平移旋转与对称试题及答案

合集下载

五年级上册数学试题 - 第二单元 图形的平移、旋转与对称 测试卷 - 西师大版(含答案)

五年级上册数学试题 - 第二单元 图形的平移、旋转与对称 测试卷 - 西师大版(含答案)

五年级上册数学试题-第二单元图形的平移、旋转与对称测试卷-西师大版(含答案)一.选择题(共6题,共16分)1.下列运动属于旋转现象的是()。

A. B. C.2.下列各组图形,只通过平移或旋转,不能形成长方形的是()。

A. B. C. D.3.如图,可以通过平移变换但不能通过旋转变换得到的图案有();可以通过旋转变换但不能通过平移变换得到的图案有();既可通过平移变换,又可通过旋转变换得到的图案有()。

A. B. C. D.4.下面这幅图中小旗从左上方到右下方是()的结果。

A.旋转B.平移C.对称5.如何将○移动到△的位置,下面方法()是正确的。

A.将○向上移动4格,再向右移动3格。

B.将○向上移动3格,再向右移动3格。

C.将○向右移动4格,再向上移动3格。

6.下图的图案,()既可以通过平移得到,又可以通过旋转得到。

A. B. C.二.判断题(共6题,共12分)1.图形旋转有三个关键要素,一是旋转的中心点,二是旋转的方向,三是旋转的度数。

()2.一个图形距离对称轴3厘米,那么它的轴对称图形距离对称轴也是3厘米。

()3.一棵小树被扶种好,这棵小树一定绕树脚逆时针方向旋转了90度。

()4.拧瓶盖的动作是旋转。

()5.一个平行四边形绕一点逆时针旋转了90°,这个平行四边形的位置发生了改变,形状和大小也发生了改变。

()6.一个图形经过旋转后,它的大小、形状都没有改变,只有方向发生了改变。

()三.填空题(共6题,共19分)1.图A如何变换得到图B?将图A以O点为中心逆时针旋转()°后,向()平移()格得到图B。

2.图形旋转有三个关键要素,一是旋转的________,二是旋转的________,三是旋转的________。

3.如图,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是();(2)旋转角度是()(3)△ADP是()三角形。

4.在溜冰时,人的前行是()现象,溜冰鞋底下的轮子运动是()现象。

图形的平移,对称与旋转的经典测试题附答案

图形的平移,对称与旋转的经典测试题附答案
即点 的坐标为
∵点A向右平移 个单位,向下平移6个单位得到点
∴ 的坐标为 .
故选:D.
【点睛】
本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.
16.观察下列图形,其中既是轴对称又是中心对称图形的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
∴在Rt∆A′】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
2.如图,在 中, , , ,将 绕一逆时针方向旋转 得到 ,点 经过的路径为弧 ,则图中阴影部分的面积为( )
A. B. C. D.
【答案】D
D、能够通过平移得到,故符合题意,
故选D.
【点睛】
本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.
6.如图,在平面直角坐标系中, 的顶点 在第一象限,点 在 轴的正半轴上, , ,将 绕点 逆时针旋转 ,点 的对应点 的坐标是()
A. B. C. D.
【答案】D
【详解】
由旋转的性质可知, ,
∵ , ,
∴ 为等边三角形,
∴ ,
∴ ,
故选:A.
【点睛】
此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB
19.下列图形中,既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题1.下列运动中,是平移的是()A.开门时,门的移动B.走路时手臂的摆动C.移动电脑的鼠标时,显示屏上鼠标指针的移动D.移动书的某一页时,这一页上的某个图形的移动【答案】C.【解析】根据平移的定义,对题中给出的选项进行分析,选择正确答案:A.开门时,门的移动,属于旋转现象;B.走路时手臂的摆动,属于旋转现象;C.移动电脑的鼠标时,显示屏上鼠标指针的移动,属于平移现象;D.移动书的某一页时,这一页上的某个图形的移动,属于旋转现象.故选C.【考点】生活中的平移现象.2.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形.【答案】6、3【解析】因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形3.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等【答案】D【解析】因为全等三角形对应边上的高、对应边上的中线、对应角的平分线相等,A、B、C项没有“对应”,所以错误,而D项有“对应”,D是正确的.故选D.4.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.【答案】2,4,有2.【解析】与三角形1成轴对称图形是三角形2与三角形4,对称轴有2条.【考点】轴对称的性质.5.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.7.小亮在镜中看到身后墙上的时钟如图,你认为实际时间最接近八点的是()【答案】D.【解析】根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.【考点】镜面对称.8.在以下四个图形中,对称轴条数最多的一个图形是()A. B. C. D.【答案】B【解析】由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.轴对称图形的定义是图形按照某条直线对折后,图形重合,这条直线叫做图形的对称轴,由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.【考点】对称轴.9.如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1).(1)在图中作出关于轴对称的.(2)写出点的坐标.A1 _________ B1________ C1________.【答案】(1)详见解析;(2)【解析】已知三点坐标,根据在平面直角坐标系中,关于轴对称的点的坐标特点直接确定出的坐标,然后连线即可.试题解析:解:(1)如图,即为所求关于轴对称的图形.考点:画轴对称图形.10.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析11.如图,在正方形网格中每个小正方形的边长都是单位长度1,△的顶点都在格点上,且△与△关于点成中心对称.(1)在网格图中标出对称中心点的位置;(2)画出将△沿水平方向向右平移5个单位后的△.【答案】【解析】(1)连CF、BE后,所得交点即为O点(2)将A、B、C点各平移5个单位后,所得到的3个新的点互相连接,所得到的的图形即为所求图形【考点】图形的对称与平移点评:题目难度不大,学生可以通过多做此类题得出12.下列现象属于图形平移的是()A.轮船在大海上航行B.飞速转动的电风扇C.钟摆的摆动D.迎面而来的汽车【答案】D【解析】平移的定义:把一个图形沿一定的方向移动一定的距离叫做图形的平移,简称平移. A、轮船在大海上航行,B、飞速转动的电风扇,C、钟摆的摆动,均不属于平移;D、迎面而来的汽车,符合平移的定义,本选项正确.【考点】平移的定义点评:本题属于基础应用题,只需学生熟练掌握平移的定义,即可完成.13.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A.75°B.60°C.45°D.15°【答案】B【解析】旋转角的定义:旋转对应边的夹角是旋转角。

2023年苏教版四年级数学下册第一单元平移、旋转和轴对称测试卷含答案

2023年苏教版四年级数学下册第一单元平移、旋转和轴对称测试卷含答案

《平移、旋转和轴对称》学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题(共10分)1.(本题1分)平移所给图形可得()。

A.B.C.D.2.(本题1分)下面图形中,对称轴条数最多的是()。

A.B.C.D.3.(本题1分)街心花园的花圃进行了园艺造型设计(如下图),涂色部分种植月季花,其余部分种植郁金香,从示意图中可以看出种植月季花的面积是整个花圃的()。

A.13B.无法确定C.14D.124.(本题1分)钟表上时针指向2,分针指向12,3小时后,时针旋转了()°。

A.30B.90C.120D.1505.(本题1分)再画一个小正方形,使下图成为轴对称图形,共有()种不同的画法。

A.2B.3C.4D.56.(本题1分)下图都是常见的安全标记,其中()是轴对称图形。

A.B.C.D.7.(本题1分)从6:00到9:00,时针旋转了()度。

A.90°B.180°C.360°D.120°8.(本题1分)下列图形中,()是轴对称图形。

A.B.C.D.9.(本题1分)如图,在图形中再给2个格子涂上颜色,使整个图形成为一个轴对称图形。

有()种不同的涂法。

A.6B.7C.8D.910.(本题1分)这是一个电风扇开关,数字表示风速档。

现在风扇在“1”档运行,如果要关闭,可将旋钮()。

A.按顺时针方向旋转90°B.按顺时针方向旋转120°C.按逆时针方向旋转90°D.按逆时针方向旋转120°评卷人得分二、填空题(共10分)11.(本题1分)下面的图形是绕( )点按( )方向旋转的。

12.(本题1分)(1)图1笑脸平移后得到的图形是( );(2)图2小船平移后得到的图形是( )。

13.(本题1分)如图,指针从“12”出发,绕点O顺时针旋转( )°到“4”。

图形的平移,对称与旋转的经典测试题含答案

图形的平移,对称与旋转的经典测试题含答案
故选B.
【点睛】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
故选:D.
12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()
A. B. C. D.4
【答案】A
【解析】

