光纤标准的介绍新版
光纤标准的介绍PPT课件
汤博阳
2008、5
1
前言
光缆物理网络是通信网最基础的传送承载设施,遍布于长途 骨干网、城域网到接入网等所有的网络层次;光纤是光缆的核心 材料,是传输信息的基础物质,其技术指标的优劣决定了光缆网 的可靠性,直接影响整个通信网的运行质量。
作为通信行业的从业人员,有必要对光纤、光缆的技术指标 有一个了解,以便结合使用场合、系统容量、传输距离,恰当的 选择光纤的类型,以达到提高网络质量,节约建设成本,支撑业 务发展的目标,确保投资效益最大化。
2000版本 (无)
G 652 D
2003-01
(8.6~9.5) ±0.7
125.0±1
≤0.8
≤2
≤1260
≥0.69 30mm,半径 100圈 ≤0.5 (1550 nm), ≤0.5 (1625nm)
9
最小零色散波长 λаMIN, nm
最大零色散波长 λаMAX, nm
零色散波长最大 斜率 SаMAX, PS/ (NM2KM)
大值PMD的要求,光缆制造者则可规定未成缆光纤最大PMD系数值.
8
表2 ITU-T G .625C、G .625D光纤的主要技术指标
参数
1310nm模场直径, μm 包层直径,μm 芯同心度误差,μm 包层不圆度、% 光缆截止波长、nm 筛选应力,Gpa 宏弯衰减,dB
G 652 C
光纤属性
2000版本
(1550 nm) ≤0.5
(16XX nm)见 注1,
≥0.69
≤半径30㎜, 100圈 ≤0.5
(1550 nm), ≤0.5
(1625nm)
6
最小零色散波长, λаMIN nm
光纤光缆标准精选(最新)
光纤光缆标准精选(最新)G7424.1《GB/T7424.1-2003 光缆第1部分:总规范》G7424.2《GB/T 7424.2-2008 光缆总规范 第2部分:光缆基本试验方法》G7424.3《GB/T7424.3-2003 光缆第3部分:分规范-室外光缆》G7424.4《GB/T7424.4-2003 光缆第4部分:分规范-光纤复合架空地线》G7424.5《GB/T 7424.5-2012 光缆 第5部分:分规范 用于气吹安装的微型光缆和光纤单元》G9771.1《GB/T 9771.1-2008 通信用单模光纤 第1部分:非色散位移单模光纤特性》G9771.2《GB/T 9771.2-2008 通信用单模光纤 第2部分:截止波长位移单模光纤特性》G9771.3《GB/T 9771.3-2008 通信用单模光纤 第3部分:波长段扩展的非色散位移单模光纤特性》G9771.4《GB/T 9771.4-2008 通信用单模光纤 第4部分:色散位移单模光纤特性》G9771.5《GB/T 9771.5-2008 通信用单模光纤 第5部分:非零色散位移单模光纤特性》G9771.6《GB/T 9771.6-2008 通信用单模光纤 第6部分:宽波长段光传输用非零色散单模光纤特性》G9771.7《GB/T 9771.7-2012 通信用单模光纤 第7部分:接入网用弯曲损耗不敏感单模光纤特性》G12357.1《GB/T12357.1-2004 通信用多模光纤:A1类多模光纤特性》G12357.2《GB/T12357.2-2004 通信用多模光纤:A2类多模光纤特性》G12357.3《GB/T12357.3-2004 通信用多模光纤:A3类多模光纤特性》G12357.4《GB/T12357.4-2004 通信用多模光纤:A1类多模光纤特性》G12507.1《GB/T12507.1-2000 光纤光缆连接器:总规范》G12507.2《GB/T12507.2-2000 光纤光缆连接器:F-SMA型连接器分规范》G13993.2《GB/T13993.2-2002 通信光缆系列:核心网用室外光缆》G13993.3《GB/T13993.3-2001 通信光缆系列:综合布线用室内光缆》G13993.4《GB/T13993.4-2002 通信光缆系列:接入网用室外光缆》G13265.1《GB/T13265.1-1997 纤维光学隔离器:总规范》G13265.2《GB/T13265.2-1997 纤维光学隔离器:空白详细规范》G13993.1《GB/T13993.1-2004 通信光缆系列第1部分:总则》G13993.2《GB/T13993.2-2002 通信光缆系列:核心网用室外光缆》G13993.3《GB/T13993.3-2001 通信光缆系列:综合布线用室内光缆》G13993.4《GB/T13993.4-2002 通信光缆系列:接入网用室外光缆》G13997《GB/T13997-1999 光缆数字线路系统光端机技术要求》G15941《GB/T 15941-2008 同步数字体系(SDH)光缆线路系统进网要求》G15972.1《GB/T15972.1-1998 光纤总规范:总则》G15972.2《GB/T15972.2-1998 光纤总规范:尺寸参数试验方法》G15972.3《GB/T15972.3-1998 光纤总规范:机械性能试验方法》G15972.4《GB/T15972.4-1998 光纤总规范:传输特性和光学特性试验方法》 G15972.5《GB/T15972.5-1998 光纤总规范:环境性能试验方法》G15972.10《GB/T 15972.10-2008 光纤试验方法规范 测量方法和试验程序 总则》G15972.20《GB/T 15972.20-2008 光纤试验方法规范 尺寸参数的测量方法和试验程序 光纤几何参数》G15972.21《GB/T 15972.21-2008 光纤试验方法规范 尺寸参数的测量方法和试验程序 涂覆层几何参数》G15972.22《GB/T 15972.22-2008 光纤试验方法规范 尺寸参数的测量方法和试验程序 长度》G15972.30《GB/T 15972.30-2008 光纤试验方法规范 机械性能的测量方法和试验程序 光纤筛选试验》G15972.31《GB/T 15972.31-2008 光纤试验方法规范 机械性能的测量方法和试验程序 抗张强度》G15972.32《GB/T 