九年级上一元二次方程教案教案

合集下载

九年级数学上册《一元二次方程的根与系数的关》教案、教学设计

九年级数学上册《一元二次方程的根与系数的关》教案、教学设计
6.课后作业,分层辅导
根据学生的个体差异,布置不同难度的课后作业,使每个学生都能在原有基础上得到提高。同时,针对学生在课堂上的表现,进行有针对性的辅导,解决他们在学习过程中遇到的问题。
7.教学评价,持续改进
通过课堂提问、作业批改、测验等方式,了解学生的学习效果,对教学方法和策略进行调整,以提高教学质量。
二、学情分析
九年级的学生已经具备了一定的数学基础,对一元二次方程的求解方法有初步的了解。在此基础上,他们对一元二次方程的根与系数之间的关系有一定的探究欲望,但可能对根的判别式和韦达定理的理解还不够深入。因此,在教学过程中,教师应充分调动学生的积极性,引导他们通过观察、思考、总结,逐步理解并掌握一元二次方程的根与系数之间的关系。
1.培养学生对待数学问题的认真态度,严谨治学,克服困难,勇于探索。
2.培养学生用数学的眼光观察世界,认识世界,增强学生的数学应用意识。
3.培养学生的创新精神,激发学生的学习兴趣,使学生在学习过程中体验成功,树立自信心。
在教学过程中,要注意关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重培养学生的数学思维和解决问题的能力,为学生的终身发展奠定基础。
四、教学内容与过程
(一)导入新课
在课堂的开始,我将通过一个贴近学生生活的实际问题来导入新课:“同学们,假设我们班要举行一次篮球比赛,已知比赛场地上有两个篮筐,分别距离地面一定高度。现在我们需要计算出篮球从地面抛起,到达篮筐高度时的速度。这个问题可以通过一元二次方程来求解,那么如何找到这个方程的根呢?”这个问题既能够引起学生的兴趣,又能让学生感受到数学与生活的紧密联系。
此外,学生在解决实际问题时可能会遇到一定的困难,需要教师耐心指导,帮助学生建立数学模型,提高学生的数学应用能力。同时,学生的个体差异较大,教师应关注每个学生的学习进度,针对性地进行教学辅导,使他们在原有基础上得到提高。

《一元二次方程》数学教案8篇

《一元二次方程》数学教案8篇

《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。

元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。

本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。

教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。

还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。

同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。

因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标:知识与技能目标:经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《解一元二次方程》教学设计【优秀9篇】在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。

九年级数学上册《一元二次方程的根与系数的关系》教案、教学设计

九年级数学上册《一元二次方程的根与系数的关系》教案、教学设计
(二)过程与方法
1.通过引导学生在自主探究、合作交流的过程中发现一元二次方程的根与系数的关系,培养学生发现问题、分析问题和解决问题的能力。
2.利用具体的实例,让学生在实际操作中掌握一元二次方程的根与系数的关系,提高学生的实际操作能力和应用能力。
3.通过对一元二次方程根与系数关系的探究,培养学生数形结合的思想,让学生学会从多角度分析问题,形成严密的逻辑思维。
5.拓展延伸,提高思维:
-通过拓展延伸性问题的设置,引导学生运用一元二次方程根与系数关系解决更复杂的问题,提高学生的思维能力和创新能力。
6.总结反馈,反思提升:
-在课堂结束前,引导学生总结所学内容,进行自我反馈,发现不足,及时改进。
-教师对课堂教学进行反思,了解学生的学习情况,调整教学策略,提高教学质量。
-根据实际问题,列出一元二次方程,并运用根与系数关系求解。
3.拓展题:
-探究一元二次方程ax^2 + bx + c = 0(a≠0)的根与系数之间的关系,并给出证明。
-通过阅读教材或其他资料,了解一元二次方程根与系数关系在其他数学分支中的应用。
4.实践题:
-调查生活中的一元二次方程问题,例如:物品的定价与折扣、投资收益等,并运用所学知识解决实际问题。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,针对本节课所学的一元二次方程根与系数关系,讨论以下问题:
a.一元二次方程根与系数关系在实际问题中的应用;
b.如何运用根与系数关系解决具体问题;
c.根的判别式和韦达定理在解题过程中的作用。
2.教学方法:
-采用小组合作学习法,促进学生之间的交流与讨论。
四、教学内容与过程
(一)导入新课