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。

(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。

(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。

猜想:S1与S2有怎样的数量关系?并证明你的猜想。

【答案】(1) DF∥AC;(2) S1=S2.【解析】(1)根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;(2)过D点作DN⊥BC于N,AM⊥CE于M,先依据ASA求得△ACM≌△DCN求得AM=DN,然后根据等底等高的三角形面积相等.试题解析:(1)DF∥AC;解:如图②所示,∵∠ACB=90°,∠B=∠E=30°,∴∠A=∠CDE=60°,∵AC=DC,∴△ACD是等边三角形,∴∠ACD=60°=∠CDE,∴DF∥AC,∴∠CFD=90°,∠DCF=30°,∴DF=DC=AC;(2)猜想:S1=S2;证明:过D点作DN⊥BC于N,AM⊥CE于M,∵∠ECD=90°,∴∠DCM=90°∴∠DCN=90°-∠NCM,又∵∠ACM=90°-∠NCM,∴∠ACM=∠DCN,在△ACM与△DCN中∠ACM=∠DCNAC=CD∠AMC=∠DNC,∴△ACM≌△DCN(ASA),∴AM=DN,又∵CE=BC,∴BC•DN=CE•AM,即S1=S2.【考点】全等三角形的判定与性质;等边三角形的判定与性质.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B.【解析】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【考点】1.中心对称图形;2.轴对称图形.3.如图,在平面直角坐标系中,,,.(1)求出的面积.(2分)(2)在图中作出绕点B顺时针旋转90度得到的.(2分)(3)写出点的坐标.(2分)【答案】(1)S△ABC =7.5;(2)图形见解析;(3).【解析】(1)由A、B的坐标,易求得AB的长,以AB为底,C到AB的距离为高,即可求出△ABC的面积;(2)找出将△ABC绕点B顺时针旋转90°的三角形各顶点的对应点,然后顺次连接即可;(3)根据图形写出即可.试题解析:(1)根据题意,得:AB=5﹣0=5;∴S △ABC =AB•(|x C |﹣1)=×5×3=7.5;(2)如图:(3)根据图形可得:.【考点】作图-旋转变换.4. 下列图形中,是轴对称图形的有( ) 个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形A .2B .3C .4D .5【答案】C .【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,是轴对称图形的有①角;②线段;③等腰三角形;⑤圆4个. 故选C .【考点】轴对称图形.5. 如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是______________【答案】10.【解析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.试题解析:如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称,∴PB=PD , ∴PB+PE=PD+PE=DE . ∵BE=2,AE=3BE , ∴AE=6,AB=8,∴DE=.故PB+PE 的最小值是10.【考点】1.轴对称-最短路线问题;2.正方形的性质.6. 如图1,将矩形纸片沿虚线AB 按箭头方向向右对折, 再将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为( )【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.7.下列说法错误的是()A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形【答案】B.【解析】 A.两个关于某直线对称的图形是全等的,此说法正确;B.平面内两个全等的图形不一定关于某直线对称,此说法错误;C.轴对称图形的对称轴至少有一条,此说法正确;D.线段是轴对称图形,此说法正确.故选;B.【考点】轴对称的性质.8.正九边形绕它的旋转中心至少旋转°后才能与原图形重合.【答案】400.【解析】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与原来的图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.要与原来的正九边形重合.可用一个圆周角的度数(即360度)除以9,便可知道至少要旋转多少度才能和原来的九边形重合.因为3600÷9=400,故填400.【考点】旋转对称图形.9.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.10.如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.【答案】D【解析】根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.11.将△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形向x轴负方向平移了1个单位【答案】C【解析】根据题意可得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称.解:△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称,故选:C.点评:此题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).12.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由题意其中一定是轴对称图形的有(2)线段;(3)角;(4)圆;(5)正方形.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.13.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.14.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析15.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键16.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN 交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是( )A.10cmB. 20cmC. 在10cm和20cm之间D.不能确定【答案】B【解析】根据轴对称的性质可得ME=PE,NF=PF,再结合△PEF的周长即可求得结果.∵点M、N分别是点P关于直线OA、OB的对称点∴ME=PE,NF=PF∵△PEF的周长=PE+EF+PF=20cm∴ME+EF+NF=20cm,即MN=20cm故选B.【考点】轴对称的性质点评:本题属于基础应用题,只需学生熟练掌握轴对称的性质,即可完成.17.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于轴对称的.(2)写出点的坐标(直接写答案).A1 _____________,B1______________,C1______________【答案】(1)如图所示:(2)A1(1,-2),B1(3,-1),C1(-2,1)【解析】(1)分别作出的三个顶点关于轴对称的对称点,再顺序连接即可.(2)根据(1)中所作的图形即可作出判断.(1)如图所示:【考点】基本作图,点的坐标点评:解题的关键是熟练掌握轴对称变换的作图方法,正确找到关键点的对称点.18.(本题满分6分)如下图,直线L是一条河,A,B是两个村庄。

五年级数学对称平移和旋转试题

五年级数学对称平移和旋转试题

五年级数学对称平移和旋转试题1.长方形有条对称轴,圆有条对称轴.【答案】2;无数.【解析】在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,由此即可解答问题.解答:解:长方形有2条对称轴,圆有无数条对称轴.故答案为:2;无数.点评:解答此题的主要依据是:轴对称图形的意义及其特征.2.下面的图形中,对称轴数量最多的是()A.长方形 B.正方形 C.等腰三角形【答案】B【解析】据对称轴的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.依此作答.解答:解:长方形有2条对称轴,正方形有4条对称轴,等腰三角形有3条对称轴;故选:B.点评:本题主要考查了轴对称图形的对称轴的定义.同时要熟记一些常见图形的对称轴条数.3.一个图形沿着一条直线对折后,两边的部分能够,这个图形就是轴对称图形.【答案】完全重合.【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;由此解答即可.解答:解:一个图形沿着一条直线对折后,两边的部分能够完全重合,这个图形就是轴对称图形.故答案为:完全重合.点评:此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.4.你能画出如图所示图形所有的对称轴吗?如果能,请画出来,并填在()里填上适当的数.【答案】【解析】依据轴对称图形的定义及特征即可作答:一个图形沿某条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴.解答:解:根据题干分析可得:点评:此题主要考查轴对称图形定义及对称轴的条数,熟记常见轴对称图形的对称轴条数即可解答.5.请画出对称图形的另一半.【答案】【解析】根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的另一边画出原半图的关键对称点,连结即可.解答:解:画出对称图形的另一半如下:点评:求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点.后依次连结各特征点即可.注意,弧线要多先几个对称点.6.(1)房子向右平移5格,(2)小船向下平移4格,再向左5格.【答案】【解析】(1)根据平移的特征,把小房子的各顶点分别向右平移5格,再依次连结.(2)同理,把组成小船的各图形的顶点分别向下平移4格,依次连结,再把平移后的小船的各顶点分别向左平移5格,再依次连结.解答:解:(1)房子向右平移5格(图中红色部分),(2)小船向下平移4格(图中绿色部分),再向左5格(图中蓝色部分).点评:平移作图要注意:①方向;②距离.整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动.7.平行四边形和长方形都有2条对称轴..(判断对错)【答案】×.【解析】依据轴对称图形的定义判断:一个图形沿一条直线对折,对折后的两部分都能完全重合,则这个图形关于这条直线对称,这条直线就是这个图形的对称轴.解答:解:平行四边形不是轴对称图形没有对称轴,长方形都有2条对称轴,所以原题说法错误;故答案为:×.点评:掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.8.你画过的对称图形有.【答案】长方形,正方形,等腰梯形.【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.解答:解:根据轴对称图形的意义可知:我们画过的长方形、正方形和等腰梯形是对称图形;故答案为:长方形,正方形,等腰梯形.点评:掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.9.在方格纸上画出图形B和图形C.(1)图形A向右平移3个方格得到图形B.(2)图形A绕点O顺时针方向旋转90°得到图形C.【答案】见解析【解析】解:根据题干分析可得:【点评】此题考查了利用平移和旋转进行图形变换的灵活应用.10.(1)把小旗绕O点逆时针旋转90°,得到图1;(2)把小旗绕O点顺时针旋转180°,得到图2.【答案】见解析【解析】解:(1)把小旗绕O点逆时针旋转90°,得到图1(图中红色部分):(2)把小旗绕O点顺时针旋转180°,得到图2(图中绿色部分):【点评】旋转作图要注意:①旋转方向;②旋转角度.整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动.。

2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解

2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解

2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(试题部分)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A .B .C .D .7.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D .10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A .B .C .D .12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A .B .C .D .13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .24.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x =>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .25.(2024·黑龙江绥化·中考真题)如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠= .26.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为 .27.(2024·内蒙古呼伦贝尔·中考真题)如图,点()0,2A −,()1,0B ,将线段AB 平移得到线段DC ,若90ABC ∠=︒,2BC AB =,则点D 的坐标是 .28.(2024·浙江·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与A B ''关于过点O 的直线l 对称,点B 的对应点B '在线段OC 上,A B ''交CD 于点E ,则B CE '与四边形OB ED '的面积比为29.(2024·江苏苏州·中考真题)如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .三、解答题30.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 31.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm 的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)32.(2024·吉林长春·中考真题)图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD ,使其是轴对称图形且点C 、D 均在格点上.(1)在图①中,四边形ABCD 面积为2;(2)在图②中,四边形ABCD 面积为3;(3)在图③中,四边形ABCD 面积为4.33.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A −,()2,3B −,()5,2C −.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π) 34.(2024·吉林·中考真题)图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.35.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围; ②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可). 36.(2024·北京·中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于O 的弦AB 和不在直线AB 上的点C ,给出如下定义:若点C 关于直线AB 的对称点C '在O 上或其内部,且ACB α∠=,则称点C 是弦AB 的“α可及点”.(1)如图,点()0,1A ,()1,0B .①在点()12,0C ,()21,2C ,31,02C ⎛⎫ ⎪⎝⎭中,点___________是弦AB 的“α可及点”,其中α=____________︒;②若点D 是弦AB 的“90︒可及点”,则点D 的横坐标的最大值为__________;(2)已知P 是直线y =且存在O 的弦MN ,使得点P 是弦MN 的“60︒可及点”.记点P 的横坐标为t ,直接写出t 的取值范围.2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(答案详解)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.【详解】解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】本题考查了中心对称图形与轴对称图形的概念,正确掌握中心对称图形与轴对称图形定义是解题关键.中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重台,这样的图形叫做轴对称图形.根据定义依次对各个选项进行判断即可.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.【答案】A【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A.该标点符号是轴对称图形,故此选项符合题意;B.该标点符号不是轴对称图形,故此选项不符合题意;C.该标点符号不是轴对称图形,故此选项不符合题意;D.该标点符号不是轴对称图形,故此选项不符合题意.故选:A.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm【答案】A【分析】本题考查平移的性质,利用平移的性质将阴影部分的周长转化为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,由此解答即可.【详解】解:由图可得:阴影部分的周长为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,∴阴影图形的周长是:480280220440cm⨯+⨯−⨯=,故选:A.6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A.B.C.D.【答案】A【分析】本题主要考查了轴对称图形,根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C. 不是轴对称图形,故此选项不符合题意;D. 不是轴对称图形,故此选项不符合题意;故选:A.7.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键. 根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形【答案】A【分析】本题考查了命题与定理的知识,多边形外角性质,菱形性质及轴对称图形的特点,解题的关键是掌握这些基础知识点.【详解】解:A 、两点之间,线段最短,正确,是真命题,符合题意;B 、菱形的对角线互相垂直,不一定相等,选项错误,是假命题,不符合题意;C 、正五边形的外角和为360︒,选项错误,是假命题,不符合题意;D 、直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,选项错误,是假命题,不符合题意;故选:A .9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D . 【答案】B【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意;故选:B.10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的定义是解题的关键.【详解】解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形,也是中心对称图形,故符合题意;C、不是轴对称图形,也不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B.11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A.B.C.D.【答案】B【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A.图案不成轴对称,故不符合题意;B.图案成轴对称,故符合题意;C.图案不成轴对称,故不符合题意;D.图案不成轴对称,故不符合题意;故你:B.13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B 、既是轴对称图形又是中心对称图形,故B 选项符合题意;C 、是轴对称图形,不是中心对称图形,故C 选项不合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:B .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D . 【答案】C【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−【答案】A【分析】本题考查了一次函数与坐标轴的交点坐标,点的对称,属于简单题,求交点坐标是解题关键.16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒ 由对称的性质得OAB ODC ≌,由全等三角形的性质即可判断;OH ,可得 GOD ∠=,即可判断;掌握轴对称的性质是解题的关键.A.OE OF ⊥,90︒,点的中点,OAB 与ODC 都是等腰三角形,由对称得OAB ODC ≌,F 分别是底边AB ,,结论正确,故不符合题意;O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒,GOD BOH ∴∠=∠,由对称得GOD COH ∴∠=∠,同理可证AOD ∠∴故选:B 17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q −,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98−+−,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .【答案】()3,4【分析】本题考查了坐标与图形变化-平移.利用点平移的坐标规律,把A 点的横坐标加2,纵坐标加3即可得到点B 的坐标. 【详解】解:∵点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B , ∴点B 的坐标为()12,13++,即()3,4.故答案为:()3,4.19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .【答案】()1,4【分析】本题考查坐标与图形,三角形全等的性质.利用数形结合的思想是解题的关键.根据点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,画出图形,结合图形的对称性可直接得出()1,4D .【详解】解:∵点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,∴AD BC =,AC BD =,∴可画图形如下,由图可知点C 、D 关于线段AB 的垂直平分线2x =对称,则()1,4D .故答案为:()1,4.20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .【答案】3【分析】本题考查了折叠的性质和勾股定理,熟练掌握勾股定理是解题的关键. 设CE x =,则8AE BE x ==−,根据勾股定理求解即可.【详解】解:由折叠的性质,得AE BE =,设CE x =,则8AE BE x ==−,由勾股定理,得222BC CE BE +=,∴()22248x x +=−,解得3x =.故答案为:3.21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .出A EF A B C ''''∽,根据对应边上的中线比等于相似比,利用面积公式进行求解即可.【详解】解:∵等腰ABC 中,30ABC ∠=︒,AD 为中线,AD BC ⊥,BD CD =,∵将ABC 沿其底边中线,C BC B '∥∴A EF A B C ''''∽,EF A D B C A G'=''', 13AA AD '=,3223DA AD A G '='=2EF A D '22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .∵4AB =,30ABC ∠=︒,在ABCD Y ∴122AH AB ==,AD BC ∥,∴24AA AH '==,AA AD '⊥,∵5AD =,23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .【答案】()3,10【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,。

