数控机床主轴
数控机床主轴设计
数控机床主轴设计
一、概述
1.数控机床主轴是机床加工过程中的核心部件,其质量直接影响到机
床的精度和生产效率。
数控机床主轴设计的主要任务是解决加工件的加工
精度、表面质量和生产效率等要求的技术问题。
2.数控机床主轴设计工作需要满足性能、结构、重量、尺寸、动力、
控制、安装等方面的要求,其中最重要的是性能和结构要求。
二、主轴结构设计
1.针对不同的加工工艺的要求,数控机床主轴设计的结构形式有很多,常见的有研磨轴、多段轴、悬臂式轴等。
2.研磨轴是机床主轴的基本结构,一般用于精超磨削,其结构特点为
研磨轴有较长的平稳运行区段,其强度高,通常采用梃形连接,耐磨性能好,是目前机床常用的轴形式。
3.多段轴是指主轴有多段,每段之间有齿轮连接,它可以满足不同加
工工艺的需求。
4.悬臂式轴是指主轴的两端分别有悬臂,是一种自转和轴向振动均有
良好平衡的结构形式,是用于精铣、拉床等加工工艺的主轴形式。
三、主轴性能设计
1.主轴的动力要求是指主轴所需的动力。
主要有机械动力、电动机动
力和气动动力等形式,根据不同的加工工艺要求,采用不同动力形式实现,其中机械动力是最常用的动力形式。
数控机床常用的主传动的机械结构
数控机床的主轴部件一般包括主轴、主轴轴承和传动件等。
对于加工中心,主轴部件还包括刀具自动夹紧装置、主轴准停装置和主轴孔的切屑消除装置。
1.主轴轴承的配置形式数控机床主轴轴承主要有以下几种配置形式:(1)前支承采用双列短圆柱滚子轴承和60度角接触双列向心推力球轴承,后支承采用向心推力球轴承,如图2-30(a)所示。
(2)前支承采用高精度双列向心推力球轴承,如图2-30(b)所示。
(3)前支承采用双列圆锥滚子轴承,后支承采用单列圆锥滚子轴承,如图2-30(c)所示。
在主轴的结构上必须处理好卡盘或刀具的安装、主轴的卸荷、主轴轴承的定位、间隙调整、主轴部件的润滑和密封等问题。
对于某些立式数控加工中心,还必须处理好主轴部件的平衡问题。
2.主轴的自动装夹和切屑消除装置在加工中心上,为了实现刀具在主轴上的自动装卸,其主轴必须设计有自动夹紧机构。
例如自动换刀数控立式镗铣床(JCS-018)的主轴部件如图2-31所示。
3.主轴准停装置加工中心的主轴部件上设有准停装置,其作用是使主轴每次都准确地停在固定不变的周向位置上,以保证自动换刀时主轴上的端面键能对准刀柄上的键槽,同时使每次装刀时刀柄与主轴的相对位置不变,提高刀具的重复安装精度,从而可提高孔加工时孔径的一致性。
另外,一些特殊工艺要求,如在通过前壁小孔镗内壁的同轴大孔,或进行反倒角等加工时,也要求主轴实现准停,使刀尖停在一个固定的方位上,以便主轴偏移一定尺寸后,使大刀刃能通过前壁小孔进入箱体内对大孔进行镗削。
目前,主轴准停装置很多,主要分为机械式和电气式两种。
JCS-018加工中心采用电气准停装置,其原理见图2-32。
在带动主轴旋转的多楔带轮1的端面上装有一个厚垫片4,垫片上装有一个体积很小的永久磁铁3,在主轴箱箱体的对应于主轴准停的位置上,装有磁传感器2。
当机床需要停车换刀时,数控装置发出主轴停转的指令,主轴电动机立即降速,在主轴以最低转速慢转几圈、永久磁铁3对准磁传感器2时,磁传感器发出准停信号,该信号经放大后,由定向电路控制主轴电动机停在规定的周向位置上。
数控机床结构-数控机床的主轴部件
数控机床结构-数控机床的主轴部件主轴部件主轴部件是数控机床的最关键部件,它对零件加工质量有着直接的影响。
主轴部件包括主轴的支承、安装在主轴上的传动零件等。
数控机床的主轴部件要求有高的精度、刚度和热稳定性,还应满足数控机床所特有的结构要求。
如对于自动换刀的数控机床,为了实现刀具在主轴上的自动装卸与夹持,还必须有刀具的自动夹紧装置、主轴准停装置和主轴孔的清理装置等结构。
1.主轴部件的运动方式主轴部件按运动方式可分为以下几类:(1)只做旋转运动的主轴组件这类主轴组件结构较为简单,如车床、铣床和磨床等主轴组件属于这一类(2)既有旋转运动又有轴向进给运动的主轴组件如钻床和镗床等的主轴组件。
其中主轴组件与轴承装在套筒内。
主轴在套筒内做旋转主运动,套筒在主轴箱的导向孔内做直线进给运动。
(3)既有旋转运动又有轴向调整移动的主轴组件属于这一类的主轴组件有滚齿机、部分立式铣床等的主轴组件。
主轴在套筒内做旋转运动,并可根据需要随主轴套筒一起做轴向调整移动。
主轴组件工作时,用其中的夹紧装置将主轴套筒夹紧在主轴箱内,提高主轴部件的刚度。