九年级数学上一元二次方程的解法教案(优秀5篇)

九年级数学上一元二次方程的解法教案(优秀5篇)

九年级数学上一元二次方程的解法教案(优秀5篇)数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。

方程,只有当时,才叫做一元二次方程。

如果且,它就是一元二次方程了。

解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

初三上册数学教学工作计划篇二【学习目标】1、了解整式方程和一元二次方程的概念。

2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

【重点、难点】重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定【学习过程】一、知识回顾1、什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。

2023最新-一元二次方程教案(优秀7篇)

2023最新-一元二次方程教案(优秀7篇)

一元二次方程教案(优秀7篇)作为一名默默奉献的教育工作者,时常会需要准备好教案,教案是备课向课堂教学转化的关节点。

优秀的教案都具备一些什么特点呢?牛牛范文为您带来了7篇一元二次方程教案,如果对您有一些参考与帮助,请分享给最好的朋友。

九年级数学《一元二次方程》教案篇一一、教材分析:1、本章的主要内容:(1)一元二次方程的有关概念;(2)一元二次方程的解法,根的判别式及根与系数的关系;(3)实际问题与一元二次方程。

2、本章知识结构图:3、教学目标:(1)以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;(2)根据化归的思想,抓住“降次”这一基本策略,掌握配方法、直接开平法、公式法和因式分解法等一元二次方程的基本解法;(3)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。

4、本章的重点与难点本章学习的重点:一元二次方程的解法及应用一元二次方程解决实际问题。

难点:(1)分析方程的特点并根据方程的特点选择合适的解法;(2)实际背景问题的等量分析,设元列一元二次方程解应用题。

即建立一元二次方程模型解决实际问题,尽管已经有了运用一次方程(组)解应用问题的经验,但由于实际问题涉及的内容广泛,有的背景学生不熟悉,有的问题数量关系复杂,不易找出等量关系。

同时,还要根据实际问题的意义检验求得的结果是否合理。

二、教学中应注意的问题:1、重视一元二次方程与实际的联系,再次体现数学建模思想。

方程是刻画现实世界的有效数学模型,因而方程教学关注方程的建模过程。

教科书的第1节就是想通过多种实际问题的分析,经历模型化的过程,并在此基础上抽象出数学概念。

当然,在教学中除教科书第1节、第5节提供了大量的实际问题外,教师还应根据学生生活实际和认知水平,创设更为丰富、贴近学生的现实情景,并引导学生分析其中的数量关系,建立方程模型。

在经历多次这样的数学活动,使学生感受到方程与实际问题的联系,领会数学建模思想,增强学生学习数学的兴趣和应用意识,培养学生分析问题、解决问题的能力。

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。

(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。

过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。

二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。

难点:准确理解一元二次方程的意义。

三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。

解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。

九年级数学一元二次方程教案5篇

九年级数学一元二次方程教案5篇

九年级数学一元二次方程教案5篇一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法。

今天在这里整理了一些,我们一起来看看吧!九年级数学一元二次方程教案1教学目标1。

知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题。

2。

过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型。

根据数学模型恰如其分地给出一元二次方程的概念。

(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等。

(3)通过掌握缺一次项的一元二次方程的解法──直接开方法, 导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程。