图形的平移,对称与旋转的专项训练及答案

图形的平移,对称与旋转的专项训练及答案

图形的平移,对称与旋转的专项训练及答案一、选择题1.如图,若将线段AB 平移至A 1B 1,则a+b 的值为( )A .﹣3B .3C .﹣2D .0【答案】A【解析】【分析】 根据点的平移规律即点A 平移到A 1得到平移的规律,再按此规律平移B 点得到B 1,从而得到B 1点的坐标,于是可求出a 、b 的值,然后计算a+b 即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A 1(a ,﹣1),点B(2,0)向左平移1个单位,得到点B 1(1,b),∴线段AB 向下平移2个单位,向左平移1个单位得到线段A 1B 1,∴A 1(﹣1,﹣1),B 1(1,﹣2),∴a =﹣1,b =﹣2,∴a+b =﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.2.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o【答案】B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.3.如图,在边长为1522的正方形ABCD 中,点E ,F 是对角线AC 的三等分点,点P 在正方形的边上,则满足PE+PF=55的点P 的个数是( )A .0B .4C .8D .16【答案】B【解析】【分析】 作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM ,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55【详解】作点F 关于BC 的对称点M ,连接EM 交BC 于点P ,则PE+PF 的最小值为EM . ∵正方形ABCD 1522,∴AC=1522×2=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=222210555EC CM+=+=,∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.4.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.5.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.6.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,∴S阴影=4025360π⨯=259π,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.7.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()A.(1,0)B.(0,0)C.(-1,2)D.(-1,1)【答案】C【解析】【分析】根据其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,那么对应点到旋转中心的距离相等,找出这个点即可.【详解】解:如图所示,根据旋转的性质,对应点到旋转中心的距离相等,只有(-1,2)点到三角形的三顶点距离相等,故(-1,2)是图形的旋转中心,故选:C.【点睛】此题主要考查了旋转的性质,根据旋转中心到对应点的距离相等,是解决问题的关键.8.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.9.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A B C.2D【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=AE.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.10.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个 B.4个 C.5个 D.2个【答案】A【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.故选:A.12.如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是()A.AD=BD B.AC∥BD C.DF=EF D.∠CBD=∠E【答案】C【解析】【分析】由旋转的性质知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,据此得出△ABD是等边三角形、∠C=∠E,证AC∥BD得∠CBD=∠C,从而得出∠CBD=∠E.【详解】由旋转知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD,∴AC∥BD,∴∠CBD=∠C,∴∠CBD=∠E,则A、B、D均正确,故选C.【点睛】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.,若将△ABO绕点O沿顺时针方向旋转90°15.如图,平面直角坐标系中,已知点B(3,2)后得到△A1B1O,则点B的对应点B1的坐标是( )A.(3,1)B.(3,2)C.(1,3)D.(2,3)【答案】D【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.【详解】解:△A1B1O如图所示,点B1的坐标是(2,3).故选D .【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.16.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A 10B .2C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC ∴2142EF AF AE FB FC BC ==== ∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.17.如图,点E是正方形ABCD的边DC上一点,把ADE∆绕点A顺时针旋转90︒到ABF∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4 B.5C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】ADE∆Q绕点A顺时针旋转90︒到ABF∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,25AD DC∴==2DE=Q,Rt ADE∴∆中,2226AE AD DE=+=故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.18.下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.19.斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】根据轴对称图形的定义,只有选项A是轴对称图形,其他不是.故选:A【点睛】考核知识点:轴对称图形.理解定义是关键.20.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形D.平行四边形【答案】B【解析】正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选:B.【考点】1、中心对称图形;2、轴对称图形2.如图,在△ABC中,∠ACB=90°,∠A=35°,若以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,则θ值等于.【答案】70【解析】∵∠ACB=90°,∠A=35°,∴∠ABC=90°﹣35°=55°,∵以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,∴∠DEC=∠ABC=55°,∠ACD=∠BCE=θ°,CB=CE,∴∠CBE=∠BEC=55°,∴∠BCE=180°﹣∠CBE﹣∠BEC=70°,∴θ值为70.故答案为:70.【考点】旋转的性质3.下列图形:①线段;②等边三角形;③平行四边形;④等腰梯形;⑤长方形;⑥圆。

