《平行四边形》导学案

合集下载

人教版数学四年级上册平行四边形的认识导学案(精选3篇)

人教版数学四年级上册平行四边形的认识导学案(精选3篇)

人教版数学四年级上册平行四边形的认识导学案(精选3篇)〖人教版数学四年级上册平行四边形的认识导学案第【1】篇〗教学目标:1、知识与技能目标:使学生掌握平行四边形的意义及特征,了解它的特性。

2、过程与方法目标:通过观察、动手,培养学生抽象概括能力和初步的空间观念。

3、情感态度与价值观:培养学生观察和认识周围图形的兴趣和认识。

教学重点与难点:重点:平行四边形的意义。

难点:抽象概括平行四边形的意义。

教学准备:用木条订成的三角形、平行四边形框架,小棒、钉子板、方格纸等。

教学过程:(一)、老师出示一个长方形框架、1、老师动手拉它的一组相对的角,请同学们观察:这个框架还是长方形吗?为什么?(这个图形不是长方形了,因为它的四个角不是直角)今天,我们又认识了一个图形——平行四边形,我们把这样的图形叫做平行四边形、在黑板右上角贴出一个平行四边形、2、问:同学们平时见过平行四边形吗?请举例来说、(有一种防盗网上的图形、篱笆上的图形,有的编织图案)3、动手操作,感受平行四边形的特征分组操作探究师:第一组:量一量平行四边形各边的长度。

第二组:用小棒搭平行四边形。

学生的操作,教师巡视,并参与学生活动。

4、各组汇报探究结果,互相评价。

5、画平行四边形师:请你在方格纸上画一个你最喜欢的平行四边形。

6、。

平行四边形和长方形有什么相同点和不同点?(老师又一次演示长方形活动框架)(它们的相同点是都有四条边且对边相等、它们都有四个角;不同点是:长方形的四个角必须是直角)巩固练习完成课本练习三十九第2题,指生订正并说出理由。

1、判断题:(1)长方形、正方形和平行四边形都是四边形。

()(2)四个角都是直角的'四边形一定是正方形。

()(3)一个四边形,它的四条边相等,这个四边形一定是正方形。

()(4)对边相等的四边形都是长方形。

()(5)有个四边形,它的四个角都是直角,那么,这个四边形不是正方形就是长方形。

()全课总结通过今天的学习你有什么收获?谈一谈。

平行四边形导学案

平行四边形导学案

温水镇中学“高效课堂”八年级数学(下)导学案主备人:_____ 审核人:_____ 班级:______ ; 姓名:________ 课型:新授课重点、难点:重点:平行四边形的判定方法及应用.难点:平行四边形的判定定理与性质定理的灵活应用.学法指导:知识链接:1、三角形全等的证明。

2、平行四边形的性质。

【学习流程】一、课前预习:1独立看书127~129页2、 独立完成下列预习作业:(1)、回顾:什么叫平行四边形,它有哪些性质?(2)、思考:如何判别一个四边形是否是平行四边形呢?二、互动探究:活动1:将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.转动这个四边形,使它形状改变,在图形变化的过程中,它一直是一个平行四边形吗? 你能说出你的理由吗?(如图1)尝试证明: 图1活动2、将两根细木条AC 、BD 的中点重叠,用小钉绞合在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD . 转动两根木条,四边形ABCD 一直是一个平行四边形吗?你能说出你的理由吗?(如图2) 动手操作 观察分析 猜想证明 总结归纳 迁移应用尝试证明:图2三、合作交流:通过上面的两个问题的探究,你得出除了平行四边形的定义之外,还可怎样来判定一个四边形是平行四边形?归纳总结:平行四边形判定方法:方法1 :两组对边___________的四边形是平行四边形。

如图:∵_________ ∴四边形ABCD是平行四边形方法2 :对角线_________的四边形是平行四边形。

如图:∵_________ ∴四边形ABCD是平行四边四、实践应用:1、已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.2、已知:如图,A′B′∥BA,B′C′∥CB, C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′(2) △ABC的顶点分别是△B′C′A′各边的中点.五、课堂小结:平行四边形判定方法:(1)____________________________;(2) ___________________________;(3)____________________________。

认识平行四边形.导学案

认识平行四边形.导学案
2、画出下面平行四边形底边上的高。



3、填一填
①两组对边( )的四边形叫平行四边形。
②从平行四边形一条边上的一点到它的对边的( )是平行四边形的( )。
③平行四边形有( )的特性。三角形具有( )的特性
4、判断。
(1)平行四边形是长方形。 ( )
(2)平行四边形只有一条高。 ( )
(3)两个完全相同的三角形能拼成一个平行四边形。 ( )
7、从平行四边形一条边上的一点到它的对边的( )是平行四边形的高。
这条对边是平行四边形的( )。
8、你能再做两条这样的高吗?
平行四边形的高有( )条
9、平行四边形有什么特性? ( )
10、生活中哪些地方用到这一特性?
二、练习
1、下面图形中,是平行四边形的在( )中打“√”
( ) ( ) ( )
( ) ( )
导学案
学习内容
认识平行四边形
学习目标
1、经历在对简单图形分类、观察、比较、交流的活动过程,认识平行四边形。
2、学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。
3、在学习中感受数学与生活的联系。
学习重点难点
认识平行四边形,探究平行四边形的基本特征及认识平行四边形的高,能够画出并测量平行四边形的高
三、 提升练习
1、给下面图形加一条线段使其变成一个平行四边形和一个三角形
2、 在两条平行线之间画出两个等底等高的平行四边形
四、总结 通过学习知道了:
什么特征?”
长方形和正方形的对边()且();四个角都是()角。
2、平行四边形也有( )条边,特征是( )

平行四边形整章导学案

平行四边形整章导学案

18.1平行四边形的小结1..如图3,若AC BD EF 两两互相平分于点 0,请写出图中的一对全等三角形(只需写一对即2. 已知平行四边形的面积是 144,相邻两边上的高分别为 8和9,则它的周长是 _________________ .3. 已知四边形 ABCC 中,AD// BC,分别添加下列条件,① AB// CD ,②AB = DC ③AD= BQ ④/ A =Z C,⑤/ B =Z C,能使四边形 ABCD 成为平行四边表的条件的序号是 ______________________________ .4. 如图4,已知口ABCD 勺对角线交点是 0 直线EF 过0点,且平行于 BC,直线GH 过0且平行于AB,则图中共有()个平行四边形。

