6.4 数据的离散程度(1)
6.4数据的离散程度
6.4数据的离散程度第一课时同步练习1.某次考试5个班级的平均成绩如下(单位:分)53,62,63,48,54则这5个班级的平2.已知一组数据:-1,x,0,1,-2的平均数是03.在方差的计算公式()()()22221210120202010s x x x⎡⎤=-+-+⋅⋅⋅+-⎣⎦中,数字10和20分别表示的意义可以是( ) .A.数据的个数和方差B.平均数和数据的个数C.数据的个数和平均数D.数据组的方差和平均数4.已知样本甲的平均数=60,方差=0.05,样本乙的平均数=60,方差=0.1,那么这两组数据的波动情况为( ) .A.甲、乙两样本波动一样大B.甲样本的波动比乙样本大C.乙样本的波动比甲样本大D.无法比较两样本波动的大小5.人数相等的甲、乙两班学生参加了同一次数学测验, 班级平均分和方差如下:平均分都为110,甲、乙两班方差分别为340、280,则成绩较为稳定的班级为( ) .A.甲班B.乙班C.两班成绩一样稳定D.无法确定观察与思考6.甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?7.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.6.4数据的离散程度第二课时同步练习1.下列说法正确的是().A.两组数据的极差相等,则方差也相等B.数据的方差越大,说明数据的波动越小C.数据的标准差越小,说明数据越稳定D.数据的平均数越大,则数据的方差越大2.某校一年级学生的平均年龄为7岁,方差为3,5年后该校六年级学生的年龄中().A.平均年龄为7岁,方差改变B.平均年龄为12岁,方差不变C.平均年龄为12岁,方差改变D.平均年龄不变,方差不变3.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是().A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员得分的平均数D.甲运动员的成绩比乙运动员的成绩稳定4.“恒盛”超市购进一批大米,大米的标准包装为每袋30kg,售货员任选6袋进行了称重检验,超过标准重量的记作“+”,不足标准重量的记作“-”,他记录的结果是0.5+,-,1+,那么这6袋大米重量-,0.5-,0,0.50.5..的平均数和极差分别是().A.0,1.5 B.29.5,1 C. 30,1.5 D.30.5,0观察与思考5.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.走进生活6.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率.(2)求两班比赛成绩的中位数.(3)两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.6.4数据的离散程度第一课时1.15分2.23.C4.C5.B6.解:甲、乙两人射击成绩的平均成绩分别为:1X =72+82+101=85⨯⨯⨯甲(),1X =71+83+91=85⨯⨯⨯乙()()()()22221=278288108=1.25s ⎡⎤-+-+-⎣⎦甲()()()22221=7838898=0.45s ⎡⎤-+-+-⎣⎦乙∵2s 甲<2s 乙,∴乙同学的射击成绩比较稳定。
6.4 数据的离散程度(课件)北师大版数学八年级上册
感悟新知
知2-讲
特别提醒 方差、标准差是描述一组数据离散程度的量,方差、
标准差越小,这组数据的离散程度越小,这组数据越稳 定;方差、标准差越大,这组数据的离散程度越大,这 组数据波动越大.
感悟新知
方差与平均数的变化规律:
样本数据
x1,x2,…,xn x1+a, x2+a,…, xn+a kx1,kx2,…,kxn kx1+a, kx2+a,…, kxn+a
感悟新知
特别提醒
知3-讲
◆用计算器求一组数据的标准差时,由于计算器型
号的不同,按键顺序也会有所不同,注意参考说
明书.
◆计算器一般不具有求方差的功能,可以先求出标
准差,再平方即可求出方差.
感悟新知
知3-练
例5 用计算器求数据7,7,7,8,5,9,7,7,6,7的
标准差、方差.
解题秘方:按照计算器求标准差的步骤先求出标
解:因为6,4,a,3,2 的平均数是5, 所以(6+4+a+ 3+2)÷5=5,解得a=10. 所以s2=15 [(6-5)2+(4-5)2+(10-5)2+(3-5)2+ (2-5)2]=8.
2-1.若样本 x1,x2,…,xn的 方 差 为 2,则样本 2x1+5,2x2+5, …,2xn+5 的方差是( D )
位: cm)的 平 均数与方差为 ͞x甲 = ͞x丙 =13 cm, ͞x
乙 = ͞x丁 =15 cm,s2甲= s 2丁 = 3.6 , s 2乙 =s2丙=6.3.
则麦苗又 高又整齐的是D(
)
A. 甲
B. 乙
C. 丙
D. 丁
感悟新知
6.4数据的离散程度
乙:7、9、8、5、6、7、7、6、7、8
分别计算出两组数据的平均数
(二)学习探究
自学指导一:自学课本149-150页,找出下列概念:
1、极差:
2、方差:
方差的符号:方差的计算公式:
3、标准差数据的极差、方差、标准差越,这组数据就越。
八年级数学6.4数据的离散程度
双边
一、学习目标:
1、了解刻画数据离散程度的三个量度-----极差、标准差和方差;
2、会利用公式进行方差、标准差的计算;
3、会在具体情境中加以应用。
二、学习重、难点:会利用公式进行方差、标准差的计算;
教学过程
(一)学习准备
1、甲乙两名士兵在相同条件下各射击10次,每次命中的环数分别是:
(2)甲乙的6次单元检测成绩的方差分别是多少?
(3)这两位同学的成绩各有什么特点?
(4)先要从中选出一人参加“希望杯”竞赛,历届比赛成绩表明,成绩达到95分以上才可能进入决赛,你认为谁去更合适,为什么?