其中既是轴对称图形,又是中心对称图形的有(填序号)【答案】①⑤⑥.【解析】根据轴对称图形与中心对称图形的概念求解.试题解析:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③不是轴对称图形,是中心对称图形;④是轴对称图形,不是中心对称图形;⑤是轴对称图形,也是中心对称图形;⑥是轴对称图形,也是中心对称图形.故选答案为:①⑤⑥.【考点】1.中心对称图形;2.轴对称图形.4.作图题(6分):(1)把△ABC向右平移5个方格;(2)绕点B的对应点顺时针方向旋转90°.【答案】(1)作图见解析;(2)作图见解析.【解析】(1)找出平移后的点A、B、C的对应点的位置,然后顺次连接即可;(2)找出旋转变换后的点A'、C'的对应点的位置,然后顺次连接即可.试题解析:如图所示,(1)△A′B′C′即为平移后的图形;(2)△A″B'C″即为旋转后的图形.【考点】1.作图-旋转变换;2.作图-平移变换.5.如图,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为 ,如果∠ABC=40°,BC=3cm,则 .【答案】∠EDF,EF;∠DEF=40°,EF="3" cm .【解析】根据平移的性质,①对应线段相等且平行,对应角相等,对应点的连线相等且平行;②平移后的图形全等. 因此,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为∠EDF,EF;如果∠ABC=40°,BC=3cm,则∠DEF=40°,EF="3cm" .【考点】平移的性质.6.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B.【解析】图(1)、图(5)都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图(3)不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图(2)、图(4)既是轴对称图形,又是中心对称图形.故选B.【考点】1.中心对称图形2.轴对称图形.7.如图1,将矩形纸片沿虚线AB按箭头方向向右对折,再将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为()【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.8.下列图案是我国几家银行的标志,其中是中心对称图形的为( )【答案】A【解析】根据中心对称图形的概念,观察可知,只有第1个是中心对称图形,其它三个都不是中心对称图形.故选A.【考点】1.中心对称图形;2.生活中的旋转现象.9.如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______.【答案】15【解析】∵点关于的对称点是,关于的对称点是,∴,.∴△的周长为.10.在平面直角坐标系中,已知△OAB,A(0,-3),B(-2,0).(1)在图1中画出△OAB关于x轴的轴对称图形;(2)将先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形;(3)点A平移后的坐标为 .【答案】(1)(2)如下图;(3)(3,-2).【解析】(1)根据轴对称的性质作出关键点的对称点,再顺次连接即可得到结果;(2)先将O、A、B分别按要求平移,然后顺次连接即可得出平移后的图形;(3)根据所作的图形即可得出平移后的点A的坐标.试题解析:(1)(2)如下图(3)点A平移后的坐标为:(3,-2).【考点】坐标与图形变化11.已知点和关于x轴对称,则的值为_________;【答案】﹣3.【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,所以a=2,b=﹣5,则a+b=﹣3.故答案为:﹣3.【考点】关于x轴、y轴对称的点的坐标.12.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.13.如图,草原上两个居民点A、B在河流L的同旁,一汽车从A出发到B,途中需要到河边加水.汽车在哪一点加水,可使行驶的路程最短?在图上画出该点.【答案】作图见试题解析.【解析】作点A关于l的对称点A',连接A'B交l于C,点C即为所求.试题解析:①作A关于直线l的对称点A′;②连接A′B交直线l于点C,则点C即为所求点.汽车在C点加水,可使行驶的路程最短.【考点】1.轴对称-最短路线问题;2.作图题.14.下列平面图形中,不是轴对称图形的是()【答案】A.【解析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.【考点】轴对称图形.15.点(-2,m)关于x轴的对称点的坐标为________________.【答案】(-2,-m)【解析】由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).两点关于x轴对称,横坐标互为相等,纵坐标相反数,由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).【考点】点关于x轴对称.16.下列为轴对称图形的是().【答案】A【解析】根据轴对称图形与中心对称图形的概念,分析各图形的特征求解.A、是轴对称图形,有5条对称轴;B、是中心对称图形;C、是中心对称图形;D、既不是轴对称图形,也不是中心对称图形.故选A.【考点】轴对称.17.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是,FG与DC的数量关系是;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.【答案】(1)FG⊥CD ,FG=CD;(2)成立【解析】(1)延长ED交AC的延长线于M,连接FC、FD、FM,根据矩形的性质可得CM=BD,根据等腰直角三角形的性质可得ED=BD=CM,再结合∠E=∠A=45º可证得△AEM是等腰直角三角形,由F是AE的中点可证得MF⊥AE,EF=MF,∠E=∠FMC=45º,即可证得△EFD≌△MFC,则可得FD=FC,∠EFD=∠MFC,又∠EFD+∠DFM=90º即得∠MFC+∠DFM=90º,即可得到△CDF是等腰直角三角形,从而可以证得结论;(2)证法同(1).解:(1)FG⊥CD ,FG=CD;(2)延长ED交AC的延长线于M,连接FC、FD、FM∴四边形 BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形.∴ED=BD=CM.∵∠E=∠A=45º∴△AEM是等腰直角三角形.又F是AE的中点.∴MF⊥AE,EF=MF,∠E=∠FMC=45º.∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90º∴∠MFC+∠DFM=90º即△CDF是等腰直角三角形.又G是CD的中点.∴FG=CD,FG⊥CD.【考点】旋转问题的综合题点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.18.下面三图是由三个相同的小正方形拼成的图形,请你在A,B,C三图中再添加一个同样大小的小正方形,使所得的新图形分别为下列要求的图形,请画出示意图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形.【答案】(1)(2)(3)如图所示:【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形.(1)(2)(3)如图所示:【考点】基本作图-轴对称图形与中心对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.19.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键20.下列各图案中,不是中心对称图形的是().【答案】B【解析】中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合,由此可知B旋转180度后不能与原图形重合【考点】中心对称图形的判断点评:中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合21.下列图案中是轴对称图形的是()【答案】D【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由图可得只有D选项符合轴对称图形的定义,故选D.【考点】轴对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.22.把图中的五角星图案,绕着它的中心旋转,旋转角至少为()时,旋转后的五角星能与自身重合A.300B.450C.600D.720【答案】D【解析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、B、C都错误,能与其自身重合的是D,故选D【考点】旋转对称图形点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角23.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是 _.【答案】5【解析】先作点B关于y轴的对称点,连接,交y轴于点C,根据勾股定理求得的长,即可所求.作点B关于y轴的对称点,连接,交y轴于点C由题意得,则则光线从A点到B点经过的路线长是5.【考点】轴对称的应用,勾股定理点评:本题是勾股定理的应用,同时渗透光学中反射原理,构造直角三角形是解答本题的关键.24.下列四个图形中,不能通过基本图形平移得到的是()【答案】D【解析】根据平移的基本性质依次分析各选项即可判断。

图形的平移,对称与旋转的真题汇编含答案

图形的平移,对称与旋转的真题汇编含答案
图形的平移,对称与旋转的真题汇编含答案
一、选择题
1.如图,在矩形 中, 将其折叠使 落在对角线 上,得到折痕 那么 的长度为()
A. B. C. D.
【答案】C
【解析】
【分析】
由勾股定理求出AC的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x,则CE= ,利用勾股定理,即可求出x的值,得到BE的长度.
【点睛】
本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是
A.主视图B.左视图C.俯视图D.主视图和左视图
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.
故选D.
边关系是解题关键.
16.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )
A.70°B.80°C.84°D.86°
【答案】BAB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.
∵AC是∠DAB的平分线,E是AB的中点,
∴E′在AD上,且E′是AD的中点,
∵AD=AB,
∴AE=AE′,

图形的平移旋转与轴对称中考真题精选(部分难题有答案)

图形的平移旋转与轴对称中考真题精选(部分难题有答案)

图形的平移旋转与轴对称中考真题精选(部分难题有答案)一、选择题1.(2022甘肃兰州)观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有()A.1个【答案】B2.(2022湖南益阳)小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是()A.B.C.D.【答案】D3.(2022江苏南通)如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()AOB(第3题)B.2个C.3个D.4个图1DCB.3πcmA.4πcmC.2πcm【答案】CD.πcm4.(2022江苏盐城)以下图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.矩形【答案】B5.(2022辽宁丹东市)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()3cmC.等腰梯形D.平行四边形3cm第5题图A.(10+213)cmB.(10+13)cmC.22cmD.18cm【答案】A6.(2022山东青岛)下列图形中,中心对称图形有().【答案】C7.(2022山东烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2022个图案是【答案】B8.(2022四川凉山)下列图案中,只要用其中一部分平移一次就可以得到的是()A.B.C.D.【答案】B9.(2022台湾)将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,如图(七)所示。

最后将图(七)的色纸剪下一纸片,如图(八)所示。

若下列有一图形为图(八)的展开图,则此图为何?()图(六)【答案】B(A)图(七)(B)图(八)(C)(D)10.(2022浙江杭州)如图,在△ABC中,CAB70.在同一平面内,将△ABC绕点A旋转到△AB/C/的位置,使得CC///AB,则BAB/()A.30B.35C.40D.50【答案】C11.(2022浙江宁波)下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是()(A)【答案】C12.(2022浙江义乌)下列几何图形中,即是中心对称图形又是轴对称图形的是(▲)A.正三角形B.等腰直角三角形C.等腰梯形D.正方形【答案】D13.(2022重庆)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()OOOO(B)(C)(D)图①图②图③图④…A.图①B.图②C.图③D.图④【答案】B14.(2022重庆市潼南县)如图,△ABC经过怎样的平移得到△DEF()A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位DABEC14题图F【答案】C15.(2022浙江义乌)如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥的个数是(▲)BC,下列结论中,一定正确..①BDF是等腰三角形②DE1BC2③四边形ADFE是菱形④BDFFEC2AADBFECA.1B.2C.3D.4【答案】C16.(2022江苏连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是()A.①②B.②③C.②④D.①④【答案】C17.(2022山东济南)如图,ΔABC与ΔA’B’C’关于直线l对称,lCA50A'BB'30C'第17题则∠B的度数为()A.50°B.30°C.100°D.90°【答案】C18.(2022福建福州)下面四个中文艺术字中,不是轴对称图形的是()A.B.C.D.【答案】C19.(2022江苏无锡)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】B20.(2022河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是向右翻滚90°逆时针旋转90°图6-1图6-2D.2A.6【答案】BB.5C.321.(2022山东省德州)下面的图形中,既是轴对称图形又是中心对称图形的是(A)【答案】B22.(2022山东莱芜)在下列四个图案中既是轴对称图形,又是中心对称图形的是(B)(C)(D)A.B.C.D.【答案】B23.(2022广东珠海)现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是()A.BCD【答案】B24.(2022福建宁德)下列四张扑克牌图案,属于中心对称的是().【答案】B25.(2022浙江湖州)一个正方体的表面展开图如图所示,则正方体中的“★”所在面的对面所标的字是()A.上B.海C.世D.博A.B.C.D.图1图2【答案】B.26.(2022浙江湖州)如图,如果甲、乙关于点O成中心对称,则乙图中不符合题意的一块是()A.B.C.【答案】C.27.(2022湖南常德)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()D.!ABC图4【答案】D28.(2022湖南怀化)下列图形中,是中心对称图形但不是轴对称图形的是()【答案】B29.(2022江苏扬州)在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数为()A.1个【答案】BB.2个C.3个D.4个30.(2022北京)美术课上,老师要求同学们将右图所示的白纸只沿虎虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是....【答案】B31.(2022四川乐山)下列图形中,是轴对称图形的是()【答案】B32.(2022山东泰安)下列图形:其中,既是轴对称图形,又是中心对称图功的个数是()A.1个【答案】B33.(2022黑龙江哈尔滨)一列图形中,是中心对称图形的是()B.2个C.3个D.4个【答案】D34.(2022江苏徐州)下列四个图案中,是轴对称图形,但不是中心对称图形的是A【答案】ABCD35.(2022江苏徐州)如图,在6某4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是A.点MB.格点NC.格点PD.格点Q【答案】B36.(2022四川内江)学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC剪下△ABC,展开即可得到一个五角星.如果想得到一个正五角星(如图④),那么在图③中剪下△ABC时,应使∠ABC的度数为A.126°【答案】AB.108°C.100°D.90°37.(2022湖北襄樊)下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个【答案】B38.(2022山东东营)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生......活中,大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的......性质是()(A)对应点连线与对称轴垂直(B)对应点连线被对称轴平分(C)对应点连线被对称轴垂直平分(D)对应点连线互相平行B.3个C.2个D.1个【答案】B39.(2022四川绵阳)对右图的对称性表述,正确的是().A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【答案】B40.(2022山东淄博)如图,△A′B′C′是由△ABC经过变换得到的,则这个变换过程是(A)平移(B)轴对称(C)旋转(D)平移后再轴对称AA′BC′(第5题)B′【答案】D41.(2022天津)下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为(A)(B)(C)(D)【答案】B42.(2022内蒙古包头)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B43.(2022贵州贵阳)如图3是小华画的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为(图3)(A)(B)(C)(D)【答案】C44.(2022湖北十堰)如图,将△ABC绕点C顺时针方向旋转40°得△A’CB’,若AC⊥A’B’,则∠BAC等于()A.50°B.60°C.70°D.80°AA′B(第44【答案】A45.(2022广西玉林、防城港)下列图形中,既是轴对称图形又是中心对称图形的是:()A.等边三角形B.平行四边形C.菱形D.正五边形【答案】C46.(2022青海西宁)如图9,下列汉字或字母中既是轴对称图形,又是中心对称图形的有A.1个B.2个C.3个D.4个CB′【答案】B47.(2022广西梧州)下列图形中是轴对称图形的是()①④A.①②B.③④C.②③D.①④【答案】D48.(2022云南昭通)下列图形是轴对称图形的是()ABCD【答案】B49.(2022贵州遵义)下列图形既是中心对称图形,又是轴对称图形的是【答案】B50.(2022广东深圳)下列图形中,是中心对称图形但不是轴对称图形的是()【答案】A51.(2022广东佛山)如图,把其中的一个小正方形看作基本图形,这个图形中不含的变换是A.对称B.平移C.相似(相似比不为1)C.旋转【答案】C52.(2022湖北宜昌)如图,正六边形ABCDEF关于直线l的轴对称图形是六边形的是()。