5. 平行四边形ABCD 的两条对角线AC,BD 相交于0.(1) 图中有哪些三角形全等 ?有哪些相等的线段? (2)若平行四边形 ABCD 的周长是20cm, △ AOD 勺周长比△ AB0的周长大6cm.求AB,AD 的 长.7.如图在,一ABCD 中,对角线 AC 与BD 交于点O ,已知点E 、F 分别为AO 、OC 的中点, ?证明:四边形BFDE 是平行四边形.6.如图,在格点图中,以格点 试在图中画出来.A 、B 、C 、D 、E 、F 为顶点,你能画出多少个平行四边形?D&如图,在△ ABC中,D、E分别是AB、AC的中点,F是DE延长线上的点,且EF=DE , 则图中的平行四边形有哪些?说说你的理由.9.如图所示,已知在平行四边形ABCD中, E是边DA的延长线上一点,且AE=AD连结EC 分别交AB BD于点F、G 求证:AF=BF.B10、如图,在口ABCD中, E、F、G H分别是四条边上的点,且满足BE=DF,CG=AH连接EF、GH求证:EF与GH互相平分。

18.2特殊的平行四边形18.2.1 矩形(1)学习目标:1、理解矩形的意义,知道矩形与平行四边形的区别与联系。

五 生活中的多边形《平行四边形的认识》【导学案】 青岛版五年级上册数学

五 生活中的多边形《平行四边形的认识》【导学案】 青岛版五年级上册数学

五生活中的多边形——平行四边形的认识(导学案)一、背景介绍平行四边形是小学数学中的一个重要知识点。

在生活中,我们经常会遇到平行四边形,比如书桌的桌面、篮球场的地面等等。

因此,了解平行四边形的定义、性质和判别方法,可以帮助我们更好地理解周围的事物,提高我们的生活质量。

二、学习目标1.掌握平行四边形的定义和性质。

2.能够判别平行四边形和其他多边形。

3.能够应用平行四边形的性质解决实际问题。

三、学习内容1. 平行四边形的定义平行四边形是一个有四条边的四边形,其中对边两两平行。

2. 平行四边形的性质1.对边平行:平行四边形的两组对边都平行。

2.对角线互相平分:平行四边形的两条对角线互相平分。

3.相邻角互补:平行四边形内部相邻两角互补。

3. 判别平行四边形和其他多边形1.判别是否有对边平行。

2.判别是否有两条对角线互相平分。

3.判别是否有两个内角互补。

4. 应用1.利用平行四边形的性质求解实际问题,例如计算物体的面积、长度等。

四、学习方法1.观察生活中的平行四边形,比如桌子、书本等,体验平行四边形存在的形状和属性。

2.画图,通过画图加深对平行四边形的理解。

3.练习,多做一些平行四边形相关的题目,巩固和提高知识点的掌握程度。

五、学习评估1.在生活中了解、观察和认识平行四边形。

2.在课堂上积极参与讨论和互动,发表自己的看法和观点。

3.能够准确应用平行四边形的性质解决实际问题。

六、拓展延伸1.探究平行四边形的面积计算公式和推导过程。

2.学习更多多边形的定义和性质。

3.了解平行四边形在几何图形中的应用。

七、总结平行四边形是生活中常见的多边形之一,其性质具有重要的实用性和理论意义。

通过学习平行四边形的定义、性质和应用等内容,可以帮助我们更好地认识周围的事物,在实际生活中更加自如地应用数学知识。

2023年春八下数学 18-1-3 平行四边形的判定(1) 导学案(人教版)

2023年春八下数学 18-1-3 平行四边形的判定(1) 导学案(人教版)

人教版初中数学八年级下册18.1.3 平行四边形的判定(1) 导学案一、学习目标:1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.重点:掌握平行四边形的判定定理.难点:综合运用平行四边形的性质与判定解决问题.二、学习过程:课前自测平行四边形的性质:边:_____________________________;∵ _______________________________∴ _______________________________角:_____________________________;∵ _______________________________∴ _______________________________对角线:_____________________________;∵ _______________________________∴ _______________________________自主学习思考:反过来,对边相等,或对角相等,或对角线互相平分的四边形是平行四边形吗?也就是说,平行四边形的性质定理的逆命题成立吗?逆命题1:____________________________________________.逆命题2:____________________________________________.逆命题3:____________________________________________.逆命题1:(证明过程)如图,在四边形ABCD中,AB=CD,AD=CB.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理1:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题2:(证明过程)如图,在四边形ABCD中,∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理2:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题3:(证明过程)如图,在四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理3:_________________________________________.几何符号语言:∵ _______________________,∴ _________________________.典例解析例1.如图,以△ABC的各边向同侧作正三角形,即等边△ABD、等边△ACE、等边△BCF,连接DF,EF.求证:四边形AEFD是平行四边形.【针对练习】如图,将□ABCD的四边DA,AB,BC,CD分别延长至点E,F,G,H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.求证:四边形EFGH为平行四边形.例2.如图,四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【针对练习】如图,在□ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.求证:四边形AFCE是平行四边形.例3.如图,□ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.【针对练习】变式1:若E、F继续移动至OA、OC的延长线上,仍使AE=CF,则结论还成立吗?为什么?变式2:问题中AE=CF,过点O作一直线分别交AB、CD于G、H,则四边形GFHE 是平行四边形吗?为什么?达标检测1.下面给出四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是( )A.1:2:3:4B.2:3:2:3C.2:3:3:2D.1:2:2:32.如图,在四边形ABCD中,AB=CD,BC=AD.若∠D=120°,则∠C的度数为( )A.60°B.70°C.80°D.90°3.如图,在□ABCD中,对角线AC、BD交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE= ∠CBF;④∠ABE= ∠CDF.其中不能判定四边形DEBF是平行四边形的有( )A.0个B.1个C.2个D.3个4.四边形ABCD中,AB=9cm,BC=6cm,CD=9cm,当AD=____cm时,四边形ABCD 是平行四边形.5.如图,在□ABCD中,点E,F分别在边AD,BC上,且BE//DF,若AE=5,则CF=_____.6.如图,线段AB,CD相交于点O,且图上各点把线段AB,CD四等分,这些点可以构成平行四边形的个数是_____.7.如图,在□ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,求证:四边形KLMN为平行四边形.8.如图,在□ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.9.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.10.如图,AC是平行四边形ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.。