小结:
课堂检测:
1、课本152页2
2、课本155数学理解2
作业A同步124页6.7题同步123页1.2.3.4.5题
自学检测一:计算学习准备中两组数据的极差和方差。评价两名战士的设计情况。
根据计算结果,评价一下两名战士的射击情况
巩固练习:课本151页随堂练习
自学指导二、
甲乙两位同学每个单元的数学测验成绩如下(单位:分)
甲:90、94、92、89、95、92、
乙:100、87、93、99、90、89
(1)他们的平均成绩分别是多少?
6.4 数据的离散程度
极差,它是刻画数据离散程度的一个统计量.极 差是指一组数据中最大数据与最小数据的差.
极差越大,偏离平均数越大,产品
的质量(性能)越不稳定。
探究(2)如果丙厂也参与了竞争,从该厂抽样调查了
20只鸡腿,数据如下图所示:
(1)丙厂这20只鸡腿质量的平均数和极差分别是多少? (2)在甲、丙两厂中,你认为哪个厂的鸡腿质量更符合要求? 为什么?
四 小结反思
极差是指一组数据中最大数据与最小数据的差。 方差是各个数据与平均数之差的平方的平均数。 标准差就是方差的算术平方根. 方差的计算公式为:
1 2 2 2 s x1 x x2 x ... xn x n
2
一组数据的极差、方差或标准差越小,这 组数据就越稳定.
据的离散程度,即它们相对于集中趋势的偏离情况。
二 问题探究
探究(1)为了提高农副产品的国 际竞争力,一些行业协会对农副产品 的规格进行了划分.某外贸公司要出 口一批规格为75 g的鸡腿.现有2个厂
家提供货源,它们的价格相同,鸡腿的
品质也相近.
质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,
它们的质量(单位:g)如下:
大值又是多少?最小值呢?它们相差几克? 从图中可以知道, 甲厂抽取的这20只鸡腿质量的最大值是78 g,最小值是 72 g,它们相差78-72=6(g);
乙厂抽取的这20只鸡腿质量的最大值是80 g,最小值是
71 g,它们相差80-71=9(g).
(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪个 厂的鸡腿?说明你的理由。 甲厂鸡腿的数据相对于平均数的偏差较小,所以应购买甲 厂的鸡腿。
(1)你能从图中估计出甲、乙两厂抽取的鸡腿的平均质量吗?
数据的离散程度
广才成学明志致远学案编号:2014080243编写:王效鼎审核:王效鼎班级:组别:姓名:一评:二评:6.4数据的离散程度【学习目标】1、了解方差、标准差的概念.2、会求一组数据的方差、标准差,并会用他们表示数据的离散程度.3、能用样本的方差来估计总体的方差.4、通过实际情景,提出问题,并寻求解决问题的方法,培养学生应用数学的意识和能力.【学习重难点】教学重点:本节教学的重点是方差的概念和计算。
.教学难点:方差如何表示数据的离散程度,学生不容易理解,是本节教学的难点.自主学习第一次第二次第三次第四次第五次甲命中环数7 8 8 8 9乙命中环数10 6 10 6 8①请分别算出甲、乙两名射击手的平均成绩;②请根据这两名射击手的成绩在图中画出折线图;合作交流请根据统计图,思考问题:①、甲、乙两名射击手他们每次射击成绩与他们的平均成绩比较,哪一个偏离程度较低?②、射击成绩偏离平均数的程度与数据的离散程度与折线的波动情况有怎样的联系?③、用怎样的特征数来表示数据的偏离程度?可否用各个数据与平均的差的累计数来表示数据的偏离程度?④、是否可用各个数据与平均数的差的平方和来表示数据的偏离程度?⑤、数据的偏离程度还与什么有关?要比较两组样本容量不相同的数据的偏离平均数的程度,应如何比较?概括总结根据以上问题情景,在学生讨论,教师补充的基础上得出方差的概念、计算方法、及用方差来判断数据的稳定性。
1、方差的单位和数据的单位不统一,引出标准差的概念。
(注意:在比较两组数据特征时,应取相同的样本容量,计算过程可借助计数器)2、现要挑选一名射击手参加比赛,你认为挑选哪一位比较适宜?为什么?(这个问题没有标准答案,要根据比赛的具体情况来分析,作出结论)巩固新知1、已知某样本的方差是4,则这个样本的标准差是。
2、已知一个样本1,3,2,X,5,其平均数是3,则这个样本的标准差是。
3、甲、乙两名战士在射击训练中,打靶的次数相同,且中环的平均数X甲=X乙,如果甲的射击成绩比较稳定,那么方差的大小关系是S2甲S2乙4、已知一个样本的方差是S=51[(X1—4)2+(X2—4)2+…+(X5—4)2],则这个样本的平均数是,样本的容量是。
§6.4 数据的离散程度(1)
4、一组数据的__________________越小,这组数据就越___________ 复习回顾 1、某校八年级五个班的学生人数分别为: 54,56,49,51,50 人. 求这五个班级的平均人数.
(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说 明你的理由!
极差是指一组数据中 与 的差.它是刻画数据离散程度的 一个统计量,用来描述数据的范围大小。 概念的引入 活动内容: 如果丙厂也参与了竞争,从该厂抽样调查了 20 只鸡腿,它们的质量数据如 图:错误!未找到引用源。 质量/g (1)丙厂这 20 只鸡腿质量的平均数和 80 极差分别是多少?
