基于Multisim的实用低频功率放大器仿真设计
基于multisim10下的音响放大器设计与仿真

基于multisim10下的音响放大器设计与仿真信息工程学院课程设计报告书题目: 基于multisim10下的音响放大器设计与仿真课程:电子线路课程设计专业:电气工程及其自动化班级:学号:学生姓名:指导教师:2015年01月 07日信息工程学院课程设计任务书2015年1月7日信息工程学院课程设计成绩评定表信息工程学院课程设计报告书题目: 基于multisim10下的音响放大器设计与仿真课程:电子线路课程设计专业:电气工程及其自动化班级:学号:学生姓名:指导教师:2015年01月 07日信息工程学院课程设计任务书2015年1月7日信息工程学院课程设计成绩评定表摘要在Multisim 10软件环境下,采用运算放大集成电路模块和功率放大集成电路模块设计音频功率放大器,并根据其结构模块提出设计思路及论证,再通过仿真验证方案的正确性。
再根据其交流电源联想提出由Multisim 10设计一种由运算放大器构成的精确可控矩形波信号发生器,结合系统电路原理图重点阐述了各参数指标的实现与测试方法。
最后,简单介绍了直流稳压电源的构成及其简单仿真设计。
关键词:运算放大集成电路,模块,功率放大集成电路,矩形波,直流稳压源。
AbstractIn the Multisim 10 software environment, using an operational amplifier integrated circuit module and apower amplifying integrated circuit module design of the audio power amplifier, and puts forward the design ideas and arguments according to its structure module, and then through the correctness of thesimulation verification scheme. According to the AC power supply association proposed by Multisim 10 to design a composed of operational amplifier precisely controllable rectangular wave signal generator, combined with the circuit diagram of the system focuses on the realization and test method of each parameter index. Finally, briefly introduces design consists of DC regulated power supply and a simple simulation.Key word: An operational amplifier integrated circuit,,Modular,Power amplifier integrated circuit,Rectangular wave,DC voltage stabilized source。
基于multisim的音频功率放大电路分析与设计

图 7 输出信号电压波形
信息技术与信息化 电子与通信技术
摘 要 关键词
网络安全监测装置的设计与应用
刘晓亮 * 杨广建 刘志国 许文波 LIU Xiao-liang YANG Guang-jian LIU Zhi-guo XU Wen-bo
电力作为关系国计民生的重要基础设施领域 , 已被不少国家视为“网络战”首选攻击目标,电力监控系 统的网络安全形势日益严峻。国家各部委及国家电网公司相继出台了相关的政策来要求及指导电力监控 系统网络安全管理体系的建设。本文首先对电力监控系统网络安全监测装置的建设背景进行介绍,并对 PNSMD-1000 装置整体设计及关键技术进行详细的分析。目前装置已在全国各地部署应用,运行结果验 证了装置的可行性及有效性。
,
,
,如图 3 所示。由于
电路对称
,则有
,
, 则有:
Q4 管静态工作点合适时,UCE 为电源电压的近一半,即 ,则有:
差分放大电路、恒流源电路的三极管可以选取 2N5551,
其参数为
,
,
,可以电
路满足要求。R8、R14、C2 组成级间负反馈网络,使电路频带展宽, 电路稳定性提高。
按照设计要求,通过以上电路设计、元器件的选取和
,则有:
1.1 电压激励电路的确定 电压激励级可以采用共射组态放大电路,差分放大电路
和集成运算放大电路。共射组态放大电路即能放大电压,也 能放大电流。差分放大电路采用对称的共射放大电路,射级 连接在一起,对抑制零点漂移起到了很好的作用,因此电路 性能稳定。集成运算放大电路内部采用差分放大电路、中间 电压放大电路、输出电路和偏置电路组成,电路性能稳定且 功率消耗小。对于该电路设计由于功率放大电路采用 OCL 电 路是双电源分立元件电路,故电压激励级采用双电源的差分 放大电路,前后级电路均为双电源,电路设计和应用较为方 便。
两级低频放大器MUTISIM仿真(优秀范文五篇)

两级低频放大器MUTISIM仿真(优秀范文五篇)第一篇:两级低频放大器MUTISIM仿真V1R8100kΩ50%Key=A29R220kΩ R101412 V 1.0kΩ50%Key=A11R11kΩ 4C110uF R310kΩ C310uF 6BJT_NPN_4T_VIRTUALR6100 Ω C25R7100uF 1kΩ 15R131kΩ R91kΩ 713Q1J1A10Key = A 12R121kΩ 13Q2C51uF 0XMM1XFG1R52.4kΩ 8XSC1Ext Trig+_A+_+B_20kΩ BJT_NPN_4T_VIRTUALR141kΩ R11C41kΩ 1uF R40两级低频放大器26第二篇:单管低频放大器单管低频放大器一、实验目的(1)学习元器件的放置和手动、自动连线方法。
(2)熟悉元件标号及虚拟元件值的修改方法。
(3)熟悉节点及标注文字的放置方法。
(4)熟悉电位器的调整方法。
(5)熟悉信号源的设置方法。
(6)熟悉示波器的方法。
(7)熟悉放大器主要性能指标的测试方法。
(8)掌握示波器、信号源、万用表、电压表、电流表的应用方法。
(9)学习实验报告的书写方法。
二、分压式偏置电路的工作计算对于如图所示的小信号低频放大电路,若已知负载电阻RL、电源电压EC、集电极电流ICO和晶体管的电流放大系数β,则偏置电路元件可按照下列经验公式计算,凡是按经验公式计算结果的各个元件参数,一般应取标准值,然后在实验中,必要时适当修改电路元件参数,进行调整。
(1)基极直流工作点电路IbQ IbQ≈ICQ/β(2)分压电流I1 I1≈E C/(R1+R2)=(5~10)IbQ(3)发射极电压UeQ UeQ=0.2EC或取UeQ=1~3V(4)发射极电阻ReRe≈UeQ/ICQ(5)基极电压Ubo=Uco+UbeQ式中,硅管的UbeQ≈0.7V,锗管的UbeQ≈0.2V。
(6)分压器电阻R1和R2R1≈(EC-UbQ)/IbQ R2≈UbQ/I1(7)集电极电阻RC RC =(1~5)RL(8)输入电阻Ri和输出电阻RO的测量方法见第三章第二节的例一。
信号放大器的设计基于Multisim的电路仿真

