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴AC⊥BD,又∵CD=BC,∴AB=AD,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∴∠BAC=∠BAD,AB=AD,BC=BD,又∵∠BAC=∠BOC,∴∠BOC=∠BAD,∵BF是⊙O的切线,∴∠FBO=90°,∵AB是⊙O的直径,∴∠AEB=90°=∠BFO,∴△OBF∽△AEB,∴,∵AB=4,CF=1,∴OB=2,OF=OC+CF=3,∴,∴AE=,∴DE=AD﹣AE=.【总结归纳】本题考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,证明△OBF∽△AEB是本题的关键,25.(12分)如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F (0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y =﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.【知识考点】二次函数综合题.【思路分析】(1)设二次函数表达式为:y=ax2,将(2,1)代入上式,即可求解;(2)△PMN是等边三角形,则点P在y轴上且PM=4,故PF=2,即可求解;(3)在Rt△FQE中,EN==,EF==,即可求解.【解题过程】解:(1)∵二次函数的图象顶点在原点,故设二次函数表达式为:y=ax2,将(2,1)代入上式并解得:a=,故二次函数表达式为:y=x2;(2)将y=1代入y=x2并解得:x=±2,故点M、N的坐标分别为(﹣2,1)、(2,1),则MN=4,∵△PMN是等边三角形,∴点P在y轴上且PM=4,∴PF=2;∵点F(0,1),∴点P的坐标为(0,1+2)或(0,1﹣2);(3)假设二次函数的图象上是否存在一点E满足条件,设点Q是FN的中点,则点Q(1,1),故点E在FN的中垂线上.∴点E是FN的中垂线与y=x2图象的交点,∴y=×12=,则点E(1,),EN==,同理EF==,点E到直线y=﹣1的距离为|﹣(﹣1)|=,故存在点E,使得以点E为圆心半径为的圆过点F,N且与直线y=﹣1相切.【总结归纳】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本的性质、等边三角形的性质等,综合性强,难度适中.21。
最新整理四川省宜宾市中考数试题及答案Word,有答案.doc
四川省宜宾市高中阶段招生试卷数学试题(考试时间:120分钟 全卷满分120分)注意事项:1. 答题前,必须把考号和姓名写在密封线内;2. 直接在试卷上作答,不得将答案写到密封线内.Ⅰ基础卷(全体考生必做,共3个大题,共72分)一、选择题:(本大题8个小题,每小题3分,共24分)以下每个小题均给出了代号为A,B,C,D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号直接填在题后的括号中.1、-4的相反数是()A. 4B.41C. 41-D.-42、下列各式中,计算错误的是( ) A. 2a+3a=5a B. –x 2·x= -x 3 C. 2x-3x= -1D.(-x 3)2= x 63、若分式122--x x 的值为0,则x 的值为( ) A. 1 B. -1 C. ±1 D.24、到 5月8日止,青藏铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是( )A. 2.653×105B. 2.653×106C. 2.653×107D. 2.653×1085、如图,AB ∥CD ,直线PQ 分别交AB 、CD 于点E 、F ,FG 是∠EFD 的平分线,交AB 于点G . 若∠PFD=40°,那么∠FGB 等于( )A. 80°B. 100°C. 110°D.120° 6、小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是 ( ) A. 10x+20=100 B.10x-20=100 C. 20-10x=100 D.20x+10=100 7、一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是 ( ) A.94 B.92 C.31 D.32 8、下面几何的主视图是( )Q PG F E D C B A二,填空题: (本大题共4小题,每小题3分,共12分),请把答案直接填在题中横线上.9、因式分解:3y 2-27= .10、一组数据:2,3,2,5,6,2,4,3,的众数是11、如图,△ABC 内接于⊙0,∠BAC=120°,AB=AC=4. BD 为⊙0的直径,则BD=12、若方程组⎩⎨⎧=-=+.,2a by x b y x 的解是⎩⎨⎧==.0,1y x ,那么=-b a三.解答题.(本大题共4小题,共36分),解答应写出文字说明,证明过程或演算步骤.13、(本题共3小题,每小题5分,共15分)(1)请先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值..121)11(2+-÷--a a a a (2)计算:︒---+-45tan 2)510()31(401(3)某地为了解从 以来初中学生参加基础教育课程改革的情况,随机调查了本地区1000名初中学生学习能力优秀的情况.调查时,每名学生可以在动手能力,表达能力,创新能力,解题技巧,阅读能力和自主学习等六个方面中选择自己认为是优秀的项.调查后绘制了如下图所示的统计图.请根据统计图反映的信息解答下列问题:①学生获得优秀人数最多的一项和最有待加强的一项各是什么? ②这1000名学生平均每人获得几个项目为优秀?③若该地区共有2万名初中学生,请估计他们表达能力为优秀的学生有多少人?O D CBA14、(本小题满分7分)已知:如图,AD=BC,AC=BD.求证:OD=OCAB15、(本小题满分7分)某学校准备添置一些“中国结”挂在教室。
2023年四川省宜宾市中考数学试卷(含答案解析)035329
2023年四川省宜宾市中考数学试卷试卷考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 的相反数是( )A.B.C.D.2. 下列计算正确的是( )A.=B.=C.=D.=3. 下列图形中,只是中心对称图形而不是轴对称图形的是( )A.B.C.D.4. 年,全国实行地区生产总值统一核算改革,某城区约为亿元,第一次进入千亿城区,将数据亿用科学记数法表示为( )1616−66−162a +3b 5ab5a −3a 22−3a a 2−a−2b +3b a 2a 2ba 22019GDP 1004.21004.21.0042×11A.B.C.D.5. 已知直线,把如图所示放置,点在直线上,,,若,则等于( )A.B.C.D.6. 已知互补,比小,设的度数分别为,下列方程组中符合题意的是( )A.B.C.D.7. 如图,点,,,在上,,点是弧的中点,则的度数是( )A.1.0042×10111.0042×10121.0042×10710.042×1011a//b Rt △ABC B b ∠ABC =90∘∠A =30∘∠1=28∘∠228∘32∘58∘60∘∠A,∠B ∠A ∠B 30∘∠A,∠B ,x ∘y ∘{x+y =180,x =y−30{x+y =180,x =y+30{x+y =90,x =y+30{x+y =90,x =y−30A B C D ⊙O ∠AOC =120∘B AC ∠D 30∘B.C.D.8. 将分式方程 去分母,得到正确的整式方程是 ( )A.B.C.D.9. 对于长度为的线段(图),小若用尺规进行如下操作(图)根据作图痕迹,有下列说法:①是等腰三角形;②是直角三角形;③是等边三角形;④的长度为,⑤是直角三角形的依据是直径所对的圆周角为直角,则其中正确的个数是( )A.B.C.D.10. 如图,已知正方形边长为,连接、,平分交于点,则长为( )40∘50∘60∘1−=2x x−13x−11−2x =3x−1−2x =31+2x =3x−1+2x =34AB 12△ABC △ABC △ABC AD ^π34△ABC 1234ABCD 1AC BD CE ∠ACD BD E DEA. B. C.D. 11. 如图,双曲线=经过斜边上的中点,且与交于点,若=,则的值为( )A.B.C.D.12. 如图,从一块半径为 的圆形铁皮上裁出一个圆周角为的扇形,如果将裁下来的图形围成一个圆锥,则该圆锥的底面半径为A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )2−2−1−12−y Rt △BOC A BC D S △BOD 6k 246860cm 120∘ABC ( )10cm20cm30cm40cm13. 一组数据,,,,,的中位数是________.14. 分解因式:________.15. 已知关于方程有一个根为,则方程的另一个根为________.16. 若关于的不等式组,有且仅有三个整数解,则的取值范围是________.17. 如图,在▱中,,,,对角线与交于点,将直线绕点按顺时针方向旋转,分别交、于点、,则四边形周长的最小值是________.18. 如图,为的平分线上一点,过点作任意一条直线分别与的两边相交于点,,为的中点,过点作的垂线交射线于点,若,则的大小为________(用含的代数式表示).三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19. 计算:.20. 如图,点,在线段上, ,,.求证: 21. 某校开设有(类)、音乐(类)、体育(类)、舞蹈(类)四类社团活动,要求学生全员参加,每人限报一类.为了了解学生参与社团活动的情况,校学生会随机抽查了部分学213124−2+a =a 3a 2x −3x+a =0x 21x ≥2+x x−123x >2m−1m ABCD AB =2BC =3∠ABC =60∘AC BD O l O AD BC E F ABFE A ∠MON OD A ∠MON B C P BC P BC OA D ∠BDC =α∠BOD α(−1+2sin −|1−|+)201660∘3–√π0C D BF AB//DE AB =DF BC =DE ∠A =∠F.STEAM A B C D生,将所收集的数据绘制成如图所示不完整的统计图.请根据图中提供的信息解答下列问题:类型频数频率________,并补全条形统计图;若该校共有人,报的有________人;如果学生会想从类的甲、乙、丙三人中随机选择两人参加舞蹈演出,请用列表法或树状图的方法求出恰好选中甲的概率.22. 如图,某人在处测得山顶的仰角为,向前走米来到山脚处,测得山坡的坡度为,求山的高度(不计测角仪的高度,参考数据:,,).23. 已知直线分别与轴相交于点,与轴相交于点.求直线的解析式;过点的直线与轴交于点,若的面积为,求点的坐标. 24. 如图,为直径,,为上的点, 交的延长线于点,且.A30x B180.15Cm 0.40D n y(1)x =(2)1800STEAM (3)D D C 37∘100A AC i=1:0.5sin ≈0.6037∘cos ≈0.8037∘tan ≈0.7537∘AB x A(−,0)32y B(0,3)(1)AB (2)B x C △ABC 154C AB ⊙O C D ⊙O CE ⊥DB DB E ∠CBE =∠ABC判断直线与的位置关系,并说明理由;若,,求的长.25. 在平面直角坐标系中,点为坐标原点,直线与轴相交于点,与轴相交于点.经过点,的抛物线与轴的另一个交点为点.如图,求的值;如图,点,分别在线段,上,且,连接,将线段绕点顺时针旋转得到线段,且旋转角,连接,求的值;如图,在()的条件下,当时,在线段的延长线上取点,过点作交抛物线于点,连接,,若,求点的横坐标.