(4)既有旋转运动又有径向进给运动的主轴部件属于这一类的有卧式镗床的平旋盘主轴部件和组合机床的镗孔车端面头主轴部件。
主轴做旋转运动时,装在数控机床结构主轴前端平旋盘上的径向滑块可带动刀具做径向进给运动。
(5)主轴做旋转运动又做行星运动的主轴部件新式内圆磨床砂轮主轴部件的工作原理如图3.2所示,砂轮主轴l在支撑套2的偏心孔内做旋转主运动。
支承套2安装在套筒4内。
套筒4的轴线与工件被加工孔轴线重合,当套筒4由蜗杆6经蜗轮W传动,在箱体3中缓慢地旋转时,带动套筒及砂轮主轴做行星运动,即圆周进给运动。
通过传动支承套2来调整主轴与套筒4的偏心距e,实现横向进给。
2.主轴主轴是主轴部件中的关键零件。
它的结构尺寸和形状、制造精度、材料及热处理等对主轴部件的工作性能有很大的影响。
主轴结构随主轴系统设计要求的不同而有多种形式。
数控机床的主轴速度调节方法
数控机床的主轴速度调节方法数控机床是现代制造业中广泛应用的一种重要设备,其高精度、高效率的加工能力使得生产过程更加灵活和精确。
而数控机床的主轴速度调节方法在其中起着至关重要的作用。
主轴是数控机床中负责转动刀具的部件,主轴速度调节方法主要用于控制主轴的转速,以满足不同加工需求下的工作要求。
下面将详细介绍一些常见的数控机床主轴速度调节方法。
1. 机械变速法:机械变速法是一种通过机械装置改变传动比以调节主轴转速的方法。
常见的机械变速装置有齿轮传动、皮带传动和变压器传动等。
通过调整齿轮或皮带的组合方式,可以实现主轴的多种转速选择。
机械变速法的优点是结构简单、可靠性高,但调速范围相对较窄。
2. 变频调速法:变频调速法是通过改变电机的供电频率来控制主轴转速的方法。
通过控制变频器输出的电源频率,可实现主轴转速的连续调节。
变频调速法具有调速范围广、精度高、响应速度快等优点,适用于各种不同工况下的加工需求。
3. 数字调速法:数字调速法是利用数控系统通过控制主轴电机的电流或电压来精确控制主轴转速的方法。
数控系统通过传感器对主轴的转速进行实时监测,并通过闭环控制方式对主轴电机的电流或电压进行调整,从而实现精准的主轴转速控制。
数字调速法具有调速精度高、可靠性好、适应性强等优点,适用于对加工精度要求较高的场合。
4. 智能调速法:智能调速法是一种结合人工智能技术的主轴速度调节方法。
通过对加工过程中的实时数据进行分析和处理,机床可以自动调整主轴转速以达到最佳加工效果。
智能调速法具有自适应性强、能够根据工件材料、加工情况等因素进行动态调整的优点,适用于复杂的加工过程。
在应用各种主轴速度调节方法时,还需考虑到以下几点:1. 加工要求:根据不同的加工要求选择合适的主轴转速调节方法。
如对于高速电镀加工,要求主轴转速稳定且高速,可以选择数字调速法;而对于高精度加工,要求主轴的转速精度较高,可以选择智能调速法。
2. 加工材料:对于不同的加工材料,需要选择适当的主轴转速以保证加工效果。
数控机床主轴系统工作原理
数控机床主轴系统工作原理
数控机床主轴系统是数控机床中的核心部件之一,它起到传动功率、转速调节
和位置控制的重要作用。
主轴系统由主轴、主轴驱动装置、主轴轴承和主轴控制系统等组成。
下面将介绍数控机床主轴系统的工作原理。
主轴是数控机床主轴系统的核心部件,它负责传递功率和转速调节。
主轴通常
由电机驱动,通过传动装置将驱动力传递给工件。
主轴采用精密的轴承支撑,并能够承受较大的径向和轴向载荷。
主轴的转速可以根据加工要求进行调节。
主轴驱动装置负责将电机的输出转矩传递给主轴。
通常使用的主轴驱动装置包
括皮带驱动和齿轮传动。
皮带驱动采用皮带传递转矩,具有结构简单、噪音低的优点,适用于低速加工。
而齿轮传动则采用齿轮组将转矩传递给主轴,具有承载能力强、传递效率高的特点,适用于高速加工。
主轴轴承起到支承主轴的作用,保证主轴的稳定运转。
主轴轴承通常使用滚动
轴承,如角接触球轴承和圆柱滚子轴承。
这些轴承具有高速运转和较高刚度的特点,能够满足高速加工的需求。
主轴控制系统是数控机床主轴系统的关键部分,它能够对主轴的转速进行控制。
主轴控制系统通常通过变频器或伺服控制系统来实现转速调节。
变频器能够通过控制电机的供电频率来调节主轴的转速,精度较低。
而伺服控制系统则通过控制电机的转矩来调节主轴的转速,具有较高的控制精度。
总之,数控机床主轴系统是数控机床的重要组成部分,它能够实现工件的传动、转速调节和位置控制。