2023年人教版八年级数学下册第十八章《平行四边形的性质(第2课时)》导学案

2023年人教版八年级数学下册第十八章《平行四边形的性质(第2课时)》导学案

新人教版八年级数学下册第十八章《平行四边形的性质(第2课时)》导学案学科数学教学内容18.1.1平行四边形的性质(第2课时)年级803 执教授课时间自主学习目标知道平行四边形的概念与性质,并能用转化思想研究新图形。

生生合作目标培养学生发现问题意识和能力师生合作目标树立转化的思想。

合作重点平行四边形的性质的证明合作难点用转化思想研究新图形合作关键用转化思想研究新图形教学流程教学素材教学环节教师行为学生活动引入课题1. 如图,若要使四边形ABCD是平行四边形,可以添加条件: ,添加的理由是2、如图,在□ABCD中,相等的边是,相等的角是,这些边相等的依据是,这些角相等的依据是.3. 如何证明平行四边形的边的性质和角的性质?前置诊断口述倾听学习目标:展示目标口述学生倾听学习内容11.1.如图,在□ABCD中,画出对角线,对角线能画条,分别是.导学1 巡视探讨、交流,自主合作巡视自主独立完成BDAC2.你能找到其他线段之间的关系吗?请分小组探究,新出现的角之间有什么关系?新出现的线段之间有什么关系?新出现的三角形之间有什么关系?理由是什么?3、你能叙述这一结论吗?能不能用几何语言叙述?互动交流指导学生评价举手展示巩固达标巡视独立练习学习内容2 1、如图,在□ ABCD中,AB=10,AD=8,AC⊥BC. 求BC,CD,AC,OA的长,以及□ABCD的面积.2、练习1). 如图,在□ABCD中,BC=10, AC=8,BD=14.△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?2)如图,□ABCD的两条对角线相交于点O, 已知AB=8cm,BC=6cm,△AOB的周长是18cm,那么△AOD的周长是 .3)如图,在□ABCD 中,AB=3,BC=5,对角线AC,BD相交于点O,则OA的取值范围是.4)如图,□ABCD的对角线AC,BD相交于点O,EF过点O且与AB,CD分别相交与点E ,F.求证OE=OF.导学2 提问自主合作评价自学互动交流巡视BOACDEFCBADOBDCAOBDAC教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。

平行四边形及特殊的平行四边形复习导学案

平行四边形及特殊的平行四边形复习导学案

平行四边形及特殊的平行四边形复习导学案一、平行四边形:(一)知识点总结:1.平行四边形的定义:两组对边分别 的四边形叫做平行四边形。

2.平行四边形的性质(1)边:(2)角: (3)对角线: (4)对称性: 3.平行四边形的判定: 从边考虑:(1)(2) (3) 从角考虑:(4)两组对角 的四边形是平行四边形。

从对角线考虑:(5)对角线 的四边形是平行四边形。

(二)典型例题:如图,E F ,是四边形A B C D 的对角线A C 上两点,AF C E D F BE D F BE ==,,∥. 求证:(1)A F D C E B △≌△. (2)四边形A B C D 是平行四边形.(三)练一练:1、□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm, AD=_____cm2、平行四边形ABCD 的周长是18,三角形ABC 的周长是14,则对角线AC 的长是 。

3、如图(1),在□A B C D 中,C E AB ⊥,E 为垂足.如果125A = ∠,则B C E =∠( )A.55B.35 C.25 D.30二、矩形:(一)知识点总结:1.定义: 的平行四边形是矩形.2.性质:ABDEFCA EBCD图(1)①矩形的 角都是直角 ②矩形的对角线 . 3.判定:①有 角是直角的平行四边形是矩形. ②有 角是直角的四边形是矩形. ③对角线 的平行四边形是矩形. (二) 典型例题:如图所示,△ABC 中,点O 是AC 边上一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于点F .(1)求证:EO =FO(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(三)练一练:1、矩形具有而平行四边形不具有的性质是( ) A.对边相等 B.对角相等 C.对角互补 D.对角线平分2、矩形ABCD 对角线AC 、BD 交于点O ,AB=5,12,cm BC cm 则△ABO 的周长为 cm.3、 如图所示,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( ) A.34B.33C.24D.8三、菱形:(一)知识点总结:1、定义:一组邻边 的平行四边形是菱形.2、性质:①菱形的 都相等.②菱形的对角线 3、判定:①一组邻边 的平行四边形是菱形. ② 都相等的四边形是菱形③对角线 平行四边形是菱形.4、面积公式: (二)典型例题:.如图.矩形ABCD 的对角线相交于点0.DE ∥AC , CE ∥BD .求证:四边形OCED 是菱形;A BC DEF 第3题图(三)练一练:1、下列条件中,能判断四边形是菱形的是( ) A 、两条对角线相等。

2023年人教版数学五年级上册平行四边形的面积导学案(优选3篇)

2023年人教版数学五年级上册平行四边形的面积导学案(优选3篇)

人教版数学五年级上册平行四边形的面积导学案(优选3篇)〖人教版数学五年级上册平行四边形的面积导学案第【1】篇〗教学目标:1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.3、对学生进行辩诈唯物主义观点的启蒙教育.教学重点:理解公式并正确计算平行四边形的面积.教学难点:理解平行四边形面积公式的推导过程.学具准备:每个学生准备一个平行四边形。

教学过程:一、导入新课。

1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的`图形?2、好,下面谁来说一说你找到了哪些学过的图形?3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

二、民主导学(一)、数方格法用展示台出示方格图1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。

然后指名说出数得的结果,并说一说是怎样数的。

3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?2、然后指名到前边演示。

学案《平行四边形》导学案精品1人教数学五上(最新)

学案《平行四边形》导学案精品1人教数学五上(最新)

平行四边形预习指南:结合生活实际认识平行四边形,发现并归纳出平行四边形的特征,认识平行四边形的底和高,会正确画出平行四边形的高,知道平行四边形具有不稳定性。

1.下面哪一组是平行线?2.想一想,如果把两组平行线交叉在一起,会形成什么图形呢?3.教材第64-65页例1、2。

(1)认识平行四边形。

①小组合作。

利用三角尺、量角器、直尺等学具研究平行四边形的特征。

②小组汇报交流。

通过用直尺测量知道相对的边( );通过把直尺和一条边重合,再将三角尺的的直角边和直尺相邻的一条边重合,最后让三角尺慢慢沿直尺平移,发现能与对边重合,说明这两条对边是( )的;用量角器测量四个角发现:对角( )。

