流量计校核实验指导书

合集下载

化工原理实验流量计校核实验报告

化工原理实验流量计校核实验报告

化工原理实验流量计校核实验报告实验报告:化工原理实验流量计校核实验1.实验目的:1)了解流量计的工作原理和基本结构;2)掌握流量计的校核方法和步骤;3)了解流量计的准确性和实验误差。

2.实验器材:1)流量计;2)校核装置;3)水源;4)计时器;5)温度计。

3.实验步骤:1)将流量计与校核装置连接,注意连接的紧密性;2)打开水源,通过调整阀门来调节流量计的流量;3)使用计时器记录流量计显示的时间以及相应的流量值;4)重复多次实验,记录不同流量下的时间和流量值;5)使用温度计测量水的温度并记录。

4.实验结果与数据处理:实验数据如下表所示:试验次数,流量(L/min),时间(s--------,-------------,--------1,2.0,62,2.5,53,3.0,44,3.5,45,4.0,3根据实验数据,可以计算得到每组试验的平均流量值以及相对误差。

平均流量=(流量1+流量2+流量3+流量4+流量5)/5相对误差=,测量值-理论值,/理论值*100%假设理论流量值为4.0 L/min,计算结果如下表所示:试验次数,流量(L/min),相对误差(%--------,-------------,-----------1,2.0,50.2,2.5,37.3,3.0,25.4,3.5,12.5,4.0,0.通过计算,可以发现随着流量的增加,相对误差逐渐减小。

而在流量为4.0 L/min时,相对误差为0%,说明流量计在该流量下工作正常,相对误差最小。

5.实验分析与讨论:1)实验结果表明,流量计的测量结果与理论值相比存在一定的误差。

主要原因包括流量计的固有误差以及实验条件的变动。

2)实验中的误差可能来自于流量计的制造误差、读数误差以及外部环境的影响。

为了减小误差,可以使用更精确的流量计或者进行多次实验取平均值。

3)实验中,水的温度变化对流量计的测量结果也有一定的影响。

水温的变化会导致水的密度和粘度的变化,从而对流量计的测量结果产生影响。

流量计校核实验报告

流量计校核实验报告

流量计校核实验报告一、引言流量计是一种用来测量液体或气体流动速度的仪器。

在工业生产和科学实验中,流量计的准确性和可靠性对于保证流程的稳定和精确控制至关重要。

因此,流量计的校核实验显得尤为重要。

本实验旨在通过对流量计进行校核,验证其测量结果的准确性。

二、实验目的1. 校核流量计的准确性;2. 确定流量计的线性特性;3. 分析流量计的稳定性和重复性。

三、实验原理在本实验中,我们采用了一种常见的流量计——涡街流量计。

涡街流量计利用流体通过流量计时,产生的旋涡频率与流体流速成正比的原理来测量流量。

通过测量涡街流量计的输出信号和已知流量的对比,可以得到流量计的准确性和线性特性。

四、实验设备和材料1. 涡街流量计;2. 流量校正装置;3. 流量计校核仪;4. 计算机。

五、实验步骤1. 将流量计安装在流量校正装置上,并与计算机连接;2. 打开流量计校核仪软件,设置实验参数和流量范围;3. 依次调节流量校正装置,使流量计显示不同流量值;4. 记录流量计显示值和流量校核仪的读数;5. 对于每个流量点,重复多次实验,记录多组数据;6. 分析数据,计算流量计的准确性、线性特性、稳定性和重复性。

六、实验结果与分析通过对实验数据的统计和分析,可以得到以下结论:1. 流量计的准确性较高,相对误差在允许范围内;2. 流量计的线性特性良好,输出信号与流量值呈线性关系;3. 流量计的稳定性较好,输出信号的波动较小;4. 流量计的重复性较好,多次实验结果接近。

七、实验误差分析在实验过程中,可能存在以下误差来源:1. 流量校正装置的误差;2. 流体的温度和压力变化对流量计的影响;3. 流体的湍流等非理想流动状态。

八、实验结论通过本实验的流量计校核,可以得出以下结论:1. 流量计的准确性满足要求,可用于工业生产和科学实验中;2. 流量计具有良好的线性特性,可以准确测量不同流量范围;3. 流量计的稳定性和重复性良好,可以稳定可靠地工作。

流量计校核实验报告

流量计校核实验报告

流量计校核实验报告一、实验目的1、熟悉孔板流量计和文氏流量计的构造及工作原理;2、掌握流量计标定方法之一——称量法;3、测定孔板流量计和文氏流量计的孔流系数,掌握孔流系数随雷诺数的变化规律;4、测定孔板流量计和文氏流量计的流量与压差的关系。

二、实验原理常用的流量计大都按标准规范制造,出厂前厂家需通过实验为用户提供流量曲线:或给出规定的流量计算公式用的流量系数,或将流量读数直接刻在显示仪表上。

如果用户遗失出厂的流量曲线;或被测流体的密度与工厂标定所用流体不同;或流量计经长期使用而磨损;或使用自制的非标准流量计时,都必须对流量计进行标定。

孔板流量计和丘里流量计是应用最广的节流式流量计,本实验就是通过测定节流元件前后的压差及相应的流量来确定流量系数。

(一)孔板流量计孔板流量计的构造原理如图1-1所示,在管路中装有一块孔板,孔板两侧接出测压管,分别与U 形压差计相连接。

孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。

若管路直径为1d ,孔板锐孔直径为0d ;流体流经孔板后所形成缩脉的直径为2d ;流体密度为ρ。

在截面积I 、II 处,即孔板前导管处和缩脉处的速度和压强分别为1212u u p p ,与,,根据柏努利方程可得:2221122u u p p ρ--=(1) 或= (2)由于缩脉位置因流速而变,截面积2S 又难于知道,而孔板孔径的面积0S 是已知的,测压器的位置在设置一旦制成后也是不变的。

因此,用孔板孔径处流速0u 来代替式(2)中的2u ;又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C 加以校正。

式(2)就可改写为:图1-1 孔板流量计构造原理图= (3)对于不可压缩流体,根据连续性方程式又可得: 010S u u S= (4) 将式(4)代入式(3),整理后可得:0u =(5)令0/C C = 则式(5)可简化为0u C = (6)根据00u S 和即可算出流体的体积流量:3000(/)s V u S C Hm s== (7) 或30(/)s V C S m s = (8)式中:R ——U 形压差计示数(液柱高度差),m ;R ρ——压差计中指示液的密度,3/kg m ;0C 称为孔板流量系数。

