消除电磁干扰的三种方法
抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。
根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。
1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。
电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。
电源进线端通常采用如图1 所示的EMI 滤波器电路。
该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。
在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。
而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。
抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。
当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。
因此,即使在大负载电流的情况下,磁芯也不会饱和。
而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。
2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。
采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。
可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。
浅谈医疗仪器电磁干扰故障的消除方法

仪器监测图像 、数据产生干扰 ,甚至会损坏 电子 电 路 。有些医疗设备如 :核磁、高频电刀、大功率理 疗仪、电动机在使用时都会形成干扰源 ,会对使用 中的医疗仪器造成危害。
收 稿 日期 :20 —1 0 8 0—0 8
期清洁仪器过滤 网装置 ,清除仪器内电路板 、排风
扇 的灰尘 ,及 时 更换 损坏 的配件 ,对 于产 生 干扰 的 因素 要分 析 清楚 原 因及 时采取 体信号 是非常微弱 的 ( m 仅 V级 ) ,这 时 严重的干扰信号就会将仪器检测到的信息淹没 ,而
无 法得 出已检 测 到的正 确 结果 。再 有 ,我 们知 道物
体磨擦会产生静电,如果我们的工作地面采用 的是
不 防 静 电 的地 板 ,遇 到 环 境 湿 度 太 低 、空 气 太 干
在我们现代化的医疗工作环境中 , 有大量的各
类 医疗仪 器 同 时运行 ,会 存 在各 种 电磁 干扰 ,产 生 的原 因是 由于 医疗 仪 器 供 电 是 采 用 工频 供 电 系统 , 我们 人体 是处 在 交变 电磁 场之 中 ,这 样人 体 表皮 会 感 应 到交 变 电荷 ,在 此环 境 中 ,如果 对患 者进 行 事 物 电 ( :心 电 、脑 电 ,肌 电 )检测 时 ,因 为仪 器 如
疗仪器预防干扰的专业知识 ,灵活应用 ,使仪器处 于良好的、无干扰的工作状态 。
医疗装 备 20 09第 2期
7 5
力线 可 滤 除 电网各 种毛 刺 ,高频 分 量 ,可有 效 的预 防交 流 电场 的干 扰 。再 有就 是定 期 要对 仪器 进行 维 护保 养 工作 ,检 查并 测量 接 地线 是 否牢 固可 靠 ,定
算机 网络 以及无线接受器等设施使得我们 的环境受
消磁的措施

消磁的措施概述消磁是指将磁性物体中的磁场彻底清除的过程。
消磁的主要目的是消除磁性物体上的磁场,避免其对其他设备或环境产生干扰或损害。
本文档将介绍常见的消磁措施以及消磁设备的原理和使用方法。
常见的消磁措施以下是几种常见的消磁措施:1. 磁场屏蔽磁场屏蔽是通过将磁场引导到一个特定的方向,以减弱或消除磁场的方法。
常见的磁场屏蔽材料包括软磁性材料和超导材料。
软磁性材料能够吸收磁场并将其分散,从而减少磁场的强度。
超导材料能够在低温下形成无电阻电流环,从而完全屏蔽外部磁场。
2. 电磁屏蔽电磁屏蔽是通过使用屏蔽材料来阻挡或吸收电磁辐射的方法。
常见的电磁屏蔽材料包括电磁屏蔽膜、电磁屏蔽涂料和金属网。
这些材料能够将电磁波从一个方向导向另一个方向,从而减少电磁辐射的传播。
3. 磁场消除磁场消除是通过施加反向磁场来抵消原始磁场的方法。
这种方法需要使用一个磁体或线圈来产生一个与原始磁场相反的磁场,从而达到消除原始磁场的效果。
4. 磁化反转磁化反转是将原始磁场的方向反转,使其与原始方向相反的方法。
这种方法需要使用一个磁体或线圈来产生一个与原始磁场相反方向的磁场,从而使原始磁场的方向发生改变。
消磁设备的原理和使用方法消磁设备是用于消除磁性物体磁场的专用设备。
以下是两种常见的消磁设备及其原理和使用方法:1. 电磁消磁器电磁消磁器是通过产生一个强磁场,然后逐渐减小该磁场的强度,以消除物体上的磁场。
电磁消磁器通常由一个线圈和一个电源组成。
线圈通过电源提供的电流产生一个磁场,然后通过逐渐减小电流的强度来减小磁场的强度。
使用电磁消磁器时,将待消磁的物体完全包围在线圈中,并根据需要调整电磁消磁器的参数。
在一段时间后,物体上的磁场将被彻底消除。
2. 磁体消磁器磁体消磁器是通过产生一个反向磁场来消除物体上的磁场。
磁体消磁器由一个磁体和一个电源组成。
磁体通过电源提供的电流产生一个与物体上的磁场相反方向的磁场。
使用磁体消磁器时,将待消磁的物体放置在磁体附近,并根据需要调整磁体消磁器的参数。
电磁兼容-题库