3.效率η
, :直流电源供给的平均功率。理想情况下, 。在实验中,可测量电源供给的平均电流 ,从而求得 ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。
仿真值:%
实测值:η=%
(四)综合测量方案
1、测量系统电路的输入输出电阻以及通频带
测量值:输入电阻486KΩ
输出电阻Ω
图3-2 RC正弦波振荡电路图
图3-3 RC正弦震荡产生的波形图
仿真数据:F=1kHZ
T1
UB
(V)
UE
(V)
UC
(V)
IC
(MA)
UO
(V)
T2
UB
V)
UE
(V)
UC
(V)
IC
(MA)
实测数据:F=
T1
UB
(V)
UE
(V)
UC
(V)
IC
(MA)
UO
(V)
T2
UB
V)
UE
(V)
UC
(V)
IC
(MA)
2、闭合开关S1,并记录波形
(三)功率放大器电路方案
功率放大器的主要作用是向负荷提供功率,要求输出功率尽可能大,转换效率尽可能高,非线性失真尽可能小。这里我们采用OTL功率放大电路。电路原理图如下:
1.静态工作点的调整
分别调整R4和R1滑动变阻器器,使得万用表XMM2和XMM3的数据分别为5---10mA和,然后测试各级静态工作点填入下表:
1.调节放大器零点
把开关S1和S2闭合,S3打在最左端,启动仿真,调节滑动变阻器的阻值,使得万用表的数据为0(尽量接近0,如果不好调节,可以减小滑动变阻器的Increment值),填表一:
实验3.10 低频OTL功率放大电路Multisim仿真实验

实验3.10 低频OTL功率放大电路
二、实验设备及材料
1. 装有Multisim 14的计算机。 2. 函数信号发生器。 3. 双通道示波器。 4. 数字万用表。 5. 模拟电路实验箱。 .10 低频OTL功率放大电路
三、实验原理
图3-128 单电源OTL功率放大电路
实验3.10 低频OTL功率放大电路
一、实验目的
1. 掌握应用Multisim 14软件对乙类推挽功率放大电路的仿真分析。 2. 掌握乙类互补推挽功率放大电路静态工作点的调试和最大不失真输出电压的测试。 3. 观察输出波形的交越失真,学习消除交越失真的方法。 4. 掌握最大不失真输出功率和效率的测量和计算方法。 5. 熟悉Multisim中的各种电路的分析方法。
图3-131 低频OTL功率放大器实验操作电路板
实验3.10 低频OTL功率放大电路
三、实验原理
实验3.10 低频OTL功率放大电路
四、计算机仿真实验内容
图3-129 单电源OTL功率放大仿真电路
实验3.10 低频OTL功率放大电路
五、实验室操作实验内容
1. 静态工作点的调试
2. 3.
最效大率输η出的功测率试Pom的测试
4. 输入灵敏度测试 5. 频率响应测试 6. 噪声电压测试
低频功率放大器仿真实例

图7.21
图7.22
模拟电子技术
• 交越失真 在V1处加入电压大小合适的正弦信号,观 察输出波形,若有交越失真(如图7.21所示,此时R 8取5﹪,R10取98﹪),可适当增大R8,并微调R10, 保证输入为零时输出为零,经反复调整,可以达到 比较理想的效果。【仿真图】
• 自举电路 调整输入信号的峰峰值为0.02V,频率为1 KHz时,并将R8取63﹪,R10取87﹪,输出信号峰峰 值约为7.0V,失真0.177﹪,如图7.22所示。【仿真图】模拟源自子技术低频功率放大器仿真实例
【例7.2】分析OCL功率放大电路
解:利用Multisim仿真如图7.17所示的OCL功率放大电路。图中R5为平衡电阻,以弥补
NPN和PNP管电流放大倍数的差异,使复合管具有比较接近的输入阻抗。
图7.17
• 静态调整 首先将输入置为零,R8置为最小值(实际调试时必须如此,否则易烧毁输 出管)。慢慢增大R8,使输出管电流在5mA左右(处于微导通状态)。然后调整R10, 使输出电压为零。
图7.18
图7.19
【例7.3】分析OTL功率放大电路
解:利用Multisim仿真如图7.20所示的OTL功率放大电路。
图7.20
• 静态调整 首先将输入置为零,R8置为最小值(实际 调试时必须如此,否则易烧毁输出管)。慢慢增大R 8,使输出管电流在5mA左右(处于微导通状态)。 然后调整R10,使输出电压为零。
• 交越失真 在V1处加入电压大小合适的正弦信号,观察输出波形,若有交越失真(如 图7.18所示,此时R8取10﹪,R10取93﹪),可适当增大R8,并微调R10,保证输入 为零时输出为零,经反复调整,可以达到比较理想的效果。 【仿真图】
• 自举电路 调整输入信号的峰峰值为0.02V,频率为1KHz时,并将R8取63﹪,R10取 98﹪,输出信号峰峰值约为7.8V,失真0.828﹪,如图7.19所示。若断开自举电容C4, 则输出峰峰值下降至约3.6V,且失真上升至1.765﹪。若要降低失真,则需增大偏置 电阻R8,这会使电路工作状态趋于甲类,电路效率下降,可见,自举电路可以提高 电路的工作效率。 【仿真图】
基于Multisim的音频功率放大器设计与仿真