15972.32-2008 光纤试验方法规范 机械性能的测量方法和试验程序 涂覆层可剥性》G15972.33《GB/T 15972.33-2008 光纤试验方法规范 机械性能的测量方法和试验程序 应力腐蚀敏感性参数》G15972.34《GB/T 15972.34-2008 光纤试验方法规范 机械性能的测量方法和试验程序 光纤翘曲》G15972.40《GB/T 15972.40-2008 光纤试验方法规范 传输特性和光学特性的测量方法和试验程序 衰减》G15972.41《GB/T 15972.41-2008 光纤试验方法规范 传输特性和光学特性的测量方法和试验程序 带宽》G15972.42《GB/T 15972.42-2008 光纤试验方法规范 传输特性和光学特性的测量方法和试验程序 波长色散》G15972.43《GB/T 15972.43-2008 光纤试验方法规范 传输特性和光学特性的测量方法和试验程序 数值孔径》G15972.44《GB/T 15972.44-2008 光纤试验方法规范 传输特性和光学特性的测量方法和试验程序 截止波长》G15972.45《GB/T 15972.45-2008 光纤试验方法规范 传输特性和光学特性的测量方法和试验程序 模场直径》G15972.46《GB/T 15972.46-2008 光纤试验方法规范 传输特性和光学特性的测量方法和试验程序 透光率变化》G15972.47《GB/T 15972.47-2008 光纤试验方法规范 传输特性和光学特性的测量方法和试验程序 宏弯损耗》G15972.49《GB/T 15972.49-2008 光纤试验方法规范 传输特性和光学特性的测量方法和试验程序-微分模时延》G15972.50《GB/T 15972.50-2008 光纤试验方法规范:环境性能的测量方法和试验程序 恒定湿热》G15972.51《GB/T 15972.51-2008 光纤试验方法规范 环境性能的测量方法和试验程序 干热》G15972.52《GB/T 15972.52-2008 光纤试验方法规范 环境性能的测量方法和试验程序 温度循环》G15972.53《GB/T 15972.53-2008 光纤试验方法规范 环境性能的测量方法和试验程序 浸水》G15972.54《GB/T 15972.54-2008 光纤试验方法规范 环境性能的测量方法和试验程序 伽玛辐照》G16529《GB/T16529-1996 光纤光缆接头:构件和配件》G16529.2《GB/T16529.2-1996 光纤光缆接头:光纤光缆接头盒和集纤盘》G16529.3《GB/T16529.3-1996 光纤光缆接头:光纤光缆熔接式接头》G16529.4《GB/T16529.4-1996 光纤光缆接头:光纤光缆机械式接头》G16530《GB/T16530-1996 单模纤维光学器件:回波损耗偏振依赖性测量方法》 G16531《GB/T16531-1996 半柔软同轴电缆组件分规范》G16814《GB/T 16814-2008 同步数字体系(SDH)光缆线路系统测试方法》G16849《GB/T 16849-2008 光纤放大器总规范》G16850.1《GB/T16850.1-1997 光纤放大器:增益参数的试验方法》G16850.2《GB/T16850.2-1997 光纤放大器:功率参数的试验方法》G16850.3《GB/T16850.3-1997 光纤放大器:噪声参数的试验方法》G16850.4《GB/T 16850.4-2006 光纤放大器试验方法基本规范:模拟参数-增益斜率的试验方法》G16850.5《GB/T16850.5-2001 光纤放大器:反射参数的试验方法》G16850.6《GB/T16850.6-2001 光纤放大器:泵浦泄露参数的试验方法》G16850.7《GB/T16850.7-2001 光纤放大器:带外插入损耗的试验方法》G17570《GB/T17570-1998 光纤溶接机通用规范》G18308.1《GB/T18308.1-2001 纤维光学转接器:总规范》G18309.1《GB/T18309.1-2001 纤维光学互连器件基本试验和测量程序:总则》 G18310.1《GB/T18310.1-2002 纤维光学互连器件基本试验和测量程序:试验-振动(正弦)》G18310.2《GB/T18310.2-2001 纤维光学互连器件基本试验和测量程序:配接耐久性》G18310.3《GB/T18310.3-2001 纤维光学互连器件基本试验和测量程序:静态剪切力》G18310.4《GB/T18310.4-2001 纤维光学互连器件基本试验和测量程序:光纤/光缆保持力》G18310.5《GB/T18310.5-2002 纤维光学互连器件基本试验和测量程序:试验-扭转/扭绞》G18310.6《GB/T18310.6-2001 纤维光学互连器件基本试验和测量程序:锁紧机构抗拉强度》G18310.7《GB/T18310.7-2002 纤维光学互连器件基本试验和测量程序:试验-弯矩》G18310.8《GB/T18310.8-2003 纤维光学互连器件基本试验和测量程序:试验-碰撞》G18310.9《GB/T18310.9-2003 纤维光学互连器件基本试验和测量程序:试验-冲击》G18310.10《GB/T18310.10-2003 纤维光学互连器件基本试验和测量程序:试验-抗挤压》G18310.11《GB/T18310.11-2003 纤维光学互连器件基本试验和测量程序:试验-轴向挤压》G18310.12《GB/T18310.12-2002 纤维光学互连器件基本试验和测量程序:试验-撞击》最大输入功率》G18311.16《GB/T 18311.16-2007 纤维光学互连器件基本试验和测量程序:球面抛光套管端面半径》G18310.17《GB/T18310.17-2003 纤维光学互连器件基本试验和测量程序:试验-低温》G18310.18《GB/T18310.18-2001 纤维光学互连器件基本试验和测量程序:干热-高温耐久性》G18310.19《GB/T18310.19-2002 