③归纳总结。

平行四边形两组对边( )且( ),对角( )。

④定义。

两组对边分别( )的四边形叫做平行四边形。

(2)平行四边形的特征。

用四根硬纸条订成一个长方形,捏住对角向两边拉就形成一个( )形,这个过程说明平行四边形其有( )的特点。

(3)平行四边形的底和高。

从平行四边形一条边上的一点向( )引一条垂线,这点和( )之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的( )。

(如图)4.下面哪些图形是平行四边形?画出每个平行四边形的高。

每日口算12×15=101×7=32×6=0×500=48×5= 220×5=106×5=40×18=25×8=84×5=参考答案1.①③④2.平行四边形3.(1)②相等平行相等③平行相等相等④平行(2)平行四边易变形(3)对边对边底4.第1、2、4个图形是平行四边形。

画图略每日口算:180 707 192 0 240 1100 530 720200 4202方程的意义和等式的性质(1)预习指南:理解方程的意义并会判断一个式子是否为方程。

知道方程与等式的关系,并能用方程表示简单的数量关系。

第16章_平行四边形的认识导学案

第16章_平行四边形的认识导学案

16.1 平行四边形的特征 课时:一☆学习目标1.理解并掌握平行四边形的特征:平行四边形的对边平行且相等,对角相等; 2.会利用平行四边形的特征进行有关角和边的计算; ☆重点:平行四边形的概念和特征。

☆难点:探索和掌握平行四边形的特征 ☆自学导读1.你能从以下图形中找出平行四边形吗?2.归纳:※有两组对边分别 的四边形叫做平行四边形。

根据平行四边形的这一定义我们可得出:※平行四边形的一个主要性质:平行四边形的两组对边 。

平行四边形还具有哪些性质呢? ☆合作探究展示1平行四边形是一个 对称图形。

2平行四边形的对边 ,对角 . 3如图,已知A ′B ′∥BA ,B ′C ′∥CB ,C ′A ′∥AC . (1)在整个图形中,有多少个平行四边形?(2)∠ABC 与∠B ′,∠CAB 与∠A ′,∠BCA 与∠C ′有什么关系? (3)BA ′与BC ′,CA ′与CB ′,AC ′与AB ′有什么关系?1245634 如图,在ABCD中,已知∠A=40°,求其它各个内角的度数.5已知,ABCD中AB = 7,BC = 5,求ABCD的周长。

学习检测1.已知在ABCD中, ∠A + ∠C = 80°,求四个角的度数.2.已知在ABCD中,周长为40cm,且AB比BC长2cm,求它的各边的长.3.已知,的周长为56cm,AB:BC = 4:3,求CD、DA的长.4.如图,ABCD中,∠BAD = 130°,AE⊥BC,AF⊥CD,垂足分别为E,F,求∠EAF的度数.3.如图,ABCD中,AB比AD大2cm, ∠DAB的平分线AE交CD于E,∠ABC的平分线BF 交CD于F,如果ABCD的周长为24cm,求CE,EF,FD的长.学后反思:16.1 平行四边形的特征课时:二☆学习目标1.理解和掌握发现平行四边形的对角线互相平分的特征;2.了解两平行线之间距离的概念;3.会利用平行四边形的特征进行相关的计算和说理.☆重点:掌握平行四边形对角线互相平分的特征和平行线间距离处处相等的性质☆难点:体会两平行线之间的距离、点到直线之间距离、点与点之间距离的相互联系与转化.☆自学导读1.平行四边形的对边_且__平行四边形的对角__2.平行四边形是一个对称图形☆合作探究展示1如右图,把ABCD绕着点O旋转180°,观察点A与点C,点B与点D位置关系。

《平行四边形的认识》导学案

《平行四边形的认识》导学案

3、2《平行四边形的认识》导学案课型综合课课时一课时主备人审核人复备人本周行为训练重点学具展示班级三年级小组姓名学习目标知识目标:使学生初步认识平行四边形,了解平行四边形的特点。

技能目标:通过学生手动、脑想、眼看,使学生在多种感官的协调活动中积累感性认识,发展空间观念。

重、难点预测重点:探究平行四边形的特点。

难点:让学生动手画、剪平行四边形。

时间预设学习过程学生笔记(一)导学:出示学习目标:教学楼的玻璃窗、墙面上的瓷砖、砌花池用的瓷砖、楼梯的扶手、伸缩门上的图形都是四边形,但这些四边形中有的是长方形有的是正方形,那平行四边形又是什么样图形呢?这节课我们来研究平行四边形的特点吧!(二)独学:1、观察情境图,图中标红色线条的四边形是形,指给同桌看。

日常生活中,你还在哪里见过平行四边形?2、此图正方形,也长方形。

它有条边,个角。

这样的图形就叫做形。

3、想想:什么样的图形是平行四边形?它的特征是;。

4、请你在方格图上画一个平行四边形5、感受平行四边形的特点:拿出三条硬纸条,用图钉把它们钉成三角形,然后拉一拉。

你的感受是;。

拿出教师给你们准备的四条硬纸条,用图钉把它们钉成一个平行四边形形,然后拉一拉。

你的感受是:。

操作:怎样才能使平行四边形拉不动呢?你们的结果是:(三)互学:①对学:对子之间互相批改,并纠错。

评价。

②群学:组长组织,按顺序交流自己对学中不懂的习题,指定同学解答,不能解决的问题展示在本组黑板上。

(四)评学:1、找一找,涂一涂。

(给平行四边形涂上你喜欢的颜色)(五)统计评价表,整理导学案。

对子签名:组长签名:。

《平行四边形的认识》导学案

《平行四边形的认识》导学案

《平行四边形的认识》导学案平行四边形的认识导学案第一部分:引入目标- 了解平行四边形的定义和性质- 能够确定平行四边形的特征- 掌握标记和表示平行四边形的方法话题简介在几何学中,平行四边形是一种特殊的四边形,具有独特的性质和特征。