信息工程学院课程设计报告书题目: 基于Multisimde 音频功率放大器设计与仿真课程:电子线路课程设计专业:班级:学号:学生姓名:指导教师:2015 年 1 月 3 日信息工程学院课程设计任务书信息工程学院课程设计成绩评定表摘要TDA2030功率放大电路具有失真小、功率大、所需元件少、制作简单、效果良好等优点,用它来做电脑有源音箱的功率放大部分或MP4等小型功放再合适不过,本论文便是用TDA2030来制作音频功率放大器原件。
高效率的音频功率放大器不仅仅是在便携式设备中需要,在大功率的设备中也占有较大的比重。
随着人们居住条件的改善,高保真音响设备和高档的家庭影院也逐渐兴起。
音频功率放大器在这些设备中起到了很重要的作用。
关键字:TDA2030功率放大电路、音频功率放大器、高效率AbstractTDA2030 power amplifier circuit with small distortion, high power, which needs few components, simple fabrication, the advantages of good effect, can use it to make power computer amplifying part or MP4 small power is again appropriate however, this thesis is to make use of TDA2030 audio poweramplifier original. Audio power amplifier with high efficiency is not only the need in portable devices, also account for a large proportion in high power devices. With the development of people's living conditions improve, high fidelity audio equipment and high-end home theater also gradually on the rise. Audio poweramplifier plays a very important role in these devices.Keywords: TDA2030 power amplifier circuit, audio power amplifier, high efficiency目录1前言 (1)1.1音频放大器的发展 (1)1.2 音频放大器设计背景 (1)1.3 音频放大器设计意义 (1)2任务与条件 (3)2.1初始条件 (3)2.2要求完成的主要任务 (3)2.3设计方案 (3)3选择器件与参数运算 (4)3.1运放NE5532介绍 (4)3.2 TDA 2030介绍 (5)3.3功率计算 (6)4单元电路设计 (7)4.1主电源电路 (7)4.2调音电路 (7)4.3功率放大电路 (8)5电路设计仿真 (10)5.1仿真电路图 (10)5.2仿真结果 (10)总结 (12)参考文献 (13)1前言1.1音频放大器的发展上个世纪80 年代以前,输出功率仅几瓦的声频功率放大器都要采用分立元件来制作。
利用Multisim10.0对OTL音频功率放大器进行仿真实验

i 应 用 ,其 对 于 硬件 电路 设 计 有 着 极 为 重 要
: :
一 V p s i n J —
T : 仅 有
,
避免交越失真现象的发生 ,其输 出功率也有所 增加, 电源 电流变大 。另外 ,在输 出电压为达 到 电源 电压时,功率放大器效率已 %。
大器 电路 的仿真结果 进行分析 ,结果显示 AB 类功率放大器能够将 V 4 、Vs 电压改为 O ・ 7 5 V,
, 、
{ 功率放大器 实验结构不够理想 ,这在很 大 上是 由于 电路 性能参数误差及 电路参数选
间管耗计算公式为:
; 当造成的。当前,Mu h i s i ml 0 . 0仿真软件 p n 。 e z i c 2
半周导通 ,平均管耗计算公式为
一
.
:
} 导作用。
时,
2 丌. I o ‘‘
积 4 ,当
I t "
2仿真实验 Mu 1 t i s i m 1 0 o仿 真 软 件对 O T L音频 功 率
.
l T L 音频 功率放大器 电性 能理论推导 分
【 m a x J } , 输出 最 大 功 率 ( ~ )  ̄ c c , 放 大 器 性 能 的 实 验 仿 真 电 路 如 图I 所 示 , 在
上 述推 导并 未考 虑 B类放 大 电路 受功 能 如 图 3所 示, 当 处 于 4 0 H z  ̄ 1 ・ 4 5 MH z的 条 件
下 ,通 频 带 能 够 通 过 增 大 电路 中 的 电 容值 延 伸
f 形则 与之相 反 ,可 以得 出负载 R T电压:
低频电子线路仿真实验报告(Multisim 10)

低频仿真实验大作业----差分放大电路的特性研究差分放大电路的特性研究差分放大电路是模拟集成电路中使用最广泛的单元电路,它几乎是所有模拟集成电路的输入级,决定着这些电路的差模输入性、共模输入性、输入失调特性和噪声特性。
基本差分放大电路由两个完全对称的共发射极单管放大电路组成,该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。
设想这样一种情景,如果存在干扰信号,会对两个输入信号产生相同的干扰,通过二者之差,干扰信号的有效输入为零,这就达到了抗共模干扰的目的。
差分放大电路的基本形式对电路的要求是:两个电路的参数完全对称两个管子的温度特性也完全对称。
它的工作原理是:当输入信号Ui=0时,则两管的电流相等,两管的集点极电位也相等,所以输出电压Uo=UC1-UC2=0。
温度上升时,两管电流均增加,则集电极电位均下降,由于它们处于同一温度环境,因此两管的电流和电压变化量均相等,其输出电压仍然为零。
基本差分电路存在如下问题:电路难于绝对对称,因此输出仍然存在零漂;管子没有采取消除零漂的措施,有时会使电路失去放大能力;它要对地输出,此时的零漂与单管放大电路一样。
这里通过对晶体管的射极耦合和恒流源差分放大电路进行仿真分析,从而总结出能提高差分放大电路性能的方法。
下图为射极耦合和恒流源差分仿真电路图11.静态分析在Multisim7仿真软件中,利用simulate菜单中的Analysis命令下的DC Operating Point命令,得电路静态分析结果分别如图2和图3所示。
图2 图3从图a和图b中看出,电路节点6的直流电位非常接近,约-600mv。
因此,可以求出Q1和Q2的射极电流,求出静态工作状态。
2.动态分析(1)差模输入的仿真①用示波器测量差模电压放大倍数,观察波形相位关系。
对于图1所示的单端输入方式,用函数发生器为电路提供正弦输入信号(幅度为10mv,频率为1kHz),用示波器测得电路的两输出端波形图如图4所示。
低频功率放大器课程设计报告