主轴系统的工作原理包括主轴、主轴驱动装置、主轴轴承和主轴控制系统的协同工作,确保数控机床的高效加工。
数控机床主轴常见的故障分析
数控机床主轴常见的故障分析数控机床主轴驱动系统包括主轴驱动装置、主轴电机、主轴位置检测装置、传动机构及主轴。
主轴是数控机床重要的部件之一,发生故障的几率也相对较大。
1、主轴不转变频主轴要转动,必须满足三个方面条件,一是确保数控系统到变频器再到主轴电动机之间的接线正确;二是数控系统要有正转或反转信号和0~10V的SVC模拟电压输出到变频器侧;三是变频器的参数必须调整正确。
遇到主轴不转的情况可以用逐一排除的方法,检查系统是否有上述两个信号输出,如果确认是系统五该信号输出,但不能确认是系统有故障,这时应检查数控系统和主轴控制相关的参数,例如档位控制和变频器的控制方式选择参数是否正确。
如果数控系统信号输出正常,就需检查变频器,先测量变频器的输入电压是否正常,一般应为380V 输入,然后检查变频器的参数,再看控制方式是否正确,接着检查参数是否设置为0~10V直流电压控制转速。
一般来说,经过上述步骤可检查出所以参数和线路问题,即使不能当场修好,也能把故障锁定在某一部件或某一块电路板甚至某一个元件,为维修提供必要的条件。
2、只有正转或只有反转如果主轴只能正转或只能反转,主轴转速正常,可以说明模拟电压输出正常。
应先检查系统有没有控制正反转的M3或M4信号输入到变频器,如果有的话就证明系统侧正常,接下来加粗变频器相关的参数是否设置正确,例如艾莫默生EV2000变频器的F3.00参数是防反转选择,应将其设置为0,即允许反转。
如果变频器参数设置正确,就有可能是变频器硬件故障,需要更换硬件。
3、主轴一转即停下来这种情况应先检查数控系统的主轴是否设置为点动运行,其次是系统的M功能是否设置为脉冲信号(非保持信号)。
确定上述设置均正确后,接下来需要检查变频器是否设置为点动,要着重检查和控制方式相关的参数是否设置正确。
4、转速和实际不符主轴实际转速和编程转速不一致,一般可以在数控系统的参数里调整,只要把最高转速的每分钟转数输入到系统对应的档位即可,编程转速比实际大的时候,应该把该参数调小一点,反之调大。
数控机床主轴的几种结构形式
数控机床主轴的几种结构形式
作者: 日期:
n
数控机床的主轴部件包括主轴、主轴的支承轴承和安装在主轴上的传动零件等。
主轴部件是机床的重要部件,其结构的先进性已成为衡量机床水平的标志之一。
由于数控机床的转速高、功率大,并且在加工过程中不进行人工调整,因此要求主轴部件具有良好的回转精度、结构刚度、抗振性、热稳定性、耐磨性和精度的保持性。
对于具有自动换刀装置的数控机床,为了实现刀具在主轴上的自动装卸和夹紧,还必须有刀具的自动夹紧装置、主轴准停装置等。
机床主轴的端部一般用于安装刀具、夹持工件或夹具。
在结构上,应能保证定位准确、安装可靠、连接牢固、装卸方便,并能传递足够的扭矩。
目前,主轴端部的结构形状都已标准化,图i所示为几种机床上通用的结构形式。
(a)数控车床主轴端部(b)铣、镗类机床主轴端部(c)外圆磨床砂轮主轴端部
(d)内圆磨床砂轮主轴端部(e)钻床与普通镗床锤杆端部(f)数控镗床主轴端部
图1机床主轴的几种结构形式。
数控机床主轴结构
材料优化
结构形状优化
轴承配置优化
选用高性能材料,如合 金钢、陶瓷等,提高主
轴的刚度和耐磨性。
通过改变主轴的形状和 尺寸,优化其刚度和质 量分布,提高动态性能。
合理选择和配置轴承, 提高主轴的旋转精度和
稳定性。
冷却与润滑优化
改进冷却和润滑系统, 降低主轴温升和摩擦磨
损,提高使用寿命。
案例分析:某型号数控机床主轴设计
发展历程及现状
发展历程
随着数控技术的不断发展,主轴结构 经历了从简单到复杂、从低速到高速 、从低精度到高精度的演变过程。
现状
目前,数控机床主轴结构已经实现了 高速化、高精度化、高刚性化、高可 靠性化等目标,满足了现代制造业对 高效率、高质量加工的需求。
市场需求与应用前景
市场需求
随着制造业的快速发展,数控机床主轴的市场需求不断增长。特别是在汽车、 航空航天、模具等高端制造领域,对高精度、高效率的主轴需求尤为迫切。
维护效果
经过维护后,数控机床主轴的发热和振动问题得到了有效解决,主轴运 转恢复正常。此次维护不仅提高了设备的稳定性和加工精度,也延长了 设备的使用寿命。
06 主轴结构发展趋势与展望
技术创新方向
高速、高精度主轴技术
