矢量网络分析仪基础知识与S参数测量
矢量网络分析仪的使用
矢量网络分析仪的使用一、实验目的1.初步掌握矢量网络分析仪的操作使用方法;2.掌握使用矢量网络分析仪测量微带传输线在不同滤波器下的s参数,幅值,相角(arg),损耗,驻波比;二、实验仪器射频微波与天线的接收装置,两根SMA线三、实验内容及步骤1.连接带通滤波器的滤波输入和矢量分析仪的DET端口,滤波输出和矢量分析仪的DUT端口,可通过显示屏观察S11反射系数和S21传输系数的特性参数。
2.利用鼠标点击device选择cmo3,此时可以通过图形上方S11下拉箭头处进行参数切换。
3.再次点击device选择sweep parameters设置频率范围和频点,带通滤波器频率范围为1500MHZ-3000MHZ,低通滤波器为200MHZ-3000MHZ,频点设为500。
4.点击左下角加号可显示图中频率对应的数值,拖动滑块可改变频率。
四、实验结果及分析1、低通滤波器相对电平(mag(s11))-11.3dB相位(arg)-11.3°模值(|z|)82Ω实部(z_re(s11))79.6Ω虚部(z_im(s11))-19.8Ω驻波比(swr(s11))1.742、高通滤波器相对电平(mag(s11))-12.2dB相位(arg)-22.4°模值(|z|)78.6Ω8实部(z_re(s11))77.2Ω虚部(z_im(s11))-15.1Ω驻波比(swr(s11))1.663、带通滤波器相对电平(mag(s11))-7.1dB相位(arg)-39.2°模值(|z|)96.7Ω实部(z_re(s11))79.2Ω虚部(z_im(s11))-55.1Ω驻波比(swr(s11))2.604、带阻滤波器相对电平(mag(s11))-6.6dB相位(arg)-4.3°模值(|z|)137.7Ω实部(z_re(s11))136.9Ω虚部(z_im(s11))-11.7Ω驻波比(swr(s11))2.765、带通滤波器LTCC相位(arg)-15°模值(|z|)58Ω实部(z_re(s11))40Ω虚部(z_im(s11))42Ω驻波比(swr(s11))2.6。
矢量网络分析仪的原理及测试方法
矢量网络分析仪在通信测试中的应用
1 2
S参数测量
矢量网络分析仪可以测量散射参数(S参数), 用于描述线性微波网络的反射和传输特性。
阻抗测量
通过测量S参数,可以进一步计算得到设备的阻 抗特性,包括输入阻抗、输出阻抗和特性阻抗等。
3
相位测量
矢量网络分析仪可以测量信号的相位信息,用于 分析信号的传播延迟和相位失真等。
PART 04
矢量网络分析仪在通信领 域的应用
通信系统中的传输线效应
传输线的分布参数特性
传输线具有电阻、电感、电容和电导等分布参数,这些参数会影响 信号的传输性能。
传输线的反射和传输
当信号在传输线上传播时,会遇到反射和传输两种现象,反射系数 和传输系数是描述这两种现象的重要参数。
传输线的阻抗匹配
连接测试设备
将矢量网络分析仪、测试电缆、连接器 等设备和配件按照测试要求连接好,确
保连接稳定可靠。
进行测试
启动矢量网络分析仪,按照设定的测 试参数进行测试,记录测试结果。
设置测试参数
根据测试目标和要求,设置矢量网络 分析仪的测试参数,如频率范围、扫 描点数、中频带宽等。
重复测试
根据需要,对同一测试对象进行多次 重复测试,以获得更准确的测试结果。
接收机对反射信号和传输信号进行幅 度和相位测量,并将测量结果送至处 理器。
DUT对入射信号进行反射和传输,反 射信号和传输信号分别被定向耦合器 接收并送至接收机。
处理器对测量结果进行数字信号处理, 提取幅度和相位信息,并根据需要进 行校准和误差修正,最终输出测试结 果。
关键性能指标解析
频率范围
矢量网络分析仪能够测量的频率范围, 通常覆盖多个频段,如微波、毫米波 等。
(2021年整理)矢量网络分析仪基础知识和S参数的测量..