题目一 低频功率放大器一、任务设计并制作具有弱信号放大能力的低频功率放大器。
其原理示意图如图1所示。
图1 设计任务示意图二、要求1、在放大通道的正弦信号输入电压幅度为5~700mV ,负载电阻为8Ω条件下,放大通道应满足:(1)额定输出功率P OR ≥10W ; (2)带宽BW ≥50Hz~10kHz ;(3)在P OR 下和BW 内的非线性失真≤3%; (4)在P OR 下的效率≥55%;(5)在前置放大级输入端交流短接地时,R L =8Ω上的交流声功率≤10mW 。
2、放大电路的时间响应由外供正弦信号源经变换电路产生正负极性的对称方波,频率为1kHz 、上升和下降时间≤1μs 、电压峰-峰值为200mV 。
用上述方波激励放大电路时,在负载电阻为8Ω条件下,放大通道应满足:(1)额定输出功率P OR ≥10W ;(2)在P OR 下输出波形的上升和下降时间≤12μs ; (3)在P OR 下输出波形的平顶降落≤5%; (4)在P OR 下输出波形的过冲量≤5%。
3、自行设计并制作满足本设计任务要求的直流稳压电源。
4、 用Multisim 对设计电路进行仿真。
220V 50HzL =8Ω低频功率放大器摘要:实用低频功率放大器主要应用是对音频信号进行功率放大,本文介绍了具有弱信号放大能力的低频功率放大器的基本原理、内容、技术路线。
整个电路主要由稳压电源、前置放大器、功率放大器、波形变换电路共4 部分构成。
稳压电源主要是为前置放大器、功率放大器提供稳定的直流电源。
前置放大器主要是电压的放大。
功率放大器实现电流、电压的放大。
波形变换电路是将正弦信号电压变换成规定要求的方波信号。
设计的电路结构简洁、实用,充分利用到了集成功放的优良性能。
实验结果表明该功率放大器在带宽、失真度、效率等方面具有较好的指标、较高的实用性,为功率放大器的设计提供了广阔的思路。
关键字:波形转换电路、前置放大级电路、功率放大、稳压电源电路。
基于Multisim的功率放大电路仿真分析

基于Multisim的功率放大电路仿真分析刘嘉驹;侯亚玲【期刊名称】《电脑与电信》【年(卷),期】2018(000)012【摘要】采用Multisim软件仿真的方法, 对乙类互补对称放大电路进行仿真分析, 通过分析电路负载的输出波形观察功放中容易出现的交越失真, 在两个三极管的基极串联了两个二极管后, 提供了偏置电压把静态工作点设置得比截止点稍微高一些, 使放大器工作在甲乙类放大状态, 有效消除了交越失真.经过仿真和分析表明, 乙类功率放大器是实现功放小型化、高效率、高功放的重要途径.%In this paper, the Multisim software simulation method is used to simulate and analyze the class B complementary symmetrical amplifier circuit. Through analyzing the output waveform of the circuit load, the crossover distortion easily occurred in the power amplifier is observed. After two diodes are connected in series to the bases of the two triodes, the bias voltage is provided to set the static operating point slightly higher than the cutoff point, so that the amplifier operates in the class A and B amplification state, effectively eliminating the crossover distortion.Simulation and analysis show that Class B power amplifier is an important way to realize miniaturization, high efficiency and high power amplifier【总页数】3页(P8-10)【作者】刘嘉驹;侯亚玲【作者单位】西安欧亚学院信息工程学院,陕西西安 710065;西安欧亚学院信息工程学院,陕西西安 710065【正文语种】中文【中图分类】TN702【相关文献】1.基于NI Multisim12.0的OCL功率放大电路仿真测试 [J], 侯卫周;杨毅2.基于Multisim仿真的OTL功率放大电路研究 [J], 陈坚;李昕;唐成军3.一种基于Multisim 2001的互补对称功率放大电路仿真分析方法 [J], 马秋明;刘姝延;迟永江;田丽杰;孙福文4.基于Multisim的丙类功率放大电路设计 [J], 常书惠5.基于MATLAB和Multisim振幅调制与检波仿真分析 [J], 王奎奎;侯义锋;姚高华;郭铁梁;于健海因版权原因,仅展示原文概要,查看原文内容请购买。
Multisim数字电路仿真实验报告