纤维光学互连器件基本试验和测量程序:试验-恒定湿热》G18310.21《GB/T18310.21-2002 纤维光学互连器件基本试验和测量程序:温度-湿度组合循环试验》G18310.22《GB/T18310.22-2003 纤维光学互连器件基本试验和测量程序:试验-温度变化》G18310.26《GB/T18310.26-2003 纤维光学互连器件基本试验和测量程序:试验-盐雾》G18310.42《GB/T18310.42-2003 纤维光学互连器件基本试验和测量程序:试验-连接器的静态端部负荷》G18310.48《GB/T 18310.48-2007 纤维光学互连器件基本试验和测量程序:试验 温度湿度循环》G18311.34《GB/T18311.34-2003 纤维光学互连器件基本试验和测量程序:随机配接连接器的衰减》G18310.39《GB/T18310.39-2001 纤维光学互连器件基本试验和测量程序:对外磁场敏感性》G18310.45《GB/T18310.45-2003 纤维光学互连器件基本试验和测量程序:试验-浸水耐久性》G18311.1《GB/T18311.1-2003 纤维光学互连器件测量程序:外观检查》G18311.3《GB/T18311.3-2001 纤维光学互连器件基本试验和测量程序:衰减和回波损耗(多路)》G18311.4《GB/T18311.4-2003 纤维光学互连器件基本试验和测量程序:衰减》 G18311.5《GB/T18311.5-2003 纤维光学互连器件基本试验和测量程序:衰减对波长的依赖性》G18311.6《GB/T18311.6-2001 纤维光学互连器件基本试验和测量程序:回波损耗》G18311.20《GB/T 18311.20-2007 纤维光学互连器件基本试验和测量程序:分路器件的方向性》G18311.26《GB/T 18311.26-2007 纤维光学互连器件基本试验和测量程序:角偏差的测量》G18311.28《GB/T 18311.28-2007 纤维光学互连器件基本试验和测量程序:检查和测量 瞬间损耗》G18311.30《GB/T 18311.30-2007 纤维光学互连器件基本试验和测量程序:抛光角度和光纤位置》G18311.31《GB/T 18311.31-2007 纤维光学互连器件基本试验和测量程序:光源耦合功率比测量》程序:检查》G18478《GB/T18478-2001 纤维光学环行器》G18480《GB/T18480-2001 海底光缆规范》G18898.1《GB/T18898.1-2002 掺铒光纤放大器C波段掺铒光纤放大器》G18898.2《GB/T 18898.2-2008 掺铒光纤放大器 L波段掺铒光纤放大器》G18899《GB/T18899-2002 全介质自承式光缆》G18900《GB/T18900-2002 单模光纤偏振模色散的试验方法》G20184《GB/T 20184-2006 喇曼光纤放大器技术条件》G20186.1《GB/T 20186.1-2006 光纤用二次被覆材料 第1部分:聚对苯二甲酸丁二醇酯》G20186.2《GB/T 20186.2-2008 光纤用二次被覆材料 第2部分:改性聚丙烯》 G20244《GB/T 20244-2006 光学纤维传像元件》G20440《GB/T 20440-2006 密集波分复用器/解复用器技术条件》G21022.1《GB/T 21022.1-2007 纤维光学连接器接口 第1部分: 总则和导则》 G21645.1《GB/T 21645.1-2008 自动交换光网络(ASON)技术要求 第1部分:体系结构与总体要求》G28518《GB/T 28518-2012 煤矿用阻燃通信光缆》G29233《GB/T 29233-2012 管道、直埋和非自承式架空敷设用单模通信室外光缆》GJ915《GJB915A-1997 纤维光学试验方法》GJ1427A《GJB1427A-1999 光纤总规范》GJ1428A《GJB1428A-1999 光缆总规范》GJ1659《GJB1659-1993 光纤光缆接头总规范》GJ2454《GJB 2454A-2003 军用光缆填充膏规范》GJ4411《GJB 4411-2002 光缆组件通用规范》GJ5024《GJB 5024-2003 军用光缆阻水纱规范》GJ5865K《GJB 5865-2006 K 线性令牌传递多路数据总线有效性测试方法》GJ5866K《GJB 5867-2006 K 航空单芯多模光纤光缆连接器规范》GJ5931Z《GJB 5931-2007 军用有中继海底光缆通信系统通用要求》GJ6411K《GJB6411-2008 K 光纤通道航空电子环境》GJ6919Z《GJB6919-2009 Z 导电纤维丝束性能测试评价方法》YD901《YD/T 901-2001 核心网用光缆——层绞式通信用室外光缆》YD943《YD/T943-1998 外导体内径为5.6mm、3.8mm及2.8mm射频同轴连接器技术要求和试验方法》YD980《YD/T980-2002 全介质自承式光缆》YD1069《YD/T1069-2000 扁平型光纤带室内光缆第1部分:单光纤带光缆》 YD1113《YD/T1113-2001 光缆护套用低烟无卤阻燃材料特性》YD1114《YD/T1114-2001 无卤阻燃光缆》YD1115.1《YD/T1115.1-2001 通信电缆光缆用阻水材料第一部分:阻水带》 YD1115.2《YD/T1115.2-2001 通信电缆光缆用阻水材料第二部分:阻水纱》 YD1118.1《YD/T1118.1-2001 光纤用二次被覆材料第一部分:聚对苯二甲酸丁二醇酯》YD1118.2《YD/T1118.2-2001 光纤用二次被覆材料第二部分:改性聚丙烯》YD1258.1《YD/T 1258.1-2003 室内光缆系列 第1部分:总则》YD1258.2《YD/T 1258.2-2003 室内光缆系列 第2部分:单芯光缆》YD1258.3《YD/T 1258.3-2003 