2012江苏高考数学文科试卷(含答案)word

合集下载

2012年江苏省高考数学试卷答案与解析

2012年江苏省高考数学试卷答案与解析

2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题。

每小题5分。

共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1.2。

4}。

B={2。

4。

6}.则A∪B={1.2。

4。

6}.考点: 并集及其运算.专题:集合.分析:由题意。

A.B两个集合的元素已经给出。

故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1。

2.4}。

B={2.4。

6}.∴A∪B={1.2.4.6}故答案为{1.2.4。

6}点评:本题考查并集运算。

属于集合中的简单计算题.解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4.现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本。

则应从高二年级抽取 15名学生.考点:分层抽样方法.专题: 概率与统计.分析:根据三个年级的人数比。

做出高二所占的比例.用要抽取得样本容量乘以高二所占的比例。

得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4.∴高二在总体中所占的比例是=.∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.∴要从高二抽取.故答案为:15点评:本题考查分层抽样方法.本题解题的关键是看出三个年级中各个年级所占的比例。

这就是在抽样过程中被抽到的概率.本题是一个基础题.3.(5分)(2012•江苏)设a.b∈R.a+bi=(i为虚数单位).则a+b的值为8 .考点: 复数代数形式的乘除运算;复数相等的充要条件.专题: 数系的扩充和复数.分析:由题意。

可对复数代数式分子与分母都乘以1+2i.再由进行计算即可得到a+bi=5+3i.再由复数相等的充分条件即可得到a.b的值。

从而得到所求的答案解答:解:由题.a。

b∈R.a+bi=所以a=5.b=3。

故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算。

2012年高考文科数学江苏卷-答案

2012年高考文科数学江苏卷-答案

【解析】根据题意AF BC DF =+,所以()||||cos02||2AB AF AB BC DF AB BC AB DF AB DF AB DF DF =+=+==︒==,||1DF =,又因为AE AD DF BF BC CF =+=+,,所以2(+)(+)|BC|+0+0+|||CF|cos1802AE BF AD DF BC CF DF ==︒=。

根据所给的图形,把已知向量用矩形的边所在的向量来表示,得向量的数量积,注意应用垂直的向量数量积等于0,得到结果。

【解析】4c a b ->。

53c a ≤-第二个不等式成立。

等号成立当且仅当::a b c =又ln ln a c c c b ≥+,0ln a c c <<,从而ln b c b c b a ≥,设函数()(1)ln f x x x =>。

2ln 1()(ln )x f x x -'=,当0e x <<时,()0f x '<,当e x >时,()0f x '>′,当e x =时()0f x '=。

∴当e x =时,()f x 取到极小值,也是最小值。

e ()(e)e ln emin f x f ∴===。

等号当且仅当e b a=时成立。

代入第一个不等式知:2e 3b a ≤=≤,不等式成立,从而e 可以取得。

等号成立当且仅当::1:e:2a b c =。

从而b 的取值范围是[e,7]双闭区间。

【答案】()证明:∵3ABAC BA BC = ||||cos 3||||cos AB AC A BA BC B =||cos 3||cos AC A BC B =||||sin sin AC BC B A= cos 3sin cos B A A B =)解:∵5cos 5C =,且0C <<3tan 4tan tan 1A A B =-【提示】(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c 化简后,再利用正弦定理变形,根据cos cos 0A B ≠,利用同角三角函数间的基本关系弦化切即可得到tan 3tan B A =。

2012年江苏省高考数学真题(解析版)

2012年江苏省高考数学真题(解析版)
绝密★启用前
2012 年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
注 意 事 项
考生在答题前请认真阅读本注意事项及各题答题要求: 1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题) 。本卷满分为 160 分。考试 时间为 120 分钟。考试结束后,请将本试卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、考试证号用 0.5 毫米黑色墨水的签字笔填写在试卷及 答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4.作答试题必须用 0.5 毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置 作答一律无效。 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