低频电子线路实验报告—基于Multisim的电子仿真设计班级:卓越(通信)091班姓名:杨宝宝学号:6100209170辅导教师:陈素华徐晓玲学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:实验一基于Multisim数字电路仿真实验一、实验目的1.掌握虚拟仪器库中关于测试数字电路仪器的使用方法,入网数字信号发生器和逻辑分析仪的使用。
2.进一步了解Multisim仿真软件基本操作和分析方法。
二、实验内容用数字信号发生器和逻辑分析仪测试74LS138译码器逻辑功能。
三、实验原理实验原理图如图所示:四、实验步骤1.在Multisim软件中选择逻辑分析仪,字发生器和74LS138译码器;学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:2.数字信号发生器接138译码器地址端,逻辑分析仪接138译码器输出端。
并按规定连好译码器的其他端口。
3.点击字发生器,控制方式为循环,设置为加计数,频率设为1KHz,并设置显示为二进制;点击逻辑分析仪设置频率为1KHz。
相关设置如下图学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:五、实验数据及结果逻辑分析仪显示图下图实验结果分析:由逻辑分析仪可以看到在同一个时序74LS138译码器的八个输出端口只有一个输出为低电平,其余为高电平.结合字发生器的输入,可知.在译码器的G1=1,G2A=0,G2B=0的情况下,输出与输入的关系如下表所示学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:当G1=1,G2A=0,G2B=0中任何一个输入不满足时,八个输出都为1六、实验总结通过本次实验,对Multisim的基本操作方法有了一个简单的了解。
基于Multisim的音频功率放大器设计与仿真

信息工程学院课程设计报告书题目: 基于Multisimde 音频功率放大器设计与仿真课程:电子线路课程设计专业:班级:学号:学生姓名:指导教师:2015 年 1 月 3 日信息工程学院课程设计任务书信息工程学院课程设计成绩评定表摘要TDA2030功率放大电路具有失真小、功率大、所需元件少、制作简单、效果良好等优点,用它来做电脑有源音箱的功率放大部分或MP4等小型功放再合适不过,本论文便是用TDA2030来制作音频功率放大器原件。
高效率的音频功率放大器不仅仅是在便携式设备中需要,在大功率的设备中也占有较大的比重。
随着人们居住条件的改善,高保真音响设备和高档的家庭影院也逐渐兴起。
音频功率放大器在这些设备中起到了很重要的作用。
关键字:TDA2030功率放大电路、音频功率放大器、高效率AbstractTDA2030 power amplifier circuit with small distortion, high power, which needs few components, simple fabrication, the advantages of good effect, can use it to make power computer amplifying part or MP4 small power is again appropriate however, this thesis is to make use of TDA2030 audio poweramplifier original. Audio power amplifier with high efficiency is not only the need in portable devices, also account for a large proportion in high power devices. With the development of people's living conditions improve, high fidelity audio equipment and high-end home theater also gradually on the rise. Audio poweramplifier plays a very important role in these devices.Keywords: TDA2030 power amplifier circuit, audio power amplifier, high efficiency目录1前言 (1)1.1音频放大器的发展 (1)1.2 音频放大器设计背景 (1)1.3 音频放大器设计意义 (1)2任务与条件 (3)2.1初始条件 (3)2.2要求完成的主要任务 (3)2.3设计方案 (3)3选择器件与参数运算 (4)3.1运放NE5532介绍 (4)3.2 TDA 2030介绍 (5)3.3功率计算 (6)4单元电路设计 (7)4.1主电源电路 (7)4.2调音电路 (7)4.3功率放大电路 (8)5电路设计仿真 (10)5.1仿真电路图 (10)5.2仿真结果 (10)总结 (12)参考文献 (13)1前言1.1音频放大器的发展上个世纪80 年代以前,输出功率仅几瓦的声频功率放大器都要采用分立元件来制作。
multisim仿真教程 低频功率放大器

流如图2.6.5(b)所示,来求得实际的
U2 Pom O U O I O RL
2. 效率η
PV —直流电源供给的平均功率
Pom η 100% Pv
max
理想情况下,η
= 78.5% 。可测量电源供给
的平均电流IdC如图2.6.6所示,从而求得Pv=UCC·dC I
,负载上的交流功率已用上述方法求出,因而也就
可以计算实际效率了。在仿真平台上也可用功率表 分别测出最大不失真功率和电源供给的平均功率。
图(a) RL 两端的电压有效值 图 2.6.5
图(b) 流过RL的电流 P0m的测量
图2.6.6 电源供给的平均电流IdC
在本例中也可用两块瓦特表分别测量电源
供给的平均功率Pv 及最大不失真输出功率P0m, 其图标和面板如图2.6.7所示。该图标中有两组 端子,左边两个端子为电压输入端子,与所要 测试电路并联,右边两个端子为电流输入端子,
与所要测试电路串联。
(a) 图标
(b) 面板
图2.6.7 瓦特表图标和面板
2.6 低频功率放大器
2.6.1 低频功率放大器工作原理
图2.6.1所示为OTL 低频功率放大器。其中由 晶体三极管VT1(VT1)组成推动级(也称前置放大
级),VT2(VT2)、VT3(VT3)是一对参数对称的NPN和
PNP型晶体三极管,它们组成互补推挽OTL功率放大 电路。由于每一个管子都接成射极输出器形式,因 此具有输出电阻低,负载能力强等优点,适合于作
使VT2管导通(VT3管截止),有电流通过负载
RL,同时向电容C2(C2)充电,在ui的正半周, VT3导通(VT2截止),则已充好电的电容器C2
起着电源的作用,通过负载RL放电,这样在RL上 就得到完整的正弦波,其波形如图2.6.2所示。
实验一:设计低频功率放大器