(1)CE ⊙O (2)AC =4AB =5CE O y =−x+b 34x A y C A C y =ax 2+3ax−3x B (1)1a (2)2D E AC AB BE =2AD DE DE D DF ∠EDF =∠OAC CF tan ∠ACF (3)32∠DFC =135∘AC M M MN//DE N DN EM MN =DF N参考答案与试题解析2023年四川省宜宾市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】D【考点】相反数【解析】根据相反数的定义(只有符号不同的两个数,其中一个数是另一个数的相反数)求出即可.【解答】解:的相反数是 .故选.2.【答案】D【考点】合并同类项【解析】此题暂无解析【解答】此题暂无解答3.【答案】A【考点】16−16D中心对称图形轴对称图形【解析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】、是中心对称图形,故本选项符合题意;、既是轴对称图形,故本选项不合题意;、是轴对称图形,故本选项不合题意;、既是轴对称图形,故本选项不合题意.4.【答案】A【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:亿.故选.5.【答案】C【考点】平行线的性质三角形的外角性质【解析】利用对顶角相等及三角形外角的性质,可求出的度数,由直线,利用“两直线平行,内错角相等”可求出的度数.【解答】A B C D 1004.2=100420000000=1.0042×1011A ∠DEB a//b ∠2解:如图,,,,.直线,.故选.6.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】设,的度数分别为,,根据“,互补,比小”列出方程组解答即可.【解答】解:设,的度数分别为,,由题意得故选.7.【答案】A【考点】圆周角定理圆心角、弧、弦的关系【解析】连接,如图,利用圆心角、弧、弦的关系得到==,然后根据圆周角定理得到的度数.【解答】∵∠A+∠ADE =∠DEB ∠A =30∘∠ADE =∠1=28∘∴∠DEB =+=30∘28∘58∘∵a//b ∴∠2=∠DEB =58∘C ∠A ∠B x ∘y ∘∠A ∠B ∠A ∠B 30∘∠A ∠B x ∘y ∘{x+y =180,x =y−30.A OB ∠AOB ∠COB =∠AOC 1260∘∠D解:连接,如图,∵点是弧的中点,∴,∴.故选.8.【答案】B【考点】解分式方程【解析】【解答】解:两边同乘以得,.故选.9.【答案】C【考点】弧长的计算作图—基本作图等边三角形的性质与判定等腰三角形的性质与判定圆周角定理【解析】OB B AC ∠AOB =∠COB =∠AOC =×1212120∘=60∘∠D =∠AOB 12=30∘A 1−=2xx−13x−1x−1x−1−2x =3B利用作图得到得垂直平分,点为的中点,=,以为直径作,则=,所以为等腰三角形,利用圆周角定理得到=,则为等腰直角三角形,然后计算=,则=,根据弧长公式可计算出的长度,从而可对各选项进行判断.【解答】由作法得垂直平分,点为的中点,=,以为直径作,∵垂直平分,∴=,即为等腰三角形,∵为直径,∴=,所以⑤正确∴为等腰直角三角形,所以①②正确,③错误;∵=,∴=,∵==,∴=,∴===,∴=,∴的长度,所以④错误.10.【答案】C【考点】正方形的性质【解析】此题暂无解析【解答】此题暂无解答11.【答案】B【考点】反比例函数图象上点的坐标特征反比例函数系数k 的几何意义【解析】PQ AB O AB CE CB AB ⊙O CA CB △ABC ∠ACB 90∘△ACB ∠ABD 22.5∘∠AOD 45∘AD^PQ AB O AB CE CB AB ⊙O PQ AB CA CB △ABC AB ∠ACB 90∘△ACB CB CE ∠CBE ∠CEB ∠OCB ∠OBC 45∘∠CBE =(−)12180∘45∘67.5∘∠ABD ∠CBE−∠CBO −67.5∘45∘22.5∘∠AOD 45∘AD ^==π45⋅π⋅218012此题暂无解析【解答】此题暂无解答12.【答案】B【考点】弧长的计算全等三角形的性质与判定等边三角形的性质与判定【解析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解答】解:如图,连接,,,,,,,.,是等边三角形,.由题意得,阴影扇形的半径为,圆心角的度数为,则扇形的弧长为: ,而扇形的弧长相当于围成圆锥的底面周长,因此有:,解得:.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】OB OC OA ∵OB =OA OA =OC AB =AC ∴△ABO ≅△ACO(SSS)∴∠BAO =∠CAO =60∘∵AO =BO ∴△ABO ∴AB =AO =6060cm 120∘120π×601802πr =120π×60180r =20B中位数【解析】此题暂无解析【解答】此题暂无解答14.【答案】【考点】提公因式法与公式法的综合运用【解析】原式提取后,利用完全平方公式分解即可.【解答】解:原式.故答案为:.15.【答案】【考点】根与系数的关系【解析】【解答】解:由根与系数的关系得,,已知方程一个根为,解得方程的另一个根为.故答案为:.a(a −1)2a =a(−2a +1)a 2=a(a −1)2a(a −1)22+=3x 1x 2122【考点】一元一次不等式组的整数解【解析】解不等式组可得不等式组的解集,根据不等式组的整数解个数得出关于的不等式组,解之可得答案.【解答】由,解得:,由关于的不等式组,有且仅有三个整数解,解得:,解得,17.【答案】【考点】平行四边形的性质轴对称——最短路线问题含30度角的直角三角形对顶角全等三角形的性质与判定勾股定理旋转的性质【解析】作于,证明,即可推出四边形周长,所以当最小时,四边形周长最小即可算出最小值.【解答】−5.5≤m<−5m ≥2+x x−123x ≤−9x ≥2+x x−123x >2m−1−12≤2m−1<−11−5.5≤m<−55+3–√AM ⊥BC M △AOE ≅△COF ABFE =5+EF EF ABFE解:作于,如图所示,∵,∴,由勾股定理得,∵四边形为平行四边形,∴,,∴,在和中,∴,∴,四边形周长,当的值最小时,四边形的周长有最小值,此时,即时有最小值,∴四边形周长的最小值是.故答案为:.18.【答案】【考点】角平分线的性质等腰三角形的性质全等三角形的性质与判定【解析】【解答】解:如图,过作于,于,AM ⊥BC M ∠ABC =60∘BM =AB =112AM =3–√ABCD OA =OC AD//CB ∠EAO =∠FCO △AOE △COF ∠EAO =∠FCO,OA =OC,∠AOE =∠COF,△AOE ≅△COF AE =CF ABFE =AB+BF +EF +AE =AB+BF +FC +EF =AB+BC +EF =5+EF EF ABFE EF ⊥BC EF =AM =3–√ABFE 5+3–√5+3–√−90∘α2D DE ⊥OM E DF ⊥ON F则.∵为的角平分线,∴.为的中点,,,∴(),∴.∵,,即,,.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19.【答案】原式=.【考点】零指数幂实数的运算特殊角的三角函数值【解析】先计算乘方、代入三角函数值、去绝对值符号、计算零指数幂,再去括号,最后计算加减可得.【解答】原式=.20.∠DEB =∠DFC =∠DFO =90∘OA ∠MON DE =DF ∵P BC PD ⊥BC ∴BD =CD Rt △DEB ≅Rt △DFC HL ∠BDE =∠CDF ∠BDC =α∴∠BDF +∠CDF =∠BDF +∠BDE ∠EDF =α∴∠MON =(180−α)∘∴∠BOD =[(180−α)=−12]∘90∘α2−90∘α2=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3【答案】证明:∵,∴,在和中,∴ ,∴.【考点】全等三角形的性质与判定【解析】证明:在和中【解答】证明:∵,∴,在和中,∴ ,∴.21.【答案】解:抽取的学生数为(人),∴,类人数为(人),∴类人数为(人).补全条形统计图如图所示.AB//DE ∠ABC =∠FDE △ABC △FDE AB =FD ,∠ABC =∠FDE ,BC =DE ,△ABC ≅△FDE(SAS)∠A =∠F ∵AB ∥DE,∴∠ABC =∠FDE△ABC △FDE AB =FD∠ABC =∠FDE BC =DE∴△ABC ≅△FDE∴∠A =∠FAB//DE ∠ABC =∠FDE △ABC △FDE AB =FD ,∠ABC =∠FDE ,BC =DE ,△ABC ≅△FDE(SAS)∠A =∠F (1)18÷0.15=120x =30÷120=0.25C 120×0.40=48D 120−30−18−48=24由题意,画树状图如图,共有种等可能的结果,其中恰好选中里的种情况,则恰好选中甲的概率为.【考点】条形统计图频数(率)分布表用样本估计总体列表法与树状图法【解析】【解答】解:抽取的学生数为(人),∴,类人数为(人),∴类人数为(人).补全条形统计图如图所示.450(3)64=4623(1)18÷0.15=120x =30÷120=0.25C 120×0.40=48D 120−30−18−48=24报的有(人).故答案为:.由题意,画树状图如图,共有种等可能的结果,其中恰好选中里的种情况,则恰好选中甲的概率为.22.【答案】解:设山高,则,由,得:,解得,经检验,是原方程的根.答:山的高度是米.【考点】解直角三角形的应用-仰角俯角问题【解析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形、,应利用其公共边构造等量关系,借助构造方程关系式,进而可求出答案.【解答】解:设山高,则,由,得:,(2)STEAM 1800×0.25=450450(3)64=4623BC =x AB =x 12tan ==0.7537∘BC BD=0.75x 100+x 12x =120x =120120△DBC △ABC BC AD =DB−DA BC =x AB =x 12tan ==0.7537∘BC BD=0.75x 100+x 12解得,经检验,是原方程的根.答:山的高度是米.23.【答案】解:设直线的解析式为,直线过点,两点,解得直线的解析式为.由,,得:,,,,解得:,设点的坐标为,则或,解得:或,点坐标为或.【考点】位置的确定待定系数法求一次函数解析式三角形的面积【解析】【解答】解:设直线的解析式为,直线过点,两点,解得x =120x =120120(1)AB y =kx+b ∵AB A(−,0)32B(0,3)∴{−k +b =0,32b =3,{k =2,b =3.∴AB y =2x+3(2)B(0,3)A(−,0)32OB =3OA =32∵=AC ⋅OB =S △ABC 12154∴AC =32154AC =52C (m,0)m−(−)=3252−−m=3252m=1−4∴C (1,0)(−4,0)(1)AB y =kx+b ∵AB A(−,0)32B(0,3)∴{−k +b =0,32b =3,{k =2,b =3.直线的解析式为.由,,得:,,,,解得:,设点的坐标为,则或,解得:或,点坐标为或.24.【答案】解:直线与相切. 理由如下:如图,连接.∵为 的直径,∴ .,∴,∴.又∵,∴ .,∴.,∴,∴.又∵是的半径,∴直线与相切.如图,连接.∴AB y =2x+3(2)B(0,3)A(−,0)32OB =3OA =32∵=AC ⋅OB =S △ABC 12154∴AC =32154AC =52C (m,0)m−(−)=3252−−m=3252m=1−4∴C (1,0)(−4,0)(1)CE ⊙O OC AB ⊙O ∠ACB =90∘∵CE ⊥DE ∠E =90∠CBE+∠ECB =∠ABC +∠A =90∘∠CBE =∠ABC ∠ECB =∠A ∵OC =OA ∠A =∠ACO ∵∠ACO +∠OCB =90∘∠ECB+∠OCB =90∘OC ⊥CE OC ⊙O CE ⊙O (2)AD∵为的直径,∴.