2 1 2

1≤ x 0 , ax 1, 其中 a , 若 f ( x) bx 2 bR . , 0 ≤ x ≤ 1, x 1
【答案】 10 。 【考点】周期函数的性质。
1 f 2
3 则 a 3b 的值为 f , 2
【答案】2。 【考点】双曲线的性质。 【解析】由

x2 y2 2 1 得 a = m,b = m 2 4,c = m m 2 4 。 m m 4
c m m2 4 ∴ e= = = 5 ,即 m 2 4m 4=0 ,解得 m =2 பைடு நூலகம் a m
9.如图,在矩形 ABCD 中, AB 2 , BC 2 ,点 E 为 BC 的中点,
【答案】 0, 6 。 【解析】根据二次根式和对数函数有意义的条件,得

x > 0 x > 0 x > 0 0< x 6 。 1 1 2= 6 1 2log 6 x 0 log 6 x x 6 2

2012江苏高考数学试卷 完整试卷附加标准答案 纯Word版.doc

2012江苏高考数学试卷 完整试卷附加标准答案  纯Word版.doc
13.已知函数 的值域为 ,若关于x的不等式 的解集为 ,则实数c的值为▲.
14.已知正数 满足: 则 的取值范围是▲.
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
在 中,已知 .
(1)求证: ;
(2)若 求A的值.
绝密★启用前
2012年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
参考公式:
棱锥的体积 ,其中 为底面积, 为高.
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
1.已知集合 , ,则 ▲.
2.某学校高一、高二、高三年级的学生人数之比为 ,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取▲名学生.
3.设 , (i为虚数单位),则 的值
为▲.
4.右图是一个算法流程图,则输出的k的值是▲.
5.函数 的定义域为▲.
6.现有10个数,它们能构成一个以1为首项, 为公比的
等比数列,若从这10个数中随机抽取一个数,则它小于8
的概率是▲.
7.如图,在长方体 中, , ,
则四棱锥 的体积为▲cm3.
8.在平面直角坐标系 中,若双曲线 的离心率
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.
18.(本小题满分16分)
若函数 在x=x0取得极大值或者极小值则x=x0是 的极值点
16.(本小题满分14分)
如图,在直三棱柱 中, , 分别是棱 上的点(点D不同于点C),且 为 的中点.

2012年江苏省高考数学试卷答案与解析

2012年江苏省高考数学试卷答案与解析

若从这 10 个数中随机抽取一个数,则它小于 8 的概率是

考点 :等 比数列的性质;古典概型及其概率计算公式. 专题 :等 差数列与等比数列;概率与统计. 分析:先 由题意写出成等比数列的 10 个数为,然后找出小于 8 的项的个数,代入古典概论
的计算公式即可求解 解答:解 :由题意成等比数列的 10 个数为: 1,﹣ 3,(﹣ 3) 2,(﹣ 3பைடு நூலகம்3…(﹣ 3)9
并集即可 解答:解 : ∵A={1 , 2, 4} , B={2 ,4, 6} ,
∴ A∪ B={1 , 2, 4, 6} 故答案为 {1 ,2, 4, 6} 点评:本 题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义
2.( 5 分)( 2012 ?江苏)某学校高一、高二、高三年级的学生人数之比为
则 d=
≤2,即 3k2﹣ 4k≤0,
∴ 0≤k≤ .
∴ k 的最大值是 .
故答案为: .
点评:本 题考查直线与圆的位置关系,将条件转化为
“( x﹣ 4) 2+y2=4 与直线 y=kx ﹣ 2 有公
共点 ”是关键,考查学生灵活解决问题的能力,属于中档题.
13.( 5 分)( 2012?江苏)已知函数 f( x)=x 2+ax+b (a, b∈R)的值域为 [0, +∞),若关于 x 的不等式 f( x)< c 的解集为( m, m+6),则实数 c 的值为 9 .
a, b 的值,从而得到答案. 解答:
解: ∵ f(x)是定义在 R 上且周期为 2 的函数, f( x) =