室内光缆系列 第3部分:双芯光缆》YD1272《YD/T 1272-2003 光纤活动连接器 第1部分:LC型》YD5024《YD/T 5024-2005 SDH本地网光缆传输工程设计规范》YD5025《YD 5025-2005 长途通信光缆塑料管道工程设计规范》YDN042《YDN042-1997接入网用馈线光缆技术要求》YD5043《YD 5043-2005 长途通信光缆塑料管道工程验收规范》YD5044《YD/T 5044-2005 SDH长途光缆传输系统工程验收规范》YD5066《YD/T 5066-2005 光缆线路自动监测系统工程设计规范》YD5072《YD 5072-2005 通信管道和光(电)缆通道工程施工监理规范》YD5080《YD/T 5080-2005 SDH光缆通信工程网管系统设计规范》YD5091《YD 5091-2005 光传输设备抗地震性能检测规范》YD5092《YD/T 5092-2005 长途光缆波分复用(WDM)传输系统工程设计规范》 YD5093《YD/T 5093-2005 光缆线路自动监测系统工程验收规范》YD5095《YD/T 5095-2005 SDH长途光缆传输系统工程设计规范》YD5102《YD 5102-2005 长途通信光缆线路工程设计规范》YD5113《YD/T 5113-2005 WDM光缆通信工程网管系统设计规范》YD5119《YD/T 5119-2005 基于SDH的多业务传送节点(MSTP)本地网光缆传输工程设计规范》YD5123《YD 5123-2005 长途通信光缆线路工程施工监理暂行规定》YD5124《YD 5124—2005 综合布线系统工程施工监理暂行规定》SJ10663《SJ/T10663-1995 光纤设备与部件测量方法》SJ11116《SJ/T11116-1997 光纤预制棒总规范》SJ20723《SJ20723-1998 GG6001型脉冲信号光电隔离组件详细规范》SJ20724《SJ20724-1998 GG240型多路高速数据光电隔离组件详细规范》SJ20773《SJ20773-2000 野战光缆开口引接系统通用规范》SJ20860《SJ 20860-2003 军用光缆引接设备通用规范》J8310《JB/T8310.1~3-1996 光缆连接器》DL767《DL/T767-2003 全介质自承式光缆(ADSS)用预绞式金具技术条件和试验方法》DL788《DL/T788-2001 全介质自承式光缆》DL832《DL/T832-2003 光纤复合架空地线》DL5344《DL/T 5344-2006 电力光纤通信工程验收规范》YB098《YB/T 098-2012 光缆增强用碳素钢绞线》JJF1197《JJF1197-2008 光纤色散测试仪校准规范》。
g652d光纤标准
g652d光纤标准G652D光纤标准。
G652D光纤是一种常用的单模光纤,其标准是指ITU-T制定的国际标准。
G652D光纤的特性和应用广泛,对于光通信领域具有重要意义。
本文将对G652D光纤的标准进行介绍,包括其特性、应用和标准制定的背景等方面。
G652D光纤的特性。
G652D光纤是一种低损耗、低色散的单模光纤,其典型特性包括:1. 低损耗,G652D光纤在通信波长范围内的传输损耗非常低,能够有效地传输光信号。
2. 低色散,G652D光纤的色散特性良好,能够有效地减小信号在光纤中的传输扩散,提高信号传输的准确性和稳定性。
3. 宽带宽,G652D光纤的带宽较宽,能够支持高速数据传输和多信道传输。
G652D光纤的应用。
G652D光纤广泛应用于光通信系统中,包括长途传输、城域网、数据中心互连等领域。
其主要应用包括:1. 光纤通信网络,G652D光纤作为主干网和接入网的传输介质,能够支持高速、大容量的数据传输,满足不同场景下的通信需求。
2. 光纤传感,G652D光纤还可用于光纤传感领域,如温度、压力、应变等参数的监测和测量。
3. 其他领域,G652D光纤还可应用于医疗、军事、航空航天等领域,满足不同领域对光纤传输的需求。
G652D光纤标准的制定。
G652D光纤的标准制定是为了保证光纤的质量和性能,促进光通信技术的发展。
其标准制定的背景主要包括:1. 技术需求,随着光通信技术的发展,对光纤传输性能的要求越来越高,需要制定相应的标准来保证光纤的质量和性能。
2. 行业发展,光通信行业的快速发展,需要统一的标准来规范光纤产品的生产和应用,促进产业的健康发展。
3. 国际标准,G652D光纤的标准制定是基于国际标准化组织ITU-T的相关标准,以保证光纤产品在国际间的通用性和互操作性。
总结。
G652D光纤作为一种重要的单模光纤,其标准制定对于推动光通信技术的发展具有重要意义。
通过对G652D光纤的特性、应用和标准制定的介绍,可以更好地了解和应用G652D光纤,促进光通信技术的发展和应用。
光纤标准
一、前言光纤光缆行业领域的国际和国内标准很多,标准版本不断更新,新标准不断推出,为了给从事该领域工作的科研人员、光纤光缆制造者、广大用户及相关人员提供参考,本文特将光纤光缆行业领域最新国际和国内标准的情况作一简要介绍。
二、标准项目及名称1.国际标准1)国际电工委员会(IEC)标准●光纤标准:IEC60793-1-1(1995,第1版)光纤第1部分总规范总则IEC60793-1-2(1995,第1版)光纤第1部分总规范尺寸参数试验方法IEC60793-1-3(1995,第1版)光纤第1部分总规范机械性能试验方法IEC60793-1-4(1995,第1版)光纤第1部分总规范传输特性和光学特性试验方法IEC60793-1-5(1995,第1版)光纤第1部分总规范环境性能试验方法IEC60793-2(1998,第4版)光纤第2部分产品规范●光缆标准:IEC60794-1-1(1999,第1版)光缆第1部分总规范总则IEC60794-1-2(1999,第1版)光缆第1部分总规范光缆性能基本试验方法IEC60794-2(1989,第1版)光缆第2部分产品规范IEC60794-3(1998,第2版)光缆第3部分管道、直埋、架空光缆─分规范IEC60794-4-1(1999,第1版)光缆第4部分高压电力线架空光缆(OPGW)2)国际电信联盟(ITU-T)标准ITU-TG.650(1997)单模光纤相关参数的定义和试验方法ITU-TG.651(1993) 50/125μm多模渐变型折射率光纤光缆特性ITU-TG.652(1997)单模光纤光缆特性ITU-TG.653(1997)色散位移单模光纤光缆特性ITU-TG.654(1997)截止波长位移型单模光纤光缆特性ITU-TG.655(1996)非零色散位移单模光纤光缆特性3)其他国外标准安装在架空电力线路上的全介质自承式光缆(ADSS)IEEE(电气与电子工程师协会)标准2.