实验一:设计低频功率放大器学号: xxxxxxxxx姓名: xxx专业(班级):0310409(电子) 摘要:1、设计低频功率放大器,带宽:20HZ-20KHZ,输出功率0.5W,效率:65%,无明显失真。
2、用Multisim仿真。
3、搭建电路系统,测试设计主要参数。
要求掌握:功率放大器设计方法;电路参数测试。
关键词:放大、失真、效率、功率、低频1 任务提出与方案论证低频功率放大器应由前置放大器、功率放大器和稳压电源三部分组成。
前置放大电路采用晶体管共射极放大电路,功率放大部分采用分立元件模仿LM386的集成电路Gong_Fang,稳压电路采用稳压性能好的电源。
1.1 前置放大电路图1-1 1.2 功率放大电路子电路模块Gong_Fang图1-2图1-3 2 总体设计2.1 功能模块图1-42.2 详细电路图图1-5 3 详细设计3.1仿真电路图1-6 3.2仿真图总体图1-7信号源图1-8图1-9上限频率H f =222.72Hz 下限频率L f =20.074Hz maxlog 20Av=54.12dB输入输出波形图1-10总功率图1-11输出功率图1-124 总结1、上限频率Hf =222.72kHz 下限频率L f =20.074Hzmaxlog 20Av=54.12dB ,满足带宽20Hz 至20KHz 要求2、最大输出功率超过0.5W3、效率η= 938.862618.871×100%=65.88%满足效率65%的要求。
低频功率放大器报告

2013年课程设计实验报告实用低频功率放大器学院:班级:姓名:学号:序号:一、任务:设计并制作具有弱信号放大能力的低频功率放大器。
其原理示意图如下:二、技术指标:1.基本要求:(1)在放大通道的正弦信号输入电压幅度为(50~700)mV,等效负载电阻RL为8Ω下,放大通道应满足:a.额定输出功率POR≥10W;b.带宽BW≥(50~10000)HZ;c.在POR下和BW内的非线性失真系数≤3%;d.在POR下的效率≥55%;e.在前置放大处级输入端交流短接到地时,RL=8Ω上的交流声功率≤10mV(2)自行设计满足本设计任务要求用的稳压电源,画出实际的直流稳压电源原理图即可。
2.发挥部分(1)放大器的时间响应:a.方波产生由外供正弦信号源经变换电路产生正、负极性的对称方波;频率为1000HZ;上升和下降时间≤1us;峰—峰值电压为200mVP-P。
用上述方波激励放大通道时,在RL=8Ω下,放大通道应满足。
b. 额定输出功率POR≥10W;c.在POR下输出波形上升和下降时间≤12us;d.在POR下输出波形顶部斜降≤2%;e.在POR下输出波形过冲量≤5%;(2)放大通道性能指标的提高和实用功能的扩展(例如:提高工作效率、减小非线性失真)3.要求:设计与总结报告;方案设计与论证,理论分析与计算,电路图,测试方法与数据,结果分析,要有特色与创新主要参考元件:LM1875、LF353、LM311、UA741、NE5532三、方案设计:1.波形转换电路先经过前级放大后再直接采用施密特触发器进行变换与整形。
而施密特电路可用高精度、高速运算电路搭接而成,利用稳压管将电压稳定在6.2 V左右,然后利用电阻分压得到要求的正负对称的峰一峰值为200 mV 的方波信号。
运放选用NE5532,施密特电路采用高精度、高速运算放大器LF357。
用multisim软件画电路图如下:仿真后波形如下:产生方波2.前置放大电路选用NE5532芯片,因为NE5532具有高精度、低噪音、高阻抗、高速、宽频带等优良性能且是双运放集成,具有很高的性价比。
基于NI Multisim 12.0的集成音频功率放大器的设计与仿真分析

图 1 中用信息源代替由传声器件获得的信号电压,由于传 声器件输出电压幅度往往很小,不足以激励音频功率放大器输 出额定功率,因此常在功率放大电路前插入前置放大电路及二 级放大电路将信号源产生的电压信号加以放大,同时对信号进 行适当的音色处理,而功率放大电路不仅放大电压,而且对电 流进行放大,从而提高整体的输出功率。
【关键词】温 度 采 集 ; 电 压 频 率 转 换 ; 仿 真 ; 实 验
0 引言 音频功率放大器在电视、家庭影院、笔记本电脑、有源音 箱、移动通信设备以及教育教学多媒体工作台等电子产品中得 到广泛应用,有很大的市场,集成音频功率放大器综合应用了 学生在模拟电子技术课程中必须掌握的电压放大电路、负反馈 电路、线性集成电源电路、功率放大电路等方面的知识,对集成 功率放大器的设计与仿真分析有助于学生巩固已学过的模拟 电子技术、电路基础方面的理论知识,有助于提高学生分析问 题解决问题的能力, 有助于提高学生电子产品调测的基本技 能。 1 NI Multisim 12.0 仿真软件 NI :美国国家仪器公司的简称,研发与推出了 Multisim12.0 仿 真 软 件 ,该 软 件 的 前 身 为 EWB(Electronics Workbench)软 件 , 它以其界面形象直观、操作方便、分析功能强大、易学易用等突 出优点,在我国得到迅速推广,作为电子类专业课程教学和实 验 的 一 种 辅 助 手 段 ,Multisim 功 能 已 十 分 强 大 , 能 胜 任 电 路 分 析 、模 拟 电 路 、数 字 电 路 、高 频 电 路 、RF( 射 频 标 签 ) 电 路 、 电 力 电 子及自控原理等各方面的模拟仿真; 并提供多 达 18 种 基 本 分 析方法。 此外使 用 Multisim 12.0 可交互式地搭建电 路 原 理 图 , 并对电路行为进行仿真,Multisim 提炼了 SPICE(仿 真 电 路 模 拟 器 )的 复 杂 内 容 ,这 样 使 用 者 无 需 懂 得 深 入 的 SPICE 技 术 就 可 以很快地进行捕获、仿真和分析新的设计,同时,Multisim1 能有 效 地 与 LabView(虚 拟 仪 器 )、PLD(可 编 程 逻 辑 电 路)、PLC(可 编 程逻辑控制器)结合,这也使其更适合电子工程技术教育及电 子电气工程设计。 2 集成音频功率放大器工作原理 2.1 电路组成 音频功率放大器是音响系统中的关键部件,其作用是将传 声器件获得的微弱信号放大到足够的强度去推动放声系统中 扬声器或其它电声器件,使原声响重现,其主要技术指标有:额 定输出功率、带宽、在额定输出功率下和带宽内的非线性失真 系数,在额定输出功率下的效率,输入交流接地时的交流噪声 功率等,音频功率放大器的组成如图 1 所示。
基于Multisim的音频功率放大器设计与仿真设计