实验二 流量计校核

实验二 流量计校核

1、循环水箱
2、涡轮流量传感器
3、流量调节阀
4、离心泵
5、孔板流量计
6、压差计I
7、压差计II 参数测量:
(1)流量测量:用涡轮流量计测量。

涡轮流量计由一次仪表涡轮流量传感器和二次仪表转速数字显示仪组成。

实验中,记录涡轮流量传感器的仪表常数和不同流量时二次仪表的示数,然后由下式计算流量:

仪表常数(脉冲数)
二次仪表示数(脉冲数)
(流量s /s /s /l V s
(2)压差计I :所测压降反映孔板孔口前后的压力变化,即为表观损失。

相应的压差示数 R 0 用于计算孔流系数;
(3)压差计II :所测压差反映孔板前后被测管段的压降,包括直管阻力和局部阻力,应扣除其中的直管阻力部分才得到真实的孔板流量计的永久损失。

五、实验步骤
1、先检查U 形压差计的平衡阀是否打开,排气阀是否关闭,调节阀及仪表是否关闭。

然后启动泵,打开仪表开关。

2、全开流量调节阀,打开排气阀,进行管路和测压管排气。

完毕后,关闭排气阀,最后关闭平衡阀。

3、在最大流量和最小流量之间合理布点,测取8~12组数据。

4、实验完毕后,关闭仪表,停泵,打开U 形压差计平衡阀。

流量计校核实验报告

流量计校核实验报告

流量计校核实验报告
实验目的:
校核流量计的测量准确度和灵敏度。

实验设备与材料:
1. 流量计
2. 参考流量计
3. 水泵
4. 滑动尺
5. 计时器
6. 液体
实验原理:
流量计是一种用于测量流体流量的仪器。

在本实验中,我们使用流量计和参考流量计分别测量液体流量,并比较两者的测量结果。

通过对比测量结果,我们可以评估流量计的测量准确度和灵敏度。

实验步骤:
1. 将流量计和参考流量计连接到水泵和液体容器。

确保流体可以从容器通过流量计流出,并进入参考流量计。

2. 打开水泵,并调节流体的流速。

使用滑动尺测量流量计和参考流量计的流量。

3. 用计时器计时,记录每个测量时间间隔内的流量。

4. 重复步骤2和步骤3,直到获得足够的测量数据。

5. 比较流量计和参考流量计的测量结果,并计算出它们之间的误差。

实验结果:
通过对比流量计和参考流量计的测量结果,我们发现它们之间存在一定的误差。

流量计的测量结果可能偏高或偏低,具体取决于流量计的准确度和灵敏度。

在本实验中,我们测得的平均误差为5%。

结论:
根据实验结果,我们可以评估流量计的测量准确度和灵敏度。

当使用流量计进行流量测量时,需要考虑到其误差范围,以提高测量的准确性。

实际应用中,还可以根据实验结果对流量计进行校准,以进一步提高其测量精度和可靠性。

实验十五 转子流量计的校指导书

实验十五 转子流量计的校指导书

实验十五 转子流量计的校正转子流量计是使用较广泛的一种流量测量仪器,其上标有流量刻度值,但在使用前,一般需进行校正。

一.实验目的(1)了解转子流量计流量测定的工作原理。

(2)获得转子流量计的校正实验刻度值。

(3)明确流量计校正的重要性和掌握校正方法。

二.实验原理转子流量计的流体通道为一垂直的锥角约为4。

的微锥形玻璃管内置一转子(也称浮子)。

当被测流体以一定流量自下而上流过锥形管时,在转子的上、下端面形成一个压差,该压差产生了升力,当升力达到一定值时,便能将转子向上浮起。

但随着转子的上浮,转子与锥形管之间的环隙通道面积增大,环隙中流速减小,转子两端的压差也随之减小。

因此,当转子浮升至某一高度,转子所受的升力恰好等于其重力时,转子便平衡悬浮在此高度上。

转子的这一平衡悬浮高度,随转子的两端面的压差,也即流量的大小而变化,它可由转子的受力平衡导出,参见图15-1,转子上,下端的压差按伯努利定律由两部分组成。

一部分由位差引起的,该部分压差造成的升力即为通常所说的浮力F 1,其值等于同体积流体的重量。

另一部分由动能差引起,其值为F 2f A u u F )(221202-=ρ (1) 根据物料衡算关系 0101u A A u = (2) 式中:A f ——转子最大截面积。

A 0——转子平衡时相应于0—0处的环隙面积。

A i——玻璃管截面积。

V f ——转子体积ρf ——转子密度f A A A u F ])(1[2210202-=ρ (3) 这样转子的受力平衡条件为g V f f ρ=+g V f ρf A A A u ])(1[221020-ρ (4)于是得到f f f Ag V A A u ρρρ)(2)(112100-⨯-= (5)考虑到表面摩擦和转子形状的影响,引入流量系数C R (其值可从有关资料查得)而使公式简化。

f f f R Ag V C u ρρρ)(20-= (6)或 000A A u V ==f f f RA g V C ρρρ)(2- (7) 质量流量 0A W =f f f R A g V C ρρρ)(2- (8)转子流量计出厂前,是直接用20℃水或20℃,1atm 的空气进行标定,将流量值刻于玻璃管上,当被测流体与上述条件不符时,应作刻度换算。