国内标准:1)国家标准●光纤标准:GB/T15972.1-1998(第1版)光纤总规范第1部分总则GB/T15972.2-1998(第1版)光纤总规范第2部分尺寸参数试验方法GB/T15972.3-1998(第1版)光纤总规范第3部分机械性能试验方法GB/T15972.4-1998(第1版)光纤总规范第4部分传输特性和光学特性试验方法GB/T15972.5-1998(第1版)光纤总规范第5部分环境性能试验方法●光缆标准:GB/T7424.1-1998(第1版)光缆第1部分总规范2)通信行业标准YD/T979-1998 (第1版)光纤带技术要求和试验方法YD/T980-1998 (第1版)全介质自承式光缆YD/T981-1998 (第1版)接入网用光纤带光缆YD/T982-1998 (第1版)应急光缆●光纤标准:YD/T1001-1999 (第1版)非零色散位移单模光纤特性三、简要说明1. IEC 60793-1-1、IEC 60793-1-2. IEC 60793-1-3、IEC 60793-1-4、IEC 60793-1-5(1995,第1版)是由原来IEC 60793-1(1992,第4版)《光纤第1部分总规范》分成的5个分标准。
光纤传输技术和标准
光纤传输技术和标准光纤传输技术是一种基于光信号传输的通信技术,它采用了光纤作为传输介质。
光纤传输技术具有高传输带宽、低传输损耗、抗干扰、安全可靠等优点,因此在现代通信领域得到了广泛应用。
光纤传输技术的发展离不开一系列国际标准的支持,这些标准规定了光纤传输系统的性能要求、技术指标、接口标准等,为光纤传输技术的推广和应用提供了有力保障。
本文将对光纤传输技术和相关标准进行详细介绍。
一、光纤传输技术1. 光纤传输原理光纤传输技术是利用光的全内反射特性传输光信号的技术。
光纤传输系统一般由光源、调制器、光纤、解调器和接收器等组成。
光源产生光信号,经过调制器调制后,由光纤传输,最后由解调器恢复成电信号,供接收器接收和解码。
光纤传输技术采用光信号传输,具有信号传输速度快、传输延迟低、抗干扰能力强等优点。
2. 光纤传输的类型根据传输方式的不同,光纤传输可以分为单模光纤传输和多模光纤传输两种类型。
单模光纤传输适用于长距离、高速传输,传输的光信号呈单模态传输;而多模光纤传输适用于短距离、低速传输,传输的光信号呈多模态传输。
根据不同的应用需求,可以选择合适的光纤传输类型。
3. 光纤传输的应用领域光纤传输技术广泛应用于通信、数据中心、医疗、工业自动化、军事等领域。
在通信领域,光纤传输技术被用于实现光纤通信网络,包括光纤到户、光纤骨干网等系统;在数据中心领域,光纤传输技术被用于构建高速、低延迟的数据传输网络;在医疗领域,光纤传输技术被用于激光手术、光纤内窥镜等医疗设备;在工业自动化领域,光纤传输技术被用于传感器信号传输、工业网络通信等;在军事领域,光纤传输技术被用于构建军用通信网络等。
二、光纤传输标准1. 光纤传输技术标准国际电信联盟(ITU)发布的G.652系列标准规定了单模光纤传输系统的性能要求、技术指标和接口标准,其中包括了光学参数、几何参数、传输性能要求等内容。
G.652系列标准为单模光纤传输技术的发展提供了技术规范支持。
光纤产品标准
光纤产品标准
一、国际标准
国际标准是指由国际标准化组织(ISO)和国际电工委员会(IEC)等制定的、为全球范围内的某个领域或某项技术制定的标准。
对于光纤产品来说,国际标准主要包括以下几个方面:
1. 光纤损耗指标
国际标准为光纤的损耗指标划定了明确的标准值,例如G.657 标准明确规定,其纤芯/包层损耗值不得低于0.35 dB/km。
2. 光纤参数
国际标准还规定了光纤的各项参数,如纤径、包层直径、光心偏差、柱面度等,并规定了每个参数的允许误差范围。
3. 光纤连接器和接口
国际标准还明确规定了光纤连接器和接口的标准形式、规格尺寸等。
二、行业标准
行业标准是由国内光纤通信行业组织或团体制定的,为在国内光纤通信领域内科学、合理地规范和约束光纤产品的生产和应用。
国内主要光纤制造企业、光纤光缆制造企业、通信设备制造企业和光纤光缆及配件供应商参与行业标准的制定。
目前我国光纤行业主要行业标准有:GB/T 9771.1 光纤通信用光纤(Part 1:普通单模光纤)、GB/T 13927.1 光纤光缆第1部分:一般技术指南、YY/T 1212.1 光缆装置第1部分:光缆连接器、YY/T 1632.1 光纤密封件技术要求和试验方法第1部分:光纤密封件及其应用等。
三、企业内部标准
为了满足自身生产需要,部分光纤厂商会制定自己的内部标准,这些标准在具体的生产制造中也有其合理性和必要性。
但企业内部标准不具有普遍的行业适用性,也不会对外公开。
总的来说,光纤产品作为通信行业的基础设备,需要遵循严格的标准规格,以确保光纤产品的质量和性能。
除了国际和国内行业标准,企业内部标准也是必不可少的环节,促进企业自身的提升和发展。
中国光纤测试标准
中国光纤测试标准一、引言随着光纤通信技术的快速发展,光纤测试标准已成为确保光纤通信系统性能和质量的重要依据。
本文将介绍中国光纤测试标准中的几个重要方面,包括光纤衰减检测、光纤连通性检测、光纤污染检测以及光纤故障定位检测。
二、光纤衰减检测光纤衰减是衡量光纤通信系统性能的重要指标之一。
中国光纤测试标准对光纤衰减的测试方法进行了详细规定。