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析1.下列电视台的台标,是中心对称图形的是()【答案】D.【解析】A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【考点】中心对称图形.2.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.【答案】(1)作图见解析;(2)作图见解析;(3)是,y=x.【解析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点D、E、F绕点O按顺时针方向旋转90°后的对应点D1、E1、F1的位置,然后顺次连接即可;(3)根据轴对称的性质确定出对称轴的位置,然后写出直线解析式即可.试题解析:(1)△A1B1C1如图所示;(2)△D1E1F1如图所示;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形,对称轴为直线y=x.【考点】1.作图-旋转变换;2.待定系数法求一次函数解析式;3.作图-平移变换.3.下列图形一定是轴对称图形的是()A.平行四边形B.正方形C.三角形D.梯形【答案】B【解析】A、不一定是轴对称图形.故本选项错误;B、是轴对称图形.故本选项正确;C、不一定是轴对称图形.故本选项错误;D、不一定是轴对称图形.故本选项错误.故选B.【考点】轴对称图形4.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A.B.C.D.【答案】C.【解析】∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,∴∠ECN=75°,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,设OC=a,则CN=2a,∵等腰直角三角形DCE旋转到△CMN,∴△CMN也是等腰直角三角形,设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,x=a,即CD=CM=a,∴=.故选C.【考点】1.旋转的性质2.含30度角的直角三角形3.等腰直角三角形.5.下列图形中,既是轴对称图形,又是中心对称图形的为()【答案】B.【解析】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选B.【考点】1.中心对称图形;2.轴对称图形.6.下列几何体中,其主视图不是中心对称图形的是()【答案】B【解析】本题考查了简单几何体的三视图及中心对称的知识,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.先判断出各图形的主视图,然后结合中心对称的定义进行判断即可.解:A、主视图是矩形,矩形是中心对称图形,故本选项错误;B、主视图是三角形,三角形不是中心对称图形,故本选项正确;C、主视图是圆,圆是中心对称图形,故本选项错误;D、主视图是正方形,正方形是中心对称图形,故本选项错误;故选B.7.如图,A(,1),B(1,),将∆AOB绕点O旋转1500后,得到∆A’OB’,则此时点A 的对应点A’的坐标为()A.(-,1)B.(-2,0)C.(-1,-)或(-2,0)D.(-,-1)或(-2,0)【答案】C.【解析】∵A(,1),B(1,),∴tanα=,∴OA与x轴正半轴夹角为30°,OB与y轴正半轴夹角为30°,∴∠AOB=90°-30°-30°=30°,根据勾股定理,,,①如图1,顺时针旋转时,∵150°+30°=180°,∴点A′、B关于原点O成中心对称,∴点A′(-1,-);②如图2,逆时针旋转时,∵150°+30°=180°,∴点A′在x轴负半轴上,∴点A′的坐标是(-2,0).综上所述,点A′的坐标为(-1,-)或(-2,0).故选C.考点: 坐标与图形变化-旋转.8.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是 ()【答案】A【解析】这是一道较容易的题目,主要考查了轴对称图形的概念:对折后直线两侧的部分完全重合,其中B、D显然不是轴对称图形,易产生错误的是C,正确的答案应选A.本题渗透了保护环境思想,这也是出题人指出的方向.9.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是 ()A.①B.②C.⑤D.⑥【答案】A【解析】如图,球最后落入①球洞:10.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()【解析】A、是轴对称图形,又是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项错误;C、既不是中心对称图形也不是轴对称图形,故此选项正确;D、是轴对称图形,又是中心对称图形,故此选项错误.故选C.【考点】1.轴对称图形2.中心对称图形.11.如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B (1,3),C(3,3),D(3,1).(1)画出“基本图形”关于原点O对称的四边形A1B1C1D1,并求出A1,B1,C1,D1的坐标.A1( , ),B1( , ),C1( , ),D1( , ) ;(2)画出“基本图形”关于x轴的对称图形A2B2C2D2;(3)画出四边形A3B3C3D3,使之与前面三个图形组成的图形既是中心对称图形又是轴对称图形.【答案】(1)(﹣4,﹣4),(﹣1,﹣3),(﹣3,﹣3),(﹣3,﹣1);(2)(3)图形见解析.【解析】(1)根据已坐标系中点关于原点对称的坐标特点,横纵坐标互为相反数,即可得出答案; (2)关于x轴对称的;两个点的坐标特点是:横坐标相等,纵坐标互为相反数,根据坐标关系画图,写坐标.(3)将图形顶点逆时针旋转90度即可得出答案.试题解析:(1)根据已坐标系中点关于原点对称的坐标特点,即可得出答案:(﹣4,﹣4),(﹣1,﹣3),(﹣3,﹣3),(﹣3,﹣1);(2)如图:图形A2B2C2D2;(3如图:图形A3B3C3D3.画的三个图形与原“基本图形”组成的整体图案既是中心对称图形又是轴对称图形..【考点】旋转变换与轴对称变换.12.下列图形中,是中心对称图形的是 ( )A.B.C.D.【解析】中心对称图形是图形沿对称中心旋转180度后与原图重合,因此符合的是选项C.故选C.【考点】中心对称图形.13.如图,C在线段BD上,△ABC和△CDE都是等边三角形,BE与AD有什么关系?请用旋转的性质证明你的结论。

图形的平移,对称与旋转的经典测试题及解析

图形的平移,对称与旋转的经典测试题及解析
3.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数 ,那么所得的图案与原来图案相比
A.形状不变,大小扩大到原来的 倍
B.图案向右平移了 个单位
C.图案向上平移了 个单位
D.图案向右平移了 个单位,并且向上平移了 个单位
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
图形的平移,对称与旋转的经典测试题及解析
一、选择题
1.如图所示的网格中各有不同的图案,不能通过平移得到的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.
【详解】
A、可以通过平移得到,不符合题意;
∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,
∴∠D=∠CAD=60°、AD=BD,
∴AC∥BD,
∴∠CBD=∠C,
∴∠CBD=∠E,
则A、B、D均正确,
故选C.
【点睛】
本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.
9.如图, 是由 经过平移后得到的,则平移的距离不是( )
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.如图, 是等边三角形 内一点,将线段 绕点 顺时针旋转 得到线段 ,连接 .若 , , ,则四边形 的面积为()

轴对称、平移与旋转测试题(含答案)

轴对称、平移与旋转测试题(含答案)

