传感器的安装说明

传感器的安装说明
传感器的安装说明

传感器的安装说明

单点沉降计埋设方法

、单点沉降计:由电测位移传感器、测杆、锚头、锚板及金属软管和塑料波纹管等组成。

埋设要求:

①采用钻孔引孔埋设,钻孔孔径①108或①127,钻孔垂直,孔深应与沉降仪总长一

致,孔口平整。

②安装前先在孔底灌浆,以使固定底端锚板。

②沉降计安装时,锚板朝下,法兰沉降板朝上,注意要用拉绳保护以防止元件自行掉落,采用合适方法(如PVC 管、金属管或杆)将沉降计底端锚板压至设计深度。

③每个测试断面埋设完成后,位移计引出导线套钢丝波纹管进行保护,并挖槽集中从一侧引出路基,引入坡脚观测箱内。

④元件埋入之前应采取措施保证孔径满足安装要求,一般埋设完成后3~5 天待缩孔完成后测零点。

3.4.2 分层沉降计

1 .由多个位移计串联而成

2.钻孔后埋设于软土路基,不影响铁路填土、压实等工程施工3.测量软基处理过程中和工程运行时的分层沉降变形

3.5.2 分层沉降计埋设方法

1 .安装前根据分层层数,将多个单点沉降计串联起来

2 ?采用钻孔引孔埋设,孔径C 108或C 127 3.钻孔垂直,孔深应与沉降计总长一致,孔口平整4.安装前先在孔底灌浆,以便固定底端锚板5.安装时,底端锚板在下,法栏沉降板在上6.同时要用拉绳保护防止元件自行掉落7.用杆将沉降计底端锚板压至设计深度

8.用细沙或细土先填满至第一层连接法兰板处9.在第一层连接法兰板处灌浆10.继续填土至第二层连接法兰板处

11 .在第二层连接法兰板处灌浆12.依次类推至第一层法兰沉降板13.位移计引出线套钢丝波纹管进行保护14.埋设完成3, 5 天特缩孔完成后测试零点

3.4.3 多点位移计

1.由多支位移计和测杆,锚头

及安装套座组成

2.测点数量可为3、4、5、6 点

3.应用于边坡、隧道、等各类地下工程中,分层测量不同层面的变形

3.5.6 多点位移计安装方法

1.仪器组装按照设计的测点深度,将锚头、位移传递杆和护管与传感器进行

组装传递杆采用螺纹连接,连接一定要牢固,可用防松胶锁固。其传递系统的杆

件护管应胶接密封。组装好后,运往埋设现场,调好传感器工作边<一般调至满程的70%左右>。将传递杆捆扎在一起,水平孔和上仰孔应同时捆扎好灌浆排气管(管口至孔底)。垂直孔应安装灌浆管(管口至孔底1M)

2.造孔

在预定部位,按设计要求的孔径、孔向和孔深钻孔。钻孔轴线弯曲度应不大于钻孔半径,一避免传递杆过度弯曲,影响传递效果。

孔向偏差应小于3°,孔深应比最深测点深 1.0M 左右,孔口应保持稳定平整。钻孔结束后应把孔冲洗干净,并检查孔的通畅情况。距离开挖工作面近的孔口,应预留安装保护设施的孔。埋设在拱部上斜或上垂孔内的位移计,要充分估计仪器安装埋设时孔口承受的荷载(仪器自重和灌浆压力)

若孔口岩面较好,可用锚栓和钢筋作担梁支撑;岩面差的孔口需专门搭设构架作孔口支撑,直至钻孔注浆固化

3. 仪器安装在现场组装的位移计,经检测合格后,送入孔内,安装运输时支撑点间距不小于2M ,曲率半径不得小于5M ,入孔速度应缓慢传递杆入孔后,固定安装基座,并使其与空口平起,引出排气管水平和上仰孔孔口,插入孔口灌浆管之后,用水泥砂浆密封孔口孔口水泥砂浆固化后,若检测正常,开始封孔灌浆浆液灰沙比为1:1,

水灰比为0.38?0.4上扬孔灌至不进浆后,继续灌10分钟后闭浆确保最深测点锚头处浆液饱满,灌浆结束,应进行检测

浆液固化后约24 小时后,打开保护罩,用手预拉一下传递杆,再确认一次工作点,既可开始安装位移计。将接管和紧固螺母拧于安装基座上,电缆穿

过保护罩

3.4.4 柔性沉降计

1 .由位移计本体和柔性测杆组成

2.柔性测杆由金属软管保护,可随土工材料曲线变形3.应用于路基、边坡等土体结构工程中

11 、柔性位移计埋设方法

①根据实验要求选定测试点

②在待安装土工布或土工格栅上打好安装孔。其中安装标距L 要求大于位移计

标距

③将柔性位移计预拉至一定长度后<保证能够测量拉伸或压缩方向的变形>用

紧固螺钉安装到土工布或土工格栅上,并拧紧螺钉

④在传感器四周用细砂添满,并用手轻轻压实

⑤让位移计完成稳定后

⑥用读数仪或电脑软件测试位移计的绝对应变值

⑦进行调零操作,测试仪显示的差值为零

⑧记录下零点应变值并保存在传感器内

⑨将埋设的详细信息(安装位置等)通过电脑软件设置到传感器内

3.4.5 锚索计

1.锚索计是一种空心式多弦压力传感器2.根据内孔直径和量程大小安装三个、四个、六个压力传感器,可以准确测量偏心荷载作用下的压力

3.适用于各种条件下的索力测量和缆索张拉时的施工控制。

3.5.5 锚索计安装方法1.根据测试要求选定结构及测点2.传感器应与待测点的压向力一致3.安装好后,传感器在未加载之前连接读数仪或电脑4.等待锚索计完全稳定<约半小时> 5.用读数仪或电脑软件测试位移计的绝对应变值6.进行调零操作,测试仪显示的差值为零7.记录下零点应变值并保存在传感器内8.将埋设的详细信息<安装位置等>通过电脑软件设置到传感器内

8、锚索计安装:

①锚索计安装前应进行标定,并编号。

②预应力锚索测力计安装,是伴随着预应力锚索张拉进行的,根据结构设计要求,测力计应安装在锚固垫座上,钢绞线或锚索从测力筒中心孔中穿过,测力计置于钢垫座和工作锚之间。

③安装时锚索测力计应放置平稳,如发现几何偏心过大(仪器分测不等值,既为有几何偏心),应即时予以调整。

④锚索测力计安装定位后应及时测量仪器初值,根据仪器编号和设计编号作好记录并存档,仪器的引出电缆应引至使于测试位置的观测箱内,并妥善保护

3. 4.6 渗压计

1.用来测量静力水压力2.应用于道路铁路边坡地基等的渗水压力3.精度高、稳定性好

3.5.7 渗压计埋设方法

1. 根据要求选定测点

2. 校准好渗压计的零点

3. 将渗压计小心埋入到测试点

4. 将导线沿结构导出,用保护套管引出

5. 将埋设的详细信息(安装位置等)通过电脑软件设置到传感器内

9、渗压计埋设:

①正式埋设之前应在水井中对其进行标定,标定资料作为试验测试时计算孔隙水

压力的依据。

②采用钻孔导孔埋设,钻孔垂直偏差率应小于 1.0 %,并无塌孔、缩孔现象,软土

层应采用泥浆护壁。

③每孔中间隔埋设 2 个渗压计,各渗压计之间采用预先用原土层做的泥球填满。

④埋设方法:钻孔至底部渗压计埋设标高以上0.5m 的深度,用钻杆将底部渗压计

压入原土层,退出钻杆回填泥球至第二个渗压计埋设标高以上,用钻杆将第二个渗

压计压入回填土层内,退出钻杆回填泥球至孔口。

⑤渗压计埋设压入过程中采用振弦检测仪全程监测,每个测试断面埋设完成后,钻孔外渗压计引线套钢丝小组纹管进行保护,并引入观测箱内。

⑥埋设完成后测取初始读数。

3. 4.7 孔隙水压计1.用来测量软土地基孔隙水压力和不同层面的孔隙水压力

2. 采用钻孔预埋的方式在预埋处打孔至观测处以上0.5mm,用钻杆压入观测深度

3.5.8 孔隙水压计埋设方法

1、根据要求选定测点

2、校准好渗压计的零点

3、在待测点打孔至观测处以上0.5m

4、用钻杆压入观测深度

5、填土掩埋

6、将导线沿机构导出,用保护套管引出

7、将埋设的详细信息(安装位置等)通过电脑软件设置到传感器内

3. 4.8 静力水准仪

1.由多个液位计,并用连接管将液面连接而成,液位计则由位移计和液位罐组成2.安装时将一个或一个以上的液位计安装在被测点上,一个安装在水平基点上(不动点),液位计之间用连通连接

3.测量原理是通过液位的变化测量观测点相对不动点的位移,用于测量相对水

平基点的垂直向变形情况

10、静力水准仪埋设:

①由多个液位计,并用连接管将液面连接而成,液位计则由位移计和液位罐组成

②安装时将一个或一个以上的液位计安装在被测点上,一个安装在水平基点上(不动点),液位计之间用连通连接

③测量原理是通过液位的变化测量观测点相对不动点的位移,用于测量相对水平基点的垂直向变形情况

3. 4.9 土压力盒

1.埋入式土压力传感器

2.适用各种条件下土体内部应力的测量3.应用于公路、铁路、隧道、边坡等工程领域

3.5.3 土压力盒埋设方法

1.根据结构要求先定测试点与测力方向

2.使压力盒受力面<光面>与受力方向垂直安装好

3.压力盒周围应由30cm 左右的细砂<里面不能有大颗粒硬物>包裹并压实4.将导线沿结构体引出,最好采用护套管保护好

7、土压力盒埋设:

①土压力盒埋设前应进行稳定、防水密封、压力标定、温度标定等工作,并进行编号。

②土压力盒应镶嵌在桩或护壁内,使其应力膜与构筑物表面平齐,土压力盒背

面应具有良好的刚性支撑,在土压力作用下尽量不产生位移,以保证测量的可靠性,对于地面以下现浇混凝土桩,由于土压力传感器如随钢筋笼下入槽孔后,其面向土层的表面钢膜很容易在水下浇筑过程中被混凝土材料所包囊,混凝土凝固结硬后,水土压力根本无法直接被压力传感器感应和接收,造成埋设失败,这种情况土压力埋设需采用挂布法、弹入法等专用埋设工艺。

a、挂布法:取约为1/2?1/3的槽段宽度的布帘,在布帘上缝制好用以放置土压力盒的口袋,把压力盒放入后封口固定;将布帘平铺在土压力量测位置钢筋笼迎土面一侧的外表面,通过纵横分布的绳索将布帘固定在钢筋笼上,将土压力盒导线固定在钢筋笼上,并引至桩前地面上:布帘随钢筋笼一起吊入槽孔,放入导管浇筑水下混凝土,由于混凝土在布帘的内侧,利用流态混凝土的侧向挤压力将布帘及土压力盒一起压向土层,随水下混凝土液面上升所造成的侧压力增大迫使传感器与土层垂直表面密贴。

b、弹入法:主要由弹簧、刚架和限位插销三部分组成专用机械装置,首先将装有土压力盒的机械装置焊接在钢筋笼上,利用限位插销将弹簧压缩储存向外弹力能量,待钢盘笼吊入槽孔后,在地面通过牵引铁丝将限位插销拔除,由弹簧弹力将压力盒推向土层侧壁,根据压力盒读数的变化可判定压力盒安装情况。

路堤桩板墙桩背土压力盒埋设可在桩体钢筋笼上土压力埋设高度处安装合适的埋设装置,将土压力盒置入其内,并将其表面用厚塑料布封好,后浇注混凝土,待混凝土凝固后在去掉塑料布。

挡墙墙背土压力盒埋设可在土压力埋设高度处安装合适的埋设装置,将土压力盒置入其内,并将其表面用厚塑料布封好,后浇注混凝土,待混凝土凝固后在去掉塑料布。

1所有信号线应穿过预埋PVC t引至桩(墙)顶平台上的观测箱内。

1、沉降监测桩:采用①28mm长1.2m的钢钎。待路基施工完成后,在监测断面通过测量打入埋置在设计位置,埋置深度 1.0m,桩周上部0.2m用混凝土浇注固定,完成埋设后采用水平仪按二级测量标准测量机顶标高作为初始读数。

2、沉降板:由钢底板、金属测杆(①40mm镀锌铁管)及保护套管(①75mmPVC 管)组成。钢底板尺寸为50cmX50cm厚1cm。采用水平仪按二级测量标准测量沉降板标高变化。

①沉降板埋设位置应按试验设计测量确定,埋设位置处可垫10cm砂垫层找平,埋设时确保测杆与地面垂直。

②放好沉降板后,回填一定厚度的垫层,再套上保护套管,保护套管略低于沉降板测杆,上口加盖封住管口,并在其周围填筑相应填料稳定保护套管,完成沉

降板的埋设工作。

③采用水平仪按二级测量标准测量埋设就位的沉降板测杆杆顶标高作为初始读数,随着路基填筑施工逐渐接高沉降板测杆和保护套管,每次接长高度以1m 为宜,接长前后测量杆顶标高变化量确定接高量。金属测杆用内接头连接,保护套管用外PVC t外接头连接。

3、位移边桩:边桩埋设位置应按试验设计测量确定,边桩可采用打入埋设或开挖埋设,埋设深度0.9m,桩周上部0.3m用混凝土浇注固定,完成埋设后采用经纬仪(或全站仪)测量边桩标高及距基桩的距离作为初始读数。