电磁兼容-题库⼀、填空题(每空0.5分,共20 分)1.构成电磁⼲扰的三要素是【⼲扰源】、【传输通道】和【接收器】;如果按照传输途径划分,电磁⼲扰可分为【传导⼲扰】和【辐射⼲扰】。
2.电磁兼容裕量是指【抗扰度限值】和【发射限值】之间的差值。
3.抑制电磁⼲扰的三⼤技术措施是【滤波】、【屏蔽】和【接地】。
4. 常见的机电类产品的电磁兼容标志有中国的【CCC】标志、欧洲的【CE】标志和美国的【FCC】标志。
5. IEC/TC77主要负责指定频率低于【9kHz】和【开关操作】等引起的⾼频瞬间发射的抗扰性标准。
6. 电容性⼲扰的⼲扰量是【变化的电场】;电感性⼲扰在⼲扰源和接受体之间存在【交连的磁通】;电路性⼲扰是经【公共阻抗】耦合产⽣的。
7. 辐射⼲扰源可归纳为【电偶极⼦】辐射和【磁偶极⼦】辐射。
如果根据场区远近划分,【近区场】主要是⼲扰源的感应场,⽽【远区场】呈现出辐射场特性。
8. 随着频率的【增加】,孔隙的泄漏越来越严重。
因此,⾦属⽹对【微波或超⾼频】频段不具备屏蔽效能。
9. 电磁⼲扰耦合通道⾮线性作⽤模式有互调制、【交叉调制】和【直接混频】10. 静电屏蔽必须具备完整的【屏蔽导体】和良好的【接地】。
11. 电磁屏蔽的材料特性主要由它的【电导率】和【磁导率】所决定。
12. 滤波器按⼯作原理分为【反射式滤波器】和【吸收式滤波器】,其中⼀种是由有耗元件如【铁氧体】材料所组成的。
13. 设U1 和U2 分别是接⼊滤波器前后信号源在同⼀负载阻抗上建⽴的电压,则插⼊损耗可定义为【20lg(U2/U1)】分贝。
14. 多级电路的接地点应选择在【低电平级】电路的输⼊端。
15. 电⼦设备的信号接地⽅式有【单点接地】、【多点接地】、【混合接地】和【悬浮接地】。
其中,若设备⼯作频率⾼于10MHz,应采⽤【多点接地】⽅式。
⼆、简答题(每题5分,共20 分)1. 电磁兼容的基本概念?答:电磁兼容⼀般指电⽓及电⼦设备在共同的电磁环境中能够执⾏各⾃功能的共存状态,即要求在同⼀电磁环境中的上述各种设备都能正常⼯作,且不对该环境中任何其它设备构成不能承担的电磁骚扰的能⼒。
LED驱动电源电磁干扰的三大硬件措施应该如何去解决呢