轴对称、平移与旋转测试题(含答案)一、选择题(本大题共7小题,每小题5分,共35分;在每小题给出的四个选项中,只有一项符合题意)1.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( ) A.B B.J C.4 D.0图12.如图1,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B 的度数为( )A.48°B.54°C.74°D.78°3.将一张长方形的纸片对折,然后用笔尖在上面扎出字母“B”,再把它展开铺平,你可以看到的图形是( )图24.如图3,在△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为( )A.56° B.50° C.46° D.40°图3 图45.如图4所示,将边长为2 cm的等边三角形ABC沿BC的方向向右平移1 cm得到△DEF,则四边形ABFD的周长为( )A.6 cm B.8 cm C.10 cm D.12 cm6.4张扑克牌如图5①所示放在桌面上,小敏把其中一张牌旋转180°得到图②,那么她所旋转的牌是从左数( )图5A.第一张 B.第二张 C.第三张 D.第四张7.下列说法正确的有( )图6(1)全等图形的面积相等,反过来,面积相等的两个图形是全等图形;(2)如图6所示的两个图形,放在一起能完全重合,但是图甲和图乙不全等;(3)如图7所示,△ABC与△DEF 是全等的,点A与点D是对应点,点B与点E是对应点,所以可以记为:△ABC≌△DEF;(4)如果两个图形的形状一样,大小一样,那么它们是全等图形.图7A.1个 B.2个 C.3个 D.4个二、填空题(本大题共7小题,每小题5分,共35分)8.如图8,下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行平移变换的是________,进行旋转变换的是________,进行轴对称变换的是________,进行中心对称变换的是________.(填序号)图89.如图9所示,在正方形网格中,格点三角形DEF是由格点三角形ABC平移得到的,则点B向右移动了________格.图910.如图10所示,大长方形的长为8 cm,宽为4 cm,则阴影部分的面积是________.图1011.如图11,将长方形纸片ABCD的一角沿EF折叠,使点C落在长方形ABCD的内部点C′处.若∠EFC=35°,则∠DEC′=________°.图11 图1212.如图12是4×4的正方形网格,其中已有3个小方格涂成了黑色.现要在其余13个白色小方格中选出一个也涂成黑色,使整个黑色的小方格图案是轴对称图形,这样的白色小方格有________个.13.数轴上的点A表示-2,将数轴上到点A的距离为3的点B向右平移5个单位长度得到点C,再把点C绕点A旋转180°得到点D,则AD的长为________.图1314.如图13,在直角三角形ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的度数为________.三、解答题(本大题共3小题,共30分)15.(8分)在如图14所示的网格中有四边形ABCD.(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2是否对称?若对称,请在图中画出对称轴或对称中心.图1416.(10分)如图15所示,在△ABC中,∠C=90°,将△ABC沿直线DE对折,点B刚好与点A重合,连结AD,∠DAE与∠DAC的度数之比为2∶1,求∠B的度数.图1517.(12分)取一副三角尺按图16①所示的方式放在一起,∠ACD=30°,∠BAC=45°,固定三角尺ADC,将三角尺ABC以点A为中心按顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图②所示.(1)当α为多少度时,能使得AB∥DC?(2)连结BD,当0°<α≤45°时,探究∠DBC′+∠CAC′+∠BDC的值的大小变化情况,并说明理由.图16教师详解详析1.[解析] D A.B不是中心对称图形,是轴对称图形,故本选项错误;B.J不是中心对称图形,也不是轴对称图形,故本选项错误;C.4不是中心对称图形,也不是轴对称图形,故本选项错误;D.0既是中心对称图形又是轴对称图形,故本选项正确.2.[答案] B3.[答案] C4.[解析] C∵点C′在边BC上,∴∠BC′C为平角.由于旋转不改变图形的大小,∴∠AC′B′=∠C=67°,AC′=AC,∴∠AC′C=∠C=67°,∴∠B′C′B=180°-∠AC′C-∠AC′B′=180°-67°-67°=46°.5.[解析] B由题意知△ABC≌△DEF,AD=BE=1 cm,DF=AC=2 cm,四边形ABFD的周长=AB+BF+DF+AD=8 cm.6.[答案] A7.[答案] B8.[答案] ③①④②④9.[答案] 5[解析] 注意点B的对应点是点E,从点B到点E向右平移了5格.10.[答案] 8 cm2[解析] 通过平移、旋转,可知阴影部分的面积是大长方形总面积的错误!.11.[答案] 7012.[答案] 413.[答案] 8或2[解析] 数轴上到点A的距离为3的点表示的数有两个:1和-5,向右平移5个单位长度得到的数分别是6和0,所以AC绕点A旋转180°得AD=8或2.14.[答案] 2α15.解:(1)四边形A1B1C1D1如图所示.(2)四边形A2B2C2D2如图所示.(3)四边形A1B1C1D1与四边形A2B2C2D2对称,对称轴为图中的直线EF.16.解:由翻折的性质知,DE平分∠ADB,所以∠ADE=∠BDE,∠DAB=∠B.又因为∠DAE与∠DAC的度数之比为2∶1,所以设∠DAC=x°,则∠B=∠DAB=2x°.因为∠C=90°,根据三角形的内角和为180°,得x°+2x°+2x°=90°,解得x=18,所以∠B=36°.17.解:(1)由题意得∠CAC′=α,要使AB∥DC,须∠BAC=∠ACD=30°,∴α=∠CAC′=∠BAC′-∠BAC=45°-30°=15°,即α=15°时,能使得AB∥DC.(2)如图,连结BD,∠DBC′+∠CAC′+∠BDC的值的大小没有变化,总是105°.理由:当0°<α≤45°时,总有△EFC′存在.∵∠EFC′=∠BDC+∠DBC′,∠CAC′=α,∠FEC′=∠CAC′+∠C,∠EFC′+∠FEC′+∠C′=180°,∴∠BDC+∠DBC′+∠C+α+∠C′=180°.又∵∠C′=45°,∠C=30°,∴∠DBC′+∠CAC′+∠BDC=105°.。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标(,);(2)将△ABC的三个顶点的横、纵坐标都乘以-1,分别得到对应点A2、B2、C2,画出△A2B2C2,则△ABC和△A2B2C2关于对称;(3)将△ABC在网格中平移,使点B的对应点B3坐标为(-6,1),画出△A3B3C3.【答案】(1) 5,﹣3; (2)画图见解析,原点;(3)画图见解析.【解析】(1)根据题意得出各对应点坐标进而求出即可;(2)利用已知得出各对应点坐标进而求出即可;(3)利用平移规律得出各对应点平移距离,进而求出即可.试题解析:(1)如图所示:△A1B1C1即为所求,点C1的坐标为;(5,﹣3);(2)如图所示:△A2B2C2即为所求,△ABC和△A2B2C2关于原点对称;(3)如图所示:△A3B3C3即为所求.【考点】1.作图-旋转变换;2.作图-轴对称变换;3.作图-平移变换.2.如图,有四块全等的直角三角形纸片,直角边长分别是1,2,请利用这四块纸片按下列要求在6×6方格纸中各拼一个图形(四块纸片都要用上,无缝隙且无重叠部分),直角顶点在格点上.(1)图甲中作出是轴对称图形而不是中心对称图形;(2)图乙中作出是中心对称图形而不是轴对称图形;(3)图丙中作出既是轴对称图形又是中心对称图形.【答案】【解析】理解轴对称中心对称的概念把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称.把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称 .根据其特征画出相应图形即可.【考点】1.轴对称;2.中心对称3.在图中,画出△ABC关于轴对称的△A1B1C1,写出△ABC关于轴对称的△A2B2C2的各点坐标.【答案】画图见解析,A2(-3,-2),B2(-4,3),C2(-1,1).【解析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.试题解析:△ABC的各顶点的坐标分别为:A(-3,2),B(-4,-3),C(-1,-1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(-3,-2),B2(-4,3),C2(-1,1).【考点】作图-轴对称变换.4.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长为 .【答案】5cm.【解析】∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF,∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5cm.【考点】轴对称的性质.5.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.6.下列图形是四家电信公司的标志,其中是轴对称图形的是()【答案】C.【解析】根据轴对称图形的定义,沿着某一条直线折叠后,直线两旁的部分能够互相重合,选项A、B、D中的图形无论怎么折叠,都不能使左右两部重合,只有选项C符合题意,选项C可左右对折或上下对折都能使直线两旁的部分重合,故选C.【考点】轴对称图形的定义.7.一个汽车牌在水中的倒影为,则该车牌照号码___________.【答案】【解析】本题是轴对称中的镜面对称问题,水面相当于一个平面镜,因为镜面对称的性质是在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称。

初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析1.下列命题中,属于真命题的是 ( )A.如果a>b,那么a-2<b-2.B.任何数的零次幂都等于1.C.两条直线被第三条直线所截,同旁内角互补.D.平移不改变图形的形状和大小.【答案】D【解析】根据不等式的性质可知A是假命题;由底数不为0可知B是假命题;如果两条不平行的直线被第三条直线所截,同旁内角不互补,所是C是假命题;只有D是真命题.【考点】命题2.下列说法不正确的是()A.平移或旋转后的图形的形状大小不变B.平移过程中对应线段平行(或在同一条直线上)且相等C.旋转过程中,图形中的每一点都旋转了相同的路程D.旋转过程中,对应点到旋转中心的距离相等【答案】C【解析】A、平移或旋转后的图形的形状大小不变,所以A选项的说法正确;B、平移过程中对应线段平行(或在同一条直线上)且相等,所以B选项的说法正确;C、旋转过程中,图形中的每一点所旋转的路程等于以旋转中心为圆心、每个点到旋转中心的距离为半径、圆心角为旋转角的弧长,所以C选项的说法不正确;D、旋转过程中,对应点到旋转中心的距离相等,所以D选项的说法正确.故选C.【考点】1、旋转的性质;2、平移的性质3.按下列要求正确画出图形:(1)已知和直线MN,画出关于直线MN对称的;(2)已知ABCD和点O,画出ABCD关于点O成中心对称的四边形.【解析】(1)过点A作AA′⊥MN且使MN垂直平分AA′,过点B作BB′⊥MN且使MN垂直平分BB′,过点C作CC′⊥MN且使MN垂直平分CC′,然后顺次连接即可;(2)连接AO并延长至A′,使A′O=AO,连接BO并延长至B′,使B′O=BO,连接CO并延长至C′,使C′O=CO,连接DO并延长至D′,使D′O=DO,然后顺次连接即可.试题解析:(1)△A′B′C′如图所示;(2)四边形A′B′C′D′如图所示.【考点】1、旋转变换;2、轴对称变换4.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形沿的方向平移5个单位,得到长方形(n>2),则长为_______________.【答案】5n+6.【解析】每次平移5个单位,n次平移5n个单位,加上AB的长即为ABn的长.试题解析:每次平移5个单位,n次平移5n个单位,即BN的长为5n,加上AB的长即为ABn的长.ABn=5n+AB=5n+6,故答案为:5n+6.【考点】平移的性质.5..如图所示,把直角梯形ABCD沿DA方向平移到梯形EFGH,HG="24" cm,WG="8" cm,WC="6" cm,求阴影部分的面积为__ _.【答案】168cm2.【解析】根据平移图形的面积相等,梯形ABCD与梯形EFGH的面积相等,都减去公共部分梯形EFWD的面积,得阴影部分的面积等于梯形DWGH的面积,从而求得阴影部分的面积为168cm2.【考点】1平移的性质;2等式性质;3梯形面积计算.6.把两块全等的直角三角形和叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,,,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点.(1)如图1,当射线经过点,即点与点重合时,易证.此时,;将三角板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中,问的值是否改变?答:(填“会”或“不会”);若改变,的值为(不必说明理由);(2)在(1)的条件下,设,两块三角板重叠面积为,求与的函数关系式.(图2,图3供解题用)【答案】(1)8,不会;(2)当时,当时,.【解析】(1)根据旋转的性质及相似三角形的性质求解即可;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,根据三角形的面积公式求解即可;情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,根据相似三角形的性质求解即可.(1)由题意得8;将三角板旋转后的值不会改变;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,由(2)知:得于是情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,即,解得于是综上所述,当时,当时,.本题涉及了旋转问题的综合题,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.7.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为。

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析一、选择题1.如图,圆柱形玻璃杯高为8cm ,底面周长为48cm ,在杯内壁离杯底3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm 且与蜂蜜相对的A 处,则蚂蚁从外壁A 处走到内壁B 处,至少爬多少厘米才能吃到蜂蜜( )A .24B .25C .23713+D .382【答案】B【解析】【分析】 将圆柱形玻璃杯的侧面展开图为矩形MNPQ ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ ,则E 、F 分别是MQ ,NP 的中点,AM=2cm ,BF=3cm ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离.过点B 作BC ⊥MN 于点C ,则BC=ME=24cm ,A′C=8+2-3=7cm , ∴在Rt∆A′BC 中,A′B=222272425A C BC +=+=′cm .故选B .【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P(-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A.【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.干行四边形C.正六边形D.圆【答案】A【解析】【分析】【详解】解: A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意.故选A.【点睛】本题考查中心对称图形;轴对称图形.4.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A.勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.5.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A 、不能通过平移得到,故不符合题意;B 、不能通过平移得到,故不符合题意;C 、不能通过平移得到,故不符合题意;D 、能够通过平移得到,故符合题意,故选D.【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.6.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(2,3)--B .33(2,2)---C .3(3,2)--D .(3,3)- 【答案】D【解析】【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M ='1A M =,∴OM=2+1=3,∴'B 的坐标为(3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形 【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A 、平行四边形是中心对称图形;选项B 、圆是中心对称图形;选项C 、等边三角形不是中心对称图形;选项D 、正六边形是中心对称图形;故选C .【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.8.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A.线段BE的长度B.线段EC的长度、两点之向的距离C.线段CF的长度D.A D【答案】B【解析】【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF是△ABC平移得到∴A和D、B和E、C和F分别是对应点∴平移距离为:线段AD、BE、CF的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.10.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.11.在下列图形中是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.16.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB17.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.20.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B 2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴22AB AD +2211+2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.。

图形的平移,对称与旋转的技巧及练习题附答案

图形的平移,对称与旋转的技巧及练习题附答案
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
C、是中心对称图形,也是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
故选A.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9.下列图形中,是轴对称图形但不是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误,
∴ ,
∴ , ,
∴ .
∵将△ACD沿AD对折,使点C落在点F处,
∴ ,
∴ .
故选B.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.
A.向右平移1格,向下3格B.向右平移1格,向下4格
C.向右平移2格,向下4格D.向右平移2格,向下3格
【答案】C
【解析】
分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.
解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.