5、剖面沉降管:可采用专用塑料硬管,其抗弯钢度应适应被测土体的竖向位移要求,导管内十字导槽内,从一端按一定间隔依次读数,起始端管口标高采用水平仪按二级测量标准进行测量,再通过数据处理计算求出不同位置处地基的沉降量。埋设要点:

①剖面沉降管埋设在基底碎石垫子层中音的土工格栅上,复合地基平面应布置

在观测断面附近加固孔之间中心处,埋设剖面沉降管的土下各垫子10cm左右的砂垫层,中部填砂尽可能抬高,使剖面沉降管埋设呈向上拱的圆顺弧线状,但上拱高度不超过计算沉降量的一半。

②剖面沉降管埋设时,应按设计用螺钉进行组装,导管用外接头连接至大于埋

设长度约2m (两端各伸出1m左右),两端用管盖封住,并预先在导管内穿一条镀锌钢丝绳作测试时来回牵引沉降仪用。

③剖面沉降管内十字导槽方向应与应与地面垂直,两头应砌筑观测坑,以方便观测及对孔口进行长期保护,并做好坑内及其周围的排水。

③待上部一层填料压实稳定后,连续监测数日,取稳定读数作为初始读数。

6、测斜管埋设:可采用专用塑料硬管,其抗弯钢度应适应被测土体的水平位移。

测斜导管内十字导槽应顺直,管端接口密合。测斜是将测斜仪探头导轮卡置于预埋

测斜导管的十字导槽内,从底部每隔0.5m 依次测读,并通过数据处现计算求出不同

深度处土体的水平位移,埋设要点:

①路堑开挖至设计埋设测斜管位置时,即应开始埋设测斜管。

②采用钻孔导孔埋设,钻孔垂直偏差率应小于是 1.5%,并无塌孔、缩孔现象,软

土层应采用泥桨护壁,钻孔深度应不小于设计要求的深度。

③测斜管埋设前,应按设计用螺钉进行预组装:管底部用底盖封住,用外接头

连接导管至大于埋设长度0.3m;再根据钻架高度将预装好的导管从接头处拆卸分段备

用。

④测斜管埋设时,按预装顺序从底部分段依次埋入,相邻两段沉降测斜管随埋随

接,并及时灌水入管内,直至将测斜管压入孔底就位。

⑤调整测斜管内十字导槽方向与观测断面方向一致后,安装测斜管顶盖,并在测斜管周围回填中粗砂,并灌水使其密实。

⑥用水泥砂浆固定观测盒,对孔口进行长期保护。

⑦待测斜孔侧上回淤稳定后,连续测读数目,稳定读数作为初始读数

监测方法及监测频率

1、位移监测桩采用经纬仪或全站仪进行监测。

2、测斜管采用测斜仪进行测试。

3、土压力盒采用YH-9100 读数仪进行测试。

4、锚索计采用YH-9100 读数仪进行测试。

5、渗压计采用YH-9100 读数仪进行监测。

6、柔性位移计采用YH-9100 读数仪进行测试

7、单点沉降计采用YH-9100 读数仪进行测试

8、静力水准仪采用YH-9100 读数仪进行测试监测频率:仪器埋设后应观测几次,确

定稳定的起始基准值。路堑开控施工期:1?2次/天,施工完后1~3个月,1~2次/

周,3个月以上,1~2次/月,可根据边坡工程安全等级、边坡稳定性和施工进程及监

测类型等实际情况对监测频率进行适当调整,初步拟定各类监测的周期为1年。

传感器布置

传感器布置 (1)KG9001C甲烷传感器 瓦斯传感器应垂直悬挂在巷道上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷道侧壁不得小于 200mm,并应安装维护方便,不影响行人和行车。 瓦斯传感器应设置在井下工作面、掘进头、回风巷道等地方,用于连续监测井下气体中瓦斯含量,当瓦斯含量超限时,应具有声光报警功能,同时由有关设备切断相应范围的电源。 地面瓦斯抽放泵站内距房顶300mm处必须设置甲烷传感器,抽放泵输入管路中应设置甲烷传感器。 传感器的测量范围:低浓型:0.00~10%CH 4,高浓型:0.00~100%CH 4 ,高 低浓型:0.00~10~100%CH 4,管道型0.00~100%CH 4 传感器的测量误差:相对误差≤±10%×测值(相对值) 响应时间:<30s 报警方式:声光报警 工作方式:连续 使用条件:环境温度0~40℃ 相对温度<95% (2)GT-L(A)开停传感器 设备开停传感器锁固吊挂于被测电缆上,主要通风机、局部通风机、瓦斯泵、绞车、压风机、带式输送机等设备开停传感器。 测量原理:电磁感应 电源电压:9~24VDC 工作电流:1/5mADC、5/-5mADC、无电位(继电器)触点、信号制时<30mADC、其它信号制时<15mADC 工作方式:锁固吊挂于被测电缆上,连续工作 输出信号:1/5mADC、0~5VDC、±5mADC、无电位触点 显示方式:绿色灯为电源指示、红色灯指示开停 (3)GML(A)风门传感器 安装在井下各风门设置处,用以监测各风门的开、关状态,保证井下风路畅通。

检测灵敏度:>5cm 响应时间:<1s (4)KG4003A负压传感器 负压传感器安装在矿井风硐内,用以连续监测矿井风压。 测量范围:0~100KPa 测量精度:0. 2KPa 使用环境:0~50℃ 相对温度:<95% (5)KJA3一氧化碳传感器 一氧化碳传感器应垂直悬挂在巷道的上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷壁不得小于 200mm,并应安装维护方便,不影响行人和行车。 一氧化碳传感器设置在带式输入送机滚筒下风侧10—15m处、自然发火观测点、封闭火区防墙栅栏外、矿井风硐、采面回风、掘进总回风内,用以连续监测矿井自燃发火,报警浓度为0.0024%CO。 测量范围:0~100 测量精度:1 使用环境:0~50℃ 相对温度:<95% (6)GWD50环境温度传感器 温度传感器应垂直悬挂在巷道的上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷壁不得小于 200mm,并应不影响行人和行车,安装维护方便。 机电硐室内应设置温度传感器,报警值为30℃。对温度进行连续实时监测。 测量范围:0~50℃ 测量精度:0.5℃ 使用环境:0~50℃ 相对温度:<95% (7)GC1000J粉尘传感器 粉尘传感器应垂直悬挂在巷道的上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷壁不得小于 200mm,并应不影响行人和行车,安装维护方便。