通过优化主轴结构、提高制造精度和采用先进的控制策略,实现 主轴的高速、高精度运转,满足高端数控机床的加工需求。
致。
主轴振动
可能是主轴动平衡不良、轴承磨 损或主轴电机故障等原因引起。
主轴转速不稳定
可能是主轴电机故障、电源电压 不稳定或控制系统故障等原因造
成。
维护保养方法与建议
定期检查主轴轴承预紧力, 确保其在合适范围内。
定期检查主轴动平衡,如 有必要,进行动平衡调整。
数控机床主轴正转与反转介绍
数控机床主轴正转与反转介绍
数控机床的主轴是机床上最重要的部件之一,它负责驱动刀具进行切削加工。
主轴的正转和反转是指主轴旋转的方向。
正转是指主轴以设定的转速顺时针方向旋转,这种情况下,刀具将对工件进行切削加工。
在正转过程中,刀具会从工件的一侧移动到另一侧,同时产生切削力,使得工件材料被去除。
反转则是指主轴以设定的转速逆时针方向旋转,这种情况下,刀具同样可以对工件进行切削加工。
与正转相比,反转通常用于特殊情况下的切削需求,例如某些特殊材料的加工,或者需要逆向切削的工艺。
在数控机床中,通过控制系统中的指令,可以实现主轴的正转和反转。
操作人员可以根据具体的加工需求和切削条件,选择合适的主轴旋转方向。
需要注意的是,在实际操作中,主轴正转和反转的具体参数(如转速、进给量等)需要根据加工任务和工件材料进行合理的设置,以确保加工质量和效率。
数控机床主轴部件结构
数控机床主轴部件结构1.主轴箱体:主轴箱体是主轴部件的主要支撑部分,通常由铸铁或钢板焊接而成。
其主要功能是支撑主轴轴承和主轴电机,并提供刚性和稳定的工作环境。
主轴箱体通常有进给箱和冷却箱两个部分,进给箱用于传送动力和转矩到主轴,而冷却箱则用于散热和冷却主轴。
2.主轴轴承:主轴轴承用于支撑和定位主轴,使其能够高速旋转并承受工作负载。
根据不同的需求,主轴轴承可以分为滚动轴承和滑动轴承两种类型。
滚动轴承主要有角接触球轴承、圆锥滚子轴承和球面滚子轴承等;滑动轴承则有液体静压轴承和磁浮轴承等。
主轴轴承通常由高速钢或陶瓷制成,以提供低摩擦和高刚度的特性。
3.主轴电机:主轴电机用于提供主轴的驱动力和转矩。
根据不同的需求和机床类型,主轴电机可以采用交流电机、直流电机或伺服电机等。
交流电机通常具有较好的响应性和调速性能,而直流电机则提供更高的转矩和速度范围。
伺服电机则结合了交流电机和伺服控制系统,可实现更精确的位置和速度控制。
4.主轴夹头:主轴夹头用于夹持工件或刀具,使其与主轴保持刚性连接。
主轴夹头通常有机械夹头和液压夹头两种类型。
机械夹头通过螺纹、卡盘或夹具等机械结构实现夹紧,适用于一般的加工需求。
液压夹头则通过液压系统提供更高的夹紧力和精确的夹紧位置,适用于高精度加工和重负载切削。
除了以上主要部件,数控机床主轴还可能包括冷却系统、振动补偿系统、联轴器等。
冷却系统用于降低主轴温度,保证加工质量和主轴寿命;振动补偿系统用于抑制主轴振动,提高加工质量和效率;联轴器用于连接主轴电机和主轴轴承,传递动力和转矩。
总之,数控机床主轴部件结构的设计旨在实现稳定高速、高精度的加工要求。
不同的机床和加工需求可能会有不同的主轴结构和配置,但其核心目标都是提供高效的驱动力和承载能力,以满足工业生产的要求。
数控机床结构-数控机床的主轴轴承
数控机床结构-数控机床的主轴轴承主轴轴承(1)主轴部件常用滚动轴承的类型①锥孔双列圆柱滚子轴承如图3.4(a)所示是锥孔双列圆柱滚子轴承,内圈为1:12的锥孔。
当内圈沿锥形轴颈轴向移动时,内圈胀大以调整滚道的间隙。
滚子数目多,两列滚子交错排列,因而承载能力大,刚性好,允许转速高,它的内、外圈均较薄,因此,要求主轴轴颈与箱体孔均有较高的制造精度,以免轴颈与箱体孔的形状误差使轴承滚道发生畸变而影响主轴的旋转精度。
该轴承只能承受径向载荷。
图3.4 主轴常用的滚动轴承②双列推力角接触球轴承如图3.4(b)所示是双列推力角接触球轴承,接触角为60°,球径小,数目多,能承受双向轴向载荷。
磨薄中间隔套,可以调整间隙或预紧,轴向刚度较高,允许转速高。
该轴承一般与双列圆柱滚子轴承配套用作主轴的前支承,并将其外圈外径做成负偏差,保证只承受轴向载荷。
③双列圆锥滚子轴承如图3.4(c)所示是双列圆锥滚子轴承,它有一个公用外圈和两个内圈,由外圈的凸肩在箱体上进行轴向定位,箱体孔可以镗成通孔。
磨薄中间隔套可以调整间隙或预紧,两列滚子的数目相差一个,能使振动频率不一致,明显改善了轴承的动态性。
这种轴承能同时承受径向和轴向载荷,通常用作主轴的前支承。