∴ f( ) =f (﹣ ) =1﹣ a,f ( )= ;又
=

(完整版)2012年江苏省高考数学试卷答案与解析

(完整版)2012年江苏省高考数学试卷答案与解析

2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题.每小题5分.共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1.2.4}.B={2.4.6}.则A∪B={1.2.4.6} .考点:并集及其运算.专题:集合.分析:由题意.A.B两个集合的元素已经给出.故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1.2.4}.B={2.4.6}.∴A∪B={1.2.4.6}故答案为{1.2.4.6}点评:本题考查并集运算.属于集合中的简单计算题.解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4.现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比.做出高二所占的比例.用要抽取得样本容量乘以高二所占的比例.得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4.∴高二在总体中所占的比例是=.∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.∴要从高二抽取.故答案为:15点评:本题考查分层抽样方法.本题解题的关键是看出三个年级中各个年级所占的比例.这就是在抽样过程中被抽到的概率.本题是一个基础题.3.(5分)(2012•江苏)设a.b∈R.a+bi=(i为虚数单位).则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意.可对复数代数式分子与分母都乘以1+2i.再由进行计算即可得到a+bi=5+3i.再由复数相等的充分条件即可得到a.b的值.从而得到所求的答案解答:解:由题.a.b∈R.a+bi=所以a=5.b=3.故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算.解题的关键是分子分母都乘以分母的共轭.复数的四则运算是复数考查的重要内容.要熟练掌握.复数相等的充分条件是将复数运算转化为实数运算的桥梁.解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图.则输出的k的值是 5 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值.判断是否循环.达到满足题目的条件.结束循环.得到结果即可.解答:解:1﹣5+4=0>0.不满足判断框.则k=2.22﹣10+4=﹣2>0.不满足判断框的条件.则k=3.32﹣15+4=﹣2>0.不成立.则k=4.42﹣20+4=0>0.不成立.则k=5.52﹣25+4=4>0.成立.所以结束循环.输出k=5.故答案为:5.点评:本题考查循环框图的作用.考查计算能力.注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0.] .考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0.真数要大于0.得到不等式组.根据对数的单调性解出不等式的解集.得到结果.解答:解:函数f(x)=要满足1﹣2≥0.且x>0∴.x>0∴.x>0.∴.x>0.∴0.故答案为:(0.]点评:本题考查对数的定义域和一般函数的定义域问题.在解题时一般遇到.开偶次方时.被开方数要不小于0.;真数要大于0;分母不等于0;0次方的底数不等于0.这种题目的运算量不大.是基础题.6.(5分)(2012•江苏)现有10个数.它们能构成一个以1为首项.﹣3为公比的等比数列.若从这10个数中随机抽取一个数.则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为.然后找出小于8的项的个数.代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1.﹣3.(﹣3)2.(﹣3)3…(﹣3)9其中小于8的项有:1.﹣3.(﹣3)3.(﹣3)5.(﹣3)7.(﹣3)9共6个数这10个数中随机抽取一个数.则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用.属于基础试题7.(5分)(2012•江苏)如图.在长方体ABCD﹣A1B1C1D1中.AB=AD=3cm.AA1=2cm.则四棱锥A ﹣BB1D1D的体积为 6 cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O.求出AO.然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O.AO是棱锥的高.所以AO==.所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法.考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中.若双曲线的离心率为.则m的值为 2 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0.所以双曲线的焦点必在x轴上.因此a2=m>0.可得c2=m2+m+4.最后根据双曲线的离心率为.可得c2=5a2.建立关于m的方程:m2+m+4=5m.解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0.b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为.∴.可得c2=5a2.所以m2+m+4=5m.解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程.在已知离心率的情况下求参数的值.着重考查了双曲线的概念与性质.属于基础题.9.(5分)(2012•江苏)如图.在矩形ABCD中.AB=.BC=2.点E为BC的中点.点F在边CD 上.若=.则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形.把已知向量用矩形的边所在的向量来表示.做出要用的向量的模长.表示出要求得向量的数量积.注意应用垂直的向量数量积等于0.得到结果.解答:解:∵.====||=.∴||=1.||=﹣1.∴=()()==﹣=﹣2++2=.故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式.本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数.在区间[﹣1.1]上.f (x)=其中a.b∈R.若=.则a+3b的值为﹣10 .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数.由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0.解关于a.b的方程组可得到a.b的值.从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数.f(x)=.∴f()=f(﹣)=1﹣ a.f()=;又=.∴1﹣a=①又f(﹣1)=f(1).∴2a+b=0.②由①②解得a=2.b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性.