矢量网络分析仪基础知识和S参数的测量..编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(矢量网络分析仪基础知识和S 参数的测量..)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为矢量网络分析仪基础知识和S参数的测量..的全部内容。
矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络.注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络习惯上又叫负载Z L。
因为只有一个端口,总是接在最后又称终端负载。
最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
·单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S11)更方便些。
2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。
·匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性.·传输系数与插损对于一个两端口网络除匹配特性(反射系数)外,还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。
插损(IL) = 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移.·两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足够,但对考究的场合会用到散射参量。
S参数定义,矢量网络分析仪基本知识和S参数测量
S参数定义、矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络习惯上又叫负载Z L。
因为只有一个口,总是接在最后又称终端负载。
最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
➢单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S11)更方便些。
2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。
➢匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
➢传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。
插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。
V2➢两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S11、S21、S12、S22。
S参数的基本定义:S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。
S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。
S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。
S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。
S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。
预案.方案—--s参数定义、矢量网络分析仪基础知识和s参数测量义讲全套
S 参数定义、矢量网络分析仪基础知识及S 参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络 习惯上又叫负载Z L 。
因为只有一个口,总是接在最后又称终端负载。
最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
单端口网络的电参数 通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S 11)更方便些。
2.两端口网络 最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。
匹配特性 两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
传输系数与插损 对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T 。
插损(IL ) = 20Log │T │dB ,一般为负值,但有时也不记负号,Φ即相移。
两端口的四个散射参量测量 两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S 11、S 21、S 12、S 22。
V2S参数的基本定义:S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。
S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。
S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。
S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。
S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。
s参数的测量方法
s参数的测量方法s参数测量方法引言:s参数是指散射参数(scattering parameters),也称为传输参数(transmission parameters),是用于描述电子元件或电子系统中信号传输和散射特性的重要参数。
s参数测量方法广泛应用于射频(RF)和微波领域。
本文将介绍s参数的测量方法,并详细阐述其中的步骤和注意事项。
一、仪器准备s参数的测量需要使用一些特定的仪器设备,包括信号源、功率计、频谱分析仪、网络分析仪等。
在进行测量前,需要确保仪器的状态良好,并校准好相关的参数。
此外,还需要准备适当的连接线缆和适配器,以确保信号的传输和连接的稳定性。
二、建立测量系统在进行s参数测量之前,需要建立一个稳定可靠的测量系统。
首先,将待测元件与其他设备正确连接,确保信号的顺利传输。
连接线缆的选择应根据待测元件的特性阻抗来确定,以确保信号的匹配。
然后,根据实际情况设置信号源的频率范围、功率级别等参数。
最后,进行系统校准,包括响应校准和参考面校准,以消除系统中的误差。
三、测量步骤1. 响应校准:在测量之前,需要进行响应校准,以消除系统中的响应误差。
首先,将测量端口连接到响应校准器,然后通过网络分析仪对系统进行校准。
校准过程中,网络分析仪会发送信号并测量返回的信号,根据测量结果自动调整校准器,直到系统响应达到最佳状态。
2. 参考面校准:参考面校准是为了确定待测元件的参考平面,以准确测量其s参数。
将待测元件连接到系统中,并将参考平面设置为待测元件的端口。