探究案
情境引入 为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行 了划分, 某外贸公司要出口一批规格为 75g 的鸡腿. 现有 2 个厂家提供货源, 它们的价格相同,鸡腿的品质也相近. 质检员分别从甲、乙两厂的产品中抽样调查了 20 只鸡腿,它们的质量 (单位:g)如下: 甲厂:75 74 74 76 73 76 75 77 77 74 74 75 75 76 73 76 73 78 77 72 乙厂:75 78 72 77 74 75 73 79 72 75 80 71 76 77 73 78 71 76 73 75 把这些数据表示成下图:
。 注:错误!未找到引用源。是这一组数据 x1,x2,„,xn 的平均数, 2 S 是方差,而标准差就是方差的算术平方根.一般说来,一组数据的极差、 方差、标准差越小,这组数据就越稳定. 方差的计算过程:平均——求差——平方——平均 说明:方差与标准差均有单位,标准差的单位与已知数据的单位相同, 使用时应当标明单位,方差的单位是已知单位的平方,使用时可以不标明单 位.
第4课时数据的离散程度(分层练习)(原卷版)
第六章数据分析6.4 数据的离散程度1.下列不是表示数据离散程度的量是().A.方差B.极差C.平均数D.标准差2.某班举办元旦联欢会,班长对全班同学最爱吃哪几种水果这一问题作了调查,班长在确定购买哪种水果时,最值得关注的统计量是()A.众数B.平均数C.中位数D.加权平均数3.某地统计部门公布最近5年国民消费指数增长率分别为8.5%、9.2%、9.9%、10.2%、9.8%,业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据中比较小的是()A.方差B.平均数C.众数D.中位数4.2021年4月23日是第26个世界读书日.为迎接第26个世界读书日的到来,某校举办读书分享大赛活动,最终有13名同学进入决赛(他们决赛的成绩各不相同),比赛将评出一等奖1名,二等奖2名,三等奖3名.某参赛同学知道自己的分数后,要判断自己能否获奖,他需要知道这13名学生成绩的()A.中位数B.平均数C.众数D.方差5.某校为了给八年级学生定制一套校服,从500名八年级学生中,随机抽取100名学生,测得他们的身髙数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数B.中位数C.众数D.方差6.某男装专卖店老板专营某品牌夹克,店主统计了一周中不同尺码的夹克销售量如下表:如果每件夹克的利润相同,你认为该店主最关注的销售数据是下列统计量中的()A.平均数B.方差C.众数D.中位数7.商场销售一批衬衫,如果每件衬衫的利润相同,商场经理最应该关注的数据是()A.中位数B.众数C.加权平均数D.方差8.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分. 8个有效评分与10个原始评分相比,不变的是()A.平均数B.极差C.中位数D.方差9.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.610.学校举行演讲比赛,共有13名同学进入决赛,比赛将评出金奖1名,银奖2名,铜奖3名,某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的()A.平均数B.中位数C.众数D.方差11.2020年新冠疫情来势汹汹,我国采取了有力的防疫措施,控制住了疫情的蔓延.甲,乙两个学校各有400名学生,在复学前期,为了解学生对疫情防控知识的掌握情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两校各随机抽取20名学生进行了相关知识的网上测试,测试成绩如下:甲98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58乙99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:(说明:成绩80分及以上为优良,60﹣79分为合格,60分以下为不合格)(4)得出结论a.估计甲学校掌握疫情防控知识优良的学生人数约为;b.可以推断出学校的学生掌握疫情防控知识的水平较高,理由为.12.家鞋店对上周某一品牌女鞋的销售量统计如下:该鞋店决定本周进该品牌女鞋时多进一些尺码为23.5厘米的鞋,则影响鞋店决策的统计量是_____.提升篇13.为了解八年级学生的体质健康状况,某校对八年级(10)班43名同学进行了体质检测(满分10分,最低5分),并按照男女把成绩整理如图:八年级(10)班体质检测成绩分析表平均数中位数众数方差男生7.48 8 c 1.99女生 a b 7 1.74(1)求八年级(10)班的女生人数.(2)根据统计图可知,a=,b=,c=.(3)若该校八年级一共有860人,则得分在8分及8分以上的人数共有多少人?14.今年7月1日是中国共产党建党100周年的纪念日,为了让学生和家长对党的历史有更加深刻的了解,某校在学生和家长中开展了“风雨百年党史知识竞赛”的活动,从家长和学生的答卷中各随机抽取20份,并将成绩(成绩得分用x 表示,单位;分)进行整理、描述和分析.下面给出了部分信息.20名家长的竞赛成绩:80 72 90 77 89 100 80 90 79 73 77 73 81 81 61 89 86 81 68 94家长竞赛成绩统计表 成绩(分) 6070x ≤<7080x ≤<8090x ≤<90100x ≤≤人数(人)2 6a b家长竞赛成绩统计表和学生竞赛成绩频数分布直方图如图所示,其中,学生的竞赛成绩中位于8090x ≤<的学生的分数为:83、80、86、83、85、83、80、84、83:抽取的学生和家长竞赛成绩的平均数、中位数、众数、方差如下表所示: 平均分 中位数 众数 方差 家长分数 82 80.5c109 学生分数82d 8399根据以上信息,解答下列问题:(1)上述表格中a =______,b =______,c =______,d =______;(2)根据以上数据,你认为家长和学生哪一个群体对党的历史知识了解情况更好?请说明理由.(写出一条即可)(3)己知有800名家长和840名学生参加了此次竞赛活动,请估计分数不低于90分的学生和家长共有多少人?15.某区要举办中学生科普知识竞赛,我校要选拔一支代表队参赛.选拔赛满分为100分,规定85分及以上为“合格”,95分及以上为“优秀”.