考查分段函数的解析式的求法.着重考查方程组思想.得到a.b的方程组并求得a.b的值是关键.属于中档题.(2012•江苏)设α为锐角.若cos(α+)=.则sin(2α+)的值为.11.(5分)考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+.根据cosβ求出sinβ.进而求出sin2β和cos2β.最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+.∴sinβ=.s in2β=2sinβcosβ=.cos2β=2cos2β﹣1=.∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下.求2α+的正弦值.着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式.考查了三角函数中的恒等变换应用.属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中.圆C的方程为x2+y2﹣8x+15=0.若直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1.由题意可知.只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0.整理得:(x﹣4)2+y2=1.即圆C是以(4.0)为圆心.1为半径的圆;又直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4.0)到直线y=kx﹣2的距离为d.则d=≤2.即3k2﹣4k≤0.∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系.将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键.考查学生灵活解决问题的能力.属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).若关于x 的不等式f(x)<c的解集为(m.m+6).则实数c的值为9 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系.然后根据不等式的解集可得f(x)=c的两个根为m.m+6.最后利用根与系数的关系建立等式.解之即可.解答:解:∵函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).∴f(x)=x2+ax+b=0只有一个根.即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m.m+6).即为x2+ax+<c解集为(m.m+6).则x2+ax+﹣c=0的两个根为m.m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用.以及根与系数的关系.同时考查了分析求解的能力和计算能力.属于中档题.14.(5分)(2012•江苏)已知正数a.b.c满足:5c﹣3a≤b≤4c﹣a.clnb≥a+clnc.则的取值范围是[e.7] .考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2.而5×﹣3≤≤4×﹣1.于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln.从而≥.设函数f(x)=(x>1).利用其导数可求得f (x)的极小值.也就是的最小值.于是问题解决.解答:解:∵4c﹣a≥b>0∴>.∵5c﹣3a≤4c﹣a.∴≤2.从而≤2×4﹣1=7.特别当=7时.第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc.∴0<a≤cln.从而≥.设函数f(x)=(x>1).∵f′(x)=.当0<x<e时.f′(x)<0.当x>e时.f′(x)>0.当x=e时.f′(x)=0.∴当x=e时.f(x)取到极小值.也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e.=e成立.代入第一个不等式知:2≤=e≤3.不等式成立.从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e.7]双闭区间.点评:本题考查不等式的综合应用.得到≥.通过构造函数求的最小值是关键.也是难点.考查分析与转化、构造函数解决问题的能力.属于难题.二、解答题:本大题共6小题.共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中.已知.(1)求证:tanB=3tanA;(2)若cosC=.求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边.然后两边同时除以c 化简后.再利用正弦定理变形.根据cosAcosB≠0.利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角.及cosC的值.利用同角三角函数间的基本关系求出sinC的值.进而再利用同角三角函数间的基本关系弦化切求出tanC的值.由tanC的值.及三角形的内角和定理.利用诱导公式求出tan(A+B)的值.利用两角和与差的正切函数公式化简后.将tanB=3tanA代入.得到关于tanA的方程.求出方程的解得到tanA的值.再由A为三角形的内角.利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•.∴cb cosA=3cacosB.即bcosA=3acosB.由正弦定理=得:sinBcosA=3sinAcosB.又0<A+B<π.∴cosA>0.cosB>0.在等式两边同时除以cosAcosB.可得tanB=3tanA;(2)∵cosC=.0<C<π.sinC==.∴tanC=2.则tan[π﹣(A+B)]=2.即tan(A+B)=﹣2.∴=﹣2.将tanB=3tanA代入得:=﹣2.整理得:3tan2A﹣2tanA﹣1=0.即(tanA﹣1)(3tanA+1)=0.解得:tanA=1或tanA=﹣.又cosA>0.∴tanA=1.又A为三角形的内角.则A=.点评:此题属于解三角形的题型.涉及的知识有:平面向量的数量积运算法则.正弦定理.同角三角函数间的基本关系.诱导公式.两角和与差的正切函数公式.以及特殊角的三角函数值.熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图.在直三棱柱ABC﹣A1B1C1中.A1B1=A1C1.D.E分别是棱1上的点(点D 不同于点C).且AD⊥DE.F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣AB1C1是直三棱柱.得到CC1⊥平面ABC.从而AD⊥CC1.结合已知1条件AD⊥DE.DE、CC1是平面BCC1B1内的相交直线.得到AD⊥平面BCC1B1.从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中.A1F⊥B1C1.再用类似(1)的方法.证出A1F⊥平面BCC1B1.结合AD⊥平面BCC1B1.得到A1F∥AD.最后根据线面平行的判定定理.得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣AB1C1是直三棱柱.1∴CC1⊥平面ABC.∵AD⊂平面ABC.