LED驱动电源电磁干扰的三大硬件措施应该如何去解决呢直奔主题,首先我们来看一下能够影响到EMI/EMC的几个因素:驱动电源的电路结构;开关频率、接地、PCB设计、智能LED电源的复位电路设计。
由于最初的LED电源就是线性电源,但是线性电源在工作时会以发热的形式损耗大量能量。
线性电源的工作方式,使他从高压变低压必须有将压装置,一般的都是变压器,再经过整流输出直流电压。
虽然笨重,发热量大,优点是,对外干扰小,电磁干扰小,也容易解决。
而现在使用比较多的LED开关电源,都是以 PWM形式的LED驱动电源是让功率晶体管工作在导通和关断状态。
在导通时,电压低,电流大;关断时,电压高,电流小,因此功率半导体器件上所产生的损耗也很小。
缺点比较明显的是,电磁干扰(EMI)也更严重。
LED电源的电磁兼容出现问题一般是开关电路的电源中。
而开关电路是开关电源的主要干扰源之一。
开关电路是LED驱动电源的核心,开关电路主要由开关管和高频变压器组成。
它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。
这种高频脉冲干扰产生的主要原因是:开关管负载为高频变压器初级线圈,是感性负载。
导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压;断开瞬间,由于初级线圈的漏磁通,致使部分能量没有从一次线圈传输到二次线圈,电路中形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰。
高频脉冲产生更多的发射,周期性信号产生更多的发射。
在LED电源系统中,开关电路产生电流尖峰信号,而当负载电流变化时也会产生电流尖峰信号。
这就电磁干扰根源之一。
基本上在所有电磁干扰问题的题目中,主要是因为不适当的接地引起的。
有三种信号接地方法:单点、多点和混合。
在开关电路频率低于1MHz时,可采用单点接地方法,但不适宜高频;在高频应用中,最好采用多点接地。
混合接地是低频用单点接地,而高频用多点接地的方法。
地线布局是关键,高频数字电路和低电平模拟电路的接地电路尽不能混合。
抗电磁干扰的方法

抗电磁干扰的方法电磁干扰是当近距离的电磁辐射源和电子设备之间存在共同频率时原有信号受到电磁波干扰而失去正常功能的现象。
电磁干扰影响着我们的日常生活,而且也可能导致电子设备的故障和电子信号的丢失,因此,抗电磁干扰技术的研究是控制电磁干扰的有效手段。
本文将重点阐述抗电磁干扰的方法,主要介绍一下静态抗电磁干扰、动态抗电磁干扰和移动性抗电磁干扰等三种抗电磁干扰方法及其工作原理。
二、静态抗电磁干扰静态抗电磁干扰的方法主要是采用屏蔽、吸收和抵消等技术来抵御电磁干扰。
(1)屏蔽:屏蔽技术是把电磁辐射源与受到电磁干扰的电子设备用金属隔屏隔开,以减弱或抑制入射的电磁辐射,有效的防止和减弱电磁干扰。
(2)吸收:采用吸收技术可以有效的吸收入射在电磁辐射源处发出的电磁辐射,减少电磁辐射源周围环境的电磁辐射强度,降低入射的电磁辐射(3)抵消:使用抵消技术可以抵消入射的电磁辐射,防止它进入电子设备,从而降低入射的电磁辐射。
三、动态抗电磁干扰动态抗电磁干扰的方法主要是采用过滤、耦合、基带等技术来抵抗电磁干扰。
(1)过滤:过滤技术是指将入射的电磁辐射按频率分离,把有用信号经过某种滤波器过滤,把有害的电磁辐射屏蔽掉,从而达到抵消电磁干扰的目的。
(2)耦合:耦合技术是把入射的电磁辐射按一定的物理关系耦合到电子设备的输出端,以电压或电流的形式抵消电磁干扰,从而提高电子设备的工作性能。
(3)基带:基带技术是在电子设备的输出端加上一个基带过滤器,用来把电磁辐射的高频分量抑制,从而有效的抵消电磁干扰。
四、移动性抗电磁干扰移动性抗电磁干扰的方法主要是采用移动性屏蔽、移动性安排和移动性抵消等技术来抵御电磁干扰。
(1)移动性屏蔽:移动性屏蔽技术是把电子设备放置在移动性金属屏蔽结构上,以减弱或抑制电磁辐射源发出的电磁辐射,有效的抵御电磁干扰。
(2)移动性安排:移动性安排技术是把电子设备的接收模块安排在不同的方向上,以有助于抵消电磁辐射源发出的电磁辐射,并使电子设备更好的接收有用信号。
抗干扰办法