现将A,B两支预选队的竞赛成绩统计如下:组别A队B队平均分88 87中位数90 a方差61 71合格率70% b优秀率30% 25%(1)求出表中a,b的值(2)若从A,B两队中选取成绩前20名(包括第20名)的学生组成代表队,小明的成绩正好是本队成绩的中位数,但他却落选了,那么小明应属于哪个队?请说明理由.16.6月26日是“国际禁毒日”某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分),收集数据为:七年级90,95,95,80,85,90,85,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90; 整理数据:80 85 90 95 100七年级 2 2 3 21 八年级 124a1分析数据:平均数 中位数 众数 方差 七年级 89b90 39 八年级c90d30根据以上信息回答下列问题: (1)请直接写出表格中a b c d ,,,的值(2)通过数据分析,你认为哪个年级的成绩比较好?说明理由;(3)该校七八年级共600人,本次竞赛成绩不低于90分的为“优秀”估计这两个年级共多少名学生达到“优秀”?17.甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:根据以上信息,请解答下面的问题;选手A平均数中位数众数方差甲 a 8 8 c乙7.5 b 6和9 2.65(1)补全甲选手10次成绩频数分布图.(2)a=,b=,c=.(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).18.(收集数据)某省中考体育自选项目中有一项是女子1分钟仰卧起坐.某学校为了解该项目的训练情况,在九(1)、九(2)两个班各随机抽取了12位女生进行测试,得到测试成绩如下(单位:个):九(1)班:42,56,57,35,54,51,49,55,56,47,40,46九(2)班:32,53,46,38,51,48,40,53,49,56,57,53(整理数据)分组整理,描述这两组数据如表:(分析数据)两组数据的平均数、众数、中位数、方差如表所示:(1)a=_______,b=_______,c=_______;(2)若规定成绩在42个及以上为良好,请估计全校480名女生中测试成绩良好的学生有多少人?(3)你认为哪个班的女生1分钟仰卧起坐整体训练的水平较好,请根据以上统计数据,说明你的理由.19.近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:(收集数据)从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:(整理数据)按如下分段整理样本数据:(分析数据)对样本数据边行如下统计:(得出结论)(1)根据统计,表格中a、b、c、d的值分别是、、、.(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有人.(3)根据以上数据,你认为(填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).20.疫情期间福州一中初中部举行了“宅家运动会”.该学校七、八年级各有300名学生参加了这次“宅家运动会”,现从七、八年级各随机抽取20名学生宅家运动会的成绩进行抽样调查.收集数据如下:整理数据如下: 5059x 6069x 7079x 8089x 90100x 10分析数据如下:根据以上信息,回答下列问题:(1)a =___________,b =___________;(2)你认为哪个年级“宅家运动会”的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性) (3)学校对“宅家运动会”成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有___________人.21.为了让“两会”精神深入青年学生,增强学子们的历史使命和社会责任感,某高校党委举办了“奋力奔跑同心追梦”两会主题知识竞答活动,文学社团为选派优秀同学参加学校竞答活动,提前对甲、乙两位同学进行了6次测验:①收集数据:分别记录甲、乙两位同学6次测验成绩(单位:分)甲82 78 82 83 86 93乙83 81 84 86 83 87②整理数据:列表格整理两位同学的测验成绩(单位:分)1 2 3 4 5 6甲82 78 82 83 86 93乙83 81 84 86 83 87③描述数据:根据甲、乙两位同学的成绩绘制折线统计图④分析数据:两组成绩的平均数、中位数、众数、方差如下表:同学平均数中位数众数方差甲84 82.5 __________ 16.3乙84 83.5 83 __________得出结论:结合上述统计过程,回答下列问题:(1)补全④中表格;(2)甲、乙两名同学中,_______(填甲或乙)的成绩更稳定,理由是______________________(3)如果由你来选择一名同学参加学校的竞答活动,你会选择__________(填甲或乙),理由是___________。
北师大版数学八年级上册6.4数据的离散程度教学设计
4.结合网络资源,了解其他衡量数据离散程度的统计量,如变异系数等,并尝试比较它们之间的异同。
要求:撰写一份简短的学习报告,介绍所了解的统计量及其计算方法,并分析其在实际问题中的应用。
5.针对本节课的学习内容,进行自我反思,从知识掌握、学习方法、合作交流等方面进行评价,总结自己的学习收获和不足之处,为下一节课的学习做好准备。
6.教学评价方面,采用多元化评价方式,关注学生的过程性表现,如课堂参与、小组合作、课后作业等,全面评估学生的学习效果。
7.结合课后实践活动,让学生在实际操作中运用所学知识,提高学生的应用意识和实践能力。
四、教学内容与过程
(一)导入新课
1.教师出示一张某班级学生身高的数据表,引导学生观察数据分布的特点,提问:“从这张表中,你能发现什么?这些数据有什么规律?”
2.通过具体的实例,演示方差、标准差的计算过程,让学生理解这些统计量在实际问题中的应用。
3.教师强调方差、标准差在描述数据波动程度方面的重要性,并指出它们在数据分析中的价值。
4.学生动手练习计算方差、标准差,教师巡回指导,解答学生的疑问。
(三)学生小组讨论
1.教师将学生分成若干小组,每组发放一张含有数据表格的练习纸,要求学生计算数据离散程度。
2.学生通过观察,可能会发现身高数据分布较广,ຫໍສະໝຸດ 的学生身高较高,有的学生身高较低。
3.教师继续提问:“如何描述这些数据的波动情况?是否存在一个指标来衡量数据的离散程度?”