∴AD⊥CC1又∵AD⊥DE.DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1.∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中.A1B1=A1C1.F为B1C1的中点∴A1F⊥B1C1.∵CC1⊥平面A1B1C1.A1F⊂平面A1B1C1.∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1.∴A1F∥AD∵A1F⊄平面ADE.AD⊂平面ADE.∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体.考查了直线与平面平行的判定和平面与平面垂直的判定等知识点.属于中档题.17.(14分)(2012•江苏)如图.建立平面直角坐标系xOy.x轴在地平面上.y轴垂直于地平面.单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上.其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小).其飞行高度为3.2千米.试问它的横坐标a 不超过多少时.炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求 y=kx﹣(1+k2)x2(k>0)与x轴的横坐标.求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值.由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中.令y=0.得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0.k>0.∴.当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0.∴炮弹可以击中目标等价于存在 k>0.使ka﹣(1+k2)a2=3.2成立.即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0.两根之积大于0.故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时.k=>0.∴当a不超过6千米时.炮弹可以击中目标.点评:本题考查函数模型的运用.考查基本不等式的运用.考查学生分析解决问题的能力.属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值.则称x0为函数y=f(x)的极值点.已知a.b是实数.1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2.求g(x)的极值点;(3)设h(x)=f(f(x))﹣c.其中c∈[﹣2.2].求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数.根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x.求出g′(x).令g′(x)=0.求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx.得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点.∴f′(1)=3﹣2a+b=0.f′(﹣1)=3+2a+b=0.解得a=0.b=﹣3.(2)由(1)得.f(x)=x3﹣3x.∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0.解得x1=x2=1.x3=﹣2.∵当x<﹣2时.g′(x)<0;当﹣2<x<1时.g′(x)>0.∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时.g′(x)>0.∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t.则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况.d∈[﹣2.2]当|d|=2时.由(2 )可知.f(x)=﹣2的两个不同的根为1和一2.注意到f(x)是奇函数.∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时.∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0.f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0.∴一2.﹣1.1.2 都不是f(x)=d 的根.由(1)知.f′(x)=3(x+1)(x﹣1).①当x∈(2.+∞)时.f′(x)>0.于是f(x)是单调增函数.从而f(x)>f(2)=2.此时f(x)=d在(2.+∞)无实根.②当x∈(1.2)时.f′(x)>0.于是f(x)是单调增函数.又∵f(1)﹣d<0.f(2)﹣d>0.y=f(x)﹣d的图象不间断.∴f(x)=d在(1.2 )内有唯一实根.同理.在(一2.一1)内有唯一实根.③当x∈(﹣1.1)时.f′(x)<0.于是f(x)是单调减函数.又∵f(﹣1)﹣d>0.f(1)﹣d<0.y=f(x)﹣d的图象不间断.∴f(x)=d在(一1.1 )内有唯一实根.因此.当|d|=2 时.f(x)=d 有两个不同的根 x1.x2.满足|x1|=1.|x2|=2;当|d|<2时.f (x)=d 有三个不同的根x3.x4.x5.满足|x i|<2.i=3.4.5.现考虑函数y=h(x)的零点:( i )当|c|=2时.f(t)=c有两个根t1.t2.满足|t1|=1.|t2|=2.而f(x)=t1有三个不同的根.f(x)=t2有两个不同的根.故y=h(x)有5 个零点.( i i )当|c|<2时.f(t)=c有三个不同的根t3.t4.t5.满足|t i|<2.i=3.4.5.而f(x)=t i有三个不同的根.故y=h(x)有9个零点.综上所述.当|c|=2时.函数y=h(x)有5个零点;当|c|<2时.函数y=h(x)有9 个零点.点评:本题考查导数知识的运用.考查函数的极值.考查函数的单调性.考查函数的零点.考查分类讨论的数学思想.综合性强.难度大.19.(16分)(2012•江苏)如图.在平面直角坐标系xOy中.椭圆(a>b>0)的左、右焦点分别为F1(﹣c.0).F2(c.0).已知(1.e)和(e.)都在椭圆上.其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A.B是椭圆上位于x轴上方的两点.且直线AF1与直线BF2平行.AF2与BF1交于点P.(i)若AF1﹣BF2=.求直线AF1的斜率;(ii)求证:PF1+PF2是定值.直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.考点:圆锥曲线的定义、性质与方程.专题:分(1)根据椭圆的性质和已知(1.e)和(e.).都在椭圆上列式求解.析:(2)(i)设AF1与BF2的方程分别为x+1=my.x﹣1=my.与椭圆方程联立.求出|AF1|、|BF2|.根据已知条件AF1﹣BF2=.用待定系数法求解;(ii)利用直线AF1与直线BF2平行.点B在椭圆上知.可得..由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2.e=.由点(1.e)在椭圆上.得.∴b=1.c2=a2﹣1.由点(e.)