传感器布置

传感器布置

传感器布置 (1)KG9001C甲烷传感器 瓦斯传感器应垂直悬挂在巷道上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷道侧壁不得小于 200mm,并应安装维护方便,不影响行人和行车。 瓦斯传感器应设置在井下工作面、掘进头、回风巷道等地方,用于连续监测井下气体中瓦斯含量,当瓦斯含量超限时,应具有声光报警功能,同时由有关设备切断相应范围的电源。 地面瓦斯抽放泵站内距房顶300mm处必须设置甲烷传感器,抽放泵输入管路中应设置甲烷传感器。 传感器的测量范围:低浓型:0.00~10%CH 4,高浓型:0.00~100%CH 4 , 高低浓型:0.00~10~100%CH 4,管道型0.00~100%CH 4 传感器的测量误差:相对误差≤±10%×测值(相对值) 响应时间:<30s 报警方式:声光报警 工作方式:连续 使用条件:环境温度0~40℃ 相对温度<95% (2)GT-L(A)开停传感器 设备开停传感器锁固吊挂于被测电缆上,主要通风机、局部通风机、瓦斯泵、绞车、压风机、带式输送机等设备开停传感器。 测量原理:电磁感应 电源电压:9~24VDC 工作电流:1/5mADC、5/-5mADC、无电位(继电器)触点、信号制时<30mADC、其它信号制时<15mADC 工作方式:锁固吊挂于被测电缆上,连续工作 输出信号:1/5mADC、0~5VDC、±5mADC、无电位触点 显示方式:绿色灯为电源指示、红色灯指示开停 (3)GML(A)风门传感器

安装在井下各风门设置处,用以监测各风门的开、关状态,保证井下风路畅通。 检测灵敏度:>5cm 响应时间:<1s (4)KG4003A负压传感器 负压传感器安装在矿井风硐内,用以连续监测矿井风压。 测量范围:0~100KPa 测量精度:0. 2KPa 使用环境:0~50℃ 相对温度:<95% (5)KJA3一氧化碳传感器 一氧化碳传感器应垂直悬挂在巷道的上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷壁不得小于 200mm,并应安装维护方便,不影响行人和行车。 一氧化碳传感器设置在带式输入送机滚筒下风侧10—15m处、自然发火观测点、封闭火区防墙栅栏外、矿井风硐、采面回风、掘进总回风内,用以连续监测矿井自燃发火,报警浓度为0.0024%CO。 测量范围:0~100 测量精度:1 使用环境:0~50℃ 相对温度:<95% (6)GWD50环境温度传感器 温度传感器应垂直悬挂在巷道的上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷壁不得小于 200mm,并应不影响行人和行车,安装维护方便。 机电硐室内应设置温度传感器,报警值为30℃。对温度进行连续实时监测。 测量范围:0~50℃ 测量精度:0.5℃ 使用环境:0~50℃ 相对温度:<95% (7)GC1000J粉尘传感器

现场传感器接线说明

现场传感器接线说明 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

1)室外温湿度传感器 现场使用的室外温湿度传感器主要有两个型号 QFA3160 电源:24VDC;输出:0-10V QFA3171电源:24VDC;输出:4-20mA 按上图片可以修改传感器的信号类型和量程范围,信号类型出场都是调试好的,基本不用改。量程范围根据当地气候,一般情况用R3档。 上图为传感器接线图(需要注意QFA3171温度和湿度需要单独供电)。 调试的时候需要检查 1.传感器供电(一般为24VDC,特殊类型需查看说明书)。 2.传感器和模块上的接线(电压和电流型在AI模块上的接线不同)。 3.传感器量程;信号类型是否和硬件组态中一致。 4.改完量程一定要盖上传感器的盖子才能正确度数 5.程序中的FC105的上下限应与计算值对应。 2)水管温度传感器 现场使用的室外温湿度传感器主要有两个型号 PT100和LG-Ni1000;PT100为温度0度时电阻为100欧姆的铂电阻,LG-Ni1000是指温度0度是电阻为1000欧姆的镍电阻。 接线方式分为2线制和3线制。3线制的接法可以消除线组对传感器测量数值的影响 传感器端只有两个段子,3线制接线方法为将其中两个线接到传感器一个段子上,模块端分别接在S-和M-上,剩余的一根线接到M+上;2线制的接法为将两根线分别接到传感器两个段子上,模块端分别接在M+和M-,同时将模块端S-和M-短接。

硬件组态的时候,如果选择的是PT100Sta.,那么程序中除以10,如果选择的是PT100Cl.,就要除100。 3)流量传感器 流量传感器型号:DWM2000 电源:24VDC 输出:4-20mA 接线方法和设置如下图: 拨码的计算 调试的时候需要检查 1.传感器供电(一般为24VDC,特殊类型需查看说明书)。 2.传感器和模块上的接线。 3.传感器量程;信号类型是否和硬件组态中一致。 4.必须在不开水泵,同时保证管道中液体静止时才能调零。 5.程序中的FC105的上下限应与计算值对应。 4)西门子压力传感器 型号:QBE2002 电源:24VDC 输出:0-10V 接线方法: 现场很多西门子传感器线的颜色为棕、蓝、白与接线图上线色不同,但是还是按照棕—供电、白—GND、蓝—输出信号的接法。 5)瑞士Huba压力传感器

传感器接线端子说明

涡街流量计使用说明 一、 涡街表头实现功能 : 1.液晶点阵汉字显示,直观方便,操作简洁明了; 2.带温度/压力传感器接口。温度可配接Pt100或Pt1000,压力可接表 压或绝压传感器,并可分段修正; 3.输出信号多样化,可根据客户要求选择两线制4-20mA 输出、三线制脉 冲输出和三线制当量输出; 4.具有卓越的非线性修正功能,大大提高仪表的线性; 5.具有软件频谱分析功能,提高了仪表抗干扰和抗震的能力; 6.测量介质广泛,可测量蒸汽、液体、一般气体、天然气等; 7.超低功耗,一节干电池全性能工作可维持至少3年; 8.工作模式可自动切换,电池供电、两线制、三线制; 9.自检功能,有丰富的自检信息;方便用户检修和调试。 10.具有独立密码设置,参数、总量清零和校准可设置不同级别的密码,方便用户管理; 11. 三线制模式下支持485通讯; 12.显示单位可选择,可自定义; 二、 涡街表头操作: 仪表通过按键进行参数设置,一般在安装时要使用按键手动设置一些参数。仪表有三个按键,从左到右顺序为F1、F2和F3键.通常F1为移位键,F2为确认和换项键,F3为修改和返回键。如有按键特殊功能,按键功能有所不同,使用时请参看液晶屏界面下方的按键功能说明。仪表运行时,可通过F3键手动切换到主界面2/主界面3,主界面2显示内容除瞬时流量更改显示为工况流量外,其余与主界面1内容基本相同,主界面3同时显示工况和瞬时的流量。 2.1 启动 仪表上电时,将进行自检,如果自检异常,将显示自检错误界面(自检界面说明参照自检菜单),大约1~2秒后跳转到主界面。否则将直接跳转到主界面。主界面启动后如下图所示: 主界面1 2 3 4 5 6 1