∵,∴,∴,∵,,∴,∴,∴.在中,, ,,由勾股定理,得.∵, ,∴, ∴,即, ∴ .【考点】直线与圆的位置关系勾股定理圆周角定理相似三角形的性质与判定【解析】【解答】解:直线与相切. 理由如下:如图,连接.AB ⊙O AD ⊥DE CE ⊥DE CE//AD ∠ECD =∠ADC ∠ECB =∠BAC ∠BCD =∠BAD ∠CAD =∠ECD ∠CAD =∠ADC AC =CD Rt △ACB ∠ACB =90∘AC =4AB =5BC =3∠CAB =∠CDB ∠ACB =∠DEC =90∘Rt △ACB ∼Rt △DEC =AB CD CB CE =543CE EC =125(1)CE ⊙O OC∵为 的直径,∴ .,∴,∴.又∵,∴ .,∴.,∴,∴.又∵是的半径,∴直线与相切.如图,连接.∵为的直径,∴.∵,∴,∴,∵,,∴,∴,∴.在中,, ,,由勾股定理,得.∵, ,∴, ∴,即,AB ⊙O ∠ACB =90∘∵CE ⊥DE ∠E =90∠CBE+∠ECB =∠ABC +∠A =90∘∠CBE =∠ABC ∠ECB =∠A ∵OC =OA ∠A =∠ACO ∵∠ACO +∠OCB =90∘∠ECB+∠OCB =90∘OC ⊥CE OC ⊙O CE ⊙O (2)AD AB ⊙O AD ⊥DE CE ⊥DE CE//AD ∠ECD =∠ADC ∠ECB =∠BAC ∠BCD =∠BAD ∠CAD =∠ECD ∠CAD =∠ADC AC =CD Rt △ACB ∠ACB =90∘AC =4AB =5BC =3∠CAB =∠CDB ∠ACB =∠DEC =90∘Rt △ACB ∼Rt △DEC =AB CD CB CE =543CE C =12∴ .25.【答案】解:().当时, .∴.代入得.∴.当时,.∴.代入得,解得..当时,解得,,∴,,.∵,∴.在上截取,连接,过点作,垂足为.∵,,,∴.又∵,∴.∴.在中,,.∵,∴.∴.又∵,∴.在中,,令,则,∴.∴.EC =1251y =a +3ax−3x 2x =0y =−3C(0,−3)y =−x+b 34b =−3y =−x−334y =0x =4A(−4,0)y =a +3ax−3x 20=16a −12a −3a =34(2)y =+x−334x 294y =0,0=+x−334x 294=−4x 1=1x 2B(1,0)OB =1OA =4C(0,3)OC =3DC DC =AE FC F FH ⊥CD H ∠OAC +∠AED =∠EDC ∠EDF +∠FDG =∠EDC ∠EDF =∠OAC ∠AED =∠FDG DE =DF △ADE ≅△GFD AD =FG,∠OAC =∠DGF Rt △AOC AC ===5O +O A 2C 2−−−−−−−−−−√+4232−−−−−−√tan ∠OAC ===tan ∠DGF OC OA 34AB =AC =5AB−AE =AC −DG BE =AD+CG BE =2AD AD =CG =FG Rt △GFH tan ∠HGF ==FH GH 34FH =3m CH =4m FG ===5m=CGF +GH 2H 2−−−−−−−−−−√+(3m)2(4m)2−−−−−−−−−−−−√CH =4m+5m=9m ∠ACF ===FH 3m 1在中,.过点作于点,过点作交的延长线于点.在中,.令,则.在中,∵,∴.∴.在中,,∴.∴.∴.过点作于点.令,可求.∵,∴.解得, ∴.过点作轴的垂线分别交轴,的延长线于点,,过点作分别交轴,的延长线于点,.∵轴,轴,.∴.∵,∴.又∵,∴.∴.∵点在直线上,可设.∵,∴四边形为矩形.∴.∴.,∴代入中得,解得(舍去),Rt △CFH tan ∠ACF ===FH CH 3m 9m 13(3)F FH ⊥CD H D DR ⊥CF CF R Rt △CDR tan ∠DCR ==DR CR 13DR =t 10−−√CR =3,CD =10t 10−−√Rt △DFR ∠DFR =−∠DFC ==∠FDR 180∘45∘FR =DR =t 10−−√CF =3t−t =2t 10−−√10−−√10−−√Rt △FCH tan ∠FCH =13FH =2t,CH =6t DH =4t tan ∠FDH ====tan ∠AED FH DH 2t 4t 12D DT ⊥OA T DT =3n AT =4n,AD =5n,ET =2DT =6n,BE =2AD =10n AT +ET +BE =AB 4n+6n+10n =5n =14ET =,DT =3234M x x DE P Q N NS ⊥PM y PM L S DT ⊥x MQ ⊥x DT//MQ ∠EDT =∠Q MN//DE ∠NMS =∠Q =∠EDT ∠ETD ==∠S,DE =DF =MN 90∘△DET ≅△MNS MS =DT =,NS =ET =3432M y =−x−334M(s,−s −3)34∠POL =∠OPS =∠LSP =90∘OPSL SL =OP =4s NL =−s 32OL =PS =s +3+=s +343434154N (s −,−s −)3234154y =+x−334x 294−s −=+(s −)−33415434(s −)3229432=,=s 1−1+6–√2s 2−1−6–√2−=−−1+6–√∴.∴点的横坐标为.【考点】二次函数综合题【解析】此题暂无解析【解答】解:().当时, .∴.代入得.∴.当时,.∴.代入得,解得..当时,解得,,∴,,.∵,∴.在上截取,连接,过点作,垂足为.∵,,,∴.又∵,∴.∴.在中,,.∵,s −=−32−1+6–√232N −46–√21y =a +3ax−3x 2x =0y =−3C(0,−3)y =−x+b 34b =−3y =−x−334y =0x =4A(−4,0)y =a +3ax−3x 20=16a −12a −3a =34(2)y =+x−334x 294y =0,0=+x−334x 294=−4x 1=1x 2B(1,0)OB =1OA =4C(0,3)OC =3DC DC =AE FC F FH ⊥CD H ∠OAC +∠AED =∠EDC ∠EDF +∠FDG =∠EDC ∠EDF =∠OAC ∠AED =∠FDG DE =DF △ADE ≅△GFD AD =FG,∠OAC =∠DGF Rt △AOC AC ===5O +O A 2C 2−−−−−−−−−−√+4232−−−−−−√tan ∠OAC ===tan ∠DGF OC OA 34AB =AC =5∴.∴.又∵,∴.在中,,令,则,∴.∴.在中,.过点作于点,过点作交的延长线于点.在中,.令,则.在中,∵,∴.∴.在中,,∴.∴.∴.过点作于点.令,可求.∵,∴.解得, ∴.过点作轴的垂线分别交轴,的延长线于点,,过点作分别交轴,的延长线于点,.∵轴,轴,.∴.∵,∴.又∵,∴.∴.∵点在直线上,可设.∵,AB−AE =AC −DGBE =AD+CG BE =2AD AD =CG =FG Rt △GFH tan ∠HGF ==FH GH 34FH =3m CH =4m FG ===5m=CG F +G H 2H 2−−−−−−−−−−√+(3m)2(4m)2−−−−−−−−−−−−√CH =4m+5m=9m Rt △CFH tan ∠ACF ===FH CH 3m 9m 13(3)F FH ⊥CD H D DR ⊥CF CF R Rt △CDR tan ∠DCR ==DR CR 13DR =t 10−−√CR =3,CD =10t 10−−√Rt △DFR ∠DFR =−∠DFC ==∠FDR 180∘45∘FR =DR =t 10−−√CF =3t−t =2t 10−−√10−−√10−−√Rt △FCH tan ∠FCH =13FH =2t,CH =6t DH =4t tan ∠FDH ====tan ∠AED FH DH 2t 4t 12D DT ⊥OA T DT =3n AT =4n,AD =5n,ET =2DT =6n,BE =2AD =10n AT +ET +BE =AB 4n+6n+10n =5n =14ET =,DT =3234M x x DE P Q N NS ⊥PM y PM L S DT ⊥x MQ ⊥x DT//MQ ∠EDT =∠Q MN//DE ∠NMS =∠Q =∠EDT ∠ETD ==∠S,DE =DF =MN 90∘△DET ≅△MNS MS =DT =,NS =ET =3432M y =−x−334M(s,−s −3)34∠POL =∠OPS =∠LSP =90∘∴四边形为矩形.∴.∴.,∴代入中得,解得(舍去),∴.∴点的横坐标为.OPSL SL =OP =4s NL =−s 32OL =PS =s +3+=s +343434154N (s −,−s −)3234154y =+x−334x 294−s −=+(s −)−33415434(s −)3229432=,=s 1−1+6–√2s 2−1−6–√2s −=−32−1+6–√232N −46–√2。
四川省宜宾市中考数学试卷(含答案)
2022年中考往年真题练习: 四川省宜宾市中考数学试卷一.挑选题(共8小题)1.(2021宜宾) ﹣3的倒数是()A.B. 3 C.﹣3 D.﹣考点分析: 倒数。
解答: 解: 根据倒数的定义得:﹣3×(﹣) =1,因此倒数是﹣.故选: D.2.(2021宜宾) 下面四个几何体中, 其左视图为圆的是()A.B.C.D.考点分析: 简单几何体的三视图。
解答: 解: A.圆柱的左视图是矩形, 不符合题意;B.三棱锥的左视图是三角形, 不符合题意;C.球的左视图是圆, 符合题意;D.长方体的左视图是矩形, 不符合题意.故选C.3.(2021宜宾) 下面运算正确的是()A. 7a2b﹣5a2b=2 B. x8÷x4=x2C.(a﹣b) 2=a2﹣b2D.(2x2) 3=8x6考点分析: 完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。
解答: 解: A.7a2b﹣5a2b=2a2b, 故本选项错误;B.x8÷x4=x4, 故本选项错误;C.(a﹣b) 2=a2﹣2ab+b2, 故本选项错误;D.(2x2) 3=8x6, 故本选项正确.故选D.区县翠屏区南溪长宁江安宜宾县珙县高县兴文筠连屏山最高气温(℃) 32 32 30 32 30 31 29 33 30 32 A.32, 31. 5 B.32, 30 C.30, 32 D.32, 31考点分析: 众数;中位数。
解答: 解: 在这一组数据中32是出现次数最多的, 故众数是32;按大小排列后, 处于这组数据中间位置的数是31、32, 那么由中位数的定义可知, 这组数据的中位数是31. 5.故选: A.5.(2021宜宾) 将代数式x2+6x+2化成(x+p) 2+q的形式为()A.(x﹣3) 2+11 B.(x+3) 2﹣7 C.(x+3) 2﹣11 D.(x+2) 2+4 考点分析: 配方法的应用。
解答: 解: x2+6x+2=x2+6x+9﹣9+2=(x+3) 2﹣7.故选B.6.(2021宜宾) 分式方程的解为()A. 3 B.﹣3 C.无解D. 3或﹣3考点分析: 解分式方程。
2022年四川省宜宾市中考数学试卷(解析版)