图形平移、旋转和轴对称测试

图形平移、旋转和轴对称测试

图形平移、旋转和轴对称测试(100分)1、下面图形图形不是轴对称图形的是()【单选题】(5分)A.长方形B.三角形C.菱形正确答案: B2、四条对称轴的有【单选题】(5分)A.等边三角形B.正方形C.圆正确答案: B3、从6:00到9:00,时针旋转了()【单选题】(5分)A.30°B.60°C.90°正确答案: C4、请选择一个选项【单选题】(5分)A.AB.CC.D正确答案: B5、请选择一个选项【单选题】(5分)A.AB.CC.D正确答案: C6、几条对称轴【单选题】(5分)A.1B.2C.3正确答案: A7、对称轴有几条【单选题】(5分)A.1B.2C.无数条正确答案: A8、对称轴有几条【单选题】(5分)A.2B.49、对称轴有几条【单选题】(5分)A.3B.6C.9正确答案: B10、是轴对称图形的【单选题】(5分)A.1B.2C.3正确答案: B11、通过()会得到【单选题】(5分)A.平移B.旋转C.轴对称正确答案: B12、通过()会得到【单选题】(5分)A.平移B.旋转C.轴对称正确答案: C13、通过()会得到【单选题】(5分)A.平移B.旋转C.轴对称正确答案: A14、时针从12时到3时,顺时针旋转了【单选题】(5分)A.15°B.60°C.90°正确答案: C15、时针从10时到12时,顺时针旋转了【单选题】(5分)A.30°B.60°C.90°正确答案: B16、时针从12时转到()时,顺时针旋转了180° 【单选题】(5分)A.3时B.6时C.9时正确答案: B17、下列物体运动既有平移又有旋转的现象有【单选题】(5分)A.风车B.自行车C.窗户正确答案: B18、A D E F H M N字母中,是轴对称图形的有()个。

【单选题】(5分)A.4B.5C.6正确答案: B19、从2:15到2:30,分针顺时针旋转了【单选题】(5分)A.60°B.90°C.180°正确答案: B20、与时针旋转方向相反的叫()时针方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平移旋转与对称一、选择题1.(2016·)下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.4【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:第2个、第4个图形是中心对称图形,共2个.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2.(2016,3,3分)下列所述图形中,是中心对称图形的是()A、直角三角形B、平行四边形C、正五边形D、正三角形答案:B考点:中心对称图形与轴对称图形。

解析:直角三角形既不是中心对称图形也不轴对称图形,正五边形和正三角形是轴对称图形,只有平行四边是中心对称图形。

3.(2016,11,3分)如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .【考点】旋转的性质.【分析】由旋转的性质得:AB=AD=1,∠BAD=∠CAE=90°,再根据勾股定理即可求出BD.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.【点评】本题考查了旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.4.(2016,3,3分)下列所述图形中,是中心对称图形的是()A、直角三角形B、平行四边形C、正五边形D、正三角形答案:B考点:中心对称图形与轴对称图形。

解析:直角三角形既不是中心对称图形也不轴对称图形,正五边形和正三角形是轴对称图形,只有平行四边是中心对称图形。

5. (2016·)如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60° B.90° C.120° D.150°【考点】旋转的性质.【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠CAC′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.6. (2016·)下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.7. (2016·达州·3分)如图,将一等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.8. (2016··3分)下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边行C.正五边形D.圆【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:等边三角形是轴对称图形不是中心对称图形;平行四边形不是轴对称图形是中心对称图形;正五边形是轴对称图形不是中心对称图形;圆是轴对称图形又是中心对称图形,故选:D.9. (2016·凉山州·4分)在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形是中心对称图形,等腰三角形是轴对称图形不是中心对称图形,故选:B.10.(2016,,3,3分)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.11.(2016,2,3分)下列图形是中心对称图形的是()A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的特点即可求解.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形的概念:在同一平面,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.12.(2016,6,3分)如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A.42° B.48° C.52° D.58°【考点】旋转的性质.【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=48°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=42°.【解答】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.【点评】本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形两锐角互余的性质.13.(2016·)下列图形中,是轴对称图形的是()答案:B考点:轴对称图形的辨别。