④带凸肩的双列圆柱滚子轴承如图3.4(d)所示是带凸肩的双列圆柱滚子轴承,结构上与图3.4(c)相似,可用作主轴前支承。
滚子做成空心的,保持架为整体结构,充满滚子之间的间隙,润滑油由空心滚子端面流向挡边摩擦处,可有效地进行润滑和冷却。
空心滚子承受冲击载荷是可产生微小变形,能增大接触面积并有吸振和缓冲作用。
滚动轴承的精度有E级(高级)、D级(精密级)、C级(特精级)和B级(超精级)4种等级。
前支承的轴承精度一般比后支承的轴承精度高一个等级。
一般数控机床前支承通常采用C、D级轴承,后支承则常采用D、E级轴承。
特高精度的数控机床前后支承均用B级精度轴承。
(2)主轴滚动轴承的配置合理配置轴承可以提高主轴精度、降低温升和简化支承结构。
数控机床主轴系统工作原理
数控机床主轴系统工作原理数控机床主轴系统是数控机床的核心部件之一,其工作原理是整个数控加工过程中的关键环节。
主轴系统的工作原理涉及到机床主轴的转动、传动方式、速度调节、加工精度控制等多个方面。
下面将详细介绍数控机床主轴系统的工作原理。
一、主轴的转动方式数控机床主轴一般采用电机驱动,其转动方式主要包括直流电机驱动、交流电机驱动和伺服电机驱动。
直流电机驱动主轴工作原理是通过直流电机产生磁场,通过电磁感应产生转矩来驱动主轴转动;交流电机驱动主轴则通过变频器调节电机的频率和电流,控制电机的转速,从而驱动主轴转动;伺服电机驱动主轴则是通过对电机进行闭环控制,实现高精度、高速度的转动。
二、主轴传动方式主轴传动方式主要包括皮带传动、齿轮传动和直联传动。
皮带传动简单、便于调节,但传动效率较低;齿轮传动传动效率高,但噪音大;直联传动是直接将电机轴与主轴连接,传动效率高,但需要考虑刚性和平衡性。
三、主轴速度调节数控机床主轴的速度调节是通过电机的转速和传动方式来实现的。
对于直流电机和交流电机,可以通过调节电机的输入电流和频率来控制转速;而对于伺服电机,则可以通过伺服控制系统实现对主轴速度的精确控制。
四、加工精度控制在数控机床主轴系统中,加工精度的控制是至关重要的。
主轴系统的动态特性、转动平稳性及轴向和径向刚度等参数都会直接影响到加工的精度。
在主轴系统设计中,需要考虑轴承选型、润滑方式、主轴动平衡、温升控制等因素,以确保加工精度的稳定性和精度。
五、主轴保护系统为了确保主轴系统的安全运行,常常需要配置主轴保护系统,例如过载保护、温升保护、振动监测等。
这些保护系统可以及时发现主轴系统的异常情况,并采取相应的保护措施,以避免主轴系统受损或加工质量受影响。
数控机床主轴系统的工作原理涉及到电机驱动、传动方式、速度调节、加工精度控制和保护系统等多个方面。
在数控加工中,主轴系统的稳定性和精度将直接影响到加工质量和效率,因此对主轴系统的设计和调试需要十分重视。
数控机床主轴常见故障及故障分析和解决方法
数控机床主轴常见故障及故障分析和解决方法1.主轴噪音过大主轴噪音过大是主轴故障中比较常见的一种情况,可能是由于以下原因引起。
(1)轴承损坏:主轴的轴承由于长时间使用、润滑不良或配合尺寸过紧等原因,使得轴承损坏,进而引起噪音。
(2)圆整度不好:主轴内的精密配合面被磨损或磨削不均匀,导致轴承的跳动和摩擦,从而产生噪音。
(3)主轴安装不牢固:主轴与机床床身连接的螺纹松动或损坏,也会造成主轴噪音。
解决方法:(1)更换轴承:定期检查轴承的磨损情况,及时更换损坏的轴承。
(2)重新磨削:将主轴内精密配合面重新磨削,保证光洁度和配合尺寸的精确性。
(3)检查螺纹连接:定期检查主轴与机床床身连接的螺纹线程,如有松动或损坏,及时修复或更换。
2.主轴过热或过冷主轴过热或过冷都会影响机床的正常工作,可能是由以下原因引起。
(1)润滑不良:主轴润滑系统的润滑油不足或质量不合格,无法有效降低主轴的温度。
(2)冷却系统故障:冷却系统中的水箱、水泵、冷却管道等因故障导致无法正常工作,无法及时散热。
(3)进给速度过快:加工时进给速度过快,使得主轴负荷过大,从而产生过热现象。
解决方法:(1)检查润滑系统:确保润滑油的供给符合要求,及时更换润滑油。
(2)检查冷却系统:定期检查冷却系统的水泵、水管等是否正常工作,确保冷却系统正常运行。
(3)调整进给速度:根据加工要求和主轴的负荷情况,合理调整主轴进给速度,控制主轴温度在合理范围内。
3.主轴振动过大主轴振动过大会影响加工精度和表面质量,可能是由以下原因引起。