称重传感器使用方法

如何测量梁式称重传感器好坏 用万用表什么样测量梁式称重传感器的好坏? 首先测量一下传感器输入端及输出端的电阻值,如果有此传感器的合格证的话,与合格证中标明的电阻做对比,如测得的数值超出标准范围, 说明此传感器有问题。目前常用的传感器阻值为两种: 一种是低阻的,输入端为:400Ω±20Ω,输出端为:350Ω±5Ω; 一种是高阻的,输入端为:800Ω±20Ω,输出端为:700Ω±5Ω; 另外还可以测量一下传感器的输出信号,用数字万用表的MV电压档,将传感器的输入端加上10VDC,然后测一下传感器的输出端电压,此电压值=10V X 传感器灵敏度X 传 感器的受力值/传感器量程值;如果测量出的数值与计算出的数值相差较大,说明此传感器已损坏 称重传感器本身输出的是毫伏信号 4~20毫安指的是电流信号经过放大的 供电一般都是24V交流的电源 怎么用万用表判断称重传感器的输出与输入的四根线 还有正负 称重传感器输出电阻一般为350、480、700、1000欧姆,输入端一般会进行一些温度、灵敏度的补偿,因此输入端电阻会比输出端高20~100欧姆,因此用万用表量一下电阻 值可以判断出来。一般习惯输入和输出颜色为红黑绿白:红白绿兰等分标表示V+、V-、S+、S-。 一称重传感器上标有EXC+ EXC- SIG+SIG- 我想知道哪两个代表电源哪两个代表信号 2011-1-13 02:33 一般都6根线。 E当然是电源,10V。 SIG是反馈回去的MV称重信号。 还有两路是电源E的现场电压返回值(比10V略小,因为线损)。单片机运算的时候按照这个计算,有的工程图省事就在显示仪后边与E相短。也是可以的。 称重传感器的接线方法时间:称重传感器的出线方式有4线和6线两种,模块或称重变送器的接线也有4线和6线两种,要接4线还是6线首先要看你的硬件要求是怎样的,原则是:传感器能接6线的不接4线,必须接4线的就要进行短接。 一般的称重传感器都是六线制的,当接成四线制时,电源线(EXC-,EXC+)与反馈线(SEN-,SEN+)就分别短接了。SEN+和SEN-是补偿线路电阻用的。SEN+和EXC+是通路的,SEN-和 EXC-是通路的。(激励:EXC+,EXC-,反馈: SENS+,SENS-信号:SIG+,SIG-) EXC+和EXC-是给称重传感器供电的,但是由于称重模块和传感器之间的线路损耗,实际上传感器接收到的电压会小于供电电压。每个称重传感器都有一个mV/V的特性,它输出 的mV信号与接收到的电压密切相关,SENS+和SENS-实际上是称重传感器内的一个高阻抗回路,可 以将称重模块实际接收到的电压反馈给称重模块。假设EXC+和EXC-为10V,线路损耗,传感器2mV/V,实际上传感器输出最大信号为()*2=19mV,而不是20mV。此时称重传感器内部

自动驾驶传感器布置如何布置

前言:无人驾驶汽车的研究越来越多,各环境感知传感器的分布位置也不同,到底这些传感器要遵循一个什么样的布置原则? 智能驾驶汽车环境感知传感器主要有超声波雷达、毫米波雷达、激光雷 达、单/双/三目摄像头、环视摄像头以及夜视设备。目前,处于开发中的典型智能驾驶车传感器配置如表 1所示。 表 1 智能驾驶汽车传感器配置 ?环视摄像头:主要应用于短距离场景,可识别障碍物,但对光照、天气等外在条件很敏感,技术成熟,价格低廉; ?摄像头:常用有单、双、三目,主要应用于中远距离场景,能识别清晰的车道线、交通标识、障碍物、行人,但对光照、天气等条件很敏感,而且需要复杂的算法支持,对处理器的要求也比较高; ?超声波雷达:主要应用于短距离场景下,如辅助泊车,结构简单、体积小、成本低; ?毫米波雷达:主要有用于中短测距的 24 GHz 雷达和长测距的 77 GHz 雷达 2 种。毫米波雷达可有效提取景深及速度信息,识别障碍物,有一定的穿透 雾、烟和灰尘的能力,但在环境障碍物复杂的情况下,由于毫米波依靠声波定位,声波出现漫反射,导致漏检率和误差率比较高; ?激光雷达:分单线和多线激光雷达,多线激光雷达可以获得极高的速度、距离和角度分辨率,形成精确的 3D 地图,抗干扰能力强,是智能驾驶汽车发展的最佳技术路线,但是成本较高,也容易受到恶劣天气和烟雾环境的影响。 ?不同传感器的感知范围均有各自的优点和局限性(见图 1),现在发展的趋势是通过传感器信息融合技术,弥补单个传感器的缺陷,提高整个智能驾驶系统的安全性和可靠性。

图 1 环境感知传感器感知范围示意图 全新奥迪A8配备自动驾驶系统的传感器包括 -12个超声波传感器,位于前后及侧方 -4个广角360度摄像头,位于前后和两侧后视镜 -1个前向摄像头,位于内后视镜后方 -4个中距离雷达,位于车辆的四角 -1个长距离雷达,位于前方 -1个红外夜视摄像头,位于前方

光电开关传感器接线图

光电开关传感器接线图光电开关传感器双线直流接线方法 光电开关传感器电路原理图 接线电压:10—65V直流 常开触点(NO) 无极性 防短路的输出 漏电电流≤ 电压降≤5V 注意不允许双线直流传感器的串并联连接 光电开关传感器三线直流接线图 电路原理图 接线电压:10—30V直流 常开触点(NO) 电压降≤ 防短路的输出 完备的极性保护 三线直流与四线直流传感器的串联 当串联时,电压降相加,单个传感器的准备延迟时间相加。

四线直流光电开关传感器接线方法 电路原理图 接线电压:10—65V 切换开关 防短路的输出 完备的极性保护 电压降≤ 三线直流与四线直流光电开关传感器的并联接线图

光电开关传感器双线交流接线方法 电路原理图 常开触点(NO) 常闭触点(NC) 接线电压:20—250V交流 漏电电流≤ 电压降≤7V(有效值) 双线交流传感器的串联 常开触点:“与”逻辑 常闭触点:“或非”逻辑 当串联时,在传感器上的电压降相加,它减低了负载上可利用的电压,因此要注意:不能低于负载上的最小工作电压(注意到电网电压的波动)。 机械开关与交流光电开关传感器串联接线方法 断开的触点中断了传感器的电源电压,若在传感器被衰减期间内机械触点闭和的话,则会产生一个短时间的功能故障,传感器的准备延迟时间(t≤80ms)避免了立即的通断动作。 补偿方法:将一电阻并联在机械触点上(当触点断开时也是一样),此电阻使传感器的准备时间不再起作用,对于200V交流,此电阻大约为82KΩ/1w。 电阻的计算方法:近似值大约为400Ω/V

双线交流光电开关传感器的并联接线方法 常开触点:“与”逻辑 常闭触点:“或非”逻辑 闭和触点使传感器的工作电压短路,当触点短开以后只有在准备延迟时间(t≤80ms)之后传感器才处于功能准备状态。 补偿办法:触点上串联一个电阻可以可靠地保证了传感器的最小工作电压,因此避免了在机械触点断开之后的准备延迟。 计算电阻的公式:R=10/I P=I2×R