通过网络分析仪进行参考面校准,校准过程中会测量参考面上的反射系数,并根据测量结果进行调整。
3. s参数测量:在完成校准后,即可进行s参数的测量。
通过网络分析仪设置所需的频率范围和步进值,并选择合适的测量模式(如单端口或双端口)。
网络分析仪会发送信号并测量返回的信号,然后计算出s参数的值。
测量结果可以以图表或数据的形式显示出来,以供后续分析和处理。
四、测量注意事项1. 避免干扰:在进行s参数测量时,需要注意避免其他信号的干扰。
S参数定义矢量网络分析仪基础知识和S参数测量
S参数定义矢量网络分析仪基础知识和S参数测量S参数是描述线性电路的重要参数,用于描述电路的传输特性。
S参数测量是设计和分析微波电路的重要手段。
本文将介绍S参数的定义、矢量网络分析仪基础知识和S参数测量的方法。
1.S参数定义S参数,即散射参数(Scattering parameters),是描述电路的传输特性的一组参数。
在一个多端口网络中,每个端口都可以分别看作是一个发射端口和一个接收端口。
S参数描述了从发射端口射入电磁波与接收端口接收的电磁波之间的关系。
一个二端口网络的S参数通常用S11、S12、S21和S22来表示。
其中,S11表示从端口1发射的波经过网络后返回端口1的比例系数,S12表示从端口2发射的波经过网络后到达端口1的比例系数,S21表示从端口1发射的波经过网络后到达端口2的比例系数,S22表示从端口2发射的波经过网络后返回端口2的比例系数。
S参数是复数,可以用幅度和相位表示。
2.矢量网络分析仪基础知识矢量网络分析仪是用于测量和分析S参数的仪器。
它可以测量信号的幅度和相位,并绘制相应的频率响应曲线。
矢量网络分析仪通常由发射器、接收器、参考源、功率传感器和频率合成器等部分组成。
矢量网络分析仪通过提供一定频率范围内的连续信号,对待测电路的输入和输出进行测量,并计算出S参数。
在测量过程中,需要将待测电路与矢量网络分析仪连接,通过校准步骤来消除测试线路的误差,确保测量的准确性。
3.S参数测量方法S参数测量通常分为基于功率反射法和功率传输法两种方法。
基于功率反射法的S参数测量是通过测量待测网络的反射功率和传输功率来计算S参数。
该方法适用于测量反射系数较大的网络,如天线。
基于功率传输法的S参数测量是通过测量待测网络的输入功率和输出功率来计算S参数。
该方法适用于测量传输系数较大的网络,如放大器。
在进行S参数测量时,需要进行一系列的校准步骤来消除测试系统中的误差。
常见的校准方法包括短路校准、开路校准和负载校准等。
S参数定义矢量网络分析仪基础知识和S参数测量
S参数定义矢量网络分析仪基础知识和S参数测量S参数(Scattering parameters)是一种描述线性电路的频率响应的参数,常用于微波电路和高频电路的设计和分析。
S参数以复数形式表示,包括幅度和相位两个部分,可以描述信号在电路中的功率传递和反射情况。
S参数通常用Sij表示,其中i和j分别表示信号源和负载之间的端口编号。
S11表示输入端口处的反射系数,S22表示输出端口处的反射系数,S21表示从输入端口到输出端口的传输系数,S12表示从输出端口到输入端口的传输系数。
参数的值一般是一个复数,包括幅度和相位两个部分。
矢量网络分析仪基础知识:矢量网络分析仪(Vector Network Analyzer,简称VNA)是用于测量和分析电路的频率响应的仪器。
它能够通过发送和接收信号来测量电路的散射参数,并可以对信号进行幅度和相位的测量。
矢量网络分析仪有多个端口,其中一个端口连接信号源,其他端口用来连接待测电路。
通过在不同频率下测量电路的散射参数,可以得到电路的频率响应,从而了解电路的传输和反射情况。
S参数测量:S参数可以通过矢量网络分析仪来测量。
测量时,信号源会向待测电路的一个端口发送信号,而其他端口的信号会被矢量网络分析仪接收并测量。
具体的S参数测量步骤如下:1.连接待测电路和矢量网络分析仪,确保连接正确。
2.设置矢量网络分析仪的频率范围和步进大小。
3.将矢量网络分析仪设置为"测量模式",并选择要测量的S参数。
4.开始测量,矢量网络分析仪会依次在每个频率点上测量S参数的幅度和相位。
5.测量完成后,可以通过矢量网络分析仪显示屏上的图表或数据来查看测量结果。
也可以将测量结果导出进行进一步的分析和处理。
S参数测量可以帮助工程师了解电路在不同频率下的传输和反射情况,并用于电路的设计和优化。
在微波电路和高频电路的设计和分析中,S参数测量是一项重要的技术。
s参数测试方法
s参数测试方法摘要:1.引言2.S参数测试方法的原理3.S参数测试的步骤与注意事项4.S参数测试的应用领域5.总结正文:【引言】在电子电路设计和通信系统中,S参数是一个重要的性能参数,它反映了电路的输入输出特性。
S参数测试方法是评估电路性能的关键手段,通过对S 参数的测量,可以有效评估电路的频率响应、群延迟、相位差等性能指标。
本文将详细介绍S参数测试方法的原理、步骤、注意事项及应用领域。
【S参数测试方法的原理】S参数,全称为Scattering Parameters,是指在开放电路条件下,电路的输入端和输出端的电压、电流关系。
S参数共有四个,分别为S11、S21、S12和S22。
S参数测试方法的原理是基于网络分析仪进行测量,通过向电路输入端施加信号,检测输出端的信号变化,从而得到S参数。
【S参数测试的步骤与注意事项】1.步骤一:准备工作在进行S参数测试前,首先要确保测试仪器和被测电路的连接正确无误。
这包括连接网络分析仪、信号发生器、功率计等设备,并确保连接线的质量和稳定性。
2.步骤二:设置测试参数根据被测电路的性能要求,设置网络分析仪的测试频率范围、功率范围等参数。
同时,确保信号发生器的输出信号质量和稳定性。
3.步骤三:测量S参数启动网络分析仪,使其向被测电路输入信号,并开始测量。
在测量过程中,应注意实时监测信号强度、频率等方面的变化,以确保测试结果的准确性。
4.步骤四:数据处理与分析测量完成后,通过网络分析仪的数据处理软件,提取S参数数据。
然后对数据进行分析,评估电路的性能指标,如频率响应、群延迟、相位差等。
5.注意事项在进行S参数测试时,应注意以下几点:(1)确保连接线的质量和稳定性,避免测试误差;(2)测试环境应尽量远离电磁干扰源,以减小干扰;(3)被测电路的电源应稳定,避免电压波动影响测试结果;(4)测量过程中,避免触碰电路元件,以免影响性能。
【S参数测试的应用领域】S参数测试方法广泛应用于通信、雷达、电子对抗等领域,对于评估电路性能、故障诊断和系统优化具有重要意义。
矢量网络分析仪基础知识与S参数测量
矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络习惯上又叫负载ZL。
因为只有一个口,总是接在zui后又称终端负载。
zui常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
单端口网络的电参数通常用阻抗或导纳表示,在射频畴用反射系数Γ(回损、驻波比、S11)更方便些。
2.两端口网络 zui常见、zui简单的两端口网络就是一根两端装有连接器的射频电缆。
匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。
插损(IL) = 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。
