大型机中型机小型机区别

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大型机(Mainframe)

大型机(mainframe)这个词,最初是指装在非常大的带框铁盒子里的大型计算机系统,以用来同小一些的迷你机和微型机有所区别。虽然这个词已经通过不同方式被使用了很多年,大多数时候它却是指 system/360 开始的一系列的IBM计算机。这个词也可以用来指由其他厂商,如Amdahl, Hitachi Data Systems (HDS) 制造的兼容的系统。

有些人用这个词来指IBM的AS/400 或者iSeries 系统,这种用法是不恰当的;因为即使IBM自己也只把这些系列的机器看作中等型号的服务器,而不是大型机。

什么是I/O通道(Channel)

一条大型机通道(channel)某种程度上类似于PCI 总线(bus),它能将一个或多个控制器连接起来,而这些控制器又控制着一个或更多的设备(磁盘驱动器、终端、LAN端口,等等。)大型机通道和PCI总线之间的一个主要区别是大型机通道通过几对大的bus and tag 电缆(并行通道方式),或者通过最近常使用的ESCON(Enterprise System Connection)光导纤维电缆(串行通道方式)以及光纤通道来连接控制器。这些通道在早期是一些外置的盒子(每个约6’X30’’X5’H 大小),现在都已经整合到了系统框架内。

这些通道的超强I/O处理能力是大型机系统功能如此强大的原因之一。

什么是DASD

DASD 是 Direct Access Storage Device(直接存取存储设备)的缩写;IBM创造这个词来指那些可以直接(并随意)设定地址的存储系统,也就是今天我们所说的磁盘驱动器。但在过去,这个词也指磁鼓(drums)和数据单元(datacell)等等。什么是数据单元?嗯,在磁盘驱动器变得廉价、快速并普遍使用前,IBM曾经制造过一种设备,基本上就是由一个磁鼓和绕在磁鼓上的许多磁条(单元)中的一个组成,然后读写的资料就被纪录在卷动的磁条的磁道上。这种存取数据的方法和磁盘很类似,但当(磁鼓)搜寻资料的时候需要更换磁带的话,所需的时间显然就得按秒来计算。数据单元设备还有个调皮的习惯,它喜欢在卸下一个单元到存储槽的时候卷成一块,这有时会造成介质的物理损坏。可见,在取得目前的技术进步前,我们已经走了很长一段路了。

什么是LPAR

一个LPAR(逻辑分区 logic partition)是一种通过PR/SM(Processor Resource/System Manager,一种最近的大型机都具有的固件fireware特性)来实施的虚拟机。在每个分区上,可以运行一个单独的镜像系统,并提供完全的软件隔离。这和UNIX操作系统上的domains 原理很相似,但IBM的方法更加细致,它允许所有的CPU和I/O子系统可以在逻辑分区间被共享。PR/SM 允许在单个系统上运行15个LPAR,每个(LPAR)拥有专有真实存储(dedicated real storage RAM)并且拥有专有或共享的CPU和通道。因为对性能影响最为重要的部分都是在CPU里完成的,所以(这样做)没有多少性能的损失。IBM已经宣称它准备在不久的将来把最高可支持的LPAR数目扩展到超过15个。

大型机系统得以长盛不衰的主要原因(特点)是:RAS,I/O处理能力以及ISA。

RAS

RAS(Reliability, Availability, Serviceability 高可靠性、高可用性、高服务性)是一个IBM常用来描绘它的大型机的词。到70年代早期为止,IBM已经认识到商业用途系统市场远比科研

计算机系统市场有利可图。他们也知道IBM商用系统的一个重要的卖点就是高可靠性。如果他们

的商业客户准备采用IBM计算机来开展极其重要的商业业务,客户就得确认他们可以在任何时间

都可以正常使用(IBM的机器)。所以,最近30多年来,IBM致力于使每一个新系列的系统比前一

代更加可靠。这就导致了今天的系统变得如此可靠,以至于几乎没听说过有任何因为硬件问题导

致的系统灾难。这些大型机系统内集成了相当高程度的冗余和错误检查(技术),这样就能防止系

统发生灾难性的问题。每个CPU die装有2个完全的执行管道(execution pipelines)来同时执

行每一条指令。如果这两条管道得出的结果不相同,CPU的状态就会复原,然后这条指令被重新执行。如果重新执行后结果还是不一致,最初的CPU状态就被记录下来,然后一个空闲的CPU被激

活并装入存储的状态数据。这颗CPU继续做最初那颗CPU的工作。记忆芯片、内存总线、 I/O通道、电源等等,都要么有冗余的设计,或者有相应的备用品并可以随时投入使用。这些(设备的)

小错误可能会导致性能的一些小损失,但他们决不会导致系统中任何任务的失败。

当很罕见地出现错误的时候,高服务性就用得上了。许多组件都可以在系统运行的同时被更换(热

插拔);甚至微码(microcode)的升级也可以在系统运行的同时进行。对于那些不能被同时更换

的部件,如CPU,备用品的存在就保证了能够客户方便的时候安排系统停机。

除了系统设计中的固有可靠性,IBM也创立了一个紧密联结的集群技术,叫做Parallel Sysplex,

这项技术支持由最多32个系统作为一个系统镜像运行。在一个合理部署的Parallel Sysplex系统上,即使一个独立系统遭受了毁灭性损失,整个系统也不会受太大影响,而且不会导致任何工作的

损失。任何在那台遭受损失的系统的上进行的工作,都可以自动地在剩下的系统上重新开始。另

一个Parallel Sysplex的优势是一台(或多台)系统可以从整个系统中移出以进行硬件或软件的

维护工作(例如在非工作时间),而其余的单独系统可以继续处理工作。当维护工作完成后,系

统又回归加入Sysplex系统中继续工作。充分利用这一特点就可以升级整个Sysplex系统软件(一

次一个单独的系统),而不会导致任何应用程序的暂停使用。

正因为拥有所有这些功能,真正100%的系统可用性是非常实用的,并且已经在许多地方开始实施。

I/O 吞吐量(I/O Throughput)

这些通道实际上就是I/O处理器,他们执行通道程序。这些程序包含了成串的I/O指令,其中就包

含有最原始的分流功能。这些通道极大地降低了CPU在I/O操作中的工作量,使得CPU可以更加高

效地工作。每一个通道都能同时处理许多I/O操作和控制上千个设备。

在360和370系列构架上,操作系统会创建一个通道程序并在一个已连接到所需设备的通道上执行

这个程序。如果这个通道或控制单元十分忙碌,起始I/O 指令就会失败,然后操作系统就会尝试

在另一个已连接到不同控制单元的通道上重新开始通道程序。如果所有的道路都是繁忙的,操作系

统就会把这个请求列入队列留在以后再试。XA系列里面出现的一个显著的改进就是创立了通道子

系统的概念,这个子系统可以协调并安排系统里所有通道的活动。现在操作系统只需要创立通道

程序,然后把程序转交给通道子系统,通道子系统就会处理所有的通道/控制单元以及队列问题。

这样就使大型机具有了更加强大的I/O吞吐量并使CPU能更有效地工作,因为只有在所有的I/O

操作都完成的时候才需要CPU的介入。

目前z900大型机的I/O吞吐能力是最低每秒24GB(这是字节数,不是“位”数。)虽然我没有亲

自测试这些最新系统的机会,但即使理论上的数字可能不太准确,如果说z900大型机达到了每秒100,000 次I/O,我也不会感到太吃惊。

The ISA (IBM System Architecture)

相关文档
最新文档