信息工程学院课程设计报告书题目: 基于Multisimde 音频功率放大器设计与仿真课程:电子线路课程设计专业:班级:学号:学生:指导教师:2015 年 1 月 3 日信息工程学院课程设计任务书信息工程学院课程设计成绩评定表摘要TDA2030功率放大电路具有失真小、功率大、所需元件少、制作简单、效果良好等优点,用它来做电脑有源音箱的功率放大部分或MP4等小型功放再合适不过,本论文便是用TDA2030来制作音频功率放大器原件。
高效率的音频功率放大器不仅仅是在便携式设备中需要,在大功率的设备中也占有较大的比重。
随着人们居住条件的改善,高保真音响设备和高档的家庭影院也逐渐兴起。
音频功率放大器在这些设备中起到了很重要的作用。
关键字:TDA2030功率放大电路、音频功率放大器、高效率AbstractTDA2030 power amplifier circuit with small distortion, high power, which needs few components, simple fabrication, the advantages of good effect, can use it to make power computer amplifying part or MP4 small power is again appropriate however, this thesis is to make use of TDA2030 audio poweramplifier original. Audio power amplifier with high efficiency is not only the need in portable devices, also account for a large proportion in high power devices. With the development of people's living conditions improve, high fidelity audio equipment and high-end home theater also gradually on the rise. Audio poweramplifier plays a very important role in these devices.Keywords: TDA2030 power amplifier circuit, audio power amplifier, high efficiency目录1前言 (1)1.1音频放大器的发展 (1)1.2 音频放大器设计背景 (1)1.3 音频放大器设计意义 (1)2任务与条件 (3)2.1初始条件 (3)2.2要求完成的主要任务 (3)2.3设计方案 (3)3选择器件与参数运算 (4)3.1运放NE5532介绍 (4)3.2 TDA 2030介绍 (5)3.3功率计算 (6)4单元电路设计 (7)4.1主电源电路 (7)4.2调音电路 (7)4.3功率放大电路 (8)5电路设计仿真 (10)5.1仿真电路图 (10)5.2仿真结果 (10)总结 (12)参考文献 (13)1前言1.1音频放大器的发展上个世纪80 年代以前,输出功率仅几瓦的声频功率放大器都要采用分立元件来制作。
低频功率放大器multisim仿真