2022年四川省宜宾市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1.(4分)(2022•宜宾)4的平方根是()A.2B.﹣2C.±2D.162.(4分)(2022•宜宾)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.3.(4分)(2022•宜宾)下列计算不正确的是()A.a3+a3=2a6B.(﹣a3)2=a6C.a3÷a2=a D.a2•a3=a5 4.(4分)(2022•宜宾)某校在中国共产主义青年团成立100周年之际,举行了歌咏比赛,七位评委对某个选手的打分分别为:91,88,95,93,97,95,94.这组数据的众数和中位数分别是()A.94,94B.95,95C.94,95D.95,945.(4分)(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC 于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5B.10C.15D.206.(4分)(2022•宜宾)2020年12月17日,我国嫦娥五号返回器携带着月球样本玄武岩成功着陆地球.2021年10月19日,中国科学院发布了一项研究成果:中国科学家测定,嫦娥五号带回的玄武岩形成的年龄为20.30±0.04亿年.用科学记数法表示此玄武岩形成的年龄最小的为(单位:年)()A.2.034×108B.2.034×109C.2.026×108D.2.026×109 7.(4分)(2022•宜宾)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是()A.﹣=3B.﹣=3C.﹣=3D.﹣=38.(4分)(2022•宜宾)若关于x的一元二次方程ax2+2x﹣1=0有两个不相等的实数根,则a的取值范围是()A.a≠0B.a>﹣1且a≠0C.a≥﹣1且a≠0D.a>﹣19.(4分)(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()A.B.C.D.10.(4分)(2022•宜宾)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m 的值为()A.0B.﹣10C.3D.1011.(4分)(2022•宜宾)已知抛物线y=ax2+bx+c的图象与x轴交于点A(﹣2,0)、B(4,0),若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是()A.a≥B.a>C.0<a<D.0<a≤12.(4分)(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得P A+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④二、填空题:本大题共6个小题,每小题4分,共24分.请把答案直接填在答题卡对应题中横线上.13.(4分)(2022•宜宾)分解因式:x3﹣4x=.14.(4分)(2022•宜宾)不等式组的解集为.15.(4分)(2022•宜宾)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若BC=4,AF=2,CF=3,则EF=.16.(4分)(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c=4:3:2,则用以上给出的公式求得这个三角形的面积为.17.(4分)(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.18.(4分)(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x >0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为.三、解答题:本大题共7个小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.(10分)(2022•宜宾)计算:(1)﹣4sin30°+|﹣2|;(2)(1﹣)÷.20.(10分)(2022•宜宾)已知:如图,点A、D、C、F在同一直线上,AB∥DE,∠B=∠E,BC=EF.求证:AD=CF.21.(10分)(2022•宜宾)在4月23日世界读书日来临之际,为了解某校九年级(1)班同学们的阅读爱好,要求所有同学从4类书籍中(A:文学类;B:科幻类;C:军事类;D:其他类),选择一类自己最喜欢的书籍进行统计.根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息回答问题:(1)求九年级(1)班的人数并补全条形统计图;(2)在扇形统计图中,求m的值;(3)如果选择C类书籍的同学中有2名女同学,其余为男同学,现要在选择C类书籍的同学中选取两名同学去参加读书交流活动,请你用画树状图或列表的方法求出恰好是一男一女同学去参加读书交流活动的概率.22.(10分)(2022•宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:≈1.7,≈1.4)23.(12分)(2022•宜宾)如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y 轴交于点B,与反比例函数y=(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.24.(12分)(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC的延长线于点E,且EG=EC.(1)求证:DE是⊙O的切线;(2)若点F是OA的中点,BD=4,sin∠D=,求EC的长.25.(14分)(2022•宜宾)如图,抛物线y=ax2+bx+c与x轴交于A(3,0)、B(﹣1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC.(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值.2022年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1.(4分)(2022•宜宾)4的平方根是()A.2B.﹣2C.±2D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(4分)(2022•宜宾)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看,底层是三个相邻的小正方形,上层的右边是一个小正方形.故选:D.【点评】本题考查了三视图的知识.注意主视图是指从物体的正面看物体得到的图形.3.(4分)(2022•宜宾)下列计算不正确的是()A.a3+a3=2a6B.(﹣a3)2=a6C.a3÷a2=a D.a2•a3=a5【分析】利用合并同类项法则、幂的乘方法则、同底数幂的乘除法则逐个计算,根据计算结果得结论.【解答】解:A.a3+a3=2a3≠2a6,故选项A计算不正确;B.(﹣a3)2=a6,故选项B计算正确;C.a3÷a2=a,故选项C计算正确;D.a2•a3=a5,故选项D计算正确.故选:A.【点评】本题考查了整式的运算,掌握合并同类项法则、同底数幂的乘除法法则、幂的乘方法则是解决本题的关键.4.(4分)(2022•宜宾)某校在中国共产主义青年团成立100周年之际,举行了歌咏比赛,七位评委对某个选手的打分分别为:91,88,95,93,97,95,94.这组数据的众数和中位数分别是()A.94,94B.95,95C.94,95D.95,94【分析】先将这组数据从小到大重新排列,再根据众数和中位数的概念求解可得.【解答】解:将这组数据从小到大排列为88,91,93,94,95,95,97,所以这组数据的众数是95,中位数是94.故选:D.【点评】本题主要考查众数和中位数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(4分)(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC 于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5B.10C.15D.20【分析】由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明▱AFDE的周长等于AB+AC.【解答】解:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∠B=∠EDC,∠FDB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDF,∴BF=FD,DE=EC,∴▱AFDE的周长=AB+AC=5+5=10.故选:B.【点评】本题考查了等腰三角形的性质,平行四边形的判定与性质,根据平行四边形的性质,找出对应相等的边,利用等腰三角形的性质把四边形周长转化为已知的长度去解题.6.(4分)(2022•宜宾)2020年12月17日,我国嫦娥五号返回器携带着月球样本玄武岩成功着陆地球.2021年10月19日,中国科学院发布了一项研究成果:中国科学家测定,嫦娥五号带回的玄武岩形成的年龄为20.30±0.04亿年.用科学记数法表示此玄武岩形成的年龄最小的为(单位:年)()A.2.034×108B.2.034×109C.2.026×108D.2.026×109【分析】先求出此玄武岩形成的年龄最小值,再运用科学记数法进行表示.【解答】解:∵20.30﹣0.04=20.26(亿),且20.26亿=2026000000=2.026×109,故选:D.【点评】此题考查了运用科学记数法表示较大数的能力,关键是能准确理解相关知识,并能进行相关计算.7.(4分)(2022•宜宾)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是()A.﹣=3B.﹣=3C.﹣=3D.﹣=3【分析】设原计划每天完成x套桌凳,则实际每天完成(x+2)套,根据原计划完成的时间﹣实际完成的时间=3天列出方程即可.【解答】解:设原计划每天完成x套桌凳,则实际每天完成(x+2)套,根据原计划完成的时间﹣实际完成的时间=3天得:﹣=3,故选:C.【点评】本题考查了由实际问题抽象出分式方程,根据原计划完成的时间﹣实际完成的时间=3天列出方程是解题的关键.8.(4分)(2022•宜宾)若关于x的一元二次方程ax2+2x﹣1=0有两个不相等的实数根,则a的取值范围是()A.a≠0B.a>﹣1且a≠0C.a≥﹣1且a≠0D.a>﹣1【分析】根据根的判别式即可列不等式,计算即可得答案,注意a≠0.【解答】解:由题意可得:,∴a>﹣1且a≠0,故选:B.【点评】本题主要考查根的判别式,解题关键是熟练掌握根的判别式.9.(4分)(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()A.B.C.D.【分析】利用矩形和折叠的性质可得BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt △ADF中利用勾股定理列方程,即可求出x的值,进而可得cos∠ADF.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,∴∠BDC=∠DBF,由折叠的性质可得∠BDC=∠BDF,∴∠BDF=∠DBF,∴BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中,32+(5﹣x)2=x2,∴x=,∴cos∠ADF=,故选:C.【点评】本题主要考查矩形的性质、解直角三角形、折叠的性质、勾股定理等,解题关键是利用矩形和折叠的性质得到DF=BF.10.(4分)(2022•宜宾)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m 的值为()A.0B.﹣10C.3D.10【分析】由于m、n是一元二次方程x2+2x﹣5=0的两个根,根据根与系数的关系可得m+n=﹣2,mn=﹣5,而m是方程的一个根,可得m2+2m﹣5=0,即m2+2m=5,那么m2+mn+2m=m2+2m+mn,再把m2+2m、m+n的值整体代入计算即可.