4.学生思考、讨论,教师引导过渡到本节课的内容:数据的离散程度。
(二)讲授新知
1.教师讲解数据离散程度的定义,解释方差、标准差的含义和计算方法。
3.教师选取部分学生的作业进行展示,分析解题思路,强调注意事项。
【教案】6.4数据的离散程度(第1课时)
第六章数据的分析4.数据的离散程度(第1课时)总体说明:本节课共有两课时,主要让学生在具体的情境中,逐渐理解极差、方差、标准差等概念及其计算方法,领悟极差、方差、标准差都是刻画一组数据的离散程度,理解一组数据的稳定性与极差、方差、标准差等数值的大小相关.一、学生知识状况分析学生的技能基础:学生已经学习过平均数、中位数等几个刻画数据的“平均水平”的统计量,具备了一定的数据处理能力和初步的统计思想,但学生对一组数据的波动情况并不了解,它们是否稳定,稳定的依据是什么,学生缺乏直观和理性的认识.学生活动经验基础:在以往的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用,有了一定的活动经验,具备了一定的合作与交流的能力。
二、教学任务分析本节课在学生在有了初步的统计意识,并能对数据进行相应的处理和分类的基础上,又安排学生怎样对数据进行分析,力图使学生在统计意识和方法上再上一个台阶。
通过对现实生活中的某外贸公司对几个不同的厂家鸡腿的质量进行分析,引出极差、方差、标准差等相关概念,从而培养学生的统计应用能力。
为此,本节课的教学目标是:1. 知识与技能:了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
2. 过程与方法:经历表示数据离散程度的几个量度的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力。
3. 情感与态度:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系。
三、教学过程分析本节课设计了五个教学环节:第一环节:前置练习;第二环节:情境引入;第三环节:合作探究;第四环节:运用;第五环节:小结;第六环节:布置作业。
第一环节:前置练习1、某校八年级五个班的学生人数分别为: 54,56,49,51,50人.求这五个班级的平均人数.2、数据-1,0,1, 3 , 2,2,2,1的众数是__________;中位数是_________.第二环节:情境导入某中学田径队的甲、乙两名运动员在8次百米跑训练中,成绩如下表: 5255051495654=++++甲乙两位同学的成绩是一样的吗?谁的更好呢?1、请同学们根据上表信息完成下表:2、小亮说:“甲、乙两名运动员的训练成绩的平均数、中位数、众数对应相同,因此他们的成绩一样.”你认为这种说法合适吗?第三环节:合作探究平均数、众数、中位数,都是数据的集中趋势,但是在这道题中,仅仅了解数据的集中趋势是不够的,那么怎样来衡量他们的成绩呢??思考:怎样衡量数据的波动范围呢?利用折线统计图,探究数据的离散程度。
6.4.1数据的离散程度
第六章 数据的分析
4. 数据的离散程度(一)
枣庄七中 陈学峰
光明学校 田径队准备选 拔一名运动员 参加中学生运 动会,在激烈 的竞争中,有 两位同学脱颖 而出.
活动内容1:引例探究
下表是侯潇同学和赵伟强同学在8次百米跑训练中的成绩:
序数 1 2 3 4 12.6 12.5 5 13.1 12.9 6 12.5 12.2 7 12.4 12.8 8 12.2 12.3 侯潇的成绩/ 12.0 12.2 13.0 秒 赵伟强的成 绩/秒 12.2 12.4 12.7
.
命中环数 甲命中相应环数的 次数 乙命中相应环数的 次数
7 2 1
8 2 3
9 0 1
10 1 0
你评价两人的射击水平,则谁的射 击成绩更稳定些?
小结
本节课“我知道了„”, “我发现了„”,
“我学会了„”,
“我想我以后将„”
在数学的天地里重要不是我们知道了 什么,而是我们怎么知道什么! ——毕达哥拉斯
活动内容4:再探新知
市场竞争是激烈的,如果丙厂也参与了竞争,从该厂 抽样的20只鸡腿如图所示: (1)丙厂的这20只鸡腿质 量的平均数和极差分别是多 少? (2)如何刻画丙厂这20只 鸡腿的质量与其平均数的差 距?分别求出甲厂和丙厂的 20只鸡腿质量与其平均数的 差距. (3)在甲和丙两个厂家中, 你认为哪个厂的鸡腿更符合 要求呢?
1、请同学们根据上表信息完成下表:
序数 甲 乙 平均数 12.5 12.5 中位数 12.45 12.45 众数 12.2 12.2
2、根据你所得到的信息分析两名运动员的成绩,你认为谁的 成绩更好?你觉得李教练最终选择了哪名运动员呢?
6.4++数据的离散程度+++课件+++-2024-2025学年北师大版八年级数学上册+
x
甲
=75g
x可以用中位数
=75g
与众数估测平
(3)观察散点图,你认为外贸公司应购买哪个厂家的鸡腿?
乙
均数。
(1)你能从图中估计出甲、乙两厂被抽取的鸡腿的平均质量吗?
估计平均质量均为75g
(2)求甲、乙两厂被抽取鸡腿的平均质量.
极差=最大数 据 - 最小数据
甲,乙两名射击手的测试成绩统计如下:
第一次
甲命中环数
乙命中环数
第二次
7
10
8
6
⑴计算甲射手的平均成绩与方差;
x=
甲
7+8+8+8+9 = 8
5
S2甲= 1
5 ×2 =0.4
8
6
9
8
1、有甲,乙两名射击手现要挑选一名射击手参加比赛.