(1)主轴不平衡:主轴内部刀具或零件分布不均衡,使得主轴在高速旋转时产生不平衡力。
(2)轴承磨损:主轴的轴承由于长时间使用、润滑不良或配合尺寸过紧等原因,轴承磨损导致振动。
(3)主轴与机床床身连接不牢固:主轴与机床床身连接的螺纹松动或配合尺寸不合适会造成振动。
解决方法:(1)动平衡调整:定期对主轴进行动平衡调整,使得主轴内的刀具或零件均匀分布,减小振动。
数控机床的主轴精度与刚度检测方法
数控机床的主轴精度与刚度检测方法随着工业技术的不断发展,数控机床在现代制造业中扮演着重要的角色。
而数控机床的主轴精度与刚度则是影响加工质量和效率的关键因素之一。
本文将介绍数控机床主轴精度与刚度的检测方法。
一、主轴精度检测方法1. 几何误差测量法几何误差是指数控机床主轴在运动过程中由于各种因素引起的误差,包括圆度误差、直线度误差、角度误差等。
几何误差测量法是通过使用测量仪器对主轴进行测量,得出误差值,从而评估主轴的精度。
2. 振动分析法振动分析法是通过对主轴振动信号进行分析,得出主轴的振动情况,从而判断主轴的精度。
常用的振动分析仪器有加速度计、振动传感器等。
3. 磨损检测法主轴磨损是主轴精度下降的主要原因之一。
通过使用显微镜等仪器观察主轴表面的磨损情况,可以评估主轴的精度。
二、主轴刚度检测方法1. 弯曲刚度测量法弯曲刚度是指主轴在受到外力作用时的变形情况,是主轴刚度的一个重要指标。
通过在主轴上施加一定的力,测量主轴的变形情况,可以评估主轴的刚度。
2. 阻尼比测量法阻尼比是指主轴在受到外界扰动时,恢复稳定状态所需要的时间。
通过对主轴进行扰动,并测量主轴的振动衰减情况,可以评估主轴的刚度。
3. 频率响应法频率响应法是通过施加不同频率的激励信号,测量主轴的振动响应情况,从而得出主轴的刚度。
常用的频率响应仪器有激光干涉仪、频谱分析仪等。
总结:数控机床的主轴精度与刚度是影响加工质量和效率的重要因素。
准确评估主轴的精度与刚度,对于提高加工质量和效率具有重要意义。
本文介绍了几种常用的主轴精度与刚度检测方法,包括几何误差测量法、振动分析法、磨损检测法、弯曲刚度测量法、阻尼比测量法和频率响应法。
这些方法可以帮助制造商和用户评估主轴的性能,并采取相应的措施进行调整和改进。
通过不断提高数控机床主轴的精度与刚度,可以提高加工质量和效率,推动制造业的发展。
数控机床主轴系统工作原理
数控机床主轴系统工作原理数控机床主轴系统是数控机床的核心部件之一,它承担着驱动、传动和加工的重要功能。
主轴系统的工作原理涉及到多种技术和原理,包括机械传动、电气控制、传感器反馈等多方面的知识。
下面将详细介绍数控机床主轴系统的工作原理。
一、数控机床主轴系统的构成数控机床主轴系统通常包括主轴、主轴驱动装置、主轴轴承、主轴传动装置、主轴控制装置等部件。
主轴是数控机床进行加工的核心部件,主要承担着旋转刀具或工件在加工过程中的旋转动力传递和定位。
主轴驱动装置通常由电机、变速箱或变频器、联轴器等组成,用于提供主轴驱动所需要的动力和转速范围。
主轴轴承则负责支撑和定位主轴,承受加工过程中所产生的轴向和径向载荷。
主轴传动装置包括传动皮带、齿轮、传动轴等,用于将电机提供的动力传递给主轴。
主轴控制装置主要包括主轴的运行状态监测、转速控制、温度控制等功能。
二、数控机床主轴系统的工作原理1. 主轴的运行状态控制主轴的运行状态通常包括启动、停止、加速、减速、定速等几种状态。
数控机床的主轴系统通过控制电机的开关和转速,实现主轴的启动、停止和转速调节。
通过电气控制系统,可以实现对主轴启动和停止的控制,同时可以通过变频器实现对主轴转速的调节。
2. 主轴传动系统主轴传动系统通常采用齿轮传动、带传动或直接联轴的形式。
在齿轮传动系统中,通过齿轮的组合来实现主轴的转速变换;在带传动系统中,通过皮带的松紧程度来调节主轴的转速;在直接联轴系统中,主轴直接与电机通过联轴器连接,实现直接驱动。
3. 主轴轴承系统主轴轴承系统的设计对主轴的稳定性和精度有着重要的影响。
主轴轴承通常采用滚动轴承或滑动轴承,具有高刚性、高转速和高精度的特点。
为了保证主轴在工作过程中的稳定性和耐磨性,通常会对主轴轴承进行润滑和冷却。
4. 主轴的位置控制在数控机床加工过程中,对于主轴的位置控制至关重要。
通过编程、传感器反馈等方式,可以实现对主轴位置的准确定位和控制。
传感器可以用来检测主轴的转速、角度等参数,并将这些参数反馈给数控系统,从而实现对主轴位置的实时监控和控制。