流量计校核实验报告

流量计校核实验报告

流量计校核实验报告流量计校核实验报告一、引言流量计是工业生产中常用的仪器设备,用于测量流体的流量。

为了确保流量计的准确性和可靠性,需要进行校核实验。

本报告旨在详细描述流量计校核实验的过程、结果和分析,以便进一步提高流量计的测量精度。

二、实验目的本次实验的主要目的是校核流量计的测量准确性和稳定性,验证其是否符合规定的技术要求。

同时,通过实验结果的分析,找出可能存在的问题,并提出改进措施。

三、实验设备和方法1. 实验设备本次实验使用的流量计为电磁流量计,具有高精度和稳定性。

配套的控制系统和数据采集仪器也是必不可少的。

2. 实验方法(1)选择合适的流量计校核点,包括低流量、中流量和高流量三个点位。

(2)根据流量计的使用要求,确定合适的校核流体,并保证流体的稳定性和纯度。

(3)按照流量计的使用说明书,正确连接流量计和控制系统,并进行预热和调试。

(4)逐个调节流量计的校核点,记录流量计的读数和控制系统的输出信号。

(5)重复多次实验,取平均值作为最终结果。

四、实验结果经过多次实验和数据分析,得到如下结果:1. 流量计在低流量点位的测量误差较大,偏离实际流量较多。

2. 流量计在中流量点位的测量误差相对较小,基本符合要求。

3. 流量计在高流量点位的测量误差有所增加,但仍在可接受范围内。

五、结果分析1. 低流量点位的测量误差较大可能是由于流量计的灵敏度不够,需要进一步调整和改进。

2. 中流量点位的测量误差较小可能是由于流量计在此范围内的测量精度较高,但仍需注意维护和保养。

3. 高流量点位的测量误差增加可能是由于流量计的饱和现象,需要增加流量计的容量或采用其他措施来提高测量精度。

六、改进措施1. 针对低流量点位的测量误差较大问题,可以考虑更换更灵敏的流量计,或者增加流量计的校核点位,以提高整体的测量精度。

2. 对于中流量点位的测量误差较小问题,需要加强流量计的维护和保养工作,定期清洁和校准流量计,确保其性能的稳定性和可靠性。

流量计校核实验报告

流量计校核实验报告

流量计校核实验报告流量计校核一、实验操作1. 熟悉实验装置,了解各阀门的位置及作用。

2. 对装置中有关管道、导压管、压差计进行排气,使倒U形压差计处于工作状态。

3. 对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8,9个点,大流量时测量5,6个点。

为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值。

4. 测量流量时应保证每次测量中,计量桶液位差不小于100mm或测量时间不少于40s。

二、数据处理1.数据记录计量水箱规格:长 400mm;宽 300mm管径d(mm):25孔板取喉径d(mm):15.347 0查出实验温度下水的物性:密度ρ= 996.2542 kg/m3 粘度μ= 0.000958 PaS2.数据处理du,d,VV,44 ,,,,Re2,,,d,,du0 则 V,uA,CA2,p/,C,000002,p/,孔板流量计试验数据处理水箱时间高度流量流速雷诺数33-1-1 左/cm 右/cm ΔR/m t/s h/cm 体积V/m Qv/m?s V/m?s 空流系数C0 Re min 57.0 57.0 4qvV= Qv=h.S/t max 33.1 45.3 d2V=C. Re=dvρ/μ 2gR0,1.1078 0.7049 16916.60 1 33.7 46.3 0.126 40 6.7 0.0081932.05E-04 0.9833 0.7445 15014.92 2 38.2 47.1 0.089 41 6.1 0.007454 1.82E-04 0.9264 0.7307 14146.29 3 40.6 48.8 0.082 41 5.7 0.007022 1.71E-04 0.8662 0.7734 13228.02 4 42.5 48.9 0.064 40 5.2 0.006406 1.60E-04 0.7964 0.7601 12160.84 5 43.8 49.4 0.056 414.9 0.006037 1.47E-04 0.7313 0.7620 11168.12 6 45.6 50.3 0.047 41 4.5 0.005544 1.35E-04 0.6338 0.7764 9679.04 7 47.9 51.3 0.034 41 3.9 0.004805 1.17E-04 0.5688 0.7678 8686.32 8 49.4 52.2 0.028 41 3.5 0.004312 1.05E-04 0.4713 0.8165 7197.23 9 51.6 53.3 0.017 41 2.9 0.0035738.71E-05 0.4998 0.8189 7631.55 1 50.9 52.8 0.019 40 3.0 0.0036969.24E-05 0.6013 0.7976 9182.68 2 48.7 51.6 0.029 41 3.7 0.004558 1.11E-04 0.6663 0.7825 10175.40 3 47.1 50.8 0.037 40 4.0 0.004928 1.23E-04 0.7638 0.7566 11664.48 4 44.7 49.9 0.052 41 4.7 0.00579 1.41E-04 0.8451 0.7605 12905.39 5 42.5 48.8 0.063 41 5.2 0.006406 1.56E-040.9101 0.7661 13898.11 6 40.8 48.0 0.072 41 5.6 0.006899 1.68E-041.0239 0.7503 15635.37 7 37.6 47.1 0.095 41 6.3 0.007762 1.89E-04 1.1214 0.7672 17124.45 8 35.3 46.2 0.109 41 6.9 0.0085012.07E-04 1.1161 0.7218 17043.80 9 33.4 45.6 0.122 40 6.7 0.008254 2.06E-04 孔板流量计R-Qv双对数坐标图lgQv-0.600-4.100-4.050-4.000-3.950-3.900-3.850-3.800-3.750-3.700-3.650-0.800-1.000-1.200y = 2.233x + 7.302-1.400lgR-1.600-1.800-2.000孔板流量计C0-Re图0.84000.8200y = -0.2058x + 1.6040.8000空流系数C00.78000.76000.74000.72000.70000.68003.83.944.14.24.3雷诺数的对数logRe文丘里流量计实验数据处理水箱高时间度体积流量流速33-1-1 左/cm 右/cm ΔR/m t/s h/cm V/m Qv/m?s V/m?s 空流系数C 雷诺数Re 0 min 66.3 66.3 4qvV= Qv=h.S/t max 19.0 57.8 d2V=C. Re=dvρ/μ 2gR0,4.472 1.756 55449.87 1 29.6 62.7 0.331 40 17.70 0.02185.45E-044.032 1.663 50001.92 2 34.1 64.1 0.3 41 16.36 0.0202 4.92E-043.739 1.663 46364.86 3 40.3 66.1 0.258 40 14.80 0.0182 4.56E-043.385 1.634 41979.00 4 44.4 66.3 0.219 40 13.40 0.0165 4.13E-043.060 1.607 37941.22 5 48.4 66.9 0.185 36 10.90 0.0134 3.73E-042.981 1.762 36966.58 6 52.5 67.1 0.146 40 11.80 0.01453.63E-042.282 1.639 28301.82 7 56.5 66.4 0.099 41 9.26 0.0114 2.78E-041.768 1.752 21929.33 8 60.5 65.7 0.052 40 7.00 0.00862.16E-041.251 1.997 15507.17 1 63.3 65.3 0.02 40 4.95 0.0061 1.52E-041.960 1.763 24298.00 2 59.4 65.7 0.063 41 7.95 0.00982.39E-042.395 1.728 29698.57 3 56.4 66.2 0.098 40 9.48 0.0117 2.92E-042.784 1.651 34523.03 4 51.9 66.4 0.145 40 11.02 0.0136 3.39E-043.486 1.757 43232.10 5 45.3 65.4 0.201 40 13.80 0.01704.25E-04 3.456 1.577 42856.17 6 40.7 65.2 0.245 40 13.68 0.0169 4.21E-043.979 1.699 49340.98 7 37.0 65.0 0.28 40 15.75 0.01944.85E-044.042 1.587 50124.17 8 32.1 65.2 0.331 41 16.40 0.0202 4.93E-04 4.371 1.627 54196.76 9 27.1 63.9 0.368 40 17.30 0.0213 5.33E-04 文丘里流量计R-Qv双对数坐标图lgQv-0.800-4.100-4.050-4.000-3.950-3.900-3.850-3.800-3.750-3.700-3.650-1.000-1.200y = 2.233x + 7.302-1.400-1.600-1.800lgR-2.000文丘里流量计C0-Re单对数坐标图2.500y = -0.4311x + 3.66692.000C01.5001.0000.5000.0004.104.204.304.404.504.604.704.80lgRe3.结果分析由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re所决定。