九年级数学一元二次方程教案2【主体知识归纳】1.整式方程方程的两边都是关于未知数的整式,这样的方程叫做整式方程.2.一元二次方程只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.3.一元二次方程的一般形式为ax2+bx+c=0(a≠0),其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.4.直接开平方法形如x2=a(a≥0)的方程,因为x是a的平方根,所以x=±,即x1= ,x2=-.这种解一元二次方程的方法叫做直接开平方法.5.配方法将一元二次方程ax2+bx+c=0(a≠0)化成(x+ )2=的形式后,当b2-4ac≥0时,用直接开平方法求出它的根,这种解一元二次方程的方法叫做配方法.用配方法解已化成一般形式的一元二次方程的一般步骤是:(1)将方程的两边都除以二次项的系数,把方程的二次项系数化成1;(2)将常数项移到方程右边;(3)方程两边都加上一次项系数一半的平方;(4)当右边是非负数时,用直接开平方法求出方程的根.6.公式法用一元二次方程ax2+bx+c=0(a≠0)的求根公式x= (b2-4ac≥0),这种解一元二次方程的方法叫做公式法.【基础知识讲解】1.一元二次方程的概念包涵三个条件:(1)整式方程;(2)方程中只含有一个未知数;(3)未知数的最高次数是2”.一元二次方程的概念中“只含有一个未知数,并且未知数的最高次数是2”是对化成一般形式之后而言的.例如,判断方程2x2+2x-1=2x2是否是一元二次方程?应先整理方程,得2x-1=0,所以此方程不是一元二次方程.2.在求二次项、一次项和常数项时,要先整理方程,把方程化成一般形式,即ax2+bx+c=0,再确定所求.方程ax2+bx+c=0只有当a≠0时,才是一元二次方程,例如a=0,b≠0时,它就是一元一次方程,因此,如果明确指出ax2+bx+c=0是一元二次方程,那么就一定包括a≠0这个条件.3.直接开平方法适用于解化为x2=a形式的方程,当a≥0时,方程有实数解;当a0时,方程没有实数解.4.配方法是先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解;如果右边是负数时,方程无实数解.5.求根公式是针对一元二次方程的一般形式来说的,使用求根公式时,必须先把方程化成一般形式,才能正确地确定各项系数,在应用公式之前,先计算出b2-4ac的值,当b2-4ac≥0时,代入公式求出方程的根;当b2-4ac0时,方程没有实数根,这时就不必再代入公式了.【例题精讲】例1:指出下列方程中哪些是一元二次方程:(1)5x2+6=3x(2x+1);(2)8x2=x;(3)y3-y-1=0;(4)4x2-3y=0;(5)-x2=0;(6)x(5x-1)=x(x+3)+4x2.剖析:判断一个方程是不是一元二次方程,首先要对方程进行整理,化成一般形式,然后再根据条件:①整式方程;②只含有一个未知数;③未知数的最高次数为2.只有当这三个条件缺一不可时,才能判断为一元二次方程.解:(1)去括号,得5x2+6=6x2+3x,移项、合并同类项,得x2+3x-6=0,∴此方程是一元二次方程.(2)移项,得8x2-x=0,∴此方程是一元二次方程.(3)因为未知数的最高次数是3,∴此方程不是一元二次方程.(4)∵方程中含有两个未知数,∴它不是一元二次方程.(5)∵a=-1≠0,∴它是一元二次方程.(6)整理,得4x=0∴它不是一元二次方程.例2:写出下列一元二次方程的二次项系数、一次项系数及常数项:(1)2x2=3x+5;(2)(x+1)(x-1)=1;(3)(x+2)2-4=0.剖析:虽然该题没有要求把方程化成一般形式,但在做题时,也要先把方程化成一般形式.因为方程的.二次项系数、一次项系数及常数项是在方程为一般形式下的,所以必须先整理方程.解:(1)整理,得2x2-3x-5=0.二次项系数是2,一次项系数是-3,常数项是-5.(2)整理,得x2-2=0.二次项系数是1,一次项系数是0,常数项是-2.(3)整理,得x2+4x=0.二次项系数是1,一次项系数是4,常数项是0.例3:关于x的整式方程(m-1)x2+(2m-1)x+4=0是一元二次方程吗?剖析:要判别原方程是否是一元二次方程,易想到用定义,满足条件:(1)整式方程;(2)方程中只含有一个未知数;(3)未知数的最高次数是2.原方程显然满足(1)、(2).由于不知m是怎样的实数,所以不一定满足(3).因此,需分类探讨.解:当m-1≠0,即m≠1时,原方程是一元二次方程.当m-1=0,即m=1时,原方程是x+4=0是一元一次方程.说明:在移项、合并同类项时,易出现符号错误,需格外小心,要认真区别题目要求是指出方程的各项还是各项系数.特别要小心当某项的系数为负数时,指出各项时千万不要丢负号.例4:用直接开平方法解下列方程:(1)3x2-27=0;(2)(3x-5)2-7=0.解:(1)3x2-27=0,3x2=27,x2=9,∴x=±,即x=3或x=-3.∴x1=3,x2=-3.(2)(3x-5)2-7=0,(3x-5)2=7,∴3x-5=±,即3x-5= 或3x-5=- .∴x1= ,x2= .例5:用配方法解方程2x2+7x-4=0.