2021/3/10
讲解:XX
17
(a) 图标
(b) 面板
图2.6.7 瓦特表图标和面板
2021/3/10
讲解:XX
18
感谢您的阅读收藏,谢谢!
2021/3/10
19
10
喇叭的设置:应根据输入信号的频率及输出 信号的幅值(用示波器测出)来设置喇叭的参数。 双击喇叭弹出Buzzer对话框,在对话框窗口中点 击Value出现如图2.6.4所示对话框,本例对话框 中参数设置见图2.6.4所示。
2021/3/10
讲解:XX
11
2021/3/10
图2.6.4 讲V解a:luXXe窗口对话框
的平均电流IdC如图2.6.6所示,从而求得Pv=UCC·IdC ,负载上的交流功率已用上述方法求出,因而也就
可以计算实际效率了。在仿真平台上也可用功率表
分别测出最大不失真功率和电源供给的平均功率。
2021/3/10
讲解:XX
14
图(a) RL 两端的电压有效值
图(b) 流过RL的电流
图 2.6.5 P0m的测量
2021/3/10
讲解:XX
4
uo ui
图2.6.1 低频功率放大器工作原理图
2021/3/10
讲解:XX
5
当输入正弦交流信号ui时,经VT1放大、倒 相后同时作用于VT2、VT3的基极,ui的负半周
使VT2管导通(VT3管截止),有电流通过负载
RL,同时向电容C2(C2)充电,在ui的正半周,
uo
图2.6.2 输入输出波形
2021/3/10
讲解:XX
8
该电路也可用瞬态分析方法分析电路的动态 特性,其分析方法请看第1章中的1.7.4小节瞬态 分析(Transient Analysis)。本电路分析结果 如图2.6.3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统的最大增益为
系统的最小增益为
所以在整个放大电路的增益应该在27.7dB~71dB范围内可调。为了保证放大器的性能,单级放大器的增益不宜过高,通常20~40dB(放大倍数在10~100倍之间)
的带宽能保证信号在低中高频均能不失真的输出,使电路的整体指标大大提高
内部结构图:
他效果器的输入部分设计都用到了这个电路,正格输入级电路图如下;
六、 …………………………总体电路
第三部分问题与分析
结束语
参考文献
正文
1.1
摘要
1.2
低频功率的理念
低频功率放大器是一种能量转换电路,在输入信号的作用下,电路把直流电源的能量,通过前置放大级,功率放大级,转换成随输入信号变化的输出功率送给负载。
功率放大器不仅仅是消费产品中不可缺少的部分,例如音响,还广泛应用于控制系统和测量系统中,用途相当的广泛。在科学技术日新月异的今天,低频功率放大器已经是一个技术相当成熟的领域。很多年以来,人们付出了不懈的努力,使它无论是在线路技术方面还是在元器件方面乃至思想认识上都取得了长足的进步。
输入级输出为:
考虑到时题目所给的正弦信号入电压幅度范围很宽,为了均衡放大并使大多数类型的音源处于低噪声工作状态,所以前置放大级的电压增益分成两档,用开关K2控制。
当开关K2断开时,要求电路增益大于16dB,用于放大V1为40-700mV时的信号,当K2闭合时,电路增益大于35 dB,用于放大V1为5-40mV时的信号,故得电路2.2.2。
因此,所设计的低频功率放大电路,既能有效实现隔离,完成电路阻抗匹配,又能在一个频率范围内进行信号均衡放大的实用性电路。
均衡部分,借鉴了音频放大电路的音调控制电路,将音调控制的输出信号送入功放,提升到所需的额定输出功率。作为信号电路,还有波形变换电路,来增加对称方波的输出功能,故得设计的方框原里图:1.2.1;
由于低频功率放大器运行中的信号幅度,如电压、电流都很大,其突出的问题是要解决非线性失真和各种瞬态失真。因为,功率放大器的主要任务是在不失真的前提下放大信号的功率。
一般在功放电路结构上可采用不同的形式,以满足人们对音响设备的不同要求。
1.2
设计框架的形式
常见的音频功率放大器电路可以分为甲类,乙类和甲乙类三种。另外为了完全消除甲乙类和乙类功率放大器产生的交越失真,又出现了超甲类放大器和直流放大器等等。可供选择的方案有很多。根据设计题目要求,功率放大可由分立元件组成,也可以由集成电路完成。当然如果电路选择的好,参数恰当,元件性能优越,制作调试得好,则由分立元件组成的功放的性能还有可能高过集成功率放大器。
由于本设计不是对单一信号频率实施放大,而是对一个输入电压变化幅度大(5~700mV),频带范围宽(50~10000Hz )的频带信号实施功率放大,所以不能只从简单的功率放大上考虑。至少应从以下几方面作较为全面的考虑:
1,解决本设计的电路对信号源,尤其是信号幅度小的影响。
2, 要求对整个频带内不同频率范围i,不同电压幅值信号都能均匀放大。
基于Multisim的
实用低频功率放大器仿真设计
学员:
指导教员:
单位:
第一部分摘要、引言
一 …………………………………
二、 …………………………………低频功放的概念
三、…………………………………设计框架的形式
四 …………………………………系统总增益
第二部分各部分电路的选择与设计
一、 …………………………………输入级的设计
其中,变换电路负责执行波形变换,前置放大级主要完成信号电压的分幅度范围放大任务
音调控制电路实施完成对几段音调控制中心频率电平控制;功率放大级则是实现对信号的电压和电流放大任务。直流稳压电源部分则是为整个电路提供能量。下面作介绍。
1.3
系统总增益
由于任务要求额定功率不小于10W,考虑流出50%的裕量,所以输出功率应该在15W以上,同时输出电阻负载为8Ω。
二、 ………………………………前置放大级的设计
1,电路的设计
2,电路参数的计算
三、 ………………………………音频控制级的设计
1,反馈式高低音电功率放大级的设计
1,基本要求
2,电路形式的要求
3,末级功放参数计算
五、 …………………………供电电路与接地
其耦合电容等,考虑信号低频率低,均采用耐压50V、容量为33μ的电解电容。
输入端电阻R1取100kΩ电阻(应远大于前级输出阻抗),并一个小电容改善输入特性。
2.3音调控制级的设计
人们在欣赏音乐时,总希望听到悦耳的声音,但是由于爱好不一,有的喜欢音浑厚深沉,有的人则喜欢清脆嘹亮。而低频功率放大器是一般音响设备中最为重要的一部分,这就要求在该级中对信号频率特性进行人为控制,使频率特性中某一频率的功率增益增加或是降低达到音调控制的效果,这就是音量调节控制。
设计的整个电路有正弦信号源,放大通道,直流电源,负载部分组成。在放大通道的正弦信号输入幅值大约在5——700mv,在等效负载电阻RL为8偶的情况下,其放大通道的额定功率应大于或等于10W。通道带宽大于或等于50——10000Hz,在额定功率小剑侠非线性失真小于或等于3%
系统组成:系统主要是有
输入级,前置放大、音调控制,功率放大器级等几个部分组成。
在一般音响设备中都装有音调控制电路,普通收音机中音调控制电路比较简单,高质量的收录机、扩音机中电路则比较复杂。音调控制又称音质调节,按其调节的频率范围分,有高低音音质和多频音质调节。高低音音质调节,即在通频带的两端进行频率特性调节时,例如100Hz左右,10KHz左右,并且要求在进行高低音调节时,中音频率(一般指1KHz)附近频率特性应该保持基本不变,以保持音量。多频段音质调节,如五频段其调节频段一般在60Hz、250Hz 、1KHz、5KHz、15KHz附近,十频段调节频段100Hz、180Hz、310Hz、550Hz、1.8KHz、3.1KHz、5.5KHz、10KHz、16KHz各频率附近。
2.2.2电路参数的计算
因为开关的K2的闭合和断开,有两种情况下,下面分别对应其断开和闭合两种情况对电路参数进行确定。
因为当输入信号在40—700nV时,K2断开,要求20 lgA≥16dB
有
若取
则可得:
取标称值为
又因为当输入在5~40mV时,开关闭合,要求:
故:
取标称值470Ω。最后经过核算,能够达到设计要求。