流量计校核实验

流量计校核实验

实验三 流量计校核实验一、实验目的1.了解孔板流量计、文丘里流量计的构造、原理、性能及使用方法。

2.掌握流量计的标定方法。

3.测定节流式流量计的流量系数C ,掌握流量系数C 随雷诺数Re 的变化规律。

4.学习合理选择坐标系的方法。

5.学习对实验数据进行误差估算的具体方法。

二、实验原理流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量有如下关系:采用正U 形管压差计测量压差时,流量Vs 与压差计读书R 之间关系有:(1)式中: V s 被测流体(水或空气)的体积流量,m 3/s ;C 流量系数(或称孔流系数),无因次;A 0 流量计最小开孔截面积,m 2,A 0=(π/4)d 02;下上-P P 流量计上、下游两取压口之间的压差,P a ;ρ 被测流体(水或空气)的密度,Kg/m 3;A ρ U 形管压差计内指示液的密度,Kg/m 3;ρ1 空气的密度,Kg/m 3;R U 形管压差计读数,m ;式3-1也可以写成如下形式:(1a) ()ρP P CA =V s 下上-20()ρρ-ρgR CA =V A s 120ρρρ(gR A V =C )s A 120若采用倒置U 形管测量压差:gR P P =-下上(忽略空气对测量的影响)则流量系数C 与流量的关系为:(2)用体积法测量流体的流量V s ,可由下式计算:(3)(4)式中:V s 水的体积流量,m 3/s ; △t 计量桶接受水所用的时间,s ;A 计量桶计量系数;△h 计量桶液面计终了时刻与初始时刻的高度差,mm ,△h=h 2-h 1;V 在△t 时间内计量桶接受的水量,L 。

改变一个流量在压差计上有一对应的读数,将压差计读数 R 和流量V s 绘制成一条曲线即流量标定曲线。

同时用式(1a )或式(2)整理数据可进一步得到流量系数C —雷诺数Re 的关系曲线。

(5)式中:d —实验管直径,m ;u —水在管中的流速,m/s 。

气体流量计的校验指导书

气体流量计的校验指导书

实验八气体流量计的校验一、实验目的:1、了解几种常见流量计的结构、工作原理、主要特点以及安装和使用方法。

2、学习流量计的校验方法。

3、掌握测量数据处理方法和A类标准不确定度的计算方法。

二、仪器与设备:常用流量计:标准皮托管,阿牛巴均速管等。

流量计标定平台与设备:电机、风机、管道、计算机、仪表、调节阀、电控柜、数据采集与参数监视柜等。

标准表型号与性能参数:标准皮托管:2只规格:6*250,系数K=1.00,测量范围:2---35m/s被校表型号与性能参数:阿牛巴均速管:2只规格:DN100,系数K=0.79三、实验原理及设备系统:采用示值比较法,流量计标定平台示意图如图1所示。

选用高精度的标准皮托管作为标准流量计,使标准流量计与被校的流量计安装于同一管径的水平直管上,感受相同介质作用。

比较两者的示值,从而确定被校流量计的基本误差。

风机性能实验台的系统示意图如图1所示,是个集风机性能实验、空气流量计标定实验于一体的综合实验平台。

被校验气体流量表标准气体流量表离心式风机轴流式风机图1 实验平台系统图四、 实验工况与步骤:实验工况安排如表1所示。

此时管路出口阀门全开,通过调整电机频率来实现不同流量工况的切换。

共设7个测量工况。

每个工况需调节标准皮托管4次位置(位置设定标准参看风机性能实验指导书)。

每位置测数据5组。

1、实验前的检查与准备:参看风机性能实验指导书。

2、实验操作步骤:① 启动配电柜总电源,仪表及设备上电。

启动控制电脑。

② 启动设备控制和测量软件。

按软件提示,在学生实验栏下依次填写实验序号、学生姓名等,并按指导教师提示,设置采样时间、采样数目、工况数目、电机频率、阀门开度等信息。

③ 点击实验开始钮,等待工况稳定。

④ 开始实验后,实验过程将由电脑全自动控制完成,同学只需密切观察,并根据软件进程提示完成相应操作即可。

⑤ 保存并导出实验数据,请指导教师初步审核数据。

⑥ 全部设定工况结束后,点击实验结束钮,本组实验结束。

流量计校核实验报告

流量计校核实验报告

流量计校核实验报告
一、实验操作
1. 熟悉实验装置,了解各阀门的位置及作用。

2. 对装置中有关管道、导压管、压差计进行排气,使倒U 形压差计处于工作状态。

3. 对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由
小到大的顺序在小流量时测量8-9个点,大流量时测量5-6个点。

为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值。

4. 测量流量时应保证每次测量中,计量桶液位差不小于100mm 或测量时间不少于40s 。

二、数据处理
1.数据记录
计量水箱规格:长 400mm ;宽 300mm 管径d (mm ):25 孔板取喉径d 0(mm ):15.347
查出实验温度下水的物性:
密度 ρ= 996.2542 kg/m3 粘度 μ= 0.000958 PaS 2.数据处理
d
V d V d du πμρ
πμ
ρ
μρ
44Re 2=⨯
==
ρ/20000p A C A u V ∆== 则 ρ
/200p u C ∆=
孔板流量计试验数据处理
文丘里流量计实验数据处理
3.结果分析
C由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re所决定。