称重传感器接线方法及接线图分析-推荐下载

称重传感器接线方法及接线图分析 由于称重传感器具有测量精度高、温度特性好、工作稳定等优点使得其广泛应用于各种结构 的动、静态测量及各种电子称的一次仪表。上一篇文章中小编为大家简单介绍了有关称重传感器原理的知识,本篇文章中小编通过搜集整理资料将继续为大家介绍有 关称重传感器的知识,即称重传感器接线方法及原 理剖析(称重传感器参数)。 两种称重传感器接线方法简介(称重传感器的选用) 称重传感器可以采用两种不同的输入、输出接线方法:一种是四线制接法,四线制接法的称重传感器对二次仪表无特殊要求,使用起来比较方便,但当电缆 线较长时,容易受环境温度波动等因素的影响;  另一种是六线制接法(如图1所示).六线制接法的称重传感器要求与之配套使用的二次仪表具备反馈输入接口,使用范围有一定的局限性,但不容易受环境 温度波动等因素的影响,在精密测量及长距离测量时具有一定的优势。 两种称重传感器接线电路图 在称重设备中,四线的称重传感器用的比较多,如果要将六线传感器接到四线传感器的设备上时,可以把反馈正和激励正接到一起,反馈负和激励负,接到一起。信号线要注意一点就是,红色和白色在两种类型的传感器上对应的输出信号是不一样的。 下面小编以称重指示控制仪F701中称重传感器接线图为例对其接线原理进行简单的分析。 F701是专门用于单一物料重量称量和控制的仪表,下图所示为称重指示控制仪F701中称重传感器接线图 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

监测设备各类传感器布置

第三节监测设备各类传感器布置 一、回采工作面传感器选型及配置 (一)采煤工作面 1、瓦斯传感器 本矿井为煤与瓦斯突出矿井,在回采工作面靠近上隅角回风顺槽内小于10m处布置1台高低浓度组合式瓦斯传感器T l,在工作面上隅角设置便携式甲烷检测报警仪T3。 报警浓度:Tl为≥1.0%; 断电浓度:Tl为≥1.5%; 复电浓度:Tl为<1.0%。 断电范围: T1—工作面及回风巷道中全部非本质安全型电气设备 2、粉尘传感器 在回采工作面的上、下出口各安装粉尘传感器各1台(共两台)。 3、温度传感器 在采煤工作面安设1台温度传感器。 4、CO传感器 在回采工作面上出口安设1台瓦斯传感器。 (二)采面运输顺槽 1、瓦斯传感器 在运输顺槽内设置一台瓦斯传感器T; 报警浓度:T为≥0.5%; 断电浓度:T为≥0.5%; 复电浓度:T为<0.5%。 断电范围: T—进风巷内全部非本质安全型电气设备 2、风速传感器 在工作面运输顺槽断面无变化,能准确计算测风断面的地点各安装1台风速传感器。 3、馈电传感器 在采煤工作面运输顺槽安装1台馈电传感器。 (三)采面回风顺槽 1、瓦斯传感器 在回采工作面回风侧布置1台高低浓度组合式瓦斯传感器T2,T2距回风石门约10~15m。 报警浓度:T2为≥1.0%; 断电浓度:T2为≥1.0%;

复电浓度:T2为<1.0%。 断电范围:T2—回风巷道中全部非本质安全型电气设备 2、CO传感器 在回风顺槽内距回风石门10~15m安设1台CO传感器。 3、风速传感器 风速传感器安设在回风顺槽内(1台) 4、风门开关传感器 在回风顺槽与1455联络巷连接附近的回风顺槽内安设2个风门开关传感器。 (四)胶带运输机机头 在运输顺槽内的胶带运输机机头1台烟雾传感器、1台粉尘传感器、1台开停传感器和1 台CO传感器。 二、掘进工作面传感器类型及配置 该矿井属于煤与瓦斯突出矿井,掘进工作面传感器的类型、数量和位置均按煤与瓦斯突出矿井的要求进行安设和配置。 矿井达产时配备二个掘进头,每个掘进头传感器类型及配置如下: (一)掘进工作面 1、瓦斯传感器 在掘进工作面布置1台高低浓度组合式瓦斯传感器T1,Tl靠近掘进头,其间距不大于5m。 报警浓度:T l为≥1.0%; 断电浓度:T l为≥1.5%; 复电浓度:T l<1%。 断电范围:T l一掘进工作面中全部非本质安全型电气设备。 2、风尘传感器 在掘进工作面布置1台风尘传感器; 3、风速传感器 在掘进工作面距迎头不大于6米的位置布置1台风速传感器。 4、CO传感器 在掘进工作面布置1台CO传感器。 (二)掘进工作面回风流中 1、瓦斯传感器 在掘进工作面回风流中布置1台高低浓度组合式瓦斯传感器T2,1T2为掘进头回风流靠近回风石门(斜巷、平巷)约10~15m。 报警浓度:T2为≥1.0%; 断电浓度:T2为≥1.0%; 复电浓度:T2<1%。 断电范围:T2一掘进工作面中全部非本质安全型电气设备。

PLC与传感器的接线方法

PLC与传感器的接线方法 收藏此信息打印该信息添加:佚名来源:未知 一、概述 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Co m)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二、输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型

SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 2.1 根据TI的定义,sink Current 为拉电流,source Current为灌电流 2.2 由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 2.3 SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 2.4 SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 2.5 SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NP N的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。

现场安装称重传感器步骤

现场安装称重传感器步骤 一、 安装前准备工作 二、 传感器的安装 三、 附件1:料仓称重传感器及安装件施工注意事项 四、 附件2:称重传感器标准安装照片 北京宝利通达电子设备有限公司 2011年3月 缅甸达贡山现场

一、安装前准备工作 1、领料后将每套称重料位计元件按位号码放到仓周围(每个传感器、支撑点、称重仪表、及其外包装纸箱上均贴有相应的位号) 2、检查料仓与其他设备是否有硬连接 A、料仓上方是否有管道硬连接 B、料仓下方是否有硬连接设备 C、料仓周边是否与梁、层板等结构设施发生挤蹭 如有上述情况请立刻同负责仪表的工长联系 3、检查传感器安装位置是否能安装到结构主梁上。 如果不能请立刻同负责仪表的工长联系 4、检查在传感器安装位置上方是否有垂直加强筋存在 如没有必须在传感器安装位置上加装有垂直加强筋 5、仔细阅读传感器安装图纸 6、测量原料仓下面支架高度,根据传感器安装图纸标注传感器安装高度计算出传感器下垫贴铁高度,进行加工。 7、因为现场还有许多其他设备需要安装,为了保护传感器不受强电流、强冲击、高温等不利因素损坏,按照料仓支撑点数量制作相应的支撑腿,高度为传感器安装高度+5~10mm,待传感器安装完毕后支撑料仓,使传感器脱离开料仓,保护传感器。(详细情况见后附照片)