主要测试方法包括插入法、剪断法、背向散射法等。
这些方法分别适用于不同的情况和需求。
在测试过程中,需要对测试设备进行校准,以确保测试结果的准确性和可靠性。
三、光纤连通性检测光纤连通性检测是验证光纤通信链路连接是否正常的关键步骤。
中国光纤测试标准规定了对光纤连通性进行测试的方法。
一种常用的方法是使用光源和光功率计来检测光纤链路的连通性。
首先,将光源连接到光纤的一端,然后将光功率计连接到光纤的另一端。
如果链路连通,则可以在光功率计上看到光信号。
如果链路不连通,则光功率计将显示零或非常低的读数。
四、光纤污染检测光纤污染会对光纤通信系统的性能产生严重影响。
中国光纤测试标准规定了对光纤进行污染检测的方法。
一种常用的方法是使用可视显微镜来观察光纤的表面。
如果光纤表面存在污染,则可以在显微镜下看到杂质或不规则的斑点。
此外,还可以使用一些专门的测试仪器来检测光纤表面的污染程度。
五、光纤故障定位检测在光纤通信系统中,当发生故障时,快速准确地定位故障位置至关重要。
中国光纤测试标准规定了一些用于故障定位的测试方法。
其中一种是时域反射仪(TDR)法,该方法利用在光纤中反射回来的信号来确定故障位置。
通过向光纤发送脉冲信号并测量返回的信号时间,可以计算出故障位置的距离。
另一种常用方法是光时域反射仪(OTDR)法,它利用光的背向散射来检测故障。
通过测量背向散射光的强度和时间,可以确定故障的位置和类型。
六、总结中国光纤测试标准为确保光纤通信系统的性能和质量提供了重要的指导和依据。
通过对光纤衰减、连通性、污染以及故障定位的检测,可以全面评估和提升光纤通信系统的性能。
光纤光缆最新国际标准和国内标准介绍
光纤光缆最新国际标准和国内标准介绍摘要:光纤光缆行业领域的国际和国内标准很多,标准版本不断更新,新标准不断推出,为了给从事该领域工作的科研人员、光纤光缆制造者、广大用户及相关人员提供参考,本文特将光纤光缆行业领域最新国际和国内标准的情况作一简要介绍。
一、前言光纤光缆行业领域的国际和国内标准很多,标准版本不断更新,新标准不断推出,为了给从事该领域工作的科研人员、光纤光缆制造者、广大用户及相关人员提供参考,本文特将光纤光缆行业领域最新国际和国内标准的情况作一简要介绍。
二、标准项目及名称1.国际标准1)国际电工委员会(IEC)标准●光纤标准:IEC 60793-1-1(1995,第1版)光纤第1部分总规范总则IEC 60793-1-2(1995,第1版)光纤第1部分总规范尺寸参数试验方法IEC 60793-1-3(1995,第1版)光纤第1部分总规范机械性能试验方法IEC 60793-1-4(1995,第1版)光纤第1部分总规范传输特性和光学特性试验方法IEC 60793-1-5(1995,第1版)光纤第1部分总规范环境性能试验方法IEC 60793-2(1998,第4版)光纤第2部分产品规范●光缆标准:IEC 60794-1-1(1999,第1版)光缆第1部分总规范总则IEC 60794-1-2(1999,第1版)光缆第1部分总规范光缆性能基本试验方法IEC 60794-2(1989,第1版)光缆第2部分产品规范IEC 60794-3(1998,第2版)光缆第3部分管道、直埋、架空光缆─分规范IEC 60794-4-1(1999,第1版)光缆第4部分高压电力线架空光缆(OPGW)2)国际电信联盟(ITU-T)标准●光纤标准:ITU-T G.650(1997)单模光纤相关参数的定义和试验方法ITU-T G.651(1993) 50/125μm多模渐变型折射率光纤光缆特性ITU-T G.652(1997)单模光纤光缆特性ITU-T G.653(1997)色散位移单模光纤光缆特性ITU-T G.654(1997)截止波长位移型单模光纤光缆特性ITU-T G.655(1996)非零色散位移单模光纤光缆特性3)其他国外标准安装在架空电力线路上的全介质自承式光缆(ADSS)IEEE(电气与电子工程师协会)标准2.国内标准:1)国家标准●光纤标准:GB/T 15972.1-1998(第1版)光纤总规范第1部分总则GB/T 15972.2-1998(第1版)光纤总规范第2部分尺寸参数试验方法GB/T 15972.3-1998(第1版)光纤总规范第3部分机械性能试验方法GB/T 15972.4-1998(第1版)光纤总规范第4部分传输特性和光学特性试验方法GB/T 15972.5-1998(第1版)光纤总规范第5部分环境性能试验方法●光缆标准:GB/T 7424.1-1998(第1版)光缆第1部分总规范2)通信行业标准●光缆标准:YD/T 979-1998 (第1版)光纤带技术要求和试验方法YD/T 980-1998 (第1版)全介质自承式光缆YD/T 981-1998 (第1版)接入网用光纤带光缆YD/T 982-1998 (第1版)应急光缆●光纤标准:YD/T 1001-1999 (第1版)非零色散位移单模光纤特性三、简要说明1. IEC 60793-1-1、IEC 60793-1-2. IEC 60793-1-3、IEC 60793-1-4、IEC 60793-1-5(1995,第1版)是由原来IEC 60793-1(1992,第4版)《光纤第1部分总规范》分成的5个分标准。
光纤的执行标准
光纤的执行标准根据不同类型有所差异,主要依据国际电信联盟电信标准部门(ITU-T)的一系列标准,其中对单模光纤的标准有G.650“单模光纤相关参数的定义和试验方法”、G.652“单模光纤和光缆特性”、G.653“色散位移单模光纤和光缆特性”、G.654“截止波长位移型单模光纤和光缆特性”、G.655“非零色散位移单模光纤和光缆特性”及G.656“用于宽带传输的非零色散位移光纤和光缆特性”。
此外,国际电工委员会也颁布了系列标准IEC 60793,我国的光纤标准包括国家标准GB/T 15912系列,以及工业和信息化部颁布的通信行业标准YD/T系列。
以上信息仅供参考,如有需要,建议咨询专业技术人员。
新型光纤及其标准