在椭圆上.得∴.∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1.0).F2(1.0).又∵直线AF1与直线BF2平行.∴设AF1与BF2的方程分别为x+1=my.x﹣1=my.设A(x1.y1).B(x2.y2).y1>0.y2>0.∴由.可得(m2+2)﹣2my1﹣1=0.∴.(舍).∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=.∴.解得m2=2.∵注意到m>0.∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行.∴.即.由点B在椭圆上知..∴.同理.∴PF1+PF2==由①②得...∴PF1+PF2=.∴PF 1+PF 2是定值.点评: 本题考查椭圆的标准方程.考查直线与椭圆的位置关系.考查学生的计算能力.属于中档题.20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n }和{b n }满足:a n+1=.n ∈N *.(1)设b n+1=1+.n ∈N*.求证:数列是等差数列;(2)设b n+1=•.n ∈N*.且{a n }是等比数列.求a 1和b 1的值.考点: 数列递推式;等差关系的确定;等比数列的性质. 专题: 等差数列与等比数列. 分析:(1)由题意可得.a n+1===.从而可得.可证(2)由基本不等式可得..由{a n }是等比数列利用反证法可证明q==1.进而可求a 1.b 1解答:解:(1)由题意可知.a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n >0.b n >0∴从而(*)设等比数列{a n}的公比为q.由a n>0可知q>0下证q=1若q>1.则.故当时.与(*)矛盾0<q<1.则.故当时.与(*)矛盾综上可得q=1.a n=a1.所以.∵∴数列{b n}是公比的等比数列若.则.于是b1<b2<b3又由可得∴b1.b2.b3至少有两项相同.矛盾∴.从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用.解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答.22、23必做题)(共3小题.满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图.AB是圆O的直径.D.E为圆上位于AB异侧的两点.连接BD并延长至点C.使BD=DC.连接AC.AE.DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵.求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中.已知圆C经过点P(.).圆心为直线ρsin(θ﹣)=﹣与极轴的交点.求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x.y满足:|x+y|<.|2x﹣y|<.求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C.就得找一个中间量代换.一方面考虑到∠B.∠E是同弧所对圆周角.相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵.根据定义可求出矩阵A.从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(.).求出圆的半径.从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径.∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC.∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D.E 为圆上位于AB异侧的两点.∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵.∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1.λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点.∴在ρsin(θ﹣)=﹣中令θ=0.得ρ=1.∴圆C的圆心坐标为(1.0).∵圆C 经过点P(.).∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|.|x+y|<.|2x﹣y|<.∴3|y|<.∴点评:本题是选作题.综合考查选修知识.考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明.综合性强22.(10分)(2012•江苏)设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条.当两条棱相交时.ξ=0;当两条棱平行时.ξ的值为两条棱之间的距离;当两条棱异面时.ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列.并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数.即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对.即可求出相应的概率.从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交.则交点必为正方体8个顶点中的一个.过任意1个顶点恰有3条棱.∴共有8对相交棱.∴P(ξ=0)=.(2)若两条棱平行.则它们的距离为1或.其中距离为的共有6对.∴P(ξ=)=.P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.点评:本题考查概率的计算.考查离散型随机变量的分布列与期望.求概率是关键.23.(10分)(2012•江苏)设集合P n={1.2.….n}.n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A.则2x∉A;③若x∈ A.则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}.故4可求f(4)(2)任取偶数x∈p n.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.可知.若m∈A.则x∈A.⇔k为偶数;若m∉A.则x∈A⇔k为奇数.可求解答:解(1)当n=4时.P={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}4故f(4)=4(2)任取偶数x∈p n.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.于是x=m•2k.其中m为奇数.k∈N*由条件可知.若m∈A.则x∈A.⇔k为偶数若m∉ A.则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定.设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数.当n为偶数时(或奇数时).P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用.解题的关键是准确应用题目中的定义。