甲,乙两名射击手的测试成绩统计如
下:
第一次 第二次
甲厂:1,2 ,1,0,2, 0,1,0,4,3
丙厂: 0,2,3,0,4,2, 0,2,3,4
方案二、各个数据与平均数的差的平方:
甲厂:1,4,1,0,4,0,1,0,16,9
丙厂:0,4,9,0,16,4,0,4,9,16
总偏差:
甲厂:0
丙厂:0
总偏
差:
甲厂:14
丙厂:20
总偏差:
甲厂:36
丙厂:62
第三次
第四次 第五次
7
8
8
8
9
甲命中环数
10
6
10
6
8
乙命中环数
⑵计算乙射手的平均成绩与方差
x = 10+6+10+6+8
2017-2018学年北师大版八年级数学上册教师用书(pdf版):6.4数据的离散程度
㊀ ( 其中 x 1 ᶄꎬ x 2 ᶄꎬ x 3 ᶄꎬ������ꎬ x n ᶄ 分别等于 x 1 - aꎬ x 2 - aꎬ x 3 - aꎬ 2. 标准差:方差的算术平方根. ������ꎬx n - aꎬxᶄ是数据组 x 1 ᶄꎬx 2 ᶄꎬx 3 ᶄꎬ������ꎬx n ᶄ的平均数)
3. 方差( 标准差 ) 的意义: 方差 ( 标准差 ) 越大ꎬ 数据的波 齐. 差) 越小ꎬ数据的波动就 ㊀ 越小 ㊀ ꎬ 数据就越稳定ꎬ 越整 才利用方差来判断它们的波动情况. 动就㊀ 越大㊀ ꎬ数据就越不稳定ꎬ 越不整齐ꎻ 方差 ( 标准
归纳:
kx 1 ꎬkx 2 ꎬ������ꎬkx n kx 1 + aꎬkx 2 + aꎬ������ꎬkx n + a
样本 x 1 ꎬx 2 ꎬ������ꎬx n x 1 + aꎬx 2 + aꎬ������ꎬx n + a
平均数 x x +aFra bibliotek方差 s
2
ȵ
s2 k s
2 2
kx k x +a
6+6.5 25 = ꎻ (3) 第四次调价后ꎬ对于 A 产品ꎬ这四次单价的中位数为 2 4 对于 B 产品ꎬȵ m >0ꎬʑ 第四次单价大于 3ꎬ ȵ 3. 5+4 13 25 ˑ2-1 = > ꎬʑ 第四次单价小于 4ꎬ 2 2 4 3( 1+m% ) +3. 5 25 ˑ2-1 = ꎬʑ m = 25. ʑ 2 4
1 43 < ꎬʑ B 产品的方差小ꎬʑ B 产品的单价波动小ꎻ 6 150
1 1 [( 3. 5-3. 5) 2 +( 4-3. 5) 2 +( 3-3. 5) 2 ] = ꎬ 3 6
k2 s2
方差在实际问题中的评价作用 ʌ 例 2ɔ (2015 河北 ) 某厂生产 AꎬB 两种产品ꎬ 其单价随 市场变化而做相应调整. 营销人员根据前三次单价变化 的情况ꎬ绘制了如下统计表及不完整的折线图. AꎬB 产品单价变化统计表 第一次 3.5 6 第二次 5.2 4
6.4数据的离散程度(1)-2024-2025学年第一学期数学北师大八年级(上册)课件
当堂训练
1、某中学人数相等的八(11)班和八(19)班学生参加了同一次
物理竞赛,(11)、(19)班的平均分和方差分别为 x(11) x(19) 82分,
B S 2 (11)
192
, S 2(19)
178 ,那么成绩较整齐的是(
)
A.(11)班
B.(19)班
C.两班相同
D.不能确定
2、在一次比赛中,有5位裁判分别给某位选手的打分情况如表:
S2乙=0.4,则下列说法正确的是( B )
A.甲比乙的成绩稳定
B.乙比甲的成绩稳定
C.甲乙两人的成绩一样稳定 D.无法确定谁的成绩更稳定
3.人数相同的八年级(1)、(2)两班学生在同一次 数学单元测试中,班级平均分和方差下:
x甲 x乙 80 s甲2 24 , s乙2 18 , 则成绩较为稳 定的班级是( B )
计算方差的步骤可概括为“先平均,后求差,平方后, 再平均”.
2.方差的意义
方差用来衡量一组数据的波动大小(即这组数据偏 离平均数的大小).
方差越大,数据的波动越大;
方差越小,数据的波动越小.
3、方差的适用条件: 当两组数据的平均数相等或相近时,
才利用方差来判断它们的波动情况. 友情提示: 1、方差是个平均值
2、方差的符号s2本身带有平方
自学检测1 1、计算下列各组数据的方差:
(1)6 6 6 6 6 6 6;
(2)5 5 6 6 6 7 7;
4
7
(3)3 3 4 6 8 9 9;
(4)3 3 3 6 9 9 9;
自学指导2
数学上,数据的离散程度还可以用极差来刻画.
极差是指一组数据中最大数据与最小数据的差. 例:样本9.9,10.3,10.3,9.9,10.1的极差是 0.4 .