数控机床主轴部件认知
定位预紧是一种保证对置轴承在使用中 不改变轴向相对位置的预紧方法。在使 用中预紧力会发生变化,但轴承相对位 置不变。
定压预紧是一种利用螺旋弹簧、蝶形 弹簧等对轴承施加预紧的方法。在使 用中即使轴承相对位置发生变化,预 紧力也可大致保持不变
三、主轴零部件
2. 主轴结构(数控车床)
1,6,8—螺母; 2—同步带; 3,16—同步带轮; 4—脉冲编码器; 5,12,13,17—螺钉; 7—主轴; 9—箱体; 10—角接触球轴承; 11,14—圆柱滚子轴承;15—带轮
主轴部件认知Leabharlann 一、主轴部件概述数控机床的主轴部件是主运动的执行部 件,它夹持刀具或工件,并带动其旋转,因 此应能传递切削转矩、承受切削抗力,并保 证必要的旋转精度。主轴部件包括主轴、主 轴前后支承、调整隔套、调整螺母、锁紧螺 母、主轴皮带轮等。
二、主传动系统的配置
1.主轴电动机直接驱动
2.电动机经同步齿形带传动主轴
三、主轴零部件
3. 主轴其它结构--主轴编码器
三、主轴零部件
3. 主轴其它结构--刀杆拉紧装置
图a所示为弹力卡爪结构,它有放大拉力的作用,可用较小的液压推力产生较大的拉紧力。 图b所示为钢球拉紧结构。
(a)
(b)
四、主轴的密封
1.非接触式密封
利用轴承盖与轴的间隙 密封用在工作环境比较 清洁的油脂润滑处
能使主轴获得较大的径 向和轴向刚度,满足机 床强力切削的要求,应 用于各类数控机床的主 轴。
提高了主轴的转速,适 合主轴要求在较高转速
下工作的数控机床
适用于中等精度、低速 与重载的数控机床主轴。
三、主轴零部件
➢ 轴承的预紧
在安装轴承时,预先使轴承产生内部应力,以便轴承在负游隙下使用,这种使用方法称为预 紧。常用的方法有定位预紧和定压预紧两种。
数控机床主轴结构与调整
主轴本身及其附件
1. 电主轴所融合的技术:高速轴承技术:电主轴通常采 用复合陶瓷轴承,耐磨耐热,寿命是传统轴承的几倍;有 时也采用电磁悬浮轴承或静压轴承,内外圈不接触,理论 上寿命无限:
2.
高速电机技术:电主轴是电动机与主轴融合在一起的 产物,电动机的转子即为主轴的旋转部分,理论上可以把 电主轴看作一台高速电动机。关键技术是高速度下的动平 衡;
数控机床主轴结构及调整
——主轴传动系统
一、数控车床主轴部件的结构与调整
• (1)主轴部件结构
CK7815型数控车床主轴部件结构如图所示,该主 轴工作转速范围为15-5 000 r/min。主轴9前端采用三个 角接触轴承12,通过前支承套14支套,由螺母11预紧。 后端采用圆柱滚子轴承15支承径向间隙由螺母3和螺母7 调整。螺母8和螺母10分别用来锁紧螺母7和螺母11,防 止螺母7和11的回松。带轮2直接安装在主轴9上(不卸荷 )。同步带轮1安装在主轴9后端支承与带轮之间,通过 同步带和安装在主轴脉冲发生器4轴上的另一同步带轮相 连,带动主轴脉冲发生器4和主轴同步运动。在主轴前端 ,安装有液压卡盘或其他夹具。
行程开关 液压缸 液压缸
压缩空气管 接头 行程开关 弹簧
碟形弹簧
拉杆
钢球
主轴 拉 件 的 结 构 与 功 能
同步带轮
主电机
同步带
同步带轮
主轴
加工中心主轴组件
加工中心主轴部件的结构如图所示,主轴前端有7:24的锥孔,用于 装 夹锥柄刀具。端面键13既作刀具定位用,又可通过它传递转矩。为了实 现刀具的自动装卸,主轴内设有刀具自动夹紧装置。从图中可以看出, 该机床是由拉紧机构拉紧锥柄刀夹尾端的轴颈来实现刀夹的定位及夹紧 的。 1、夹紧刀夹时,液压缸上腔接通回油,弹簧11推活塞6上移,处于图 示位置,拉杆4在碟形弹簧5的作用下向上移动。 2、装在拉杆前端径向孔中的4个钢球12进人主轴孔中直径较小的d2处被 迫径向收拢而卡进拉钉2的环形凹槽内,因而刀杆拉杆拉紧,依靠摩擦 力紧固在主轴上。 3、换刀前需将刀夹松开时,压力油进入液压缸上腔,活塞6推动拉杆4 向下移动,碟形弹簧被压缩; 4、当钢球12随拉杆一起下移至进人主轴孔中直径较大的d1,处时,它 就不再能约束拉钉的头部,紧接着拉杆前端内孔的台肩端面碰到拉钉, 把刀夹顶松,此时行程开关10发出信号,换刀机械手随即将刀夹取下。 5、压缩空气由管接头9经活塞和拉杆的中心通孔吹人主轴装刀孔内,把 切屑或脏物清除干净,以保证刀具的装夹精度。机械手把新刀装上主轴 后,液压缸7接通回油,碟形弹簧又拉紧刀夹。刀夹拉紧后,行程开关8 发出信号。
数控机床的主轴有哪些?