新型光纤及其标准新型光纤及其标准1、概述自1966 年“光纤之父”高锟博士预言光纤可以用于通信至今,已经过去了37 个年头,光纤通信系统也已经实用了 28 年,如今可以说进入了光纤通信技术发展的顶峰时期。
系统的发展是与应用密切相关的,系统和光电子器件的进步又对光纤提出了新的要求,促进了光纤技术的发展。
1975 年第一个实用的光纤通信系统是应用于市话中继,而且当时的速率是45Mbit/s,所使用的是多模光纤,而且应用在850nm 的短波长窗口。
随着光纤通信系统的应用从市话扩展到长途,光纤850nm 窗口的衰减显然较大,当时又研制成功了1300nm 的长波长器件,于是就产生了应用1300nm 窗口的长波长光纤通信系统,这些系统都还是使用G.651 规范的多模光纤。
随着传输距离进一步延伸和传输速率的提高,多模光纤已经不能满足系统要求。
当单模激光器研制成功的时候,G.652 单模光纤也应运而生。
而且由于光纤的1550nm 窗口的衰减比1310nm 窗口的衰减低,所以更高速率系统由于光接收灵敏度的降低又希望保持一定的传输距离,逐步转到1550nm 窗口来应用。
从系统的角度来说,2.5Gbit/s 以下的系统一般为衰减限制系统,而10Gbit/s 及其以上速率的系统为色散限制系统。
从衰减尽可能小的方面看,10Gbit/s 及其以上速率的系统应工作在1550nm 窗口,但G.652 光纤在该窗口的色散太大,达到18~20ps/nm·km,传输距离被限制在70~80km 左右。
能否使光纤在1550nm窗口的衰减又小而色散也小呢,没问题,当时研制出来的G.653 色散位移光纤,就是在G.652 光纤的基础上,将零色散点从1310nm窗口移动到1550nm 窗口实现的。
但是当DWDM系统大量推广应用时发现,由于EDFA 在DWDM 中的使用,使进入光纤的光功率有很大的提高,会使光纤产生非线性效应。
由于G.653光纤在1550nm 窗口的色散值太小,使得在G.653 光纤上工作的DWDM 系统受四波混频效应的影响太严重。
光纤参考的标准
标题:光纤参考的标准引言:光纤作为一种高速、大带宽的传输媒介,已经广泛应用于通信、数据中心和网络领域。
为了确保光纤传输系统的可靠性和互操作性,各国和国际组织制定了一系列的光纤参考标准。
本文将介绍光纤参考标准的相关概念、分类和应用,以及一些重要的国际标准组织和标准文件。
一、光纤参考标准的概念光纤参考标准是指用于评估和比较光纤传输系统性能和特性的指导性文件。
它们提供了光纤传输系统设计、安装、测试和维护的基准要求,确保系统的性能和互操作性。
二、光纤参考标准的分类1. 纤芯类型标准:根据光纤纤芯的结构和特性进行分类,如单模光纤(SMF)和多模光纤(MMF)。
2. 传输性能标准:包括光纤传输的损耗、带宽、色散、端面质量等性能参数的要求。
3. 光纤连接器和接口标准:定义光纤连接器和接口的尺寸、形状、兼容性等要求,确保连接的可靠性和互换性。
4. 安装和维护标准:包括光纤布线系统的安装规范、维护程序和测试方法等内容,确保系统的稳定性和可靠性。
三、光纤参考标准的应用1. 光纤通信系统:光纤参考标准在光纤通信系统中起着关键作用。
它们指导了光纤网络的设计、建设和运维,确保通信系统的可靠性和性能。
2. 数据中心:数据中心是大量数据存储和处理的核心地点,光纤参考标准为数据中心的光纤布线系统提供了指导,保证了数据传输的高速和稳定性。
3. 光纤传感应用:光纤传感技术在工业监测、环境监测等领域有广泛应用。
光纤参考标准对光纤传感系统的设计和测试提供了规范和指导。
四、国际标准组织和标准文件1. 国际电工委员会(IEC):IEC制定了多项与光纤相关的国际标准,如IEC 60793(光纤的光学特性)、IEC 61300(光纤连接器的可靠性测试)等。
2. 国际标准化组织(ISO):ISO制定了一系列与光纤相关的国际标准,如ISO/IEC 11801(通信布线系统标准)等。
3. 美国国家标准协会(ANSI):ANSI制定了多项与光纤相关的标准,如ANSI/TIA-568(通信布线系统标准)等。
光纤分布数据接口(fddi)标准 国标
光纤分布数据接口(fddi)标准国标一、引言光纤分布数据接口(FDDi)标准是计算机网络领域中一项重要的技术标准,它旨在解决局域网中数据传输的问题。
随着网络技术的不断发展,FDDi标准在国内也得到了广泛的应用。
本文将详细介绍FDDi 标准国标的基本原理、设计要求、实施方案、测试方法以及应用前景。
二、基本原理FDDi标准是一种基于光纤分布的局域网数据传输接口标准,它通过在局域网中分布多个数据接口,实现对数据的分散传输和集中处理,从而提高了数据的传输效率和可靠性。
FDDi标准采用分布式架构,将数据接口分布在局域网的各个节点上,并通过光纤网络进行连接,实现了数据的快速、可靠传输。
三、设计要求为了实现FDDi标准国标的设计,需要遵循以下要求:1.符合国家相关标准和规范,确保设计的合法性和安全性。
2.考虑到国内的网络环境和应用需求,确保设计的适用性和可行性。
3.考虑设备的兼容性和扩展性,便于后期升级和维护。
4.注重设备的安全性和可靠性,采用先进的加密技术和防护措施。
四、实施方案FDDi标准国标的实施方案主要包括以下几个方面:1.设备选型:根据国内的网络环境和应用需求,选择合适的FDDi 设备,包括交换机、路由器、光纤收发器等。
2.网络设计:根据实际需求,设计合理的光纤分布网络,确保数据的可靠传输。
3.安装调试:按照设计要求,进行设备的安装和调试,确保设备的正常运行。
4.培训用户:为用户提供培训和指导,帮助他们掌握使用FDDi设备的技能和方法。
五、测试方法在实施FDDi标准国标后,需要进行充分的测试,以确保设备的稳定性和可靠性。
测试方法主要包括以下几个方面:1.性能测试:通过模拟大量数据传输,测试设备的性能和传输效率。
2.可靠性测试:通过长时间运行和故障模拟,测试设备的稳定性和可靠性。
3.安全测试:对设备的安全性能进行测试,包括加密算法、防护措施等。
4.用户反馈测试:收集用户反馈,对设备的使用效果进行评估。
光纤光缆最新标准