C不再随着Re而变,成为一个和孔径与根据上图得当Re数增大到一定值后,
管径之比有关的常数。

流量计校正实验 实验报告

流量计校正实验 实验报告

一、实验目的1. 分别用三角堰、涡轮流量计、水银比压计校正孔板流量计,实验测定流量计的流量系数。

2. 制作流量系数 与雷诺数 关系曲线,并确定 = 的范围和数值。

二、 实验原理孔板是常用的流量计,都是利用改变流道截面的方法使截面前后测压管水头差发生变化,通过测量测压管水头差计算流量。

如果将流体视为理想流体,则根据连续方程和伯努利方程有=1− Ω2实际流体都是有粘性的,考虑粘性影响后引入修正系数,即流量系数 μ ,于是实际流量为实=1− Ω 2由于流量系数的引入考虑了粘性的影响,因此根据相似原理,流量系数为雷诺数的函数。

三、 设备与仪器实验设备包括三角量水堰、涡轮流量计、水银比压计、孔板流量计、水泵数显高度尺、水箱等。

流量采用三角量水堰进行测量。

通过测量堰上水头高度,可由 Q-H 关系式求得流量 Q。

采用水银比压计测量孔板上的测压管水头差。

读出温度计上显示的温度,通过查表确定 υ。

四、 实验步骤1. 在启动水泵前将泵前阀和调节阀关死。

2. 启动水泵后将泵前阀和调节阀完全打开,泵运行的同时排出试验管路内的空气。

3. 将排气阀打开,排空水银比压计及连接管内的空气,并检查空气是否完全排空。

4. 通过调节控制阀的开关确定实验工况点,记录与水银比压计高度差相对应的实验数据。

5. 将泵前阀关死,然后关闭水泵。

五、实验数据记录及处理0.5800.6000.6200.6400.6600.6800.7004.20 4.304.404.504.604.704.804.905.00三角堰μ-lg(Re)关系曲线0.5800.6000.6200.6400.6600.6800.7004.204.304.404.504.604.704.804.905.00涡轮流量计μ-lg(Re)关系曲线观察曲线可知,流量系数的常数值约为0.59,对应的Re 范围为83500~30500。

六、思考题1.两测压管孔应在一条流线上,这样使用沿流线的伯努利方程计算才更准确。

流量计校核实验指导书(新)

流量计校核实验指导书(新)

节流式流量计校核装置实验指导书流量计的校核一、实验目的1.熟悉孔板流量计的构造、性能及安装方法。

2.掌握流量计的标定方法之一——容量法。

3.测定孔板流量计的孔流系数与雷诺准数的关系。

二、基本原理对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。

使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。

孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。

而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。

2.1孔板流量计的校核孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。

孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。

其基本构造如图3-1所示。

若管路直径为d1,孔板锐孔直径d0 ,流体流经孔板前后所形成的缩脉直径为d2,流体的密度为ρ,则根据柏努利方程,在界面1、2处有:图3-1 孔板流量计2221122u u p p p ρρ--∆== (3-1) 或 22212/u u p ρ-=∆ (3-2) 由于缩脉处位置随流速而变化,截面积2A 又难以指导,而孔板孔径的面积0A 是已知的,因此,用孔板孔径处流速0u 来替代上式中的2u ,又考虑这种替代带来的误差以及实际流体局部阻力造成的能量损失,故需用系数C 加以校正。

式(3-2)改写为22212/u u C p ρ-=∆ (3-3) 对于不可压缩流体,根据连续性方程可知0101A u u A =,代入式(3-3)并整理可得 0012/1()2C p u A A ρ∆=- (3-4)令 02011()C C A A =- (3-5) 则式(3-4)简化为 002/u C p ρ=∆ (3-6) 根据0u 和0A 即可计算出流体的体积流量:ρ/20000p A C A u V ∆== (3-7) 或 ρρρ/)(20000-==i gR A C A u V (3-8) 式中:V -流体的体积流量, m 3/s ;R -U 形压差计的读数,m ;i ρ-压差计中指示液密度,kg/m 3;0C -孔流系数,无因次;0C 由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re 所决定,具体数值由实验测定。

流量计校核实验报告

流量计校核实验报告

0.684 2
20382.06
81.4
66.0
15.4
11. 4
11.4 40
2.85
1.5407
0.674 4
26404.03
86.6
60.0
26.6
12. 2
12.2 40
3.05
1.6488
0.659 0
28256.95
89.4
57.5
31.9
13. 1
13.1 40
3.28
1.7704
0.660 7
实验报告纸
温度:24.3℃ 水槽长×宽:40cm×25cm 孔板锐孔直径 d0=15.347mm 文丘里锐孔直径 d0=12.403mm 孔板流量计:
表 1 孔板流量计原始数据
序号
水槽液体高度 h/才 m
t/s
1
4.6
40
2
6.3
40
3
8.8
40
4
11.4
40
5
12.2
40
6
13.1
40
7
13.9
40
C0
u0
2p /
u0
2g/R
0.6217
0.6848
2 9.81 998.2 4.2 102 / 998.2
Re
du
15.347 103 0.6217 998.2 0.8937 103
10654.26
其他组数据如上处理,可得出表 2 孔板流量计数据处理
表 3 文丘里流量计原始数据
1.35 1.63 1.90 2.28 2.53 2.88 3.15 3.35
流速 u0 孔流系 (m/s) 数 C0

流量计流量的校正实验

流量计流量的校正实验

流量计流量的校正实验一. 实验目的1. 熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。

2. 掌握流量计的标定方法之一——容量法。

3. 测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。

二. 基本原理对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。

使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。

孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。

而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。

1、孔板流量计的校核孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。

孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。

其基本构造如图1所示。

若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板前后所形成的缩脉直径为d 2,流体的密度为ρ,则根据柏努利方程,在界面1、2处有:图1 孔板流量计2221122u u p p pρρ--∆== 或22212/u u p ρ-=∆由于缩脉处位置随流速而变化,截面积2A 又难以指导,而孔板孔径的面积0A 是已知的,因此,用孔板孔径处流速0u 来替代上式中的2u ,又考虑这种替代带来的误差以及实际流体局部阻力造成的能量损失,故需用系数C 加以校正。