二、传感器的安装 1、确定传感器和辅助支撑点的位置 称重式料位计的传感器的个数及安装方式不尽相同共有三种类型,如下: 电炉部分如下图:

其他子项 特殊的镍铁精炼车间位号为:211-WIT-1002~1003 为三个支撑牛腿

2、严格按照图纸进行传感器的安装 一定领取相应位号传感器安装图纸 3、安装工程中必须注意事项 ●每个传感器、支撑点、称重仪表、及其外包装纸箱上均贴有相应的位号,请按照位号进行安装。 ●传感器是娇贵的精密设备,千万别电焊、对着传感器气割 ●如果还有电焊活,就把传感器摘了,用一节相同高度的铁柱替代。或尽早在上下勾上接地电缆,以保护传感器 ●润滑脂一定要涂抹(在传感器与安装件之间) ●安装过程中不加调整垫片 ●请仔细阅读“料仓称重传感器及安装件施工注意事项” ●请严格按照图纸安装 ●仔细阅读附件1“施工注意事项” 3、传感器安装完毕后利用调整垫片进行调整水平,使传感器处于同一水平面上。

系统测点布置及传感器的选择

第4章系统测点布置及传感器的选择 第4.1节脱硫装置运行参数检测的特点 运行参数的检测室脱硫装置自动控制系统的一个基本组成环节。脱硫装置的工作过程实际上是一典型的化工工程,因此,其运行参数的检测与控制均与化工过程参数的检测与控制类似,而与火电厂热力设备明显不同。 脱硫装置运行中需要检测的过程参数包括温度、压力、流量、液位、烟气成分、石灰石浆液与石膏浆液PH值、浆液浓度(或密度)等。 温度、压力与流量参数的检测在火电厂热力设备中广泛采用,在脱硫装置中这类参数的测量原理与方法没有明显的区别,且不涉及高温、高压条件下的参数检测。不同之处主要是脱硫装置运行中需要测量、控制高浓度石灰石、石膏浆液,参数检测时,需要考虑被测介质的氧化性、腐蚀性、高粘度、易结晶、易堵塞等特殊性。譬如,在浆液温度检测时,需要选择适当的保护套管、连接导线等附件;测量腐蚀性、粘度大或易结晶的介质压力时,必须在取压装置上安装隔离罐,利用隔离罐中的隔离液将被测介质与压力检测元件隔离开来,以及采取加热保温等措施。测量石灰石、石膏浆液的流量时,需要采用适合于高浓度固液两相流的测量装置。 各个参数的具体检测系统由被测量、传感器、变送器和显示装置组成。传感器又称为检测元件或敏感元件,它直接响应被测量,经能量转换并转化成一个与被测量成对应线性关系的便于传输的信号,如电压、电流、电阻、力等。从自动控制的角度,由于传感器的输出信号往往很微弱,一般均需要变送环节的进一步处理,把传感器的输出转换成如0~10mA或者4~20mA等标准统一的模拟信号或者满足特定标准的数字量信号,这种仪表称为变送器,变送器的输出信号或送到显示仪表把被测量显示出来,或同时送到控制系统对其进行控制。 下图4.1示意标明了典型石灰石湿法烟气脱硫装置主要工艺过程运行监测参数检测表计的布置位置,包括温度、压力、压差、液位、PH值、浓度(密度)、流量、烟气成分、石膏层厚度等,这些参数均实时显示在控制系统的计算机画面上,并用于运行参数控制。

传感器布置

1.风速传感器,见表10.5。 表10.5 风速传感器配置 2.一氧化碳传感器,见表10.6。 表10.6 一氧化碳传感器配置 3、压力传感器,见表10.7。 表10.7 压力传感器配置 4.温度传感器,见表10.8。 表10.8 温度传感器配置

5.负压传感器,见表10.9。 表10.9 负压传感器配置 6.煤位传感器,见表10.10。 表10.10 煤位传感器配置 7.烟雾传感器,见表10.11。 表10.11 烟雾传感器配置 8.设备开停传感器,见表10.12。 表10.12 设备开停传感器配置

9.风筒传感器,见表10.13。 表10.13 风筒传感器配置 10.风门传感器,见表10.14。 表10.14 风门传感器配置 11.粉尘传感器,见表10.15。 表10.15 粉尘传感器配置

12.多参数传感器 用于矿井瓦斯抽采浓度(C)、负压(P)、温度(T)、压差(H)、标准状态(温度20℃,大气压力100kPa)下的纯瓦斯流量(A)和混合量(L)等参数的检测和计算。见表10.16。 表10.16 多参数传感器配置 13.断电仪及馈电状态传感器 本设计选择的远程断电器(KDG2型)带有馈电功能,因此合并安装。见表10.17。 表10.17 断电仪及馈电状态传感器配置

14.湿度传感器,见表10.18。 表10.18 湿度传感器配置 15.氧气传感器,见表10.19。 表10.19 氧气传感器配置 16.二氧化碳传感器,见表10.20。 表10.20 二氧化碳传感器配置 安全监控系统及传感器布置图见大图。 断电控制图示意图见图10.3。 图10.3 断电控制示意图所选KDG2型远程断电器具有断电和馈电功能,实现断电控制过程为:工作面或掘进面相应的瓦斯传感器监测信号通过监控分站送达监控主机,监控系统进行识别,若瓦斯浓度达到断电值则发出控制信号并通过分站控制端口发出断电信号给断电仪,断电仪动作使工作面或掘进面相应配电点总开关跳闸断电,实现瓦斯超限断电闭锁功能,同时断电仪监测并反馈 瓦斯电闭锁

传感器接线图

`传感器接线图双线直流 电路原理图 接线电压:10—65V直流 常开触点(NO) 无极性 防短路的输出 漏电电流≤0.8mA 电压降≤5V 注意不允许双线直流传感器的串并联连接 三线直流 电路原理图

接线电压:10—30V直流 常开触点(NO) 电压降≤1.8V 防短路的输出 完备的极性保护 三线直流与四线直流传感器的串联 当串联时,电压降相加,单个传感器的准备延迟时间相加。img]2-3.jpg border=0> 四线直流 电路原理图

接线电压:10—65V 切换开关 防短路的输出 完备的极性保护 电压降≤1.8V 三线直流与四线直流传感器的并联 双线交流 电路原理图 常开触点(NO) 常闭触点(NC) 接线电压:20—250V交流 漏电电流≤1.7mA 电压降≤7V(有效值)