【解答】解:∵m、n是一元二次方程x2+2x﹣5=0的两个根,∴m+n=﹣2,mn=﹣5,∵m是x2+2x﹣5=0的一个根,∴m2+2m﹣5=0,∴m2+2m=5,∴m2+mn+2m=m2+2m+mn=5﹣5=0.故选:A.【点评】本题考查了根与系数的关系,解题的关键是熟练掌握一元二次方程ax2+bx+c=0(a≠0)两根x1、x2之间的关系:x1+x2=﹣,x1x2=.11.(4分)(2022•宜宾)已知抛物线y=ax2+bx+c的图象与x轴交于点A(﹣2,0)、B(4,0),若以AB为直径的圆与在x轴下方的抛物线有交点,则a的取值范围是()A.a≥B.a>C.0<a<D.0<a≤【分析】把A、B两点坐标代入二次函数解析式,用a表示b、c,进而把抛物线的解析式用a表示,设抛物线在x轴下方一点P的横坐标为t,由CP≥AB,列出a与t的不等式式,进而根据不等式的性质求得结果.【解答】解:把A(﹣2,0)、B(4,0)代入y=ax2+bx+c得,,解得,∴抛物线的解析式为:y=ax2﹣2ax﹣8a=a(x﹣1)2﹣9a,设P(t,a(t﹣1)2﹣9a)为x轴下方的抛物线上的点,则﹣2<t<4,设C为AB的中点,则C(1,0),∵以AB为直径的圆与在x轴下方的抛物线有交点,∴CP≥,即CP≤3,∴(t﹣1)2+[a(t﹣1)2﹣9a]2≥9,∴,∴a≤﹣或a≥,∵以AB为直径的圆与在x轴下方的抛物线有交点,∴抛物线开口向上,即a>0,∴a≥,∵,即,∴a≥.故选:A.【点评】本题主要考查了二次函数的图象与性质,点与圆的位置关系的应用,关键是根据点与圆的位置关系列出不等式.12.(4分)(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得P A+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④【分析】①正确.证明△BAD≌△DAE(SAS),可得结论;②正确.证明A,D,C,E四点共圆,利用圆周角定理证明;③正确.设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,求出AO,CJ,可得结论;④错误.将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,当点A,点P,点N,点M共线时,P A+PB+PC值最小,此时∠APB=∠APC=∠BPC=120°,PB=PC,AD ⊥BC,设PD=t,则BD=AD=t,构建方程求出t,可得结论.【解答】解:如图1中,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△DAE(SAS),∴BD=EC,∠ADB=∠AEC,故①正确,∵∠ADB+∠ADC=180°,∴∠AEC+∠ADC=180°,∴∠DAE+∠DCE=180°,∴∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,∴A,D,C,E四点共圆,∴∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,∵tan∠CDF===2,∴CJ=m,∵AO⊥DE,CJ⊥DE,∴AO∥CJ,∴===,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴P A+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,P A+PB+PC值最小,此时∠APB=∠APC=∠BPC =120°,PB=PC,AD⊥BC,∴∠BPD=∠CPD=60°,设PD=t,则BD=AD=t,∴2+t=t,∴t=+1,∴CE=BD=t=3+,故④错误.故选:B.【点评】本题考查等腰直角三角形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共6个小题,每小题4分,共24分.请把答案直接填在答题卡对应题中横线上.13.(4分)(2022•宜宾)分解因式:x3﹣4x=x(x+2)(x﹣2).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.14.(4分)(2022•宜宾)不等式组的解集为﹣4<x≤﹣1.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:,解不等式①,得:x≤﹣1,解不等式②,得:x>﹣4,故原不等式组的解集为﹣4<x≤﹣1,故答案为:﹣4<x≤﹣1.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.15.(4分)(2022•宜宾)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若BC=4,AF=2,CF=3,则EF=.【分析】由∠1=∠2,∠A=∠A,得出△AEF∽△ABC,再由相似三角形的性质即可得出EF的长度.【解答】解:∵∠1=∠2,∠A=∠A,∴△AEF∽△ABC,∴,∵BC=4,AF=2,CF=3,∴,∴EF=,故答案为:.【点评】本题考查了相似三角形的判定与性质,根据已知条件求证△AEF∽△ABC是解决问题的关键.16.(4分)(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c=4:3:2,则用以上给出的公式求得这个三角形的面积为3.【分析】根据题意先求出a、b、c,再代入公式进行计算即可.【解答】解:根据a:b:c=4:3:2,设a=4k,b=3k,c=2k,则4k+3k+2k=18,解得:k=2,∴a=4k=4×2=8,b=3k=3×2=6,c=2k=2×2=4,∴S===3,故答案为:3.【点评】本题考查了二次根式的运算,要注意运算顺序,解答的关键是对相应的运算法则的熟练掌握.17.(4分)(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为289.【分析】如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,然后利用内切圆和直角三角形的性质得到AC+BC=AB+6,(BC﹣AC)2=49,接着利用完全平方公式进行代数变形,最后解关于AB的一元二次方程解决问题.【解答】解:如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,∴OE=OD=3=,∴AC+BC﹣AB=6,∴AC+BC=AB+6,∴(AC+BC)2=(AB+6)2,∴BC2+AC2+2BC×AC=AB2+12AB+36,而BC2+AC2=AB2,∴2BC×AC=12AB+36①,∵小正方形的面积为49,∴(BC﹣AC)2=49,∴BC2+AC2﹣2BC×AC=49②,把①代人②中得AB2﹣12AB﹣85=0,∴(AB﹣17)(AB+5)=0,∴AB=17(负值舍去),∴大正方形的面积为289.故答案为:289.【点评】本题主要考查了三角形的内切圆的性质,正方形的性质及勾股定理的应用,同时也利用了完全平方公式和一元二次方程,综合性强,能力要求高.18.(4分)(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x >0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为9.【分析】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,设OC=b,通过解直角三角形和等边三角形的性质用b表示出A、B两点的坐标,进而代入反比例函数的解析式列出b的方程求得b,便可求得k的值.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,∵△OMN是边长为10的等边三角形,∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°,设OC=b,则BC=,OB=2b,∴BM=OM﹣OB=10﹣2b,B(b,b),∵∠M=60°,AB⊥OM,∴AM=2BM=20﹣2b,∴AN=MN﹣AM=10﹣(20﹣2b)=2b﹣10,∵∠AND=60°,∴DN==b﹣5,AD=AN=b﹣5,∴OD=ON﹣DN=15﹣b,∴A(15﹣b,b﹣5),∵A、B两点都在反比例函数数y=(x>0)的图象上,∴k=(15﹣b)(b﹣5)=b•b,解得b=3或5,当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,∴b=3,∴k=b•b=9,故答案为:9.【点评】本题主要考查了反比例函数的图象与性质,等边三角形的性质,解直角三角形,关键是列出b的方程.三、解答题:本大题共7个小题,共78分.解答应写出文字说明、证明过程或演算步骤.19.(10分)(2022•宜宾)计算:(1)﹣4sin30°+|﹣2|;(2)(1﹣)÷.【分析】(1)先计算二次根式、特殊角的三角函数值和绝对值,再计算乘法,最后计算加减;(2)先计算括号里面的,再变除法为乘法进行分式的乘法运算.【解答】解:(1)﹣4sin30°+|﹣2|=2﹣4×+2﹣=2﹣2+2﹣=;(2)(1﹣)÷=().==a﹣1.【点评】此题考查了实数与分式的混合运算能力,关键是能准确确定运算顺序与方法,并能进行正确的计算.20.(10分)(2022•宜宾)已知:如图,点A、D、C、F在同一直线上,AB∥DE,∠B=∠E,BC=EF.求证:AD=CF.【分析】利用平行线的性质和全等三角形的判定与性质解答即可.【解答】证明:∵AB∥DE,∴∠A=∠EDF.在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).∴AC=DF,∴AC﹣DC=DF﹣DC,即:AD=CF.【点评】本题主要考查了平行线的性质和全等三角形的判定与性质,准确利用全等三角形的判定定理解答是解题的关键.21.(10分)(2022•宜宾)在4月23日世界读书日来临之际,为了解某校九年级(1)班同学们的阅读爱好,要求所有同学从4类书籍中(A:文学类;B:科幻类;C:军事类;D:其他类),选择一类自己最喜欢的书籍进行统计.根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息回答问题:(1)求九年级(1)班的人数并补全条形统计图;(2)在扇形统计图中,求m的值;(3)如果选择C类书籍的同学中有2名女同学,其余为男同学,现要在选择C类书籍的同学中选取两名同学去参加读书交流活动,请你用画树状图或列表的方法求出恰好是一男一女同学去参加读书交流活动的概率.【分析】(1)根据选择A类书籍的同学的人数和百分比计算,求出九年级(1)班的人数,求出选择C类书籍的人数,补全条形统计图;(2)求出选择B类书籍的人数,求出m;(3)根据题意画出画树状图,求出恰好是一男一女同学去参加读书交流活动的概率.【解答】解:(1)九年级(1)班的人数为:12÷30%=40(人),选择C类书籍的人数为:40﹣12﹣16﹣8=4(人),补全条形统计图如图所示;(2)m%=×100%=40%,则m=40;(3)∵选择C类书籍的同学共4人,有2名女同学,∴有2名男同学,画树状图如图所示:则P(一男一女)==.【点评】本题考查的是求随机事件的概率、条形统计图和扇形统计图,能够正确从统计图中获取相关的信息是解题的关键.22.(10分)(2022•宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:≈1.7,≈1.4)【分析】根据锐角三角函数和勾股定理,可以得到AF和BF的值,然后根据题目中的数据,可以计算出DE的值.