ITU-T光纤和光缆特性标准研究新进展New Progress on Standard Study for Optical Fiber and Cables by ITU-T国际电信联盟ITU-T SG15(第十五研究组)于2000年颁布了光纤标准最新版本后,在2001-2004年研究期的前几次会议上,又继续对G.650(2000)《单模光纤相关参数的定义和试验方法》、G.652(2000)《单模光纤光缆特性》、G.653(2000)《色散位移单模光纤光缆特性》、G.654(2000)《截止波长位移型单模光纤光缆特性》、G.655(2000)《非零色散位移单模光纤光缆特性》等建议提出修订文稿,2003年1月20日至31日在日内瓦召开的会议上,通过了G.652和G.655的修订文稿,G.650、G.653、G.654修订文稿将在今年10月和2004年5月通过。
此外,该研究组又起草了一个新建议G.656《宽带光传输用非零色散单模光纤和光缆特性》(Characteristics of a fibre and cable with non-zero dispersion for wideband optical transport),该建议将在今年10月通过。
本文主要介绍ITU-T光纤光缆特性建议最新研究进展情况,重点介绍G.652和G.655的修订内容。
一、ITU-T建议G.652(2003-01)1、G.652光纤的类别G.652类型光纤由2000年版本的三个类别进一步分为了G.652A G.652B、G.652C、G.652D四个类别,增加了G.652D。
主要根据光纤支持的应用对PMD的要求和1383nm衰减的要求区分。
G.652A光纤主要支持ITU-T G.957规定的SDH传输系统、G.691规定的带光放大的单通道直到STM-16的SDH传输系统,和对于G.693应用的直到40km的10Gbit/s以太网系统及STM-256。
光纤标准的介绍
最小零色散波长 λаMIN, nm
1300
1300
1300
最大零色散波长 λаMAX, nm
1324
1324
1324
零色散波长最大 斜率 SаMAX, PS/ (NM2KM)
0.093
0.093
0.093
未成缆光纤 PMD系 数, ps/√㎞
见注2
见注2
见注2
光缆属性 1310nm衰减系数最 大值,dB/km Yyyynm(见注3)衰减 系数最大值、dB/km (1383±3)nm衰减系 数最大值、dB/km 1550nm衰减系数最 大值,dB/km 1625nm衰减系数最 大值,dB/km 16XXnm(XX≤25cm) 衰减系数最大值, dB/km 1310nm(见注5)— 1625nm衰减系数最 大值,dB/km 见注4 见注4 0.4 不规定 不规定
表4 差分群时延
最大PMDQ (ps/√㎞) 不规定 400 0.5 40 2 0.20 0.01 3000 80 >4000 400 25.0 19.0 7.5 19.0 7.0 12.0 5.0 链路长度 (㎞) 包含光纤引进最 大DGD(ps) 通道速率 Upto2.5Gbit/s 10 Gbit/s 10 Gbit/s (Ethernet) 40 Gbit/s 10 Gbit/s 40 Gbit/s 10 Gbit/s 40 Gbit/s
光纤和光缆特性标准的介绍
汤博阳
2008、5
前言
光缆物理网络是通信网最基础的传送承载设施,遍布于长途 骨干网、城域网到接入网等所有的网络层次;光纤是光缆的核心 材料,是传输信息的基础物质,其技术指标的优劣决定了光缆网 的可靠性,直接影响整个通信网的运行质量。 作为通信行业的从业人员,有必要对光纤、光缆的技术指标 有一个了解,以便结合使用场合、系统容量、传输距离,恰当的 选择光纤的类型,以达到提高网络质量,节约建设成本,支撑业 务发展的目标,确保投资效益最大化。 本文根据ITU-T光纤光缆特性建议最新研究进展情况,对光 纤的种类做介绍,其中重点介绍G .652和G .655型光纤的内容。
g.654.e光纤 标准
g.654.e光纤标准G.654.E光纤是ITU-T(国际电信联盟电传输标准部门)的推荐标准,它可以用于高速光纤通信和光缆的制造。
这种光纤的主要特点是排除了色散效应,这使得它在高速光信号传输时具有很高的信号保真度。
在这篇文章中,我们将详细介绍G.654.E光纤的特性和应用场景。
G.654.E光纤的特性G.654.E光纤的主要特点是其色散特性,也称为调制色散限制(CD)。
CD是指由于信号的调制而引起的传播时间延迟,这是光纤中信号传输的一个关键因素。
过高的CD会对高速数据传输造成很大的干扰,因为信号会逐渐变形而扭曲,这会导致错误的解码和丢失的数据。
G.654.E光纤通过降低CD来提高传输速度和可靠性。
此光纤有三个关键指标,即切割波长、零色散点和CD参数。
1. 切割波长切割波长是指在该波长下,G.654.E光纤的CD参数为0。
在这种情况下,信号的传输速度非常快,因为没有时间延迟。
然而,这并不意味着在其他波长下该光纤不起作用。
它仍然可以传输数据,只是传输速度有所降低。
2. 零色散点零色散点是指光纤中存在的一个特定波长,在这个波长下,该光纤的CD为零。
这个波长在各个光纤之间可能是不同的,但一般来说,G.654.E光纤的零色散点在1550nm附近。
当数据以这个波长传输时,信号的保真度比其他波长高,因为CD为零。
3. CD参数G.654.E光纤的CD参数比其他类型的光纤低,这意味着它在高速数据传输时具有更高的信号保真度。
它的CD参数通常在0.02ps/nm.km以下,比G.652.D光纤低得多,后者的CD参数在0.08ps/nm.km左右。
这意味着在同样的传输距离和波长下,G.654.E光纤可以传输更高速的数据,同时保持更好的信号质量。
G.654.E光纤适用于几乎所有的光缆应用,尤其是在需要高速数据传输和长距离传输的情况下。
1. 长距离光缆G.654.E光纤适用于长距离光缆的制造,这种光缆可以传输高速数据,例如视频和音频流,同时保持信号的高质量。