剖析:此题考查对配方法的掌握情况.配方法最关键的步骤是:(1)将二次项系数化为1;(2)将常数项与二次项、一次项分开在等式两边;(3)方程两边都加上一次项系数一半的平方,即可化为(x+a)2=k的形式,然后用开平方法求解.解:把方程的各项都除以2,得x2+ x-2=0.移项,得x2+ x=2.配方,得x2+ x+( )2=2+( )2= ,即(x+ )2= .解这个方程,得x+ =±,x+ =±.即x1= ,x2=-4.说明:配方法是一种重要的数学方法,除了用来解一元二次方程外,还在判断数的正、负,代数式变形、恒等式的证明中有着广泛的应用,例如证明不论x为何实数,代数式2x2-4x+3的值恒大于零,可以做如下的变形:2x2-4x+3=2x2-4x+2+1=2(x-1)2+1.例6:用公式法解下列方程:(1)2x2+7x=4;(2)x2-1=2 x.解:(1)方程可变形为2x2+7x-4=0.∵a=2,b=7,c=-4,b2-4ac=72-4×2×(-4)=810,∴x= .∴x1= ,x2=-4.(2)方程可变形为x2-2 x-1=0.∵a=1,b=-2 ,c=-1,b2-4ac=(-2 )2-4×1×(-1)=160.∴x= .∴x1= +2,x2= -2.说明:在用公式法解方程时,一定要先把方程化成一般形式.例7:一元二次方程(m-1)x2+3m2x+(m2+3m-4)=0有一根为零,求m的值及另一根.解:因为方程有一根为零,所以它的常数项m2+3m-4=0,解得m1=1,m2=-4,又因为此方程是一元二次方程,所以m-1≠0,即m≠1,所以m=-4.把m=-4代入方程,得-5x2+48x=0,解得:x1=0,x2=9.6,所以方程的另一根为9.6.说明:方程有一根为零时,常数项必须为零;求解字母系数的一元二次方程的问题中,二次项系数的字母必须保证二次项系数不等于零,这是解此类问题的先决条件.【同步达纲练习】1.选择题(1)下列方程中是一元二次方程的是( )A. =0B. =0C.x2+2xy+1=0D.5x=3x-1(2)下列方程不是一元二次方程的是( )A. x2=1B.0.01x2+0.2x-0.1=0C. x2-3x=0D. x2-x= (x2+1)(3)方程3x2-4=-2x的二次项系数、一次项系数、常数项分别为( )A.3,-4,-2B.3,2,-4C.3,-2,-4D.2,-2,0(4)一元二次方程2x2-(a+1)x=x(x-1)-1的二次项系数为1,一次项系数为-1,则a的值为( )A.-1B.1C.-2D.2(5)若方程(m2-1)x2+x+m=0是关于x的一元二次方程,则m的取值范围是( )A.m≠0B.m≠1C.m≠1且m≠-1D.m≠1或m≠-1(6)方程x(x+1)=0的根为( )A.0B.-1C.0,-1D.0,1(7)方程3x2-75=0的解是( )A.x=5B.x=-5C.x=±5D.无实数根(8)方程(x-5)2=6的两个根是( )A.x1=x2=5+B.x1=x2=-5+C.x1=-5+ ,x2=-5-D.x1=5+ ,x2=5-(9)若代数式x2-6x+5的值等于12,那么x的值为( )A.1或5B.7或-1C.-1或-5D.-7或1(10)关于x的方程3x2-2(3m-1)x+2m=15有一个根为-2,则m的值等于( )A.2B.-C.-2D.2.把下列方程化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项:(1)4x+1=9x2; (2)(x+1)(x-3)=2x-3;(3)(x+3)(x-3)=2(x-3)2; (4) y2- y= y2- y+ .3.当m满足什么条件时,方程(m+1)x2-4mx+4m-2=0是一元二次方程?当x=0时,求m的值.4.用直接开平方法解下列方程:(1)x2= ;(2)x2=1.96;(3)3x2-48=0;(4)4x2-1=0;(5)(x-1)2=144;(6)(6x-7)2-9=0.5.用配方法解下列方程:(1)x2+12x=0; (2)x2+12x+15=0 (3)x2-7x+2=0;(4)9x2+6x-1=0; (5)5x2-2=-x; (6)3x2-4x=2.6.用公式法解下列方程:(1)x2-2x+1=0; (2)x(x+8)=16; (3)x2- x=2; (4)0.8x2+x=0.3;(5)4x2-1=0; (6)x2=7x; (7)3x2+1=2 x; (8)12x2+7x+1=0.7.(1)当x为何值时,代数式2x2+7x-1与4x+1的值相等?(2)当x为何值时,代数式2x2+7x-1与x2-19的值互为相反数?8.已知a,b,c均为实数,且+|b+1|+(c+3)2=0,解方程ax2+bx+c=0.9.已知a+b+c=0.求证:1是关于x的一元二次方程ax2+bx+c=0的根.10.用配方法证明:(1)3y2-6y+11的值恒大于零;(2)-10x2-7x-4的值恒小于零.11.证明:关于x的方程(a2-8a+20)x2+2ax+1=0,不论a为何实数,该方程都是一元二次方程.九年级数学一元二次方程教案3教学目标1. 了解整式方程和一元二次方程的概念;2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