【解答】解:由已知可得,tan∠BAF==,AB=25米,∠DBE=60°,∠DAC=45°,∠C=90°,设BF=7a米,AF=24a米,∴(7a)2+(24a)2=252,解得a=1,∴AF=24米,BF=7米,∵∠DAC=45°,∠C=90°,∴∠DAC=∠ADC=45°,∴AC=DC,设DE=x米,则DC=(x+7)米,BE=CF=x+7﹣24=(x﹣17)米,∵tan∠DBE==,∴tan60°=,解得x≈40,答:东楼的高度DE约为40米.【点评】本题考查解直角三角形的应用—仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.23.(12分)(2022•宜宾)如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y 轴交于点B,与反比例函数y=(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.【分析】(1)求出A,B两点坐标,代入直线的解析式求出a,b,再求出点C的坐标,求出k即可;(2)构建方程组求出点D的坐标,再利用割补法求出三角形面积.【解答】解:(1)在Rt△AOB中,tan∠BAO==2,∵A(4,0),∴OA=4,OB=8,∴B(0,8),∵A,B两点在直线y=ax+b上,∴,∴,∴直线AB的解析式为y=﹣2x+8,过点C作CE⊥OA于点E,∵BC=3AC,∴AB=4AC,∴CE∥OB,∴==,∴CE=2,∴C(3,2),∴k=3×2=6,∴反比例函数的解析式为y=;(2)由,解得或,∴D(1,6),过点D作DF⊥y轴于点F,∴S△OCD=S△AOB﹣S△BOD﹣S△COA=•OA•OB﹣•OB•DF﹣•OA•CE=×4×8﹣×8×1﹣×4×2=8【点评】本题考查一次函数与反比例函数的交点,解直角三角形等知识,解题的关键是熟练掌握待定系数法,属于中考常考题型.24.(12分)(2022•宜宾)如图,点C是以AB为直径的⊙O上一点,点D是AB的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC的延长线于点E,且EG=EC.(1)求证:DE是⊙O的切线;(2)若点F是OA的中点,BD=4,sin∠D=,求EC的长.【分析】(1)要证明DE是⊙O的切线,只要证明OC⊥CD即可,根据题目中的条件和等腰三角形的性质、直角三角形的性质,可以得到∠OCD=90°,从而可以证明结论成立;(2)根据相似三角形的判定与性质和题目中的数据,可以求得DE和CD的长,从而可以得到EC的长.【解答】(1)证明:连接OC,如图所示,∵EF⊥AB,AB为⊙O的切线,∴∠GF A=90°,∠ACB=90°,∴∠A+∠AGF=90°,∠A+∠ABC=90°,∴∠AGF=∠ABC,∵EG=EC,OC=OB,∴∠EGC=∠ECG,∠ABC=∠BCO,又∵∠AGF=∠EGC,∴∠ECG=∠BCO,∵∠BCO+∠ACO=90°,∴∠ECG+∠ACO=90°,∴∠ECO=90°,∴DE是⊙O的切线;(2)解:由(1)知,DE是⊙O的切线,∴∠OCD=90°,∵BD=4,sin∠D=,OC=OB,∴=,即=,解得OC=2,∴OD=6,∴DC===4,∵点E为OA的中点,OA=OC,∴OF=1,∴DF=7,∵∠EFD=∠OCD,∠EDF=∠ODC,∴△EFD∽△OCD,∴,即,解得DE=,∴EC=ED﹣DC=﹣4=,即EC的长是.【点评】本题考查相似三角形的判定与性质、圆周角定理、切线的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.(14分)(2022•宜宾)如图,抛物线y=ax2+bx+c与x轴交于A(3,0)、B(﹣1,0)两点,与y轴交于点C(0,3),其顶点为点D,连结AC.(1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;(2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+PM的最小值.【分析】(1)利用待定系数法,把问题转化为解方程组即可;(2)过点F作FG⊥DE于点G,证明△OAC≌△GFE(AAS),推出OA=FG=3,设F (m,﹣m2+2m+3),则G(1,﹣m2+2m+3),可得FG=|m﹣1|=3,推出m=﹣2或m=4,即可解决问题;(3)由题意,M(1,﹣1),F1(4,﹣5),F2(﹣2,﹣5)关于对称轴直线x=1对称,连接F1F2交对称轴于点H,连接F1M,F2M,过点F2作F2N⊥F1M于点N,交对称轴于点P,连接PF1.则MH=4,HF1=3,MF1=5,证明PN=PM,由PF2=PF1,推出PF+PM=PF1+PN=FN2为最小值.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(3,0)、B(﹣1,0),C(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)设直线AC是解析式为y=kx+b,把A(3,0),C(0,3)代入,得,∴,∴直线AC的解析式为y=﹣x+3,过点F作FG⊥DE于点G,∵以A,C,E,F为顶点的四边形是以AC为边的平行四边形,∴AC=EF,AC∥EF,∵OA∥FG,∴∠OAC=∠GFE,∴△OAC≌△GFE(AAS),∴OA=FG=3,设F(m,﹣m2+2m+3),则G(1,﹣m2+2m+3),∴FG=|m﹣1|=3,∴m=﹣2或m=4,当m=﹣2时,﹣m2+2m+3=﹣5,∴F1(﹣2,﹣5),当m=时,﹣m2+2m+3=﹣5,∴F2(4,﹣5)综上所述,满足条件点点F的坐标为(﹣2,﹣5)或(4,﹣5);(3)由题意,M(1,﹣1),F1(4,﹣5),F2(﹣2,﹣5)关于对称轴直线x=1对称,连接F1F2交对称轴于点H,连接F1M,F2M,过点F2作F2N⊥F1M于点N,交对称轴于点P,连接PF1.则MH=4,HF1=3,MF1=5,在Rt△MHF1中,sin∠HMF1==,则在RtMPN中,sin∠PMN==,∴PN=PM,∵PF2=PF1,∴PF +PM=PF1+PN=FN2为最小值,∵=×6×4=×5×F2N,∴F2N =,∴PF +PM 的最小值为.【点评】本题属于二次函数综合题,考查了二次函数的性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,学会用转化的思想思考问题,属于中考压轴题.第31页(共31页)。
2023年四川省宜宾市中考数学试卷(含答案)070849
2023年四川省宜宾市中考数学试卷试卷考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 的相反数是 A.B.C.D.2. 下列计算正确的是( )A.=B.=C.=D.=3. 下列图案中,既是轴对称图形又是中心对称图形的有 ( )A.个B.个C.个D.个4. 这段时间,一个叫“学习强国”的理论学习平台火了,很多人主动下载、积极打卡,兴起了一股全民学习的热潮,据不完全统计,截止月号,华为官方应用市场“学习强国”下载量已达次,请将用科学记数法表示为( )A.B.C.D.5. 如图所示,直线、被直线、所截,且,与相交于点,则( )−12()−22−12122a +3b 5ab5a −3a 22−3a a 2−a−2b +3b a 2a 2ba 2123442APP 88300000883000000.883×1098.83×1088.83×10788.3×106a b c d a//b c d O α=A.B.C.D.6. 将克含糖的糖水与克含糖的糖水混合,混合后的糖水含糖( )A.%B.C.D.7. 如图,是的直径,点,是圆上两点,且,则( )A.B.C.D.8. 分式方程的解是( )A.=B.=C.=D.=11∘33∘43∘68∘x 10%y 30%20×100%x+y2×100%x+3y20×100%x+3y10x+10y AB ⊙O C D ∠AOC =126∘∠CDB =27∘64∘54∘32∘=11x+2x 1x −1x 2x −29. 如图,用一个半径为的定滑轮带动重物上升,滑轮上一点旋转了,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A.B.C.D.10. 如图,已知正方形边长为,连接、,平分交于点,则长为( )A. B.C.D.11. 在平面直角坐标系中,点是坐标原点,点是轴正半轴上的一个动点,过点作轴的平行线交反比例函数 的图象于点,当点的横坐标逐渐增大时,的面积将会( )A.先增大后减小B.不变C.逐渐减小D.逐渐增大12. 如图,正方形中,点在边上,点在边上,若,则下列结论:①;②;③;④;⑤.其中结论正确的序号是 ( )A.①②③B.④⑤5cm A 108∘πcm2πcm3πcm5πcmABCD 1AC BD CE ∠ACD BD E DE 2−2−1−12−O A x A y y =(x >0)2x B A △OAB ABCD E AD F CD ∠BEF =∠EBC,AB =3AE DF =FC AE+DF =EF ∠BFE =∠BFC ∠DEF +∠CBF =∠BFC BF :EF =3:55–√C.①②③④D.①②③④⑤二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13. 已知一组样本数据:,,,,,,则这组样本的中位数为________.14. 分解因式:________.15. 若关于的方程的一个根是,则另一个根是________.16. 定义:对于实数,符号表示不大于的最大整数.例如: ,,,如果,满足条件的所有整数有________.17. 已知的半径为,为圆上一定点,为圆上一动点,以为边作等腰,点在圆上运动一周的过程中,的最大值为________.18. 如图,为的平分线上一点,过点作任意一条直线分别与的两边相交于点,,为的中点,过点作的垂线交射线于点,若,则的大小为________(用含的代数式表示).三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19. 计算:.20. 如图,在中,,,是边上两点且,求证:.21. 某校开设有(类)、音乐(类)、体育(类)、舞蹈(类)四类社团活动,要求学生全员参加,每人限报一类.为了了解学生参与社团活动的情况,校学生会随机抽查了部分学生,将所收集的数据绘制成如图所示不完整的统计图.请根据图中提供的信息解答下列问题:类型频数频率123451b −8ab +16b =a 2x +3x+k =0x 21a [a]a [5.7]=5[5]=5[−π]=−4[]=−2x+12x ⊙O 2A P AP Rt △APG P OG A ∠MON OD A ∠MON B C P BC P BC OA D ∠BDC =α∠BOD α(−1+2sin −|1−|+)201660∘3–√π0△ABE AB =AE C D BE AC =AD BC =DE STEAM A B C D A30x B180.15Cm 0.40D n y________,并补全条形统计图;若该校共有人,报的有________人;如果学生会想从类的甲、乙、丙三人中随机选择两人参加舞蹈演出,请用列表法或树状图的方法求出恰好选中甲的概率.22. 某建筑工地的平衡力矩塔吊如图所示,在配重点处测得塔帽的仰角为,在点的正下方处的点处测得塔帽的仰角为,请你依据相关数据计算塔帽与地面的距离的高度.(计算结果精确到,参考数据:) 23. 如图,已知一次函数的图象与反比例函数的图象交于,两点,且点的横坐标和点的纵坐标都是.求:一次函数的解析式;的面积;并利用图象指出,当为何值时有.24. 如图,在中.(1)若=,=,求的度数;(2)若的半径为,且=,求点到的距离. 25. 