提高变电所自动化系统靠得住性的办法一、概述变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期和可实现无人值班等优越性。
这已为愈来愈多的电力部门的专家和技术人员所共识。
但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不安心。
专门是目前很多工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其靠得住性问题比较担忧。
另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极为严峻的强电场所,在研制综合自动化系统的进程中,若是不充分考虑靠得住性问题,没有采取必要的办法,如此的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,乃至损坏元器件。
因此,综合自动化系统的靠得住性是个很重要的问题。
靠得住性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。
不同功能的自动装置有不同的反映其靠得住性的指标和术语。
例如,保护子系统的靠得住性一般是指在严峻干扰情形下,不误动、不拒动。
远动子系统的可靠性通常以平均无端障距离时刻MTBF来表示。
提高综合自动化系统靠得住性的办法涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的办法和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的靠得住性办法问题。
二、变电所内的电磁兼容(一)电磁兼容意义变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引发的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变进程等都会产生电磁干扰。
这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,乃至损坏某些部件或元器件。
电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在一路的电磁环境下一路执行各自功能的共存状态。
电磁干扰防护与解决方案

电磁干扰防护与解决方案1.引言随着电子技术在各个领域的迅速发展,空间电磁环境日益复杂,电磁干扰(EMI)已严重威胁各类电子系统的安全。
武器装备的电子系统(图1)要在复杂的电磁环境中保持高可靠性,必须具备抗电磁干扰的能力。
就一个电子系统而言,各种干扰(图2)在接口处最为严重,必须在设计时将其消除,因此电子设备和系统的关键技术是电磁兼容性(EMC)。
电磁干扰分为辐射型干扰和传导型干扰。
通过接地、屏蔽等方法能抑制辐射干扰,消除传导干扰则需要采用滤波方法。
滤波器由电感和电容组成的低通滤波电路所构成,其原理根据使用滤波元件不同分为两种:一是利用电容通高频阻低频的特性,将高频干扰电流导入地线;二是利用干扰抑制铁氧体可将一定频段的干扰信号吸收转化为热量的特性,选择合适的干扰抑制铁氧体磁环或磁珠消除干扰。
滤波器工作时根据系统的需要,利用滤波组件对信号频率特性传输的特点,有选择地对系统信号进行传输。
通常情况是传递低频工作信号,同时对高频干扰信号有较大的衰减,从而降低干扰信号对系统的影响,保证系统正常工作。
根据要滤除的干扰信号的频率与工作频率的相对关系,干扰滤波器有低通滤波器、高通滤波器、带通滤波器、带阻滤波器等种类。
低通滤波器是最常用的一种,一般电源滤波器、馈通滤波器滤和滤波电连接器都属于低通滤波器。
2.电磁兼容的内容电磁兼容标准对设备提出两个方面要求,首先不能向空间环境发射过强的电磁能量,其次在对环境中的电磁干扰有一定的耐受能力。
3.电源滤波器的作用电源滤波器的作用是使设备能够满足电磁兼容标准中对传导发射和传导敏感度的要求,既能防止电网上的干扰进入设备对设备产生不良影响,使设备满足传导敏感度的要求;又能防止设备内的电磁干扰通过电源线传到电网上,使设备满足传导发射的要求,即解决电磁兼容中CE102和CS101等问题。
能够产生较强干扰的设备和对外界干扰敏感的设备都要使用电源滤波器。
能够产生强干扰的设备有:含有脉冲电路(微处理器)的设备、使用开关电源的设备、使用可控硅的设备、变频调速设备、含有电机的设备等。
电机电磁干扰原因分析及解决办法