=对于不可压缩流体,根据连续性方程可知0101A u u A =,代入上式并整理可得:0u =令0C =则0u C = 根据0u 和0A 即可计算出流体的体积流量:ρ/20000p A C A u V ∆== 或 ρρρ/)(20000-==i gR A C A u V 式中:V -流体的体积流量, m 3/s ; R -U 形压差计的读数,m ; i ρ-压差计中指示液密度,kg/m 3; 0C -孔流系数,无因次;0C 由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re 所决定,具体数值由实验测定。

孔板流量计的校核实验.doc

孔板流量计的校核实验.doc

孔板流量计的校核实验. . 化工原理实验报告 Experimental Report of Principle of theChemical Engineering 实验题目 Topic of experiment 孔板流量计的校核试验班级组 Class___ 15 级化工(2)____ Group 二姓名 Name 日期 Date___2017.10.26____ 上海师范大学生环学院化学系SHANGHAI NORMAL UNIVERSITY LIFE AND ENVIRONMENTAL SCIENCE COLLEGEDEPARTMENT OF CHEMISTRY. . 一、实验目的( Purpose of experiment ) 1. 熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。

2. 掌握流量计的标定方法之一容量法。

3.测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。

二、基本原理( Summary of theory )孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。

其基本构造如图 1 所示。

若管路直径为 d1 ,孔板锐孔直径为 d 0 ,流体流经孔板前后所形成的缩脉直径为 d2 ,流体的密度为,则根据柏努利方程,在界面 1、2 处有:2 22 12 / u u p 考虑到实验误差及能量损失等因素,用系数 C加以校正: 2 22 12 / u u C p图 1 孔板流量计对于不可压缩流体,根据连续性方程可知01 01Au uA,代入上式并整理可得: 0012 /1 ( )2C puAA令 02011 ( )CCAA则0 02 / u C p 根据0u 和0A 即可计算出流体的体积流量: / 20 0 0 0p A C A u V或 / ) ( 20 00 0igR A C A u V 式中: V -流体的体积流量, m3 /s;. . R -U 形压差计的读数,m; i-压差计中指示液密度,kg/m 3 ; 0C -孔流系数,无因次; 0C 由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数 Re 所决定,具体数值由实验测定。

流量计校核实验报告

流量计校核实验报告

流量计校核实验报告流量计校核一、实验操作1. 熟悉实验装置,了解各阀门的位置及作用。

2. 对装置中有关管道、导压管、压差计进行排气,使倒U形压差计处于工作状态。

3. 对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8,9个点,大流量时测量5,6个点。

为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值。

4. 测量流量时应保证每次测量中,计量桶液位差不小于100mm或测量时间不少于40s。

二、数据处理1.数据记录计量水箱规格:长 400mm;宽 300mm管径d(mm):25孔板取喉径d(mm):15.347 0查出实验温度下水的物性:密度ρ= 996.2542 kg/m3 粘度μ= 0.000958 PaS2.数据处理du,d,VV,44 ,,,,Re2,,,d,,du0 则 V,uA,CA2,p/,C,000002,p/,孔板流量计试验数据处理水箱时间高度流量流速雷诺数33-1-1 左/cm 右/cm ΔR/m t/s h/cm 体积V/m Qv/m?s V/m?s 空流系数C0 Re min 57.0 57.0 4qvV= Qv=h.S/t max 33.1 45.3 d2V=C. Re=dvρ/μ 2gR0,1.1078 0.7049 16916.60 1 33.7 46.3 0.126 40 6.7 0.0081932.05E-04 0.9833 0.7445 15014.92 2 38.2 47.1 0.089 41 6.1 0.007454 1.82E-04 0.9264 0.7307 14146.29 3 40.6 48.8 0.082 41 5.7 0.007022 1.71E-04 0.8662 0.7734 13228.02 4 42.5 48.9 0.064 40 5.2 0.006406 1.60E-04 0.7964 0.7601 12160.84 5 43.8 49.4 0.056 414.9 0.006037 1.47E-04 0.7313 0.7620 11168.12 6 45.6 50.3 0.047 41 4.5 0.005544 1.35E-04 0.6338 0.7764 9679.04 7 47.9 51.3 0.034 41 3.9 0.004805 1.17E-04 0.5688 0.7678 8686.32 8 49.4 52.2 0.028 41 3.5 0.004312 1.05E-04 0.4713 0.8165 7197.23 9 51.6 53.3 0.017 41 2.9 0.0035738.71E-05 0.4998 0.8189 7631.55 1 50.9 52.8 0.019 40 3.0 0.0036969.24E-05 0.6013 0.7976 9182.68 2 48.7 51.6 0.029 41 3.7 0.004558 1.11E-04 0.6663 0.7825 10175.40 3 47.1 50.8 0.037 40 4.0 0.004928 1.23E-04 0.7638 0.7566 11664.48 4 44.7 49.9 0.052 41 4.7 0.00579 1.41E-04 0.8451 0.7605 12905.39 5 42.5 48.8 0.063 41 5.2 0.006406 1.56E-040.9101 0.7661 13898.11 6 40.8 48.0 0.072 41 5.6 0.006899 1.68E-041.0239 0.7503 15635.37 7 37.6 47.1 0.095 41 6.3 0.007762 1.89E-04 1.1214 0.7672 17124.45 8 35.3 46.2 0.109 41 6.9 0.0085012.07E-04 1.1161 0.7218 17043.80 9 33.4 45.6 0.122 40 6.7 0.008254 2.06E-04 孔板流量计R-Qv双对数坐标图lgQv-0.600-4.100-4.050-4.000-3.950-3.900-3.850-3.800-3.750-3.700-3.650-0.800-1.000-1.200y = 2.233x + 7.302-1.400lgR-1.600-1.800-2.000孔板流量计C0-Re图0.84000.8200y = -0.2058x + 1.6040.8000空流系数C00.78000.76000.74000.72000.70000.68003.83.944.14.24.3雷诺数的对数logRe文丘里流量计实验数据处理水箱高时间度体积流量流速33-1-1 左/cm 右/cm ΔR/m t/s h/cm V/m Qv/m?s V/m?s 空流系数C 雷诺数Re 0 min 66.3 66.3 4qvV= Qv=h.S/t max 19.0 57.8 d2V=C. Re=dvρ/μ 2gR0,4.472 1.756 55449.87 1 29.6 62.7 0.331 40 17.70 0.02185.45E-044.032 1.663 50001.92 2 34.1 64.1 0.3 41 16.36 0.0202 4.92E-043.739 1.663 46364.86 3 40.3 66.1 0.258 40 14.80 0.0182 4.56E-043.385 1.634 41979.00 4 44.4 66.3 0.219 40 13.40 0.0165 4.13E-043.060 1.607 37941.22 5 48.4 66.9 0.185 36 10.90 0.0134 3.73E-042.981 1.762 36966.58 6 52.5 67.1 0.146 40 11.80 0.01453.63E-042.282 1.639 28301.82 7 56.5 66.4 0.099 41 9.26 0.0114 2.78E-041.768 1.752 21929.33 8 60.5 65.7 0.052 40 7.00 0.00862.16E-041.251 1.997 15507.17 1 63.3 65.3 0.02 40 4.95 0.0061 1.52E-041.960 1.763 24298.00 2 59.4 65.7 0.063 41 7.95 0.00982.39E-042.395 1.728 29698.57 3 56.4 66.2 0.098 40 9.48 0.0117 2.92E-042.784 1.651 34523.03 4 51.9 66.4 0.145 40 11.02 0.0136 3.39E-043.486 1.757 43232.10 5 45.3 65.4 0.201 40 13.80 0.01704.25E-04 3.456 1.577 42856.17 6 40.7 65.2 0.245 40 13.68 0.0169 4.21E-043.979 1.699 49340.98 7 37.0 65.0 0.28 40 15.75 0.01944.85E-044.042 1.587 50124.17 8 32.1 65.2 0.331 41 16.40 0.0202 4.93E-04 4.371 1.627 54196.76 9 27.1 63.9 0.368 40 17.30 0.0213 5.33E-04 文丘里流量计R-Qv双对数坐标图lgQv-0.800-4.100-4.050-4.000-3.950-3.900-3.850-3.800-3.750-3.700-3.650-1.000-1.200y = 2.233x + 7.302-1.400-1.600-1.800lgR-2.000文丘里流量计C0-Re单对数坐标图2.500y = -0.4311x + 3.66692.000C01.5001.0000.5000.0004.104.204.304.404.504.604.704.80lgRe3.结果分析由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re所决定。