通过研究平行四边形的认识,我们可以更好地理解和应用几何学中的概念和原理。

第二部分:概念解释平行四边形的定义平行四边形是指有两对对边相互平行的四边形。

换句话说,平行四边形的对边两两平行,且对边长度相等。

平行四边形的性质平行四边形具有以下性质:1. 对边两两平行;2. 对角线彼此平分;3. 相邻角互补,即相邻内角的和为180度;4. 同位角相等,即位于同一边界的两个内角相等。

第三部分:特征判断判断平行四边形的特征确定一个四边形是否为平行四边形时,可以根据以下特征进行判断:1. 观察其对边是否平行;2. 测量对边长度是否相等;3. 判断相邻角是否互补;4. 检查同位角是否相等。

第四部分:标记和表示方法标记方法为了方便表示和讨论平行四边形,我们可以使用以下标记方法:- 一般用大写字母ABCD表示四边形的顶点;- 使用小写字母a、b、c、d表示四边形的边长;- 使用小写字母m、n表示对角线。

表示方法平行四边形可以用如下表示方法呈现:ABCD 或 ABCD第五部分:练题1. 下图中的四边形是否为平行四边形?为什么?请在此插入图片并提供答案2. 给定ABCD为平行四边形,若AD=6cm,BC=8cm,AC=10cm,请问BD的长度是多少?请提供你的答案和解题步骤结束语通过本导学案的学习,我们希望你能够清楚地理解平行四边形的定义和性质,并能够熟练运用判断和表示平行四边形的方法。

如果你还有任何问题,请随时向老师提问。

祝愉快学习!。

18.1 平行四边形导学案

18.1 平行四边形导学案

A B D C 第18章平行四边形第1课时 18.1.1 平行四边形的性质导学案(1)【学习目标】1、理解平行四边形的定义及有关概念;2、能根据定义探索并掌握平行四边形的对边相等、对角相等的性质;3、能根据平行四边形的性质进行简单的计算和证明;【学习重点】平行四边形的定义,平行四边形对角、对边相等的性质;【学习难点】如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法;一、学前预习认真学习课本83页至84页的内容。

1、叫做平行四边形。

平行四边形用符号“”来表示。

2、阅读以下文字并填空:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.如上图,在ABCD中,AB的对边是,AB的邻边是,AD是BC 的边。