两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S11、S21、S12、S22。
这里仅简单的(但不严格)带上一笔。
S11与网络输出端接上匹配负载后的输入反射系数Г相当。
注意:它是网络的失配,不是负载的失配。
负载不好测出的Γ,要经过修正才能得到S11 。
S21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传输系数T或插损,对放大器即增益。
上述两项是zui常用的。
S12即网络输出端对输入端的影响,对不可逆器件常称隔离度。
S22即由输出端向网络看的网络本身引入的反射系数。
中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。
预案.方案—--s参数定义、矢量网络分析仪基础知识和s参数测量义讲全套
S 参数定义、矢量网络分析仪基础知识及S 参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络 习惯上又叫负载Z L 。
因为只有一个口,总是接在最后又称终端负载。
最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
单端口网络的电参数 通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S 11)更方便些。
2.两端口网络 最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。
匹配特性 两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
传输系数与插损 对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T 。
插损(IL ) = 20Log │T │dB ,一般为负值,但有时也不记负号,Φ即相移。
两端口的四个散射参量测量 两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S 11、S 21、S 12、S 22。
V2S参数的基本定义:S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。
S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。
S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。
S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。
S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。
S参数定义、矢量网络分析仪基础知识和S参数测量
S 参数定义、矢量网络分析仪基础知识及S 参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络 习惯上又叫负载Z L 。
因为只有一个口,总是接在最后又称终端负载。
最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
单端口网络的电参数 通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S 11)更方便些。
2.两端口网络 最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。
匹配特性 两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
传输系数与插损 对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T 。
插损(IL ) = 20Log │T │dB ,一般为负值,但有时也不记负号,Φ即相移。
两端口的四个散射参量测量 两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S 11、S 21、S 12、S 22。
V2S参数的基本定义:S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。
S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。
S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。
S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。
S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。
矢量网络分析仪基础
ADC / DSP
33
内容
S参数网络 传输线理论 线形和非线性 网络分析仪的内部结构 校准 时域
34
校准:内容
误差分析及其修正 校准方法 不定量计算
35
校准:随机误差
随时间变化不可预见因此不可校准 • 仪器内的噪声、开关重复性 • 测试电缆和接头的重复性 • 环境温度漂移变化 • 频率和相位的漂移变化
S11A S11M
S11A
S11M = ED + ERT
校准:全双端口12项矢量误差校准
• 有全部12个误差修正项
正向误差模型
Port 1 EX Port 2
S 21
a 1
ED
b1
ES
A
E TT
b2
S 11
A
S 22
A
EL
反向误差模型
Port 1 Port 2 E RT' S
a 1 b
21
E RT
P1 dB 实际放大器 饱和 噪声底 输入功率
24
DR
Class AB Class A
线性和非线性: 1dB 压缩点测试方法
• • • 频率扫描增益压缩测量 功率扫描增益压缩测量
– 单频率点 – 多频率点
增益压缩测量精度讨论:
– 功率测量是绝对测量,不是相对测量 – 没有进行矢量校准 – 源和负载匹配误差没有校准
增益 (dB 或 V) 插入损耗 (dB 或 V) 插入相位 (度) 实部和虚部(R+jI) 电长度 (m) 电延迟 (s) 线性相位的偏移 (度) 群延迟 (s)
7
S 参数网络:二端口网络S参数– 反射
• • • • •
矢量网络分析仪的原理及测试方法[专业知识]
入射波 (Ein)
Ein
傳輸波 (Etr)
Eref
器件网絡电路
反射波 (Eref) Etr
行业相关
3
网絡分析仪原理
(Ex.:Network Analyzer with5Hz to 500MHz)
输入功能块 (×n 通道)
处理器功能块
Sampler
820kHz B.P.F
20kHz L.P.F AMP
!st local synthesizer
VCO PLL module
Isolator
Coupler
Chip multi-layer Hybrid coupler
Power AMP
GaAs FET GaAs MMIC
Tx circuit spacer filter
Dielectric filter Chip multi-layer LC filter
傳輸特性: 用直通標准器連接並做直通短路校正.