电机电磁干扰原因分析及解决办法1产生电磁干扰的原因(1)绕组中突变磁场产生干扰或老化如果通过电动机线圈绕组的电流通路切断,则线圈中的磁场突然消失,线圈上会产生上百伏,甚至上千伏的瞬变过电压。
这种电压对系统中其他电子装置产生巨大电能冲击,最终导致设备、系统的基本失控和逻辑判断出错,甚至击穿或烧毁系统中的其他机电元件。
瞬变过电压与负载的大小以及线路的阻抗有关。
(2)换向器与电刷间的火花放电。
对电刷式电动机而言,电刷和换向片之间产生火花放电,同时引起频谱极宽的噪声(从中波到甚高频波段内是连续分布的),它对无线广播、电视及各种电子设备在很大范围内造成干扰。
(3)其他。
诸多电子产品中的电动机均采用桥式整流和电容滤波电路整流后的直流电源。
因为其中整流二极管的导通角很小,只有在输入交流电压峰值附近才有高峰值的输入电流通过。
这种畸变的电流波形基本很低,但高次谐波却非常丰富,脉冲宽度约为5ms(1∕4T)o这种高峰值的电流脉冲不仅对供电电网造成严重污染,还对其他各种用电设备产生干扰。
2电路设计时电磁干扰的产生及抑制措施在电磁电路中的电磁兼容性很大范围是由线路贮藏和互相连接的成分决定的:从天线返回的信号能放射出电磁能量。
其最主要是由于电流幅值、频率和电流线圈的几何面积决定的。
通常,有3个主要的电磁干扰来源:电源、高频信号、振荡器电路。
下面分别分析产生原因及其防范措施。
首先,当1个CMOS反向换流器在改变输出状态时,两个晶闸管会有一段很短的时间同时导通。
这会使电流增长很快,导致在电源线路上出现电流尖峰,引起一段或长或短的电源线路的短路。
这被证实是产生电磁干扰的一个重要原因。
减弱电源电压的波动,使其接近1个100nF旁路电容器,是十分有效的。
然而由于电路的寄生成分,例如集成和电源线路的阻抗,旁路电容器不能有效减少电流峰值的,因此也不能减少辐射干扰。
为了抑制这些电流尖峰(至少在电源线路上),使其不扩展到其他部位,在极间耦合电容器和电源线路之间增加1个感应线圈,以方便干扰被抑制。
电磁干扰解决方法

电磁干扰解决方法电磁干扰指的是在通信、无线电频谱以及电子设备中,由电磁场的相互干扰引起的问题。
电磁干扰会导致通信质量下降、数据传输错误、设备故障等严重后果。
为了解决电磁干扰问题,以下介绍几种常见的解决方法。
1.屏蔽和隔离屏蔽和隔离是最常见的解决电磁干扰问题的方法。
通过使用金属或导电材料制作屏蔽罩、屏蔽丝等,将电磁信号隔离在设备内部或将干扰源和受干扰设备分隔开来,可以有效减少电磁干扰的传播和影响。
2.滤波器滤波器可以在特定频带上阻隔或衰减电磁干扰信号,从而降低其对设备的影响。
常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
3.接地和屏蔽接地接地是建立良好的电气连接,将电磁波通过地线排放到地面上,降低其对设备的影响。
屏蔽接地则是将设备外壳与地面或其他屏蔽体连接,形成一个有效的屏蔽环境,减少电磁干扰的传播。
4.频率选择性频率选择性是通过选择特定频段的通信方式,使得设备只接收特定频段的信号,从而减少其他频段的电磁干扰。
5.调整设备位置和布线合理调整设备位置和布线可以减少因电磁场相互干扰而引起的问题。
避免设备之间距离过近,采用合适的排列方式,可以降低电磁干扰的产生。
6.提高设备抗干扰能力对于设备本身容易受到电磁干扰的情况,可以通过改进设计和工艺,提高设备的抗干扰能力。
例如,使用抗干扰器件、优化电路布局和接线方式、改进设备屏蔽等。
7.信号调理技术信号调理技术可以对传输的信号进行处理,抑制或消除干扰信号,提高信号的质量和可靠性。
例如,使用均衡器、滤波器、放大器、编码和解码技术等。
8.技术管理和规范标准合理的技术管理和规范标准是解决电磁干扰问题的重要手段。
通过建立统一的技术标准和规范,确保设备符合要求,降低电磁干扰的发生和影响。
总之,解决电磁干扰问题是一个综合性的任务,需要从不同的角度来考虑和解决。
通过采取适当的屏蔽和隔离措施、滤波器、接地和屏蔽接地、频率选择性、合理调整设备位置和布线、提高设备抗干扰能力、信号调理技术以及技术管理和规范标准等手段,可以有效地解决电磁干扰问题,提高设备的稳定性和可靠性。
变频器电磁干扰_如何消除变频器干扰-变频器干扰解决方法