∠C的邻角是,∠C的邻对角是。

二、探索思考探究(一)通过观察、测量,我们可以发现:①平行四边形的对边;②平行四边形的对角;请你用我们学过的知识证明(需要你自己作图、写已知、求证,最后证明。

)练习一1、(1)在ABCD中,∠A=50°,求∠B、∠C、∠D的度数。

2、已知:ABCD中,AB=5,BC=3,求它的周长探索(二)a // b,作AD // GH // BC,若a // b,DA、GH、CB垂直于a,1、上面两图中AD、GH、BC相等吗?为什么?2、两条平行线间的距离:两条平行线间的距离和点与点之间的距离、点到直线的距离有何联系与区别:三、典例分析例1:在ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证:AE=CF四、当堂反馈1、.判断题:(1)平行四边形两组对边分别平行且相等. ( ) (2)平行四边形的四个内角都相等. ( )(3)平行四边形的相邻两个内角的和等于180°( )(4)如果平行四边形相邻两边长分别是2cm和3cm,那么周长是10cm. ( )2、在平行四边形ABCD中,如果∠A=42°,那么∠B= ,∠C=3、在□ ABCD中,∠A:∠B=2:3,则∠A= _____ ,∠B= ______,∠C= ______,∠D= _______.4、已知□ ABCD的周长为20cm,且AD-AB=1cm,求AD,CD5、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.五、学习反思:(1)知识点:(2)数学方法:A BDCFEa ab bA AB BC CD DGHGHABCDO第2课时 18.1.1 平行四边形的性质导学案(2)【学习目标】1、理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2、能运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题.3、培养学生的推理论证能力和逻辑思维能力. 【学习重点】掌握平行四边形对角线互相平分的性质【学习难点】能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题 一、学前预习1. 如图,若要使四边形ABCD 是平行四边形,可以添加条件: , 添加的理由是 2、平行四边形的性质:如图∵四边形ABCD 是平行四边形∴ , ( ) 二、探索思考探究(一)1、如图,在□ABCD 中,画出对角线, 对角线能画 条,分是 . 2、新出现的线段之间有什么关系?新出现的三角形之间有什么关系?理由是什么?3、由以上关系你发现平行四边形的对角线有什么性质?4、请证明;平行四边形的对角线互相平分.已知: 求证:5、性质定理3的符号语言表示:∵∴ ( ) 练习一 1、如图,在ABCD 中,B C =10cm ,A C =8cm ,B D =14cm ,△AOD 的周长是多少?△ABC 与△DBC 的周长那个长?长多少?.三、典例分析例1、已知四边形ABCD 是平行四边形,AB =20cm ,AD =16cm ,AC ⊥BC , 求BC 、CD 、AC 、OA 的长以及ABCD 的面积.练习二、已知四边形ABCD 是平行四边形,BC =4cm ,BD =10cm ,AC=6cm, 求AB 、CD 的长以及ABCD 的面积.例2、已知:如图ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF ,AE=CF ,BE=DF .四、当堂反馈1. 如图,□ABCD 的两条对角线相交于点O, 已知AB=8cm,BC=6cm,△AOB 的周长是18cm ,那么△AOD 的周长是 .2.如图,在□ABCD 中,AB=3,BC=5,对角线AC ,BD 相交于点O , 则OA 的取值范围是 .3、如图:ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .①求证:OE =OF ,AE=CF ,BE=DF .②若其他条件都不变,将EF 转动到图b 的位置,那么①中结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c 和图d ),①中结论是否成立?说明你的理由.五、学习反思:(1)知识点: (2)数学方法BDA CBDA CCBADOB DCA OABCDO第3课时 18.1.2平行四边形的判定导学案(1)【学习目标】1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.体会用类比、逆向联想及运动的思维方法来研究问题. 【学习重点】平行四边形的判定方法及应用【学习难点】平行四边形的判定定理与性质定理的灵活应用一、学前准备1.平行四边形的定义是2.平行四边形的性质:边的性质角的性质: :对角线的性质: 符号语言:如图∵∴(边) ,(角) (对角线二、探索思考探究(一)请写出平行四边形边、角、对角线的性质定理的逆命题:有关边的: 有关角的:有关对角线的:例1、如图, ABCD 的对角线AC 、BD 相交于点O ,E ,F 是AC 上的两点,并且AE=CF. 求证:四边形BFDE 是平行四边形.四、当堂反馈1、如图,AB=DC=EF ,AD=BC ,DE=CF ,图中有哪些互相平行的线段?并说明理由2、已知:如图,ABCD 中,点E 、F 分别在CD 、AB 上,DF ∥BE ,EF 交BD于点O .求证:EO=OF .3、已知□ABCD 中,AC 、BD 相交于O ,E 、F 是BO 、DO 的中点求证:AE ∥CF五、学习反思:(1)知识点: (2)数学方法:这些命题正确吗?如果正确,请证明A BCDEF第4课时 18.1.2平行四边形的判定导学案(2)【学习目标】1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的四种判定方法和性质来证明问题.3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.【学习重点】平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.【学习难点】平行四边形的判定定理与性质定理的综合应用一、学前准备1、平行四边形的性质:如图1∵∴(边),( )(角) ,( )如图2∵(对角线)∴ ( )2、平行四边形的判定:如图1 (1)定义∵∴四边形ABCD是平行四边形. ( )如图1 (2)∵∴四边形ABCD是平行四边形. ( )如图1 (3)∵∴四边形ABCD是平行四边形. ( )如图2(4)∵∴四边形ABCD是平行四边形. ( )二、探索思考探究(一)1、请同学们猜想一下,如果只考虑四边形的一组对边,当它满足什么条件时这个四边形是平行四边形?(据以下4个问题,写出一个你认为正确的猜想,并证明你的猜想)问题1:一组对边平行的四边形是平行四边形吗?如果是请给出证明,如果不是请举出反例说明.问题2:满足一组对边相等的四边形是平行四边形吗?问题3:如果一组对边平行,而另一组对边相等的四边形是平行四边形吗?问题4:一组对边平行且相等的四边形是平行四边形吗?例1如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:四边形EBFD是平行四边形.练习1 已知:如图,在四边形ABCD中,对角线AC和BD相交于O,AO=OC,BA⊥AC,DC⊥AC. 求证:四边形ABCD是平行四边形.四、当堂反馈1、如图,点EF是平行四边形ABCD边AD、BC上两点,AE=CF求证:BE∥DF2、已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.3、已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:①∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;②△ABC的顶点分别是△B′C′A′各边的中点.五、学习反思:(1)知识点:(2)数学方法:BD AC图1ACD 图2BO第5课时 18.1.2平行四边形的判定导学案(3)【学习目标】1、会综合运用平行四边形的四种判定方法和性质来证明问题.2、理解三角形中位线的概念,掌握三角形中位线的性质【学习重点】三角形中位线的概念和性质【学习难点】证明三角形中位线定理一、学前准备平行四边形的判定:如图1 (1)定义∵∴四边形ABCD是平行四边形. ( )如图1 (2)∵∴四边形ABCD是平行四边形. ( )如图1 (3)∵∴四边形ABCD是平行四边形. ( )如图1 (3)∵∴四边形ABCD是平行四边形. ( )如图2(5)∵∴四边形ABCD是平行四边形. ( )二、探索思考探究(一)1、请按要求画图:(1)在右框画任意△ABC中,(2)画AB、AC边中点D、E,连接DE.2、定义:像DE这样,连接三角形两边中点的线段叫做.3、问题1:一个三角形有几条中位线?问题2:三角形中位线与三角形中线有什么区别?问题3:通过观察、测量,DE与BC有怎样的关系?4、尝试证明你的猜想5、三角形中位线定理:符号语言:∵∴2. 如图,△ABC中,D、E分别是AB、AC中点.(1)若DE=5,则BC= .(2)若∠B=65°,则∠ADE= °.(3)若DE+BC=12,则BC= .三、典例分析例:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA中点.求证:四边形EFGH是平行四边形.四、当堂反馈1、如图,A、B两点被池塘隔开,在AB外选一点C,连接AC和BC,怎样量出A、B两点间的距离?根据是什么?2、如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,求△DOE的周长3、如图,ABCD的对角线AC,BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点,求证:四边形EFGH是平行四边形五、学习反思:(1)知识点:(2)数学方法:BDAC图1ACD图2BEGFHB CDAABCAB CDOEGHF【学习目标】 【学习重点】 【学习难点】 一、学前准备二、探索思考 探究(一)三、典例分析四、当堂反馈五、学习反思:(1)知识点: (2)数学方法:1、在四边形ABCD 中:从下列条件(1)AB ∥CD ; (2)AD ∥BC ; (3)AD =BC ,(4)∠A =∠C ,选择两个条件,能判定四边形ABCD 是平行四边形的共有 种2、指出下列条件中,哪些一定能判定四边形ABCD 是平行四边形?(1). AB=BC, A D ∥BC (2). AB=CD,O A =OC (O 是对角线交点) (3). ∠A=∠B, ∠C=∠D (4).AB ∥CD, ∠A=∠C 3、如图,BD 是□ABCD 的对角线,点E 、F 在BD 上, 要使四边形AECF 是平行四边形,还需要增加的一个条 件是 (填上你认为正确的一个即可)。

人教版八年级数学第十八章平行四边形导学案(定稿)

人教版八年级数学第十八章平行四边形导学案(定稿)