2012江苏高考数学考试及答案解析word版

2012江苏高考数学考试及答案解析word版

2012江苏高考数学考试及答案解析word版————————————————————————————————作者:————————————————————————————————日期:绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ 注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分。

考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式: 棱锥的体积13V Sh =,其中S 为底面积,h 为高。

一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相....应位置上..... 1. 已知集合{124}A =,,,{246}B =,,,则A B = ▲ .答案:{}1246,,,2. 某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生.答案:153. 设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 ▲ . 答案:84. 右图是一个算法流程图,则输出的k 的值是 ▲ .(第4答案:55. 函数6()12log f x x =-的定义域为 ▲ .答案:(06,⎤⎦6. 现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ . 答案:357.如图,在长方体1111ABCD A B C D -中,3AB AD cm ==,12AA cm =,则四棱锥11A BB D D-的体积为 ▲ 3cm . 答案:68. 在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率为5,则m 的值为 ▲ . 答案:29. 如图,在矩形ABCD 中,2AB =,2BC =,点E 为BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是 ▲ . 答案:210. 设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 ▲ . 答案:10-11. 设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .答案:17250A BC EF D(第9(第712. 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ . 答案:43k =13. 已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ . 答案:914. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ . 答案:[]7e, 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15. (本小题满分14分)在ABC ∆中,已知3AB AC BA BC =. (1) 求证:tan 3tan B A =; (2) 若5cos 5C =,求A 的值. 解: (1)∵3AB AC BA BC =∴3AB AC cos A BA BC cos B = ∴3AC cos A BC cos B =由正弦定理得:AC BC sin Bsin A=∴3sin B cos A sin A cos B = ∴3tan B tan A = (2)∵55cos C =,且0C π<< ∴255sinC =∴2tanC = ∴()2tan A B +=- 又∵3tan B tan A =∴23421113tan A tan B tan A tan A tan Atan Atan B tan A tan B tan A++-===--- ∴1tan A =或13-∵3tan B tan A =∴A ,B 必为锐角,否则A ,B 同时为钝角,这与三角形的内角和小于180矛盾 ∴0tan A > ∴1tan A = ∴4A π=16. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DEF ⊥,为11B C 的中点. 求证:(1) 平面ADE ⊥平面11BCC B ; (2) 直线1//A F 平面ADE . 证明: (1)∵三棱柱111ABC A B C -是直三棱柱∴1CC ABC ⊥平面 ∵AD ABC ⊂平面 ∴1CC AD ⊥ ∵AD DE ⊥,且1DE CC E =∴11AD BCC B ⊥平面 ∵AD ABC ⊂平面∴11ADE BCC B ⊥平面平面 (2)∵11AD BCC B ⊥平面,11BC BCC B ⊂平面∴AD BC ⊥∵直三棱柱111ABC A B C -中,1111A B AC = ∴AB AC = ∴D 是BC 的中点 ∵F 是11B C 的中点 ∴1DFAA ,且1DF AA =∴四边形1AA FD 是平行四边形 ∴1A FAD∵1D F A A E ⊄平面,1D F A A E ⊂平面 ∴1//A F 平面ADE17. (本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.解: (1)∵炮位于坐标原点,炮弹发射后的轨迹方程为221(1)(0)20y kx k x k =-+>,炮的射程是指炮弹落地点的横坐标∴令0y =,则炮的射程可表示为()21120k x k =+∴炮的最大射程即x 的最大值 由题意得0x >,0k > ∴()2202010112120k x km k k k==≤=++,当且仅当2k =时,等号成立 ∴炮的最大射程是10km 。