九年级数学上册《一元二次方程根与系数的关系》教案、教学设计

九年级数学上册《一元二次方程根与系数的关系》教案、教学设计
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对讲授新知部分的内容,进行讨论。讨论主题包括:判别式的应用、一元二次方程根与系数的关系等。
2.讨论要求:小组成员要积极参与,发表自己的观点,倾听他人的意见,共同探讨问题。每个小组选出一个代表,汇报本组讨论成果。
3.教师指导:在学生讨论过程中,教师巡回指导,关注学生的讨论进展,及时解答学生的疑问,引导他们深入探讨问题。
(五)总结归纳
1.学生自主总结:让学生回顾本节课所学内容,总结一元二次方程根与系数的关系及其应用,归纳解题方法。
2.教师点评:教师对学生的总结进行点评,强调重点知识点,指出易错点,提醒学生注意。
3.课堂小结:对本节课的教学内容进行梳理,形成知识结构,为学生后续学习奠定基础。
五、作业布置
为了巩固学生对一元二次方程根与系数关系的理解,提高他们运用数学知识解决实际问题的能力,特布置以下作业:
7.关注学生个体差异,针对不同学生的学习需求,给予个性化的指导。对学习困难的学生,要进行耐心辅导,帮助他们克服困难;对优秀生,要适当提高要求,激发他们的潜能。
8.定期组织课堂小结,让学生在总结中回顾所学知识,形成系统的知识结构。同时,鼓励学生提出问题,培养他们的批判性思维。
四、教学内容与过程
(一)导入新课
2.作业难度分层,满足不同学生的学习需求;
3.作业形式多样,注重培养学生的实践能力和团队合作精神;
4.教师及时批改作业,给予学生反馈,指导学生改进学习方法。
2.学会运用根与系数的关系解决实际问题,提高数学应用能力;
3.培养学生的逻辑思维能力和解决问题的策略。
(二)教学难点
1.判别式的推导及其与根的关系的理解;
2.在实际问题中,如何构建一元二次方程模型,并运用根与系数的关系进行求解;

九年级数学上册《一元二次方程求根公式及其应用》教案、教学设计

九年级数学上册《一元二次方程求根公式及其应用》教案、教学设计
(二)过程与方法
1.通过对一元二次方程的引入,使学生掌握从实际问题中抽象出一元二次方程的一般方法。
2.通过自主探究、小组合作等方式,引导学生发现一元二次方程求根公式的推导过程,培养学生的逻辑思维能力和团队协作能力。
3.利用求根公式解决实际问题时,引导学生分析问题、建立数学模型,提高学生解决实际问题的能力。
ቤተ መጻሕፍቲ ባይዱ三、教学重难点和教学设想
(一)教学重难点
1.重点:一元二次方程求根公式的推导及其应用。
2.难点:理解求根公式的推导过程,以及如何运用求根公式解决实际问题。
(二)教学设想
1.引入新课:
-通过生活实例,如抛物线运动、面积计算等,引出一元二次方程的实际背景,激发学生的学习兴趣。
-对比一元一次方程,引导学生发现一元二次方程的特点,为新课的学习做好铺垫。
四、教学内容与过程
(一)导入新课,500字
1.教学活动:利用多媒体展示一个实际问题,如“一个学生从地面上抛出一个球,球的最高点离地面2米,问学生抛球的高度和初速度分别是多少?”
2.提出问题:引导学生思考如何解决这个问题,从而引出一元二次方程的求解。
3.引入新课:通过对比一元一次方程,强调一元二次方程的特点,即未知数的最高次数为2,且方程的根可能有0个、1个或2个。
1.必做题:
-请同学们完成课本第chapter页的练习题,包括直接求解一元二次方程和运用求根公式解决实际问题。
-从练习中挑选两道具有代表性的题目,要求同学们写出完整的解题过程,包括解题思路、步骤和最终答案。
2.选做题:
-针对课堂上的抛物线运动实例,请同学们设计一个类似的实际问题,并运用一元二次方程求根公式进行求解。
1.学生对一元二次方程的概念理解可能不够深入,需要通过实例引入,帮助学生建立直观的认识。