6.4数据的离散程度(第一课时)教学设计2024-2025学年北师大版数学八年级上册
- 《统计学基础》:介绍了统计学的基本概念、原理和方法,包括数据的收集、处理和分析,其中涉及方差、标准差等离散程度的度量。
- 《生活中的统计学》:通过生活中的实例,展示了统计学在各个领域的应用,让学生了解统计学的实用性和广泛性。
- 《数据可视化》:介绍了如何利用图表、图像等可视化手段展示数据的特征和规律,包括离散程度的相关图表。
学具准备
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源
1. 硬件资源:多媒体教学设备、投影仪、黑板、计算器。
2. 软件资源:教学课件、统计软件(如Excel)、数学学科软件。
3. 课程平台:学校教学管理系统、课堂互动平台。
4. 信息化资源:电子教材、教学视频、在线统计图表工具。
学情分析
八年级学生在知识层面,已具备基本的数学运算能力和数据收集、整理、描述的能力,掌握了平均数的概念及其应用。在能力方面,他们具有一定的逻辑思维和问题解决能力,但对方差和标准差的深入理解及实际应用尚属初步阶段。素质方面,学生的合作意识和探究精神逐渐增强,但个别学生在自主学习能力和习惯上存在差异。
学生在前期的学习中,对统计图表的绘制和使用有一定的实践经验,但对于数据的离散程度及其意义的理解可能还不够深入。此外,部分学生在数学学习中可能存在畏惧心理,对复杂计算和抽象概念接受度不高,这可能会影响他们对本节课内容的理解和掌握。
在观察环节,我发现学生在小组讨论时积极参与,互相交流,通过讨论加深对方差和标准差的理解。但在课堂测试环节,部分学生在计算方差时出现了一些错误,尤其是在公式的应用上。
针对这些问题,我在课后进行了认真的作业批改和点评,对学生的作业进行了详细的反馈。在作业中,我不仅纠正了学生的错误,还给出了一些改进的建议,鼓励学生继续努力,提高自己的计算能力和数据分析能力。
6.4 数据的离散程度(1)
15
20
25
甲厂
乙厂
问题4: 你能求出甲厂抽查的这20只鸡腿质 量的最大值是多少吗?
最小值呢? 它们差几克?
乙厂呢?
82
79
78
80
77
78
76
75
76
74
74
73
72
72
71
70
0
5
10
15
20
25
0
5
10
15
20
25
甲厂
乙厂
问题5 : 现在你认为外贸公司应该购买哪
个厂的鸡腿?为什么呢?
82
79
乙厂:75 78 72 77 74 75 73 79 72 75 80 71 76 77 73 78 71 76 73 75
问题1: 如果只考虑鸡腿的规格,你认为外贸 公司应该购买哪个厂的鸡腿?
问题2:你能从图中估计出甲、乙两厂被抽
查鸡腿平均质量吗?
79
82
78 77
80
76
78
75
76
74
73
74
72
72
71
0
5
10
15
20
25 70
0
5
10
15
20
25
甲厂
乙厂
请你写出甲、乙两厂被抽查鸡腿平均质
量,并在图中画出表示平均质量的直线.
问题3: 观察两幅图表,看看被抽查的鸡腿 质量的分布情况你有什么发现?
82
79
78
80
77
78
76
75
76
74
74
73
北师大版八年级数学上册《数据的分析——数据的离散程度》教学PPT课件(2篇)
+11)=14(cm),
s乙2
=
1 10
(17
14)2
(14
14)2
(11 14)2 =2.8,
因为s甲2<s乙2,所以甲种麦苗长势整齐.
计算器的使用
探索用计算器求下列一组数据的标准差:98 99 101 102 100 96 104 99 101 100请你使用计算器探索求一组数据的标 准差的具体操作步骤。
为了考察甲、乙两 种小麦的长势,分 别从中抽取了10株 麦苗,测得高度 (单位:cm)如表所 示。问哪种麦苗长 势整齐?
解:
x甲
=
1(15+15 10
+
+15)=13.9(cm),
s甲2
=
1 10
(15
13.9)2
(15
13.9)2
(15 13.9)2 =2.09,
x乙
=
1(17+14 10
+
极差越大,偏离平均数越大,产品的质量(性能)越不稳定
例题讲解
现有A,B两个班级,每个班级各有45名学生参加测试,每名参加 者可获得0,1,2,3,4,5,6,7,8,9分这几种不同分值中的 一种,A班的测试成绩如下表,B班的测试成绩如图.
测试成绩/分 0 1 2 3 4 5 6 7 8 9 人数 1 3 5 7 6 8 6 4 3 2
情景导入
如图是某一天A、B两地的气温变化图,回答问题:
(1)这一天A、B两地的平均气温分别是多少? 解:(1)A地的平均气温是20.42℃, B地的平均气温是21.35℃;
(2)A地这一天气温的极差、方差分别是多少?B地呢?