18.1.1平行四边形的性质(1)课前预习:1.四边形的内角和.2.有两组对边分别平行的四边形叫做.3.平行四边形的面积公式为:.4.平行四边形用符号“”表示,平行四边形ABCD记作“”.5.平行四边形的性质:(1)平行四边形的对边.(2)平行四边形的对角.6.两条平行线之间的平行线段都相等.7.两条平行线中,一条直线上到另一条直线的,叫做这两条平行线之间的距离.课内探究:探究1.在探究平行四边形性质的过程中,体会研究平行四边形性质的基本方法是什么?探究2●平行四边形的边角性质例1.如图,□ABCD的周长为60cm,A E⊥BC,AF⊥CD,垂足分别为E、F(1)若∠BAD=120°,求∠EAF的度数;(2)已知A E︰AF=4︰6,求□ABCD的各边的长变式训练:1.如图,□ABCD中,E为BC上的一点,AF⊥DE于F,∠DAF=62°,求∠BED的度数2.如图,□ABCD中,AE平分∠BAD交DC于点E,AD=8cm,AB=5cm,求EC的长探究2●平行四边形与全等三角形的综合应用例2.如图,已知E、F是□ABCD对角线AC上的两点,且BE⊥AC,DF⊥AC.(1)求证:△ABE≌△CDFABE≌△CDF外其余两对全等三角形(不再添加辅助线)变式训练:1、如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F,求证:AE=CF.2、如图,分别延长□ABCD的边BA、DC到点E、H,使得AE=AB,CH=CD,连接EH,分别交AD、BC于点F、G.求证:△AEF≌△CHG.限时训练1.如图,已知在□ABCD中,AD=3cm,AB=2cm,则□ABCD的周长等于()A.10cmB.6cmC.5cmD.4cm第2题2.如图,□ABCD的面积是12,点E、F在BD上,且BE=EF=FD,则△CEF的面积为()A.2B.3C.4D.63.如图,平行四边形ABCD中,AB=AD,∠D=70°,BE⊥AC于E,则∠ABE等于()A.20°B.25°C.30°D.35°4.如图,平行四边形ABCD中,AE⊥BC于E,AF⊥DC于F,若平行四边形ABCD的周长为48,AE=5,AF=10,则平行四边形ABCD的面积等于()A.87.5B.80C.75D.72.5第4题第5题第6题5.如图,直线l1∥l2,A、C、F在l1上,B、D、E在L2上,且AB∥CD,CE⊥l2,FG⊥l2,则下列说法不正确的是()A.AB=CDB.A、B两点之间的距离就是线段AB的长C.EC=FGD.直线l1、l2的距离就是线段CD的长6.如图,在平行四边形ABCD中,过对角线AC上一点P作EF∥AD,GH∥AB,与各边交点分别为E、F、G、H,则图中面积相等的平行四边形的对数为()A.3B.4C.5D.67.如图,已知平行四边形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,这个条件是(只第7题第8题8.如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是度.自主训练1.一个平行四边形的周长为70cm,两组对边之间的距离为10cm和4cm,则这个平行四边形的各边长分别为2.如图,□ABCD中AB=13,AD=5,AC⊥BC,则S□ABCD=3.如图,四边形ABCD是平行四边形,△AB’C和△ABC关于AC所在直线对称,AD和B’C相交于点O,连接BB’.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB’O≌△CDO.18.1.1平行四边形的性质(2)课前预习:1.平行四边形的对边且,对角 .2.两条平行线之间的距离处处3.平行四边形的对角线课内探究探究1平行四边形的两条对角线将平行四边形分成了四个三角形,你知道这四个三角形的面积有怎样的关系吗?你是怎样想的?与同学交流.探究2●平行四边形的对角线性质例1.已知:如图,□ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长多8cm,求这个平行四边形各边的长.变式训练如图,平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cmB.5cmC.6cmD.8cm●平行四边形的性质的综合应用例2.如图,在平行四边形ABCD中,AC与BD相交于点O,AB⊥AC,∠CAD=45°,AC=2,求BD的长.变式训练□ABCD的一边为6cm,一条对角线为8cm,则另一条对角线的取值范围为限时训练1.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40°B.50°C.60°D.80°2.如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()A.6B.8C.9D.10第2题第3题第4题3.如图为一个平行四边形ABCD,其中H、G两点分别在BC、CD上,AH⊥BC,AG⊥CD,且AH、AC、AG将∠BAD分成∠1、∠2、∠3、∠4四个角.若AH=5,AG=6,则下列关系正确的是()A.∠1=∠2B.∠3=∠4C.BH=GDD.HC=CG4.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1等于()A.40°B.50°C.60°D.80°5.如图,在□ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当点E、F 满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OFB.DE=BF D.∠ABE=∠CDF第5题第6题第7题6.如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为()A.5.B.10C.20D.407.如图,在□ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是8.在□ABCD中,已知∠A=110°,则∠D= .9.如图,□ABCD中,对角线AC、BD相交于O,OE⊥DC,OF⊥AB,垂足分别是E、F.求证:OE=OF.自主训练1.如图,平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M,如果△CDM的周长是40cm,求平行四边形ABCD的周长.2.如图,点E 是□ABCD 的对角线AC 上任意一点,则S △ABE =S △ADE 是否正确?请说明理由.3.如图,在□ABCD 中,E 为BC 边上的一点,且AB=AE.(1)求证:△ABC ≌△EAD ;(2)若AE 平分∠DAB ,∠EAC=25°,求∠AED 的度数.18.1.1平行四边形的性质(3)课前预习1.在□ABCD 中,AC 、BD 交于点O ,已知AB =8cm ,BC =6cm ,△AOB 的周长是18cm ,那么△AOD 的周长是_____________.2. □ABCD 的对角线交于点O ,S △AOB =2cm 2,则S □ABCD =__________.3. □ABCD 的周长为60cm ,对角线交于点O ,△BOC 的周长比△AOB 的周长小8cm ,则AB =______cm ,BC =_______cm .4. □ABCD 中,对角线AC 和BD 交于点O ,若AC =8,AB =6,BD =m ,那么m 的取值范围是____________.课内探究例1. □ABCD 中,E 、F 在AC 上,四边形DEBF 是平行四边形.求证:AE=CF .F E D B A例2.如图,田村有一口四边形的池塘,在它的四角A 、B 、C 、D 处均有一棵大桃树.田村准备开挖养鱼,想使池塘的面积扩大一倍,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,画出图形,说明理由.D BA例3、已知:如下图, ABCD 的对角AC ,BD 交与点O.E ,F 分别是OA 、OC 的中点。

平行四边形的判定(一)导学案

平行四边形的判定(一)导学案

20.1 第1课时平行四边形的判定(一)【学习目标】1、理解并掌握用两组对边来判定平行四边形的两种方法。

2、会综合运用平行四边形的判定方法和性质来解决问题。

3、培养用类比、逆向联想及运动的思维方法来研究问题。

【学习重、难点】综合运用平行四边形的判定方法和性质来解决问题。

【使用方法】1、学生自学课本P100--101页,并完成预习案,时间10分钟;2、师生合作、探究,完成探究案,并进行及时检测。

时间25分钟。

3、交流、讨论本堂课的得与失,课后完成练习案。

预习案一:知识回顾:1、平行四边形定义是。

2、平行四边形性质:(1).从边上看:。

在ABCD中:∥;∥。

= ;= 。

(2).从角上看:。

在ABCD中:= ;= 。

+ =180°;+ =180°。

(3).从对角线上看:。

在ABCD中:= ;= 。

二、新知自学:(课本100——101)平行四边形判定1 (平行四边行定义)平行四边形判定2 (平行四边行边的性质的逆定理)。

已知:如图,在四边形ABCD中,AD=BC,AB=DC.求证:四边形ABCD是平行四边形.分析要证明四边形ABCD是平行四边形,现在只有平行四边形的定义这一种方法,即须证AB∥DC,AD∥BC,因此需要连结对角线构造内错角.证明:连结AC,∵AD=BC,AB=DC,=,∴ △ABC ≌△CDA (S .S .S.),∴ ∠ =∠ , ∠ =∠ 。