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。

3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

教学重点1、一元二次方程及其它有关的概念。

2、利用实际问题建立一元二次方程的数学模型。

教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

21.1一元二次方程教案(人教版数学九年级上册)

21.1一元二次方程教案(人教版数学九年级上册)

21.1一元二次方程(一)教学目标(1)知识技能:1.通过类比方程,了解一元二次方程的定义及一般形式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念。

2.了解一元二次方程的解的定义,会检验一个数是不是一元二次方程的解。

(2)过程与方法:通过实例,列出一元二次方程,让学生体会一元二次方程是实际问题数量关系的有效模型,培养学生初步形成“模型思想”,增强学生应用数学知识解决实际问题的意识。

(3)情感态度使学生经历类比方程得到一元二次方程定义的过程,减少学生对新知识的陌生感,提高学生学习数学的兴趣。

(二)教学重点难点重点:通过类比方程,了解一元二次方程的定义及一般形式ax2+bx+c= 0(a≠0)和一元二次方程的解等定义,并能使用定义解决简单问题。

难点:一元二次方程、二次项及其系数、一次项及其系数与常数项的分别。

教学方法:教学准备:课件(三)教学过程:一、复习引入:同学们我们已经学习了一元一次方程,二元一次方程组和可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。

从这节课开始学习一元二次方程知识,先来回忆一下方程的有关概念.1.什么是方程?什么的一元一次方程?2.指出下面哪些方程是已经学过的方程?分别是什么方程?(1)3x+2=0;(2)2x−3y=8;(3)25x +3y=0;(4)13y=4;(5)x2−2x+1=0;(6)y(y−8)=24;(7)5+1x−3=1;(8)2x3−y2=2.3.什么的元?什么的次?二、探究新知:1.课件出示教材问题1、2,要求学生列出方程,思考下列问题。

问题1 有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?提问:(1)问题1中列方程的等量关系是,所列的方程为,化简后为。

2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案

2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案

21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。

九年级数学上册《估计一元二次方程的根》教案、教学设计

九年级数学上册《估计一元二次方程的根》教案、教学设计
2.教授求根公式,并强调掌握求根公式的重要性,同时指出求根公式的局限性,引出估计一元二次方程根的方法。
3.介绍估计一元二次方程根的步骤:
a.确定方程的系数a、b、c;
b.计算判别式,判断根的性质;
c.运用估计方法,确定根的范围;
d.根据需要,利用求根公式或其他方法求解具体的根。
(三)学生小组讨论
1.教师给出几个具有实际背景的一元二次方程,要求学生分组讨论,运用估计方法确定根的范围。
4.掌握利用因式分解、配方法求解一元二次方程,并能熟练运用到实际解题中。
(二)过程与方法
1.通过小组讨论、师生互动等方式,引导学生自主探究一元二次方程的根的求解方法,提高学生的合作能力和问题解决能力。
2.通过具体例题的分析与讲解,让学生掌握求解一元二次方程的步骤,培养学生的逻辑思维能力和运算能力。
3.引导学生运用估计方法,对一元二次方程的根进行快速判断,提高学生的观察力和直觉思维能力。
3.设计一道综合性的拓展题,要求学生结合本节课所学内容,解决一个稍微复杂的一元二次方程问题。此题目的目的是培养学生的逻辑思维能力和创新意识。
4.请学生总结估计一元二次方程根的方法和步骤,以书面形式提交。这有助于学生梳理所学知识,形成系统的知识体系。
5.鼓励学生在家中寻找一个与一元二次方程相关的实际问题,尝试将其转化为数学模型,并运用所学方法求解。下节课与同学分享自己的发现和收获。
在本章节的学习中,学生需要运用已学的知识,如一元二次方程的求解方法、判别式的应用等,结合估计方法,提高对一元二次方程根的判断和求解能力。因此,教师应关注学生的个体差异,针对不同水平的学生进行有针对性的指导,使他们在掌握知识的同时,提高解决问题的能力。
同时,九年级的学生正处于青春期,个性鲜明,思维活跃。在教学过程中,教师应关注学生的心理特点,创设有趣、富有挑战性的教学情境,激发学生的学习兴趣,引导学生主动参与课堂,发挥学生的主观能动性。通过师生互动、生生互动,培养学生的合作精神和团队意识,提高学生的综合素质。