流量计校核

流量计校核

流量计校核一、文丘里流量计(一)实验目的1、找出文丘里流量计的流量和压差之间的关系曲线。

2、测定文丘里流量计的流量系数。

(二)基本原理根据柏努利原理,流量与文氏流量计前后的压差有如下关系:ρρρ)(200-=gR A C Vs v (4-14)式中:Vs —体积流量m 3/s ; 0A —文氏管喉颈截面积,m 2; C v —文丘里流量计流量系数,无因次; R —U 形压差计的读数,m ; 0ρ—压差计内指示液密度,kg/m 3。

ρ—流体密度。

kg/m 3。

但是,流量系数的数值,往往要受到文氏计的结构和加工精度,以及流体性质、温度、压力的影响。

因此,在现场使用这类数量计之前往往需要对流量计进行校正,即测定不同流量下的压差计读数,直接绘成曲线,或求得C V 与Re 之间关系曲线(流量系数C V 在喉径与管径之比一定时随Re 数而变,其值由实验测得),以备使用时查校。

(三)实验装置实验装置及流程如图4-12所示,文氏流量计装在φ34×3mm 不锈钢管上,为了保证正常测量条件,流量计前、后必须有足够长的直管段,其长度应使流体流过管件产生的涡流全部消失(具体安装尺寸应查规定)。

文氏计的压差用U 形压差计测量,压差计上部装有放气夹和平衡夹,放气夹用以排出测压管中积存的空气,平衡夹用以平衡压差计两臂的压力,防止冲走水银,实验用水,由泵从水箱输入管路,由计量槽计量流量,然后放回水箱,循环使用,水温由温度计测量。

图4-12 流量计实验装置流程图1、入口阀;2、文氏计;3、排水管;4、计量槽;5、液面计;6、排水阀;7、U 形水银压差计;8、平衡夹;9、放气夹。

(四)实验方法1、熟悉实验装置及流程,观察压差计测压导管与文氏计测压接头的连接,打开平衡夹和放气夹。

2、打开管道进口阀,排除管道中的气体,逐渐关小出口阀,使管道处于正压,让水经测压导管由放气管流出,以排出测压系统中的空气,待空气排净后,先关闭U 形压差计上部的放气夹,然后关闭平衡夹。

流量计校核实验指导书

流量计校核实验指导书

节流式流量计标定装置实验指导书班级姓名学号实验日期流量计的校核一、实验目的1.熟悉孔板流量计的构造、性能及安装方法。

2.掌握流量计的标定方法之一——容量法。

3.测定孔板流量计的孔流系数与雷诺准数的关系。

二、基本原理对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。

使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。

孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。

而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。

2.1孔板流量计的校核孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。

孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。

其基本构造如图3-1所示。

若管路直径为d1,孔板锐孔直径为d0,流体流经孔板前后所形成的缩脉直径为d2,流体的密度为ρ,则根据柏努利方程,在界面1、2处有:图3-1 孔板流量计2221122u u p p p ρρ--∆== (3-1) 或= (3-2) 由于缩脉处位置随流速而变化,截面积2A 又难以指导,而孔板孔径的面积0A 是已知的,因此,用孔板孔径处流速0u 来替代上式中的2u ,又考虑这种替代带来的误差以及实际流体局部阻力造成的能量损失,故需用系数C 加以校正。

式(3-2)改写为= (3-3)对于不可压缩流体,根据连续性方程可知0101A u u A =,代入式(3-3)并整理可得 0u = (3-4)令0C =(3-5) 则式(3-4)简化为 0u C = (3-6) 根据0u 和0A 即可计算出流体的体积流量:ρ/20000p A C A u V ∆== (3-7) 或 ρρρ/)(20000-==i gR A C A u V (3-8) 式中:V -流体的体积流量, m 3/s ;R -U 形压差计的读数,m ;i ρ-压差计中指示液密度,kg/m 3;0C -孔流系数,无因次;0C 由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re 所决定,具体数值由实验测定。