如图,抛物线 与轴相交于,两点,点在点的右侧,与轴相交于点(1)x =(2)1800STEAM (3)D E A 30∘E 23m D A 53∘AC 0.1m ≈1.732,sin ≈0.80,cos ≈0.60,tan ≈3–√53∘53∘53∘43=kx+b y 1=−y 28x A B A B −2(1)(2)△AOB (3)x >y 1y 2⊙O ∠ACB 80∘∠BOC ⊙O 13BC 10O BC y =−+2x+12x 252x A B B A y C.求点,,的坐标;在抛物线的对称轴上有一点,使 的值最小,求点的坐标;点为轴上一动点,在抛物线上是否存在一点,使以,,,四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.(1)A B C (2)P PA+PC P (3)M x N A C M N N参考答案与试题解析2023年四川省宜宾市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】D【考点】相反数【解析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可.【解答】解:根据相反数的含义,可得的相反数是:.故选.2.【答案】D【考点】合并同类项【解析】此题暂无解析【解答】此题暂无解答3.【答案】C【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答4.−12−(−)=1212D【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.【解答】将用科学记数法表示为:.5.【答案】B【考点】平行线的性质三角形的外角性质【解析】由平行线的性质可得,又由外角的性质可得,可求得.【解答】解:如图,,,又,.故选.6.【答案】D【考点】由实际问题抽象出二元一次方程组【解析】a ×10n 1≤|a |<10n n a n ≥10n <1n 883000008.83×107∠1=79∘∠1+α=112∘α∵a//b ∴∠1=79∘∵∠1+α=112∘∴α=−=112∘79∘33∘B此题暂无解析【解答】解:混合之后糖的含量:,故选.7.【答案】A【考点】圆周角定理圆心角、弧、弦的关系【解析】由=,可求得的度数,然后由圆周角定理,求得的度数.【解答】解:∵=,∴==,∵=.故选.8.【答案】B【考点】解分式方程【解析】根据分式方程的求解方法解题,注意检验根的情况;【解答】,两侧同时乘以,可得=,解得=;经检验=是原方程的根;9.【答案】C【考点】弧长的计算【解析】根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式计算即可.=×100%10%x+30%y x+y x+3y 10x+10yD ∠AOC 126∘∠BOC ∠CDB ∠AOC 126∘∠BOC −∠AOC 180∘54∘∠CDB =∠BOC 1227∘A =11x+2(x+2)x+21x −1x −1【解答】解:根据题意得:,则重物上升了.故选10.【答案】C【考点】正方形的性质【解析】此题暂无解析【解答】此题暂无解答11.【答案】B【考点】反比例函数图象上点的坐标特征反比例函数系数k 的几何意义【解析】此题暂无解析【解答】此题暂无解答12.【答案】D【考点】全等三角形的性质与判定正方形的性质翻折变换(折叠问题)【解析】【解答】解:①项,延长交的延长线于点.不妨设正方形的边长为,假设是的中点,l==3π(cm)108π×51803πcm C.EF BC G 3F CD F =3则,,,所以在和中,有 所以 ,所以,所以,,所以,所以,故假设成立,所以,故①项正确.②项 ,,,所以 ,故②项正确.③项,过点作于点,,即,因为,所以,所以在与中,有所以,所以即,故③项正确.④项,过点作交于点,所以,所以, ,所以.因为,所以,故④项正确.⑤项,,故⑤正确.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】【考点】中位数【解析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:将这组数据小到大排列:,,,,,,所以中位数为.故答案为:.14.【答案】.AE =1DE =2DF =32EF ==D +D E 2F 2−−−−−−−−−−√52△EDF △CCF ∠EDF =∠GCF ,DF =CF ,∠EFD =∠GFC ,△EDF ≅△GCF (ASA)GF =EF =,CG =DE =252EG =EF +GF =5BG =B +CG =5C ′EG =BG ∠BEF =∠EBC DF =FC AE =1DF =32AE+DF ==EF 52B BH ⊥EF H =−−−S △BEF S 正方形ABCD S △ABE S △EDF S △BCF =3×3−×3×1−×2×−×3×=S △BEF 1212321232154=EF ⋅BH =×⋅BH S △BEF 121252BH =3Rt △BHF Rt △BCF {BF =BF,BH =BC,Rt △BHF ≅Rt △BCF (HL)∠BFH =∠BFC ∠BFE =∠BFC F FP//BC AB P FP//AD ∠DEF =∠EFP ∠CBF =∠BFP ∠DEF +∠CBF =∠EFP +∠BFP =∠BFE ∠BFE =∠BFC ∠DEF +∠CBF =∠BFC BF ∶EF =∶=3∶5+32 1.52−−−−−−−√525–√D 2.5112345=2.52+322.5b(a −4)2【考点】提公因式法与公式法的综合运用【解析】先提公因式,再用完全平方公式进行因式分解.【解答】.15.【答案】【考点】根与系数的关系【解析】设方程的两根分别为,,则由根与系数关系得,,由可得.【解答】解:根据题意,设方程的两根分别为,,令,则由根与系数关系得,,∵,∴.故答案为:.16.【答案】,【考点】一元一次不等式组的整数解【解析】根据已知得出,求出即可.【解答】解:由定义可知,解得,所以满足条件的所有整数有,.故答案为:,.17.【答案】【考点】旋转的性质等腰直角三角形b −8ab +16b =b(−8a +16)=b(a −4a 2a 2)2−4x 1x 2+=−3x 1x 2=1x 1=−4x 2x 1x 2=1x 1+=−3x 1x 2=1x 1=−4x 2−4−5−4−2≤<−1x+12−2≤<−1x+12−5≤x <−3−5−4−5−42+2全等三角形的性质与判定三角形三边关系【解析】连接,作交于点,连接,,.首先证明,推出==,由=,可得=,由,推出,由此即可解决问题;【解答】连接,作交于点,连接,,.∵=,=,∴=,∴=,=,∴=,∴==,∵==,∴,∴==,∵=,∴=,∵,∴,∴的最大值为.18.【答案】【考点】角平分线的性质等腰三角形的性质全等三角形的性质与判定【解析】【解答】解:如图,过作于,于,OA OH ⊥OA ⊙O H AH HC OP ∠OAP ∽△HAG OP 2HG 2OG ≤OH+HG OG ≤2+2OA OH ⊥OA ⊙O H AH HG OP OA OH ∠AOH 90∘AH OA AP PG ∠APG 90∘AG AP ∠OAH ∠PAG 45∘∠OAP ∽△HAG OP 2HG 2OG ≤OH+HG OG ≤2+2OG 2+2−90∘α2D DE ⊥OM E DF ⊥ON F则.∵为的角平分线,∴.为的中点,,,∴(),∴.∵,,即,,.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19.【答案】原式=.【考点】零指数幂实数的运算特殊角的三角函数值【解析】先计算乘方、代入三角函数值、去绝对值符号、计算零指数幂,再去括号,最后计算加减可得.【解答】原式=.20.【答案】证明:∵,∴,∵,∴,∴,在和中,∴,∴.∠DEB =∠DFC =∠DFO =90∘OA ∠MON DE =DF ∵P BC PD ⊥BC ∴BD =CD Rt △DEB ≅Rt △DFC HL ∠BDE =∠CDF ∠BDC =α∴∠BDF +∠CDF =∠BDF +∠BDE ∠EDF =α∴∠MON =(180−α)∘∴∠BOD =[(180−α)=−12]∘90∘α2−90∘α2=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3AB =AE ∠B =∠E AC =AD ∠ACD =∠ADC ∠BAC =∠EAD △ABC △AED AB =AE,∠BAC =∠EAD,AC =AD,△ABC ≅△AED(SAS)BC =DE全等三角形的性质与判定【解析】根据等腰三角形的性质可得到两组相等的角,再根据判定,由全等三角形的性质即可求得结论.【解答】证明:∵,∴,∵,∴,∴,在和中,∴,∴.21.【答案】解:抽取的学生数为(人),∴,类人数为(人),∴类人数为(人).补全条形统计图如图所示.由题意,画树状图如图,共有种等可能的结果,其中恰好选中里的种情况,则恰好选中甲的概率为.【考点】条形统计图频数(率)分布表用样本估计总体列表法与树状图法【解析】SAS △ABC ≅△AED AB =AE ∠B =∠E AC =AD ∠ACD =∠ADC ∠BAC =∠EAD △ABC △AED AB =AE,∠BAC =∠EAD,AC =AD,△ABC ≅△AED(SAS)BC =DE (1)18÷0.15=120x =30÷120=0.25C 120×0.40=48D 120−30−18−48=24450(3)64=4623解:抽取的学生数为(人),∴,类人数为(人),∴类人数为(人).补全条形统计图如图所示.报的有(人).故答案为:.由题意,画树状图如图,共有种等可能的结果,其中恰好选中里的种情况,则恰好选中甲的概率为.22.【答案】解:设的高度为米.在中,由,得 ,易证四边形为矩形,∴,,在中,由,得,由,得,解得 .答:塔帽与地面的距离约为米.【考点】解直角三角形的应用-仰角俯角问题【解析】此题暂无解析【解答】解:设的高度为米.在中,由,得 ,易证四边形为矩形,∴,,在中,由,得,由,得,解得 .答:塔帽与地面的距离约为米.23.【答案】解:∵点的横坐标和点的纵坐标都是,(1)18÷0.15=120x =30÷120=0.25C 120×0.40=48D 120−30−18−48=24(2)STEAM 1800×0.25=450450(3)64=4623AC x Rt △ACD AC =CD ⋅tan53∘CD =x 34BCDE BE =CD =x 34BC =DE =23Rt △ABE AB =BE ⋅tan30∘AB ≈0.433x BC =AC −AB x−0.433x =23x ≈40.6AC 40.6AC x Rt △ACD AC =CD ⋅tan53∘CD =x 34BCDE BE =CD =x 34BC =DE =23Rt △ABE AB =BE ⋅tan30∘AB ≈0.433x BC =AC −AB x−0.433x =23x ≈40.6AC 40.6(1)A B −2=−=48=−28∴,,解得,∴,.把点的坐标代入函数解析式,得解得∴一次函数的解析式为.一次函数图象与轴的交点坐标为,∴.根据图象,当或时,.【考点】待定系数法求一次函数解析式反比例函数与一次函数的综合三角形的面积【解析】(1)先利用反比例函数求出点、的坐标,再利用待定系数法求一次函数的解析式;(2)求出一次函数图象与轴的交点坐标,然后求出与的面积,则;(3)可根据图象直接写出答案.【解答】解:∵点的横坐标和点的纵坐标都是,∴,,解得,∴,.把点的坐标代入函数解析式,得解得∴一次函数的解析式为.一次函数图象与轴的交点坐标为,∴.根据图象,当或时,.24.y =−=48−2−=−28x x =4A(−2,4)B(4,−2)A ,B {−2k +b =4,4k +b =−2,{k =−1,b =2,y =−x+2(2)y C(0,2)=+S △AOB S △AOC S △BOC =×2×|−2|+×2×41212=2+4=6(3)x <−20<x <4>y 1y 2A B y △AOC △BOC =+S △AOB S △AOC S △BOC (1)A B −2y =−=48−2−=−28x x =4A(−2,4)B(4,−2)A ,B {−2k +b =4,4k +b =−2,{k =−1,b =2,y =−x+2(2)y C(0,2)=+S △AOB S △AOC S △BOC =×2×|−2|+×2×41212=2+4=6(3)x <−20<x <4>y 1y 2【答案】∵=,∴==,∴==,∴==;作于,如图=,在中,==,即点到的距离为.