解析:轴对称图形是指在平面沿一条直线折叠,直线两旁的部分能够完全重合的图形,只有B符合。

14.(2016·广西贺州)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A (﹣2,5)的对应点A′的坐标是()A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)【考点】坐标与图形变化-旋转.【分析】由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.【解答】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选:B.【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,点的坐标的运用,解答时证明三角形全等是关键.15.(2016·)下列商标图案中,既不是轴对称图形又不是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念逐项分析即可.【解答】解:A 、是轴对称图形,不是中心对称图形;B 、是轴对称图形,不是中心对称图形;C 、既不是轴对称图形,也不是中心对称图形;D 、不是轴对称图形,是中心对称图形,故选C .16.(2016·)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是( )A .B .C .D .【考点】轴对称图形.【分析】利用轴对称图形定义判断即可.【解答】解:在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是,故选D .17.(2016.省市,3分)下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、不是轴对称图形.是中心对称图形,故此选项错误;B 、是轴对称图形,又是中心对称图形,故此选项正确;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、不是轴对称图形,不是中心对称图形,故此选项错误.故选:B .18.(2016.省市,3分)如图,线段AB 经过平移得到线段A 1B 1,其中点A ,B 的对应点分别为点A 1,B 1,这四个点都在格点上.若线段AB 上有一个点P ( a ,b ),则点户在A 1B 1上的对应点P 的坐标为( )A .(a ﹣2,b+3)B .(a ﹣2,b ﹣3)C .(a+2,b+3)D .(a+2,b ﹣3)【考点】坐标与图形变化-平移.【分析】根据点A 、B 平移后横纵坐标的变化可得线段AB 向左平移2个单位,向上平移了3个单位,然后再确定a 、b 的值,进而可得答案.【解答】解:由题意可得线段AB 向左平移2个单位,向上平移了3个单位,则P (a ﹣2,b+3)故选A .19.(2016·)下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、不是轴对称图形.是中心对称图形,故错误;B 、是轴对称图形,又是中心对称图形.故正确;C 、是轴对称图形,不是中心对称图形.故错误;D 、是轴对称图形.不是中心对称图形,故错误.故选B .20.(2016·)下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A 、是轴对称图形,但不是中心对称图形,故本选项正确;B 、既是轴对称图形,又是中心对称图形,故本选项错误;C 、既不是轴对称图形,又不是中心对称图形,故本选项错误;D 、不是轴对称图形,但是中心对称图形,故本选项错误.故选A .21.(2016·)如图,Rt△ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A .B .2C .3D .2【考点】旋转的性质;含30度角的直角三角形.【分析】首先证明△ACA 1,△BCB 1是等边三角形,推出△A 1BD 是直角三角形即可解决问题.【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D==.故选A.22.(2016·省)剪纸是的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念进行判断.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.23.(2016•省)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.24.(2016•呼和浩特)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.99【考点】生活中的旋转现象.【分析】直接利用中心对称图形的性质结合69的特点得出答案.【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.二、填空题1. (2016·)如图,把Rt△ABC放在直角坐标系,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为16 cm2.【考点】一次函数综合题.【专题】压轴题.【分析】根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=2x﹣6上时的横坐标即可.【解答】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得 x=5.即OA′=5.∴CC′=5﹣1=4.∴S=4×4=16 (cm2).▱BCC′B′即线段BC扫过的面积为16cm2.故答案为16.【点评】此题考查平移的性质及一次函数的综合应用,难度中等.2. (2016··5分)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD 纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM 和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.【考点】平移的性质.【分析】根据平移和翻折的性质得到△MPN是等腰直角三角形,于是得到当PM最小时,对角线MN最小,即AE取最小值,当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,根据平行四边形的面积得到DF=2,根据等腰直角三角形的性质得到AF=DF=2,由勾股定理得到BD==,根据三角形的面积得到AE===,即可得到结论.【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD 是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN 是等腰直角三角形,当PM 最小时,对角线MN 最小,即AE 取最小值,∴当AE⊥BD 时,AE 取最小值,过D 作DF⊥AB 于F ,∵平行四边形ABCD 的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.3. (2016·达州·3分)如图,P 是等边三角形ABC 一点,将线段AP 绕点A 顺时针旋转60°得到线段AQ ,连接BQ .若PA=6,PB=8,PC=10,则四边形APBQ 的面积为 24+9 .【考点】旋转的性质;等边三角形的性质.【分析】连结PQ ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC ,再根据旋转的性质得AP=PQ=6,∠PAQ=60°,则可判断△APQ 为等边三角形,所以PQ=AP=6,接着证明△APC ≌△ABQ 得到PC=QB=10,然后利用勾股定理的逆定理证明△PBQ 为直角三角形,再根据三角形面积公式,利用S 四边形APBQ =S △BPQ +S △APQ 进行计算.【解答】解:连结PQ ,如图,∵△ABC 为等边三角形,∴∠BAC=60°,AB=AC ,∵线段AP 绕点A 顺时针旋转60°得到线段AQ ,∴AP=PQ=6,∠PAQ=60°,∴△APQ 为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ ,在△APC 和△ABQ 中,,∴△APC ≌△ABQ ,∴PC=QB=10,在△BPQ 中,∵PB 2=82=64,PQ 2=62,BQ 2=102,而64+36=100,∴PB 2+PQ 2=BQ 2,∴△PBQ 为直角三角形,∠BPQ=90°,∴S 四边形APBQ =S △BPQ +S △APQ =×6×8+×62=24+9.故答案为24+9.4. (2016··3分)将点A (1,﹣3)沿x 轴向左平移3个单位长度,再沿y 轴向上平移5个单位长度后得到的点A′的坐标为 (﹣2,2) .【考点】坐标与图形变化-平移.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A (1,﹣3)沿x 轴向左平移3个单位长度,再沿y 轴向上平移5个单位长度后得到点A′,∴点A′的横坐标为1﹣3=﹣2,纵坐标为﹣3+5=2,∴A′的坐标为(﹣2,2).故答案为(﹣2,2).5. (2016··3分)如图8,在Rt ABC ∆中,90ACB ∠=,AC =以点C 为圆心,CB的长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转0180后点B 与点A 恰好重合,则图中阴影部分的面积为___▲__.答案:23π 解析:依题意,有AD =BD ,又90ACB ∠=,所以,有CB =CD =BD ,即三角形BCD 为等边三角形∠BCD =∠B =60°,∠A =∠ACD =30°,由AC =BC =2,AB =4,BCD BD BCD S S S 弓形扇形=-=60423603ππ⨯= 阴影部分面积为:ACD AD S S S 弓形=-23π(=23π6. (2016·凉山州·4分)将抛物线y=﹣x 2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 y=﹣x 2﹣6x ﹣11 .【考点】二次函数图象与几何变换.【分析】根据平移规律:上加下减,左加右减写出解析式即可.【解答】解:抛物线y=﹣x 2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣(x ﹣3)2﹣2即y=﹣x 2+6x ﹣11,故答案为y=﹣x 2﹣6x ﹣11.7.(2016·)如图3,△ABC 中,AB =AC ,BC =12cm ,点D 在AC 上,DC =4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E 、F 分别落在边AB 、BC 上,则△EBF 的周长是 cm.[难易] 容易[考点] 平移 ,等腰三角形等角对等边[解析] ∵CD 沿CB 平移7cm 至EF∴=∴=-===∠=∠=∴∠=∠∴==∴=++=++=//,75,4,,444513EBF EF CD CF BF BC CF EF CD EFB CAB AC B C EB EF C EB EF BF[参考答案] 138.(2016年省市)如图,把一个菱形绕着它的对角线的交点旋转90°,旋转前后的两个菱形构成一个“星形”(阴影部分),若菱形的一个角为60°,边长为2,则该“星形”的面积是6﹣6 .【考点】旋转的性质;菱形的性质.【分析】根据菱形的性质以及AB=2,∠BAD=60°,可得出线段AO和BO的长度,同理找出A′O、D′O的长度,结合线段间的关系可得出AD′的长度,通过角的计算得出∠AED′=30°=∠EAD′,即找出D′E=AD′,再通过解直角三角形得出线段EF的长度,利用分割图形法结合三角形的面积公式以及菱形的面积公式即可求出阴影部分的面积.【解答】解:在图中标上字母,令AB与A′D′的交点为点E,过E作EF⊥AC于点F,如图所示.∵四边形ABCD为菱形,AB=2,∠BAD=60°,∴∠BAO=30°,∠AOB=90°,∴AO=AB•cos∠BAO=,BO=AB•sin∠BAO=1.同理可知:A′O=,D′O=1,∴AD′=AO﹣D′O=﹣1.∵∠A′D′O=90°﹣30°=60°,∠BAO=30°,∴∠AED′=30°=∠EAD′,∴D′E=AD′=﹣1.在Rt△ED′F中,ED′=﹣1,∠ED′F=60°,∴EF=ED′•sin∠ED′F=.∴S阴影=S菱形ABCD+4S△AD′E=×2AO×2BO+4×AD′•EF=6﹣6.故答案为:6﹣6.9.(2016年省市)如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′= 5 .【考点】平移的性质.【分析】直接利用平移的性质得出顶点C平移的距离.【解答】解:∵把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,∴三角板向右平移了5个单位,∴顶点C平移的距离CC′=5.故答案为:5.10.(2016年省市)如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=46 度.【考点】旋转的性质.【分析】先根据三角形外角的性质求出∠ACA′=67°,再由△ABC绕点C按顺时针方向旋转至△A′B′C,得到△ABC≌△A′B′C,证明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°,故答案为:46.11.(2016·)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC),连接AB′,则AB′的长为 2 .【考点】翻折变换(折叠问题).【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G=2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.12.(2016·)如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为 2.5 cm.【考点】平移的性质.【分析】根据平移的性质:对应线段平行,以及三角形中位线定理可得B′是BC的中点,求出BB′即为所求.【解答】解:∵将△ABC沿BC方向平移至△A′B′C′的对应位置,∴A′B′∥AB,∵O是AC的中点,∴B′是BC的中点,∴BB′=5÷2=2.5(cm).故△ABC平移的距离为2.5cm.故答案为:2.5.13.(2016,11,3分)如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .【考点】旋转的性质.【分析】由旋转的性质得:AB=AD=1,∠BAD=∠CAE=90°,再根据勾股定理即可求出BD.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.【点评】本题考查了旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.三、解答题1.(2016·)如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD 相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值围.【考点】翻折变换(折叠问题).【分析】(1)由四边形ABCD是矩形,根据折叠的性质,易证得△EFG是等腰三角形,即可得GF=EC,又由GF∥EC,即可得四边形CEGF为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF为菱形;(2)如图1,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图2,当F与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)解:如图1,当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,∵∠ECD=90°,∴∠DEC=45°=∠CDE,∴CE=CD=DG,∵DG∥CE,∴四边形CEGD是矩形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,∴线段CE的取值围3≤CE≤5.【点评】本题考查了翻折变换﹣折叠问题,菱形的判定,线段的最值问题,矩形的性质,勾股定理,正确的作出图形是解题的关键.2. (2016·凉山州·8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1 C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【考点】作图-旋转变换;扇形面积的计算.【分析】(1)根据旋转中心方向及角度找出点A 、B 的对应点A 1、B 1的位置,然后顺次连接即可,根据A 、B 的坐标建立坐标系,据此写出点A 1、B 1的坐标;(2)利用勾股定理求出AC 的长,根据△ABC 扫过的面积等于扇形CAA 1的面积与△ABC 的面积和,然后列式进行计算即可.【解答】解:(1)所求作△A 1B 1C 如图所示:由A (4,3)、B (4,1)可建立如图所示坐标系,则点A 1的坐标为(﹣1,4),点B 1的坐标为(1,4);(2)∵AC===,∠ACA 1=90°∴在旋转过程中,△ABC 所扫过的面积为:S 扇形CAA1+S △ABC=+×3×2=+3.3. (2016年省市)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.4.(2016·)(本题12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆.操作发现(1)将图1中的ACD ∆以A 为旋转中心,逆时针方向旋转角α,使 BAC ∠=α,得到如图2所示的D C A '∆,分别延长BC 和C D '交于点E ,则四边形C ACE '的状是 菱形 ;(2分)(2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.考点:几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定,矩形的判定正方形的判定分析:(1)利用旋转的性质和菱形的判定证明(2)利用旋转的性质以及矩形的判定证明(3)利用平移行性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情 况当点C ''在边C C '上和点C ''在边C C '的延长线上时.(4)开放型题目,答对即可解答:(1)菱形(2)证明:作C C AE '⊥于点E .…………………………………………(3分)由旋转得AC C A =',BAC AE C CAE ∠=='∠=∠∴α21. 四边形ABCD 是菱形,BC BA =∴,BAC BCA ∠=∠∴,BCA CAE ∠=∠∴,BC AE //∴,同理C D AE '//,C D BC '∴//,又C D BC '= ,∴ 四边形DC BC '是平行四边形,…………………(4分)又BC AE // ,︒=∠90CEA ,︒=∠-='∠∴90180CEA C BC ,∴四边形D C BC '是矩形…………………………………………(5分)(3)过点B 作AC BF ⊥,垂足为F ,BC BA = ,5102121=⨯===∴AC AF CF . 在Rt BCF ∆ 中,125132222=-=-=CF BC BF ,在ACE ∆和CBF ∆中,BCF CAE ∠=∠ , ︒=∠=∠90BFC CEA .ACE ∆∴∽CBF ∆,BC AC BF CB =∴,即131012=CE ,解得13120=CE , C A AC '= ,C C AE '⊥,132401312022=⨯=='∴CE C C .…………………(7分) 当四边形D C BC '''恰好为正方形时,分两种情况:①点C ''在边C C '上.1371131324013a =-=-'=C C .…………………(8分) ②点C ''在边C C '的延长线上,13409131324013a =+=+'=C C .……………(9分) 综上所述,a 的值为1371或13409. (4):答案不唯一.例:画出正确图形.……………………………………(10分)平移及构图方法:将ACD ∆沿着射线CA 方向平移,平移距离为AC 21的长度,得到D C A ''∆, 连接DC B A ,'.………………………(11分)结论:四边形是平行四边形……(12分)5.(2016·)如图,方格中,每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图.(1)画出将△ABC 向右平移2个单位得到△A 1B 1C 1;(2)画出将△ABC 绕点O 顺时针方向旋转90°得到的△A 2B 2C 2;(3)求△A 1B 1C 1与△A 2B 2C 2重合部分的面积.【考点】作图-旋转变换;作图-平移变换.【分析】(1)将△ABC 向右平移2个单位即可得到△A 1B 1C 1.(2)将△ABC 绕点O 顺时针方向旋转90°即可得到的△A 2B 2C 2.。

相关文档
最新文档