流量计的校核

流量计的校核

ρρp p p v v ∆=-=-2121222ρpv v ∆=-2)(2122ρp C v v ∆=-2)(21200101v S Sv =2100)(12S S p Cv -∆=ρ流量计的校核2010级化学2班,海金玲,41007088一、实验目的1.熟悉孔板流量计和文丘里流量计的构造、性能、安装方法及工作原理2.掌握容量标定流量计的方法,绘制孔板流量计和文丘里流量计的工作曲线3.了解空流系数与雷诺数的关系,测定孔板流量计、文丘里流量计的空流系数二、基本原理 孔板流量计、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测定流量。

1.孔板流量计的校核本实验装置就是采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺数的关系。

孔板流量计是根据流体的动能和势能相互转化的原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压差,可以通过引压管在压差计和差压变送器上显示。

若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板前后所形成的缩脉直径为d 2,流体的密度为ρ,则根据伯努利方程,对截面1、2处作衡算有如下的方程式(2-23)或(2-24)由于缩脉楚截面位置随流速而变化,截面面积S2是已知的,因此,用孔板径处流速V0来替代上式中的V2,有考虑到这种代替会带来误差以及实际流体局部阻力造成的能量损失,故需用系数C 加以校正,于是(2-24)可改写为(2-25) 对于不可压缩性流体,根据连续性方程 可知,将其带入式(2-25)整理可得(2-26)gpR ρ∆=2100)(1S S C C -=ρpC v ∆=200ρpS C S v q v ∆==20000gRS C S v Q v20==Rg p h f 1.01.0=∆=ρ令 (2-27)则(2-26)可简化为 (2-28)根据V 0和S 0即可计算出不可压缩流体的体积流量(2-29)(2-30)式中q v ——体积流量,m 3/sR (m 水柱)——倒U 形压头差读数, ρ——水的密度,kg/m 3Co ——空流系数孔板流量计的优点是构造简单,造价低廉,计量准确,安装方便;主要缺点是机械能损失大,压头损失h 1占到压头差读数的90%左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流量计的校核
一、实验目的
1.熟悉孔板流量计的构造、性能及安装方法。

2.掌握流量计的标定方法之一——容量法。

3.测定孔板流量计的孔流系数与雷诺准数的关系。

二、基本原理
对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。

使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。

孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。

而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。

2.1孔板流量计的校核
孔板流量计是应用最广泛的节流式流量计之一,本实
验采用自制的孔板流量计测定液体流量,用容量法进行标
定,同时测定孔流系数与雷诺准数的关系。

孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板
前后产生压强差,可以通过
引压管在压差计或差压变送器上显示。

其基本构造如图3-1所示。

若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板前后所形成的缩脉直径为d 2,流体的密度为ρ,则根据柏努利方程,在界面1、2处有: 图3-1 孔板流量计
2
2
21
12
2
u u p p p
ρ
ρ
--∆=
=
(3-1)

22
212/u u p ρ-=
∆ (3-2)
由于缩脉处位置随流速而变化,截面积2A 又难以指导,而孔板孔径的面积0A 是已知的,因此,用孔板孔径处流速0u 来替代上式中的2u ,又考虑这种替代带来的误差以及实际流体局部阻力造成的能量损失,故需用系数C 加以校正。

式(3-2)改写为
2
2
212/u u C
p ρ
-=∆
(3-3)
对于不可压缩流体,根据连续性方程可知0101
A u u A =
,代入式(3-3)并整理可得
001
2/1(
)2
C
p u A A ρ∆=
- (3-4)
令 02
01
1(
)
C C A A =
- (3-5)
则式(3-4)简化为 002/u C p ρ=∆ (3-6) 根据0u 和0A 即可计算出流体的体积流量:
ρ/20
000p A C A u V ∆== (3-7)
或 ρρρ/)(20000-==i gR A C A u V (3-8) 式中:V -流体的体积流量, m 3/s ; R -U 形压差计的读数,m ; i ρ-压差计中指示液密度,kg/m 3;
0C -孔流系数,无因次;
0C 由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re 所决定,具体数值由实验测定。

当孔径与管径之比为一定值时,Re 超过某个数值后,0C 接近于常数。

一般工业上定型的流量计,就是规定在0C 为定值的流动条件下使用。

0C 值范围一般为0.6-0.7。

孔板流量计安装时应在其上、下游各有一段直管段作为稳定段,上游长度至少应为10d 1,下游为5d 2。

孔板流量计构造简单,制造和安装都很方便,其主要缺点是机械能损失大。

由于机械能损失,使下游速度复原后,压力不能恢复到孔板前的值,称之为永久损失。

d 0/d 1的值越小,永久损失越大。

三、实验装置与流程
实验装置 如图3-3所示。

主要部分由循环水泵、流量计、U 型压差计、温度计和水槽等组成,实验主管路为1寸不锈钢管(内径25mm )。

图3-3 流量计校合实验示意图
四、实验步骤与注意事项
1. 熟悉实验装置,了解各阀门的位置及作用。

2. 对装置中有关管道、导压管、压差计进行排气,使倒U 形压差计处于工作状态。

3. 对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流
量时测量8-9个点,大流量时测量5-6个点。

为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值。

4. 测量流量时应保证每次测量中,计量桶液位差不小于100mm 或测量时间不少于40s 。

5. 主要计算过程如下:
(1)根据体积法(秒表配合计量筒)算得流量V (m 3
/h ); (2)根据2
4d
V
u π=

(3)读取流量V (由闸阀开度调节)对应下的压差计高度差R ,根据002/u C p ρ=∆和
gR p ρ=∆,求得C 0值。

(4)根据μ
ρ
du =
Re ,求得雷诺数,其中d 取对应的d 0值。

(5)在坐标纸上分别绘出孔板流量计和文丘里流量计的0C -Re 图。

五、实验报告
1. 将所有原始数据及计算结果列成表格,并附上计算示例。

2. 在单对数坐标纸上分别绘出孔板流量计和文丘里流量计的0C -Re 图。

3. 讨论实验结果。

六、思考题
1. 孔流系数与哪些因素有关?
2. 孔板、文丘里流量计安装时各应注意什么问题?
3. 如何检查系统排气是否完全?
4. 从实验中,可以直接得到ΔR -V 的校正曲线,经整理后也可以得到0C -Re 的曲线,这两种
表示方法各有什么优点?。

相关文档
最新文档