双线交流传感器的串联 常开触点:“与”逻辑 常闭触点:“或非”逻辑 当串联时,在传感器上的电压降相加,它减低了负载上可利用的电压,因此要注意:不能低于负载上的最小工作电压(注意到电网电压的波动)。 机械开关与交流传感器的串联 断开的触点中断了传感器的电源电压,若在传感器被衰减期间内机械触点闭和的话,则会产生一个短时间的功能故障,传感器的准备延迟时间(t≤80ms)避免了立即的通断动作。 补偿方法:将一电阻并联在机械触点上(当触点断开时也是一样),此电阻使传感器的准备时间不再起作用,对于200V交流,此电阻大约为82KΩ/1w。 电阻的计算方法:近似值大约为400Ω/V 双线交流传感器的并联 常开触点:“与”逻辑 常闭触点:“或非”逻辑

当并联时,漏电流相加,例如:它可以 —在可编程控制器的输入端产生一个高电平的假象。 —超过小继电器的维持电流,避免了在触点上的压降。 机械开关与交流传感器的并联 闭和触点使传感器的工作电压短路,当触点短开以后只有在准备延迟时间(t≤80ms)之后传感器才处于功能准备状态。 补偿办法:触点上串联一个电阻可以可靠地保证了传感器的最小工作电压,因此避免了在机械触点断开之后的准备延迟。 计算电阻的公式:R=10/I P=I2×R 电感式传感器 1.电感式传感器工作原理 电感式传感器由三大部分组成:振荡器、开关电路及放大输出电路。振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的。

R58详细设置方法

R58设置方法 传感器各灯与按键的作用: 一.先对传感器进行一个简单的设置. 1.同时按住“+”和“-”2秒以上时,当出现8柱的指示灯熄灭,松开按钮,则进入设置状态。 2.再按“+”或“-”按钮,对传感器进行设置,循环显示如下图:

其图中: LO灯亮:表示亮态, DO灯亮:表示暗态 LO灯亮 OFF灯亮:表示亮态关延时 LO灯亮 ON灯亮:表示亮态开延时 DO灯亮 OFF灯亮:表示暗态关延时 DO灯亮 ON灯亮:表示暗态开延时 DO灯亮 ON灯亮 OFF灯亮:表示暗态开延时/关延时 DO灯亮 ON灯亮 OFF灯亮:表示暗态开延时/关延时 3.最后也同时按住“+”和“-”2秒以上,则退出设置模式。 二.示教模式 (一). 静态示教 1.先按住按钮两秒以上,当出现“LO”和“DO”闪烁时,则进入静态示教模式。 2.将光标对准色标,按一下“-”按钮,当出现输出灯熄灭时,则色标点已设定OK。 3.再将光标对准不是色标的地方,按一下“-”按钮,当出现电源灯亮时,则示教OK。 开关的阀值如下图: 最好取中间值. (二). 动态示教 1.先按住“+”按钮两秒以上,则进入动态示教模式。 2.这时请不要放开“+”按钮,继续按住“+”号键,这时让被测物的色标和背景在传感器的光标下移动一次。 3.再将光标对准第二色标的地方,松开“+”按钮,则示教OK。 开关的阀值如下图: 最好取中间值.

(三).当传感器两点设定好后,也可以通过按“+”或“—”来手动加减增益。将传感器的对比度调到最佳状态。 三.三色控制 1.有时用户只需要一种或两种颜色去检测。 2.这时也可以进行设置。 3.设置方法如下: (1).同时按住传感器“+”和“—”按纽2S以上,这时传感器进入设置模式。 (2).再按住“+”按纽2S以上,这时传感器将显示123号灯亮。其中各灯的作用如下:1:红光 2:绿光 3:蓝光 (3).这时按“+”或“—”键来选择光源即可。 (4).选定好后,按“—”键退出。 第一步只是在第一次使用传感器时设定一次就可以啦!以后就不用再设了,所以只要第一次设定好了,操作工只需要进行第二步示教就可以了;因为传感器是从三色中根据两个色标的对比度来自动选择一种颜色来控制,所以三色控制一般不需要设置。 接线:棕色=电源正;蓝色=电源负;白线=NPN型,低电平输出; 黑线=PNP型,高电平输出;灰色线是示教线,一般不接。

称重传感器在机械安装需注意的要点

称重传感器在机械安装需注意的要点 称重传感器实际上是一种将质量信号转变为可测量的电信号输出的装置。用传感器茵先要考虑传感器所处的实际工作环境,这点对正确选用称重传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。在称重传感器主要技术指标的基本概念和评价方法上,新旧国标有质的差异。 1、安装传感器的底座安装面应平整、清洁,无任何油膜,胶膜等存在。安装底座本身应有足够的强度和刚性,一般要求高于传感器本身的强度和刚度。 2、称重传感器要轻拿轻放,尤其是由合金铝制作弹性体的小容量传感器,任何冲击、跌落,对其计量性能均可能造成极大损害。对于大容量的称重传感器,一般来说,它具有较大的自重,故而要求在搬运、安装时,尽可能使用适当的起吊设备(如手拉葫芦、电动葫芦等)。 3、每种称重传感器的加载方向都是确定的,而我们使用时,一定要在此方向上加载负荷。横向力、附加的弯矩、扭矩力应尽量避免。 4、水平调整:水平调整有两个方面的内容。一是单只传感器安装底座的安装平面要用水平仪调整水平,另一方面是指多个传感器的安装底座的安装面要尽量调整到一个水平面上(用水准仪),尤其是传感器数多于三个的称重系统中,更应注意这一点,这样做的主要目的是为了使各传感器所承受的负荷基本一致。 5、称重传感器周围应尽量设置一些“挡板”,甚至用薄金属板把传感器罩起来。这样可防止杂物玷污传感器及某些可动部分,而这种“沾污”往往会使可动部分运动不爽,而影响称量精度。 6、尽量采用有自动定位(复位)作用的结构配件,如球形轴承、关节轴承、定位紧固器等。他们可以防止某些横向力作用在传感器上。要说明的是:有些横向力并不是机械安装引起的,如热膨胀引起的横向力,风力引起的横向力,及某些容器类衡器上的搅拌器的振动引起的横向力即不是机械安装引起的。 7、某些衡器上有些必须接到秤体上的附件(如容器秤的输料管道等),我们应让他们在传感器加载主轴的方向上尽量柔软一些,以防止他们“吃掉”传感器的真实负荷合而引起误差。 8、传感器应采用铰合铜线(截面积约50mm2)形成电气旁路,以保护它们免受电焊电流或雷击造成的危害。 9、称重传感器虽然有一定的过载能力,但在称重系统安装过程中,仍应防止传感器的

PLC与传感器的接线方法

PLC与传感器的接线方法 一、概述 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可 使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点 可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二、输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释

SINK漏型 SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 2.1 根据TI的定义,sink Current 为拉电流,source Current为灌电流 2.2 由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分 清楚。 2.3 SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 2.4 SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表 述)。 2.5 SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感 器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN 的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号, 内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。 另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大关系。并非所有的传感器与PLC都可以通用,对于此类问题可以参考笔者的另一文《接近开关、光电开关的输出与负载接口问题》,在此不再赘述。

相关文档
最新文档