(全等三角形的性质)∴ AB ∥CD , AD ∥BC 。

(内错角相等,两直线平行)∴ 四边形ABCD 是平行四边形。

(平行四边形的定义)。

因此我们得到第二种平行四边形的判定方法:平行四边形判定2(两组对边的关系)探 究 案例1、 已知:如图,ABCD 中,点E 、F 分别在CD 、AB上,DF ∥BE ,EF 交BD 于点O .求证:四边形DFBE是平行四边形。

例2、 如图:EFGH分别是ABCD 的边AD 、AB 、BC 、CD 上的点,且AE=CG ,BF=DH ,求证:四边形EFGH 是平行四边形。

第18章《平行四边形》四步导学案

第18章《平行四边形》四步导学案

人教版八年级上册数学第十八章《平行四边形》四步导学案18.1.1平行四边形的性质(1)学习目标知识:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 能力:会用平行四边形的性质解决简单的平行四边形的计算问题。

情感:通过学生动手体验、探索、归纳等获取知识的途径,从而培养学生对学习数学的兴趣。

学习重点:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.学习难点:解决简单的平行四边形的计算问题。

教学流程【导课】1、说说下列图形是什么图形?2、观察课本83页图19.1- 1,你能发现那些几何图形? 【多元互动合作探究】活动一:1、观察平行四边形与一般的四边形有什么异同?2、归纳平行四边形概念:3、平行四边形记法:如图“平行四边形”可用符号“表示。

平行四边形ABCD记作:ABCD活动二: B C1、观察上面这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?2、证明你的猜想:已知:如图二ABCD ,求证:AB = CD , CB= AD,/ B = Z D,/ BAD = Z BCD .(分析:作二ABCD的对角线AC,它将平行四边形分成△ ABC和厶CDA,证明这两个三角形全等即可得到结论)由此得到:平行四边形性质1平行四边形的.平行四边形性质2平行四边形的.【训练检测目标探究】1•填空:【训练检测目标探究】第十八章平行四边形(1)在二ABCD 中,/ A=50,则/ B=®,/ C=度,/ D=度.(2)如果二ABCD 的周长为28cm,且AB: BC=2 : 5,那么AB=cm, BC=cm, CD=cm, CD=cm.2. 在-ABCD中,如果EF // AD, GH // CD , EF与GH相交与点O,那么图中的平行四边形一共有().(A) 4 个(B) 5 个 (C) 8 个 (D) 9 个3、平行四边形两角之比是2 : 3 ,各角都是多少度?4、、如图小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?【迁移应用拓展探究】1•在平行四边形ABCD中,/ A=50 °则/ B= ° / D = °2、如果平行四边形ABCD的周长为28cm,且AB: BC=2 : 5,那么AB=cm, BC=cm, CD= cm, CD=cm3、如图,在平行四边形ABCD中,AE=CF,丁D 求证:AF =CE .4、如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形(1)线段AD和BC的长度有什么关系?为什么?若这个四边形的一个外角/ a= 38°这个四边形的每个内角的度数分别是多少?为什么?布置作业板书设计教后反思授课时间:累计课时:第十八章平行四边形18.1.1平行四边形的性质(2)学习目标知识:理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行四边形》导学案
结论:
在四边形ABCD中,已知:AO=OC,BO=DO,
问:四边形ABCD是平行四边形吗?给出简单的证明
结论:
已知:在△ABC中,点D,点E分别是边AB,AC边的中点,试证明线段DE,BC的位置关系和数量关系。

A
D E
B C
结论:
A
D E
B C
(备用图)
已知:a∥b,AB⊥b于B,CD⊥b于D求证:AB=CD
结论:
1、下列哪组条件能判别四边形ABCD是平行四边形?()
A、AB∥CD,AD=BC
B、AB=CD,AD=BC
C、∠A=∠B,∠C=∠D
D、AB=AD,CB=CD
2. 能够判定一个四边形是平行四边形的条件是()
A、一组对角相等
B、两条对角线互相平分
C、两条对角线互相垂直
D、一对邻角的和为180°
3.如图4,□ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为 ( )
A.3 cm B.6 cm C.9 cm D.12 cm
4.如图10,平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件_________,就可得BE=DF。

2.如果等边三角形的边长为3,那么连结各边中点所成的三角形的周长为().
(A)9 (B)6 (C)3 (D)9 2
6.下列说法准确的是().
(A)有两组对边分别平行的图形是平行四边形(B)平行四边形的对角线相等
(C)平行四边形的对角互补,邻角相等(D)平行四边形的对边平等且相等7.在四边形ABCD中,AD∥BC,若ABCD是平行四边形,则还应满足().(A)∠A+∠C=180°(B)∠B+∠D=180°
(C)∠A+∠B=180°(D)∠A+∠D=180°
平行四边形开放题三例
一.探索条件型
10.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的条件是_______(•填一个你认为准确的条件).
例1. 如下图,在平行四边形ABCD中,E,F是对角线BD上的两点,要使
ΔADF≌ΔCBE,还需添加一个条件是:__________(只需添加一个条件)。

二. 探索结论型
例2.如下图,在平行四边形ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则图中除平行四边形ABCD外的平行四边形还有__________(写出一个即可)。

三. 探索作图型
例3.已知直线l把平行四边形ABCD分成两部分,要使这两部分的面积相等,直线l所在的位置需满足的条件是_________(只需填上一个你认为合适的条件)。

1. 已知:如图,E、F是□ABCD的对角线上的两点,AE = CF.
求证:(1)△ABE≌△CDF;
(2)四边形BEDF是平行四边形.
DE=。

2. 已知:如图,四边形ABCD是平行四边形,E、F是直线BD上的两点,且BF
AE=.
求证:CF。

相关文档
最新文档