【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:当 时, ,,当 时, ,化简,得 ,解得,,∵点在点的右侧,∴;连接,交对称轴于点,连接∵点和点关于抛物线的对称轴对称,.要使 的值最小,则应使 的值最小,所以与对称轴的交点使得 的值最小.设所在直线的解析式为 ,∠ABC ∠ACB 80∘∠A −−180∘80∘80∘20∘∠BOC 2∠A 40∘OH ⊥BC H BC 5Rt △OBH OH O BC 12(1)x =0y =52∴C(0,)52y =0−+2x+=012x 252x 2−4x −5=0x 1=5=−1x 2B A A(−1,0),B(5,0)(2)BC P AP.A B ∴AP =PB PA+PC PB+PC BC P PA+PC BC y =kx+b (5,0),C(0,)5将 代入,可得解得 故所在直线的解析式为.抛物线的对称轴为直线,当时, ,的坐标为.如图,①当在轴上方,此时 ,且,则 ,四边形 是平行四边形.②当在轴下方:作,交 于点如果四边形 是平行四边形.,,又∵,,.当时, ,,, ,.综上所述,点的坐标为 ,或.【考点】二次函数综合题【解析】此题暂无解析【解答】解:当 时, ,,当 时, ,化简,得 ,解得,,∵点在点的右侧,∴;B(5,0),C(0,)52b =,525k +b =0, k =−,12b =,52BC y =−x+1252x =2x =2y =−×2+=125232∴P (2,)32(3)N x A =C M 1N 1A //C M 1N 1(4,)N 152∴ACN 1M 1N x D ⊥A N 2M 2AM 2 D.ACM 2N 2∴AC//,AC =M 2N 2M 2N 2∴∠CAO =∠D N2M 2∠AOC =∠D M2N 2∴△AOC ≅△D (AAS)M 2N 2∴D =OC =N 252y =−52−+2x+=−12x 25252∴=2−,=2+x 114−−√x 214−−√∴(2+N 214−−√−)52(2−,−)N 314−−√52N (4,),(2+5214−−√−)52(2−,−)14−−√52(1)x =0y =52∴C(0,)52y =0−+2x+=012x 252x 2−4x −5=0x 1=5=−1x 2B A A(−1,0),B(5,0)连接,交对称轴于点,连接∵点和点关于抛物线的对称轴对称, . 要使 的值最小,则应使 的值最小,所以与对称轴的交点使得 的值最小.设所在直线的解析式为 ,将 代入,可得 解得 故所在直线的解析式为.抛物线的对称轴为直线,当时, ,的坐标为.如图,①当在轴上方,此时 ,且,则 ,四边形 是平行四边形.②当在轴下方:作,交 于点如果四边形 是平行四边形.,,又∵,,.当时, ,,, ,.综上所述,点的坐标为 ,或.(2)BC P AP.A B ∴AP =PB PA+PC PB+PC BC P PA+PC BC y =kx+b B(5,0),C(0,)52 b =,525k +b =0, k =−,12b =,52BC y =−x+1252x =2x =2y =−×2+=125232∴P (2,)32(3)N x A =C M 1N 1A //C M 1N 1(4,)N 152∴ACN 1M 1N x D ⊥A N 2M 2AM 2 D.ACM 2N 2∴AC//,AC =M2N 2M 2N 2∴∠CAO =∠D N2M 2∠AOC =∠D M 2N 2∴△AOC ≅△D (AAS)M 2N 2∴D =OC =N 252y =−52−+2x+=−12x 25252∴=2−,=2+x 114−−√x 214−−√∴(2+N 214−−√−)52(2−,−)N 314−−√52N (4,),(2+5214−−√−)52(2−,−)14−−√52。
四川省宜宾市中考数学试卷(含答案)
2022年中考往年真题练习: 四川省宜宾市中考数学试卷一.挑选题(共8小题)1.(2021宜宾) ﹣3的倒数是()A.B. 3 C.﹣3 D.﹣考点分析: 倒数。
解答: 解: 根据倒数的定义得:﹣3×(﹣) =1,因此倒数是﹣.故选: D.2.(2021宜宾) 下面四个几何体中, 其左视图为圆的是()A.B.C.D.考点分析: 简单几何体的三视图。
解答: 解: A.圆柱的左视图是矩形, 不符合题意;B.三棱锥的左视图是三角形, 不符合题意;C.球的左视图是圆, 符合题意;D.长方体的左视图是矩形, 不符合题意.故选C.3.(2021宜宾) 下面运算正确的是()A. 7a2b﹣5a2b=2 B. x8÷x4=x2C.(a﹣b) 2=a2﹣b2D.(2x2) 3=8x6考点分析: 完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。
解答: 解: A.7a2b﹣5a2b=2a2b, 故本选项错误;B.x8÷x4=x4, 故本选项错误;C.(a﹣b) 2=a2﹣2ab+b2, 故本选项错误;D.(2x2) 3=8x6, 故本选项正确.故选D.区县翠屏区南溪长宁江安宜宾县珙县高县兴文筠连屏山最高气温(℃) 32 32 30 32 30 31 29 33 30 32 A.32, 31. 5 B.32, 30 C.30, 32 D.32, 31考点分析: 众数;中位数。
解答: 解: 在这一组数据中32是出现次数最多的, 故众数是32;按大小排列后, 处于这组数据中间位置的数是31、32, 那么由中位数的定义可知, 这组数据的中位数是31. 5.故选: A.5.(2021宜宾) 将代数式x2+6x+2化成(x+p) 2+q的形式为()A.(x﹣3) 2+11 B.(x+3) 2﹣7 C.(x+3) 2﹣11 D.(x+2) 2+4 考点分析: 配方法的应用。
解答: 解: x2+6x+2=x2+6x+9﹣9+2=(x+3) 2﹣7.故选B.6.(2021宜宾) 分式方程的解为()A. 3 B.﹣3 C.无解D. 3或﹣3考点分析: 解分式方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年四川宜宾中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。
适合学员写作不知如何下手而又急需快速突破的3—6级学生赠送《原创作文·专题突破》课程特色:孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。
适合学员写作不知如何下手而又急需快速突破的3—6级学生赠送《原创作文·专题突破》课程特色:本班是黄老师整个课程的精华。
阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。
适合学员写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生赠送《语文阅读得高分策略与技巧》(初中卷)课程特色:本班是黄老师整个课程的精华。
阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。
适合学员写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生赠送《语文阅读得高分策略与技巧》(初中卷)第二讲:秦汉必考文学常识梳理第三讲:魏晋南北朝必考文学常识梳理第四讲:宋代文学常识梳理(上)第五讲:宋代文学常识梳理(下)第六讲:明清文学常识梳理课程特色:帮助同学了解每位作者的其人其文;使原本空洞的文学常识,变得鲜活起来。
本课程将逐篇梳理重点作家作品,每节课都安排诗歌讲解分析。
适合学员希望全面掌握文学常识的中学生赠送课程目标:·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获适合人群适合人群:·初一年级同步学生·学习人教版的学生·程度较好,希望进一步提升、冲刺满分的学生·中上等水平学生,冲刺竞赛的学生课程目标:·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先;·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法;·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获。
适合人群。
适合人群:·初一年级同步学生·学习北师版的学生·程度较好,希望进一步提升、冲刺满分的学生·希望能够2.5年学完中考相关知识,在期中期末考试、中考确保基础、中等题不失分的同时尽可能在难题多拿分的同学。
·提高学习能力,用最短的时间学习更多的知识和方法·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获适合人群:·初一年级同步学生·预习过基础知识的学生·程度较好,希望进一步提升、冲刺满分的学生·适合中上等水平学生,冲刺竞赛的学生。
课程目标:·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法。
·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获。
适合人群:·初一年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习北师版版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习人教版数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初二年级同步学生·本课程适用学习北师数学教材的学生·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生课程目标:·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:·初三年级同步学生·预习过基础知识的学生·适合中上等水平学生,冲刺竞赛的学生·程度较好,希望进一步提升、冲刺满分的学生全国各版本初一学生。
如果该套课程不适合你,可以到选课中心的“知识点课程”选择你需要的知识点进行学习。
知识特点:学习初一的你:是不是计算经常出现问题?掉数字、掉字母、去括号不变号……是不是看到应用题就犯怵,不知未知数该设什么?如何列等式?是不是看到几何问题就犯晕?德智课程帮助你:1.计算题一步一步细致讲解,指出计算的出错点。
教你理解和熟记运算法则,不仅仅会用,还知道如何用!2.大段文字找关键词,教你如何找到题中的数量关系,用什么建立相等的条件,加强你的建模思想的认识!3.反复进行“几何模型→图形→文字→符号”的练习,让你对几何语言不在陌生!学习效果:(1)重点知识的再次学习,加深理解与记忆。
(2)对运算法则更加灵活运用,掌握计算技巧、简便解决问题。
(3)逐步形成几何语言的组织运用和理解能力,为之后的几何学习打下坚实基础。
(4)方程思想,分类讨论思想等数学重要思想的入门学习。
全国各版本初一年级学生如果该套课程不适合你,可以到选课中心的“知识点课程”选择你需要的知识点进行学习。
知识特点:刚升入初一的你们:是不是还沉浸在小学语文学习的内容?是不是对于初中的语文学习一头雾水、茫然无措?是不是渴望找到一种方法能够打牢初中语文学习基础、实现小学到初中的课程衔接?是不是希望摆脱小学灌输式的枯燥无味的学习方式,渴望养成良好的学习习惯?我们的课程特色:初一上学期的语文课程宗旨是:立足基础,科学提升,培养能力。