九年级数学上一元二次方程的解法教案【优秀3篇】

九年级数学上一元二次方程的解法教案【优秀3篇】

数学,是一门有趣而又很有学问的学科。

生活中存在着无穷的数学故事,与你我的生活息息相关,也是一个游戏的宝塔。

2022中考数学知识点有哪些你知道吗?一起来看看2022中考数学知识点,欢迎查阅!以下是人见人爱的小编分享的九年级数学上一元二次方程的解法教案【优秀3篇】,在大家参照的同时,也可以分享一下白话文给您最好的朋友。

数学《一元二次方程》教案设计篇一教材分析1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。

2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。

一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。

学情分析1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。

2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的`难度,解决这问题要以多练为主。

3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。

教学目标1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。

2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。

教学重点和难点1、重点:概念的形成及一般形式。

2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。

元二次方程的应用篇二第一课时教学目标一、教学1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

一元二次方程(九年级数学上册教案)

一元二次方程(九年级数学上册教案)

一元二次方程(第1课时)教学内容:一元二次方程概念及一元二次方程一般形式及有关概念。

教学目标:了解一元二方程的概念,一元二次方程一般形式及有关概念。

教学重点:一元二方程的概念;一元二次方程一般形式。

教学难点与关键:…提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次的概念。

教具、学具准备:小黑板。

教学过程:一、回顾知识(复习引入,学生活动):1、什么叫做方程2、一元一次方程的概念怎样其一般形式怎样3、你能说出下列方程是几元几次方程吗;(1) 2x + 3 = 0 (2) 3x – 8 = 0 (3) 3x + y = 7(4)二、新课(探索新知):1、由回顾知识第3题引出:一元二方程的概念一元二次方程一般形式2、分析:一元二次方程一般形式中各部分概念(即认识:二次项及二次系数、一次项及一次项系数、常数项)3、举例:课本第31页的例题(抄于小黑板备用)。

三、训练(巩固练习):课本第32页的练习题(抄于小黑板备用)。

—四、归纳总结(学生归纳,教师点评)1、一元二次方程的概念2、一元二次方程的一般形式怎样五、布置作业:课本第34页的复习巩固第1大题六小题。

六、板书设计:1、一元二次方程的概念2、一元二次方程的一般形式怎样~七、教学后记:一元二次方程(第2课时)教学内容:1、一元二次方程根的概念;2、根据题判定一个数是否是方程的根及其利用它们解决一些具体题。

教学目标:1、了解一元二次方程根的概念;}2、会判定一个数是否是一元二次方程的根及其利用它们解决一些具体题。

教学重点:判定一个数是否是一元二次方程的根教学难点与关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。