(2)A地的极差是9.5℃,方差是7.76, B地的极差是6℃,方差是2.78;
6.4数据的离散程度例题与讲解
4 数据的离散程度1.极差定义:一组数据中的最大数据与最小数据的差叫做这组数据的极差,即极差=最大值-最小值.极差反映了这组数据的波动范围.谈重点 极差(1)极差是最简单、最便于计算的一种反映数据波动情况的量,极差能够反映一组数据的波动范围;(2)在对一组数据的波动情况粗略估计时经常用到极差;(3)极差仅仅反映了数据的波动范围没有提供数据波动的其他信息,且受极端值的影响较大;(4)一组数据的极差越小,这组数据就越稳定.【例1】 在一次体检中,测得某小组5名同学的身高分别是170,162,155,160,168(单位:cm),则这组数据的极差是__________cm.解析:根据极差的概念,用最大值减去最小值即可,170-155=15(cm).答案:152.方差(1)定义:设有n 个数据x 1,x 2,x 3,…,x n ,各数据与它们的平均数的差的平方分别是(x 1-x )2,(x 2-x )2,(x 3-x )2,…,(x n -x )2,用它们的平均数来衡量这组数据的波动大小,并把它叫做这组数据的方差.(2)方差的计算公式:通常用s 2表示一组数据的方差,用x 表示这组数据的平均数.s 2=1n[(x 1-x )2+(x 2-x )2+(x 3-x )2+…+(x n -x )2]. (3)标准差:标准差就是方差的算术平方根.谈重点 方差(1)方差是用来衡量一组数据的波动大小的重要的量,方差反映的是数据在它的平均数附近波动的情况;(2)对于同类问题的两组数据,方差越大,数据的波动越大,方差越小,数据的波动越小;(3)一组数据的每一个数据都加上(或减去)同一个常数,所得的一组新数据的方差不变;(4)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差将变为原数据方差的k 2倍.【例2】 已知两组数据分别为:甲:42,41,40,39,38;乙:40.5,40.1,40,39.9,39.5.计算这两组数据的方差. 解:x 甲=15×(42+41+40+39+38)=40, s 2甲=15×[(42-40)2+…+(38-40)2]=2. x 乙=15×(40.5+40.1+40+39.9+39.5)=40, s 2乙=15×[(40.5-40)2+…+(39.5-40)2]=0.104.3.极差与方差(或标准差)的异同相同之处:(1)都是衡量一组数据的波动大小的量;(2)一组数据的极差、方差(或标准差)越小,这组数据的波动就越小,也就越稳定. 不同之处:(1)极差反映的仅仅是数据的变化范围,方差(或标准差)反映的是数据在它的平均数附近波动的情况;(2)极差的计算最简单,只需要计算数据的最大值与最小值的差即可,而方差的计算比较复杂.【例3】 已知甲、乙两支仪仗队队员的身高如下(单位:cm):甲队:178,177,179,178,177,178,177,179,178,179乙队:178,179,176,178,180,178,176,178,177,180(1)(2);(3)这两支仪仗队队员身高的极差、方差分别是多少?解:(1)甲队从左到右分别填:0,3,乙队从左到右分别填:4,2;(2)178,178;(3)经过计算可知,甲、乙两支仪仗队队员身高数据的极差分别为2 cm 和4 cm ,方差分别是0.6和1.8.4.运用方差解决实际问题方差是反映一组数据的波动大小的统计量,通过计算方差,可以比较两组数据的稳定程度,进而解决一些实际问题.对于一般两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,因此从平均数看或从方差看,各有长处.方差的计算可用一句话“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的程度.方差的单位是原数据的平方单位,方差反映了数据的波动大小,在实际问题中,例如长得是否整齐一致、是否稳定等都是波动体现.点技巧 方差反映波动情况在实际问题中,如果出现要求分析稳定性的问题,因为方差是反映数据的波动大小的量,所以一般就要计算出各组数据的方差,通过方差的大小比较来解决问题.【例4】 某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的(1)(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.解:(1)x 甲=18(95+82+88+81+93+79+84+78)=85, x 乙=18(83+92+80+95+90+80+85+75)=85. 这两组数据的平均数都是85.这两组数据的中位数分别为83,84.(2)派甲参赛比较合适.理由如下:由(1)知x 甲=x 乙,s 2甲=18[(95-85)2+(82-85)2+(88-85)2+(81-85)2+(93-85)2+(79-85)2+(84-85)2+(78-85)2]=35.5,s2乙=18[(83-85)2+(92-85)2+(80-85)2+(95-85)2+(90-85)2+(80-85)2+(85-85)2+(75-85)2]=41,∵x甲=x乙,s2甲<s2乙,∴甲的成绩较稳定,派甲参赛比较合适.5.运用用样本估计总体的思想解决实际问题统计学的基本思想是用样本估计总体,它主要研究两个基本问题:一是如何从总体中抽取样本,二是如何通过对所抽取的样本进行计算和分析,从而对总体的相应情况作出推断.用样本估计总体是统计的基本思想,正像用样本的平均数估计总体的平均数一样,考察总体方差时,如果所要考察的总体包含很多个体,或考察本身带有破坏性,实际中常常用样本的方差来估计总体的方差.方差是反映已知数据的波动大小的一个量.在日常生活中,有时只用平均数、中位数和众数难以准确地分析一组数据时,就要用方差来评判.但是并不是方差越小越好,要根据问题的实际情况灵活运用数据分析问题,作出正确的判断.注:在解决问题或决策时,应运用统计思想,搞清楚特殊和一般的关系,具体问题具体对待.全方位、多角度地分析与评判是关键.【例5】某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预7好?为什么?解:x甲=18(9.6+9.7+…+10.6)=10.0,x乙=18(9.5+9.9+…+9.8)=10.0.s2甲=0.12,s2乙=0.102 5.结果甲、乙两选手的平均成绩相同,s2甲>s2乙.乙的方差小,波动就小,似乎应该选乙选手参加比赛.但是就这个问题而言,我们不能仅看平均成绩和方差就妄下结论.在这里平均成绩和方差不是最重要的,重要的是看他们的发展潜力或比赛时的竞技状态.从甲、乙两选手的最后四次成绩看,甲的状态正逐步回升,成绩越来越好,而乙明显不如甲的状态好.所以从这个角度看,应选甲选手参加比赛更好.。