变频器电磁干扰_如何消除变频器干扰?变频器干扰解决方法变频器包括整流电路和逆变电路,输入的交流电经过整流电路和平波回路,转换成直流电压,再通过逆变器把直流电压变换成不同宽度的脉冲电压(称为脉宽调制电压,PWM)。
用这个PWM电压驱动电机,就可以起到调整电机力矩和速度的目的。
这种工作原理导致以下三种电磁干扰:1、射频辐射干扰:射频辐射干扰来自变频器的输入电缆和输出电缆。
在上述的射频传导发射干扰的情形中,变频器的输入输出电缆上有射频干扰电流时,由于电缆相当于天线,必然会产生电磁波辐射,产生辐射干扰。
变频器输出电缆上传输的PWM电压,同样包含丰富的高频的成分,会产生电磁波辐射,形成辐射干扰。
辐射干扰的特征是,当其他电子设备靠近变频器时,干扰现象变得严重。
2、谐波干扰:整流电路会产生谐波电流,这种谐波电流在供电系统的阻抗上产生电压降,导致电压波型发生畸变,这种畸变的电压对于许多电子设备形成干扰(因为大部分电子设备仅能工作在正弦波电压条件下),常见的电压畸变是正弦波的顶部变平。
谐波电流一定时,电压畸变在弱电源的情况下更加严重,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关;3、射频传导发射干扰:由于负载电压为脉冲状,因此变频器从电网吸取电流也是脉冲状,这种脉冲电流中包含了大量的高频成分,形成射频干扰,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关。
根据电磁学的基本原理,形成电磁干扰必须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。
为防止干扰,可采用硬件抗干扰和软件抗干扰。
其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和放两方面入手来抑制干扰,其总体原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统干扰信号的敏感性。
具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。
以下几点是解决现场干扰的主要步骤:①采用软件抗干扰措施:具体来讲就是通过变频器的人机界面下调变频器的载波频率,把该值调低到一个适当的范围。
电磁干扰屏蔽方法

电磁干扰屏蔽方法电磁干扰是由于电磁波的发射和传播而引起的噪声和干扰现象,它可以对电子设备和系统的正常工作造成障碍。
为了减轻和屏蔽这种干扰,人们开发出了各种不同的方法和技术。
本文将探讨几种常见的电磁干扰屏蔽方法。
第一种方法是使用屏蔽材料。
屏蔽材料是一种在电磁波频率下具有高导电性和高磁导率的材料。
这种材料可以吸收和散射从外部到达设备的电磁波。
常用的屏蔽材料包括金属膜、金属箔和金属网。
这些材料可以覆盖在电子设备的外部,形成一个屏蔽层,以阻挡外部电磁波的入侵。
第二种方法是使用屏蔽房间。
屏蔽房间是一种由屏蔽材料构成的封闭空间,可以提供更好的电磁干扰屏蔽效果。
这种房间可以完全屏蔽外部电磁波的干扰,并保证设备在内部正常工作。
屏蔽房间通常用于对电磁波敏感的实验室、医疗设备和军事设备等场所。
第三种方法是使用屏蔽接地。
屏蔽接地是通过将设备和系统与地面连接来减轻和屏蔽电磁干扰。
地面能够吸收和分散电磁波,从而减少电磁波对设备的干扰。
在电子设备的设计和安装过程中,合适的接地措施是十分重要的。
第四种方法是使用屏蔽线缆。
屏蔽线缆是一种具有金属屏蔽层的电缆,可以阻挡电磁波的干扰。
它在信号传输过程中提供了额外的屏蔽保护,保证信号的完整性和可靠性。
屏蔽线缆广泛应用于通信、计算机网络和音视频传输等领域。
第五种方法是使用滤波器。
滤波器是一种可以选择性地通过或屏蔽特定频率电磁波的装置。
它可以将需要传输的信号通过,同时过滤掉其他无用的频率干扰。
滤波器可以在电源线路、通信线路和传感器等设备上使用,以提高系统的抗干扰能力。
除了上述几种方法,还有其他一些电磁干扰屏蔽技术,如电磁波隔离、辐射源减弱和电磁屏蔽器的设计等。
这些方法和技术都旨在减轻和屏蔽电磁干扰,提高电子设备的可靠性和稳定性。
总之,电磁干扰屏蔽是保证电子设备正常工作的重要措施。
在设计、安装和维护电子设备和系统时,采用适当的屏蔽方法和技术是必不可少的。
通过合理应用这些方法和技术,可以有效地减少电磁干扰,提高电子设备的性能和可靠性。
电磁干扰方法