行业相关
13
Advantest 网絡分析仪的應用範圍
應用 元器件
通信
車用电子
IT 設备
VHA N/A RF NA
游戲机
TV/DVD
晶体諧振器 晶体濾波器 陶瓷振盪器
陶瓷濾波器
SAW 濾波器
介貭濾波器
行业相关
14
蜂巢式手机的电路框图与使用的主要元器件
ANT
10nW 1st time
100nW 2nd times
行业相关
100µW X times
20
濾波器測量的一鍵應用功能
濾波器測量
測量項目
Spurious level
Constant loss
(完整版)矢量网络分析仪
矢量网络分析仪知识一、概述(一)用途矢量网络分析仪是微波毫米波测试仪器领域中最为重要、应用最为广泛的一种高精度智能化测试仪器,在业界享有“微波/毫米波测试仪器之王”的美誉,主要用于被测网络散射参量双向S参数的幅频、相频及群时延等特性信息的测量,广泛应用于以相控阵雷达为代表的新一代军用电子装备研制、生产、维修和计量等领域,还可以应用于精确制导、隐身及反隐身、航空航天、卫星通信、雷达侦测和监视、教学实验以及天线与RCS测试、元器件测试、材料测试等诸多领域。
(二)分类与特点矢量网络分析仪可以分为分体式矢量网络分析仪、一体化矢量网络分析仪、高性能矢量网络分析仪、脉冲矢量网络分析仪、毫米波矢量网络分析仪、多端口矢量网络分析仪、非线性矢量网络分析仪、便携式矢量网络分析仪、矢量网络分析仪模块(目前只有VXI总线形式)等类型产品。
●分体式矢量网络分析仪特点采用积木式结构,以主机、信号源、S参数测试装置、控制机等独立设备系统集成,配置灵活,技术指标较高,系列化产品工作频段覆盖45MHz~170GHz,但体积庞大、连接复杂、对操作要求高,已逐渐被一体化、高性能矢量网络分析仪替代。
●一体化矢量网络分析仪特点采用集成式结构,将信号源、S参数测试装置、幅相接收机等集成在一个机箱内,体积小、测试方便,代表着矢量网络分析仪体系结构的发展方向。
早期的一体化矢量网络分析仪工作频率主要为20GHz以内,目前正向高性能的新一代产品线全面过渡。
●高性能矢量网络分析仪特点采用基于多处理器的嵌入式计算机平台、基于模块化的多级倍频稳幅和宽带混频接收架构以及基于Windows操作系统的多线程实时测量软件平台,操作方便,扩展灵活,技术指标较之以往产品有质的提升,工作频段覆盖300kHz~67GHz,突破基于平台式体系架构设计的自主产品发展理论,代表着矢量网络分析仪的主要发展方向。
●脉冲矢量网络分析仪特点以微波脉冲调制信号作为激励信号,在继承连续波矢量网络分析仪宽频带、高精度和高速测量特点的基础上,能够在实时测量状态下获得被测电子元器件和电子装备在脉冲调制激励信号状态下的幅频、相频和群时延特性信息,满足新体制军用电子装备的测试需求,目前可实现100ns脉冲窄带信号测量,工作频率上限可达40GHz。
S参数测量
单端口网络S 参数的测量摘 要:一般地,对于一个网络有Y 、Z 和S 参数可用来测量和分析,Y 称为导纳参数,Z 称为阻抗参数,S 称为散射参数;前两个参数主要用于集总电路,Z 和Y 参数对于集总参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM 波电压、电流非常困难,而且在微波频率测量电压和电流也存在实际困难。
因此S 参数较Z 、Y 参数更加容易测量,具有直观的物理意义,便于测量,误差也能方便的用信流图来表达和求解,故S 参数是微波网络中应用最多的一种主要参量。
首先分析了理想情况下单端口网络S 参数的测量方法,然后在实际器件的网络参数测试中,采用了一定的测试技术进行误差修正,得到了器件性能指标的精确测试结果。
关键词:S 参数;单端口网络;误差修正;定向耦合器;检波器一、S 参数分析微波系统主要研究信号和能量两大问题:信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输。
微波系统是分布参数电路,必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。
微波网络法被广泛运用于微波系统的分析,是一种等效电路法,在分析场分布的基础上,用路的方法将微波元件等效为电抗或电阻器件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络,把场的问题转化为路的问题来解决。
微波网络理论是在低频网络理论的基础上发展起来的,低频电路分析是微波电路分析的一个特殊情况。
一般地,对于一个网络有Y 、Z 和S 参数可用来测量和分析,Y 称为导纳参数,Z 称为阻抗参数,S 称为散射参数;前两个参数主要用于集总电路,Z 和Y 参数对于集总参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM 波电压、电流非常困难,而且在微波频率测量电压和电流也存在实际困难。