数控机床的主轴有哪些?主轴组件主轴部件由主轴、主轴支撑、传动部件和安装在主轴上的密封件组成。
在机床加工过程中,主轴驱动工件或刀具直接参与表面成形运动,因此主轴的精度、刚度和热变形对加工质量和生产效率有重要影响。
此外,这些影响更为重要,因为数控机床在加工过程中无法人工调整。
1、要求主轴部件(1)旋转精度高当主旋转时,线速为0的点的连接称为主轴的旋转中心线。
旋转中心线的空间位置应固定在理想情况下,称为理想旋转中心线。
事实上,由于主轴组件中各种因素的影响,旋转中心线的空间位置在同一时间发生变化,这些瞬时旋转中心线的平均空间位置称为瞬时旋转中心线。
与理想旋转中心线相比,瞬时旋转中心线的距离是主轴的旋转误差。
旋转误差的范围是主轴的旋转精度。
径向误差、角度误差和轴向误差很少分开。
(2)刚度大主轴部件的刚度是指主轴部件在受到外力作用时的抗变形能力。
主轴部件的刚度越大,受力后主轴的变形越小。
如果主轴部件的刚度不足,主轴在切削力和其他力的作用下会产生较大的弹性变形,这不仅会影响工件的加工质量,还会破坏齿轮和轴承的正面。
正常工作条件,加快磨损,降低精度。
主轴部件的刚度与主轴的结构尺寸、支撑跨度、所选轴承类型及其配置形式、轴承间隙的调整、主轴上传动部件的位置等有关。
抗振能力强(3)主轴组件的抗振能力是指切割时主轴保持稳定运行而不振动的能力。
如果主轴组件抗振能力差,工作时容易产生振动,不仅会降低加工质量,还会限制机床生产率的提高,降低刀具的耐久性。
为了提高主轴的抗振能力,必须提高主轴组件的静刚度。
因此,经常使用阻尼比较大的前轴承,必要时应安装阻尼器,使主轴组件的固有频率远大于激振能力的频率。
(4)温升低主轴组件运行中温升过高会造成两个不良结果:一是主轴组件和箱体因热膨胀而变形,主轴的旋转中心线与机床其他组件的相对位置发生变化,直接影响加工精度;二是轴承等部件会因温度过高而改变调整间隙,破坏正常润滑条件,影响轴承的正常运行,严重时甚至会出现“抱轴”现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六.机床参数设定—超同步驱动器参数设定
模拟量速度控制的相关参数
功能码 Bn01 名称 运转指令方式 0:使能+方向 1:正转/反转 0:双极性(-10V~+10V) 0:逆时针为正转 1:逆时针为反转 内容说明
Bn02 Bn05
模拟量方式选择 电机运转方向
六.机床参数设定—超同步驱动器参数设定
模拟量速度控制的相关参数
选型注意事项 按驱动器额定电流的 150%选型 按驱动器额定电流的 150%选型
备注
电磁接触器ຫໍສະໝຸດ 输入电抗器按驱动器额定电流的 100%选型
输入噪声滤波器
按驱动器额定电流的 150%选型 根据厂家提供的标准 选型 根据厂家提供的标准 选型
制动电阻
滤波磁环
六.机床参数设定—超同步驱动器参数设定
说明: 一级菜单包括8个菜单选项,分别是:Un菜单;An菜单;Bn菜单;Cn菜单;Dn菜单; Fn菜单;Pn菜单;Sn菜单。 二级菜单中,每组包含48个参数,其中Sn包括99个参数。
六.机床参数设定—超同步驱动器参数设定
主轴驱动器与周边期间连接示意图
(以下内容来源于北京超同步科技股份有限公司GS DRIVER使用说明书)
名称 空气断路器
用途 接通或切断驱动 器电源 用于驱动器上电 或故障时自动切 断电源 提高电网的功率 因数一直电源高 次谐波 抑制驱动器对电 源的干扰 消耗驱动器的再 生能量 抑制驱动器对外 的无线干扰及公 模干扰
功能码 Cn01 Cn02 Cn03 Cn10 Cn11 Cn17 名称 模拟量零点正向偏移 模拟量零点负向偏移 模拟量增益 最高输出速度 速度控制时的零漂设定 模拟量输入滤波时间常数 内容说明 用于调整模拟量相对 零点的对称性 用于调整模拟量相对 零点的对称性 调节模拟量偏差出现 的速度偏差 模拟量10V对应的主 轴电机转速 单极性时:零漂的转 速=Cn11xCn10/4092 设定范围 0~100 0~100 1-1500 1-~15000 0~100 5~10000