电磁干扰方法电磁干扰(Electromagnetic Interference, EMI)是指电磁能量对电子设备或系统造成的不希望的影响。
电磁干扰可能来自自然界,如雷电、宇宙射线等,也可能来自人造源,如无线电发射机、电力线路、电气设备等。
为了减少或消除电磁干扰,可以采取以下几种方法:1. 屏蔽:使用导电材料(如铜或铝)制成的屏蔽罩或屏蔽室来包围干扰源或被干扰的设备,从而阻止电磁波的传播。
屏蔽效果取决于屏蔽材料的厚度、导电性和结构设计。
2. 接地:通过将设备的金属部件连接到大地,可以有效地引导干扰电流流向地面,从而减少对设备的影响。
良好的接地设计对于提高系统的电磁兼容性至关重要。
3. 滤波:使用滤波器可以阻止不希望的频率范围内的信号进入设备。
例如,电源线滤波器可以减少电源线上的高频干扰。
4. 隔离:在电路设计中使用隔离变压器、光耦合器或电容隔离等技术,可以在不同部分之间提供电气隔离,从而减少干扰的传播。
5. 排布和走线:合理设计电路板和电缆的布局,避免高功率线路与敏感线路平行或靠近,可以减少串扰和辐射干扰。
6. 抑制和吸收:使用抑制器(如瞬态电压抑制器,TVS)可以限制电压尖峰,而使用吸收材料(如磁性材料)可以吸收特定频率的电磁波。
7. 频率选择和调制:选择合适的工作频率和调制方式,可以避免与其他设备的干扰频率重合,或者减少干扰的影响。
8. 时间分隔:在数字系统中,可以通过时间分隔技术(如时分复用)来减少不同信号之间的干扰。
9. 设计和测试:在产品设计阶段就考虑电磁兼容性,并进行严格的测试,可以确保产品在实际使用中具有良好的抗干扰性能。
10. 标准和规范:遵循国际和国家的电磁兼容性标准和规范,如IEC 61000系列标准,可以确保设备的电磁发射和抗干扰性能符合要求。
在实际应用中,通常需要结合多种方法来达到最佳的干扰抑制效果。
电磁干扰问题的解决往往需要综合考虑系统的设计、材料选择、工作环境等多个因素。
解析几种有效的开关电源电磁干扰的抑制措施

解析几种有效的开关电源电磁干扰的抑制措施本文先分析了开关电源产生电磁干扰的机理, ,就目前几种有效的开关电源电磁干扰措施进行了分析比较,并为开关电源电磁干扰的进一步研究提出参考建议。
目前,许多大学及科研单位都进行了开关电源EMI(Electromagnetic Interference)的研究,他们中有些从EMI产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。
这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。
一、开关电源电磁干扰的产生机理开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。
现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
当采用零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。
这种通过电磁辐射产生的干扰称为辐射干扰。
4、其他原因元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消除电磁干扰的三种方法
一、引入“降噪屏蔽电缆”
首先要明确的是,降噪屏蔽电缆是最有效的防止电磁干扰的方法,主要是利用外层的
金属屏蔽层来屏蔽敏感电气设备内部收发的电磁波。
它的屏蔽功能有两种,一是用金属箔、胶带或绝缘材料将设备与外界电磁环境隔绝开来;二是外部信号直接接入金属箔,使其不
能向设备内部渗透,对外部干扰具有极强的抑制作用。
二、利用信号分离技术
其次,电磁干扰也可以通过利用信号分离技术实现消除,主要原理是在受损的频带电
磁环境中,以及在潮湿的绝缘环境中,形成一种能抑制受损信号的电磁屏障,以保持信号
的稳定性。
信号分离技术可以合理布置电磁屏障,既可以获得较高的信号增益,又可以有
效抑制室内电磁干扰。
三、采用硬件或软件方法
硬件方面,可以采用射频滤波器,噪声材料等技术来减少电磁干扰。
其中,射频滤波
器可以有效降低无线射频电磁波的强度,从而减少噪声对设备的影响。
噪声材料可以用于
屏蔽噪声信号,其中噪声板和复合噪声材料是最常用的一种材料,用于有效滤除收发站内
部的电子系统和有线系统的高频电波。
软件方面,可以采用数字滤波器、模拟滤波器、低通滤波器等技术,相比硬件方法,
软件方法更加灵活、简单、节约成本,可以有效的抑制电磁干扰的影响。
而且软件还有一
个优点,即可以通过计算机程序检测出探测站和室内环境中有害电磁信号的出现,从而实
现自动抑制和维护设备的功能。