因此,在处理高频网络时,等效电压和电流以及有关的阻抗和导纳参数变得较抽象。
与直接测量入射、反射及传输波概念更加一致的表示是散射参数,即S 参数矩阵,它更适合于分布参数电路。
矢量网络分析仪基础知识及S参数测量
矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络习惯上又叫负载ZL。
因为只有一个口,总是接在zui后又称终端负载。
zui常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
单端口网络的电参数通常用阻抗或导纳表示,在射频畴用反射系数Γ(回损、驻波比、S11)更方便些。
2.两端口网络 zui常见、zui简单的两端口网络就是一根两端装有连接器的射频电缆。
匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。
插损(IL) = 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。
两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S11、S21、S12、S22。
这里仅简单的(但不严格)带上一笔。
S11与网络输出端接上匹配负载后的输入反射系数Г相当。
注意:它是网络的失配,不是负载的失配。
负载不好测出的Γ,要经过修正才能得到S11 。
S21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传输系数T或插损,对放大器即增益。
上述两项是zui常用的。
S12即网络输出端对输入端的影响,对不可逆器件常称隔离度。
S22即由输出端向网络看的网络本身引入的反射系数。
中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。
矢量网络分析仪介绍
矢量网络分析仪介绍矢量网络分析仪(Vector Network Analyzer,VNA)是现代无线通信领域中不可或缺的测试设备之一,用来测量网络中各个点之间的复数反射系数、传输系数、延迟等特征参数。
它的应用场景非常广泛,包括电磁兼容性测试,毫米波通信测试,天线设计优化,信号测量分析,信号灵敏度研究等。
矢量网络分析仪一般是由频率源,微波信号传输和接收件,数据处理与显示设备组成。
通过矢量网络分析仪可以获得电路中各个测试端口的传输参数,包括S参数,即散射参数。
S参数是指有源器件或无源器件中存在的散射系数,包括反射系数(S11,S22)和传输系数(S21,S12)两种。
反射系数和传输系数是矢量网络分析仪的明星参数,因为它们能够完整地描述某个端口的性能,并可以用它们来计算其他参数,如误差系数、电功率、噪声系数等。
S11反射系数表征能量从端口1反射回同一端口1的程度,S22反射系数则是表征能量从端口2反射回同一端口2的程度。
而S21传输系数则反映了从端口1到端口2的传输效率,S12则反映了从端口2到端口1的传输效率。
除了S参数,矢量网络分析仪还可以进行时域仿真,即测量电路中不同信号随时间的变化情况。
矢量网络分析仪还可以进行功率扫描测试,测试器件的故障情况。
除了传统的基础测试外,矢量网络分析仪还有一些应用领域的拓展。
电磁兼容性测试:电磁兼容性是指不同设备之间共享和保护电磁环境的能力。
矢量网络分析仪可以用于电磁兼容性测试中,测量不同设备之间的干扰和抗干扰能力。
毫米波通信测试:毫米波通信是5G通信的关键技术之一,用于实现高速数据传输。
矢量网络分析仪可以在毫米波波段进行测试,测量毫米波通信信号的传输和反射特性。
天线设计优化:天线是无线通信领域中的关键组件之一,它的性能直接影响到通信质量。
矢量网络分析仪可以测量不同天线设计的反射系数、辐射模式和带宽等特征参数,来实现天线设计的优化。
信号测量分析:在实际应用场景中,矢量网络分析仪可以用于测量和分析信号的特性,如时域特性、频域特性、噪声特性等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络习惯上又叫负载ZL。
因为只有一个口,总是接在zui后又称终端负载。
zui常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
单端口网络的电参数通常用阻抗或导纳表示,在射频畴用反射系数Γ(回损、驻波比、S11)更方便些。
2.两端口网络 zui常见、zui简单的两端口网络就是一根两端装有连接器的射频电缆。
匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。
插损(IL) = 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。
两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S11、S21、S12、S22。
这里仅简单的(但不严格)带上一笔。
S11与网络输出端接上匹配负载后的输入反射系数Г相当。
注意:它是网络的失配,不是负载的失配。
负载不好测出的Γ,要经过修正才能得到S11 。
S21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传输系数T或插损,对放大器即增益。
上述两项是zui常用的。
S12即网络输出端对输入端的影响,对不可逆器件常称隔离度。
S22即由输出端向网络看的网络本身引入的反射系数。
中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。
1.2 传输线传输射频信号的线缆泛称传输线。
常用的有两种:双线与同轴线,频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本特性都可由传输线公式所表征。
特性阻抗Z0 它是一种由结构尺寸决定的电参数,对于同轴线:式中εr为相对介电系数,D为同轴线外导体径,d为导体外径。
反射系数、返回损失、驻波比这三个参数采用了不同术语来描述匹配特性,人们希望传输线上只有入射电压, 没有反射电压, 这时线上各处电压一样高,只是相位不同,而实际上反射总是存在的, 这就需要定义一个参数。
•式中ZL为负载阻抗, Z0为同轴线的特性阻抗。
由于反射系数永远≤1, 而且在甚高频以上频段手边容易得到的校准装置为衰减器,所以有人用返回损失(回损)R.L.来描述反射系数的幅度特性,并且将负号扔掉。
••••回损 R.L. = 20Log│ΓdB 当|Г|<< 1时,ρ= 1 + 2│Γ│(1.6)如A,B两个规格的天线,若只在标网上选择,肯定选B而不要A,而在矢网上看,A比B有潜力得多,加个电容就比B好了。
这种情况是大量存在的,在全波振子对测试中就是这种情况。
因此,在调试中首先要将天线阻抗调集中(在圆图上成团)。
举例来看,反射网与振子高度调节就有这种情况,折合振子单边加粗也有这种情况,然后再采取措施(如并电容,串电感,调短路片位置,改平衡器导体等)使其匹配。
而且经常不是使中频处于圆图中心,而是使整个频带处于中心某一小圆,即牺牲一下中频性能,来换取总带宽。
阻抗圆图上适于作串联运算,若要作并联运算时,就要转成导纳;在圆图上这非常容易,某一点的反对称点即其导纳。
请记住当时的状态,作阻抗运算时图上即阻抗,当要找某点的导纳值时,可由该点的矢徑转180°即得;此时圆图所示值即全部成导纳。
状态不能记错,否则出错。
记住,只在一个圆图上转阻抗与导纳,千万不要再引入一个导纳圆图,那除了把你弄昏外,别无任何好处。
另外还请记住一点,不管它是负载端还是源端,只要我们向里面看,它就是负载端。
永远按离开负载方向为正转圆图,不要用源端作参考,否则又要把人弄昏。
圆图作为输入阻抗特性的表征,用作简单的单节匹配计算是非常有用的,非常直观,把复杂的运算用简单的形象表现出来,概念清楚。
但对于多节级连的场合,还是编程由计算机优化来得方便。
传输线的传输参数同上面两端口网络,不再重复。
1.3 有关仪器的几个术语·网络分析仪能测单或两端口网络的各种参数的仪器, 称网络分析仪。
只能测网络各种参数的幅值特性者称为标量网络分析仪,简称标网。
既能测幅值又能测相位者称为矢量网络分析仪,简称矢网,矢网能用史密斯圆图显示测试数据。
·连接电缆一根两端装有连接器的射频电缆叫连接电缆(也有称跳线的),反射特小的连接电缆称测试电缆。
·反射电桥为了测得反射系数,需要一种带有方向性(或定向性)并保持相位信息的器件,如定向耦合器或反射电桥,本仪器采用的是反射电桥,它的输出正比于反射系数。
其原理与惠司顿电桥完全相同,只不过结构尺寸改小适于高频连接,并且不再想法调平衡,而是直接取出误差电压而已。
反射电桥一般只能测同轴线等单端馈线系统。
·差分电桥能测双线馈线系统的反射电桥称差分电桥。
·谐杂波抑制能力一般国产扫频源的谐杂波在-20dB左右,甚至杂散波只有-15dB,进口扫频源好的也就在-30dB多一些,外差式接收机对谐杂波的抑制能力皆在40dB以上,不会出现什么问题。
而对于宽带检波低放的扫频仪与标网,不外接滤波器对寄生谐杂波是没有抑制能力的,有时就会出现下面几种问题:滤波器带外抑制会被测小,天线驻波会被测大,窄带天线增益会测低。