教学过程:一、顾知识(复习引入,学生活动):1、你知道怎样情况下方程的解可叫做根呢/2、x = 3是一元一次方程2x – 6 = 0的根吗3、x = 1及x = -3是一元一次方程的根吗二、新课(探索新知):1、由回顾知识第3题引出:一元二方程根的概念讲述判定一个数是否是一元二次方程的根步骤2、举例子:x = 1及x = -3是一元一次方程的根吗(教师略提示做法,由学生板书过程)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上一元二次方程
教案教案
Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
22.1 一元二次方程
第二课时
教学内容
1.一元二次方程根的概念;
2.•根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.
教学目标
了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.
提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.
重难点关键
1.重点:判定一个数是否是方程的根;
2.•难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.
教学过程
一、复习引入
学生活动:请同学独立完成下列问题.
问题1.如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米
10
8
设梯子底端距墙为xm,那么,
根据题意,可得方程为___________.
整理,得_________.
列表:
问题22m,•苗圃的长和宽各是多少
设苗圃的宽为xm,则长为_______m.
根据题意,得________.
整理,得________.
列表:
二、探索新知
提问:(1)问题1中一元二次方程的解是多少问题2•中一元二次方程的解是多少
(2)如果抛开实际问题,问题1中还有其它解吗问题2呢
老师点评:(1)问题1中x=6是x 2-36=0的解,问题2中,x=10是x 2+2x-120=0的解.
(3)如果抛开实际问题,问题(1)中还有x=-6的解;问题2中还有x=-12的解.
为了与以前所学的一元一次方程等只有一个解的区别,我们称: 一元二次方程的解叫做一元二次方程的根.
回过头来看:x 2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.
例1.下面哪些数是方程2x 2+10x+12=0的根 -4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x 2+10x+12=0的两根.
例2.你能用以前所学的知识求出下列方程的根吗 (1)x 2-64=0 (2)3x 2-6=0 (3)x 2-3x=0
分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.
解:(1)移项得x 2=64
根据平方根的意义,得:x=±8 即x 1=8,x 2=-8
(2)移项、整理,得x 2=2
根据平方根的意义,得x=
即x 1,x 2
(3)因为x 2-3x=x (x-3)
所以x 2-3x=0,就是x (x-3)=0 所以x=0或x-3=0 即x 1=0,x 2=3 三、巩固练习
教材P 33 思考题 练习1、2. 四、应用拓展
例3.要剪一块面积为150cm 2的长方形铁片,使它的长比宽多5cm ,•这块铁片应该怎样剪
设长为xcm ,则宽为(x-5)cm
列方程x (x-5)=150,即x 2-5x-150=0 请根据列方程回答以下问题:
(1)x 可能小于5吗可能等于10吗说说你的理由.
(2
(3
分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,•但是我们可以用一种新的方法──“夹逼”方法求出该方程的根.
解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意. x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能.(2
(3
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
(1)一元二次方程根的概念及它与以前的解的相同处与不同处;
(2)要会判断一个数是否是一元二次方程的根;
(3)要会用一些方法求一元二次方程的根.
六、布置作业
1.教材P
34
复习巩固3、4 综合运用5、6、7 拓广探索8、9.
2.选用课时作业设计.
作业设计
一、选择题
1.方程x(x-1)=2的两根为().
A.x
1=0,x
2
=1 B.x
1
=0,x
2
=-1 C.x
1
=1,x
2
=2 D.x
1
=-1,
x
2
=2
2.方程ax(x-b)+(b-x)=0的根是().
A.x
1=b,x
2
=a B.x
1
=b,x
2
=
1
a
C.x
1
=a,x
2
=
1
a
D.x
1
=a2,
x
2
=b2
3.已知x=-1是方程ax2+bx+c=0的根(b≠0(). A.1 B.-1 C.0 D.2
二、填空题
1.如果x2-81=0,那么x2-81=0的两个根分别是x
1
=________,
x
2
=__________.
2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.
3.方程(x+1)2x(x+1)=0,那么方程的根x
1
=______;
x
2
=________.
三、综合提高题
1.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.
2.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.
3.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在

21
x
x
-
)2-2x
21
x
x
-
+1=0,•令
21
x
x
-
=y,则有y2-2y+1=0,根据上述变形数学思
想(换元法),解决小明给出的问题:在(x2-1)2+(x2-1)=0中,求出(x2-1)2+(x2-1)=0的根.
答案:
一、1.D 2.B 3.A
二、1.9,-9 2.-13 3.-1,
三、1.由已知,得a+b=-3,原式=(a+b)2=(-3)2=9.
2.a+c=b,a-b+c=0,把x=-1代入得
ax2+bx+c=a×(-1)2+b×(-1)+c=a-b+c=0,
∴-1必是该方程的一根.
3.设y=x2-1,则y2+y=0,y
1=0,y
2
=-1,
即当x2-1=0,x
1=1,x
2
=-1;
当y
2
=-1时,x2-1=-1,x2=0,
∴x
3=x
4
=0,
∴x
1=1,x
2
=-1,x
3
=x
4
=0是原方程的根.。

相关文档
最新文档