·动态围仪器设置到测插损,将一根好的短电缆的一头接到输出口,另一头接到与屏幕显示相对应的输入口上,按执行键进行校直通后,拔掉电缆后仪器显示的数值即动态围,应≥70dB。
·对插损的广义理解隔离度不该通而通了的插损称隔离度或防卫度。
方向图天线对一固定信号在不同方向的插损称方向图。
§2 传输线的测量2.1 同轴线缆的测量一.测电缆回损1.待测电缆末端接上阴负载(或阳负载加双阴),测其入端回损,应满足规定要求。
假如是全频段测试的话,那一般是低端约在30-40分贝左右,随着频率增高到3GHz,一般只能在20dB左右。
假如全频段能在30dB以上此电缆可作测试电缆,一般情况下尤其是3GHz附近是很难作到30dB的,能作到26dB就不错了。
2.回损测试曲线呈现周期性起伏,而平均值单调上升,起伏周期满足⊿F=150/L,式中L为电缆的电长度(米),⊿F单位为MHz,则此电缆属常规正常现象,主要反射来自两端连接器处的反射;若低端就不好,甚至低频差高频好,或起伏数少,则电缆本身质量不好。
3.回损测试曲线中某一频点回损明显低于左右频点呈一谐振峰状,此时出现了电缆谐振现象。
只要不在使用频率可以不去管它,这是电缆制造中周期性的偏差引起的周期性反射在某一频点下叠加的结果,我们只能先避开它。
这种现象在1998年我们买的SYV-50-3电缆中多次碰到,回损只有10-14dB,粗的电缆倒不常见此情况,用户只有自己保护自己,选择质量好的才买。
4.在测回损中出现超差现象时,可按下面提到时域故障定位检查加以确诊,以便采取相应措施。
二.测电缆插损(也称测衰减)1.替代法在使用要求频段下,用插损档通过两个10dB衰减器用双阳校直通,校后用电缆代替双阳接入两衰减器之间即得插损曲线,此法为zui常用的方法。
2.回损法测插损在仪器经过开短路校正后,接上待测电缆,测末端开路时的回损,回损除2即得插损,此法的优点在于不会出现插损为正的矛盾,特别适合于已架设好的长的粗馈管首尾相距较远的场合。
3.非正常情况检测电缆时zui好用全频段测试,插损由小到大应是一单调平滑曲线,并且插损在标准规定以,小有起伏也不要紧,那是反射叠加引起的。
但若有某一频点附近显著高于左右频点(插损增大)呈一下陷曲线状,说明此电缆有问题。
多数是连接器外皮压接不良所造成,返工后重测。
少数是电缆本身形成的,那么此电缆只能隔离待查,停止使用。
连接器外皮显著接触不良,可用下面提到的电缆屏蔽性能检查方法加以确诊。
三.同时测插损与回损可按说明书4.7节进行双参量测量。
双参量测量精度不如单参量高,若无必要,以采用单参量为宜。
四.同轴电缆电长度的测量1.引言在射频围,经常采用同轴电缆对各个功能块、器件或振子单元进行连接(即馈电),除了要求插损小、匹配好之外,常常还对引入的相移提出要求。
一般只要求相对相移,譬如同相天线阵或功率组合单位等。
它们要求每根电缆一样长,而收发开关或阻抗变换场合则会提出长度为λ/4的要求,而U形环平衡器又会提出长度为λ/2的要求,这就出现了如何测电缆电长度的问题。
在不加支持片的同轴线段中,同轴线段的机械长度(或几何长度)与电长度是一致的,在有支持片或充填介质的情况下两者是不同的,机械长度与电长度之比为波速比(也有称缩波系数,或缩短系数),一般在0.66到1之间,电长度显得长些,而实际机械长度显得短些。
实际上要求的是电长度,矢网正好能测电长度。
2.测反射相位定电缆电长度当电缆末端开路时,在其输入端测其反射的相位是容易的,由于反射很强测试精度也较高。
当然末端短路也是可行的,但不如开路时修剪长度来得方便,因此常在末端开路的情况下进行测试。
ⅰ、λ/4电缆的获得·仪器设定在要求的使用频率下点频工作,在测回损状态下校开路与短路。
·接上待测电缆(末端开路),若电缆正好为λ/4时,相位读数应在1800附近。
若Φ<1800则说明电缆偏长,反之则偏短。
·此法也适于测λ/4奇数倍的电缆,致于是3λ/4还是λ/4,点频下是分不清的。
ⅱ、λ/2电缆的获得·同前(即在点频测回损状态下校开路与短路)。
·接上待测电缆(末端开路),若正好为λ/2则测试相位值应在00附近,若Φ在00以上(*象限),则电缆偏短,若在3600以下(第四象限),则偏长。
·此法也适于λ/2整倍数的电缆,至于是λ还是λ/2,在点频下是分不清的。
ⅲ、与参考电缆比相对长度·同前(即在点频测回损状态下,校开路与短路)。
·接上参考电缆(也称标准电缆),记下相位读数Φ0。
·接上待测电缆,若读数Φ=Φ0则说明两电缆等长,不等则相差为Φ-Φ0,注意仪器相位为ling先值,读数越大越ling先,Φ大于Φ0则偏短,反之则偏长。
ⅳ、几点说明·ⅰ、ⅱ两种,由于是在λ/4与λ/2特殊情况下进行的,与电缆特性阻抗无关,而第ⅲ种测试精度与特性阻抗有关,只有相同特性阻抗的电缆比较才有意义,否则出错。