(完整版)2012年江苏省高考数学试卷答案与解析

(完整版)2012年江苏省高考数学试卷答案与解析

2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题.每小题5分.共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012?江苏)已知集合A={1.2.4}.B={2.4.6}.则A∪B={1.2.4.6} .考点:并集及其运算.专题:集合.分析:由题意.A.B两个集合的元素已经给出.故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1.2.4}.B={2.4.6}.∴A∪B={1.2.4.6}故答案为{1.2.4.6}点评:本题考查并集运算.属于集合中的简单计算题.解题的关键是理解并的运算定义2.(5分)(2012?江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4.现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比.做出高二所占的比例.用要抽取得样本容量乘以高二所占的比例.得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4.∴高二在总体中所占的比例是=.∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.∴要从高二抽取.故答案为:15点评:本题考查分层抽样方法.本题解题的关键是看出三个年级中各个年级所占的比例.这就是在抽样过程中被抽到的概率.本题是一个基础题.3.(5分)(2012?江苏)设 a.b∈R.a+bi=(i为虚数单位).则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意.可对复数代数式分子与分母都乘以1+2i.再由进行计算即可得到a+bi=5+3i.再由复数相等的充分条件即可得到 a.b的值.从而得到所求的答案解答:解:由题.a.b∈R.a+bi=. .。

(完整版)2012年江苏省高考数学试卷答案与解析

(完整版)2012年江苏省高考数学试卷答案与解析

2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题.每小题5分.共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1.2.4}.B={2.4.6}.则A∪B={1.2.4.6} .考点:并集及其运算.专题:集合.分析:由题意.A.B两个集合的元素已经给出.故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1.2.4}.B={2.4.6}.∴A∪B={1.2.4.6}故答案为{1.2.4.6}点评:本题考查并集运算.属于集合中的简单计算题.解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4.现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比.做出高二所占的比例.用要抽取得样本容量乘以高二所占的比例.得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4.∴高二在总体中所占的比例是=.∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本.∴要从高二抽取.故答案为:15点评:本题考查分层抽样方法.本题解题的关键是看出三个年级中各个年级所占的比例.这就是在抽样过程中被抽到的概率.本题是一个基础题.3.(5分)(2012•江苏)设a.b∈R.a+bi=(i为虚数单位).则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意.可对复数代数式分子与分母都乘以1+2i.再由进行计算即可得到a+bi=5+3i.再由复数相等的充分条件即可得到a.b的值.从而得到所求的答案解答:解:由题.a.b∈R.a+bi=所以a=5.b=3.故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算.解题的关键是分子分母都乘以分母的共轭.复数的四则运算是复数考查的重要内容.要熟练掌握.复数相等的充分条件是将复数运算转化为实数运算的桥梁.解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图.则输出的k的值是 5 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值.判断是否循环.达到满足题目的条件.结束循环.得到结果即可.解答:解:1﹣5+4=0>0.不满足判断框.则k=2.22﹣10+4=﹣2>0.不满足判断框的条件.则k=3.32﹣15+4=﹣2>0.不成立.则k=4.42﹣20+4=0>0.不成立.则k=5.52﹣25+4=4>0.成立.所以结束循环.输出k=5.故答案为:5.点评:本题考查循环框图的作用.考查计算能力.注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0.] .考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0.真数要大于0.得到不等式组.根据对数的单调性解出不等式的解集.得到结果.解答:解:函数f(x)=要满足1﹣2≥0.且x>0∴.x>0∴.x>0.∴.x>0.∴0.故答案为:(0.]点评:本题考查对数的定义域和一般函数的定义域问题.在解题时一般遇到.开偶次方时.被开方数要不小于0.;真数要大于0;分母不等于0;0次方的底数不等于0.这种题目的运算量不大.是基础题.6.(5分)(2012•江苏)现有10个数.它们能构成一个以1为首项.﹣3为公比的等比数列.若从这10个数中随机抽取一个数.则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为.然后找出小于8的项的个数.代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1.﹣3.(﹣3)2.(﹣3)3…(﹣3)9其中小于8的项有:1.﹣3.(﹣3)3.(﹣3)5.(﹣3)7.(﹣3)9共6个数这10个数中随机抽取一个数.则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用.属于基础试题7.(5分)(2012•江苏)如图.在长方体ABCD﹣A1B1C1D1中.AB=AD=3cm.AA1=2cm.则四棱锥A ﹣BB1D1D的体积为 6 cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O.求出AO.然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O.AO是棱锥的高.所以AO==.所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法.考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中.若双曲线的离心率为.则m的值为 2 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0.所以双曲线的焦点必在x轴上.因此a2=m>0.可得c2=m2+m+4.最后根据双曲线的离心率为.可得c2=5a2.建立关于m的方程:m2+m+4=5m.解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0.b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为.∴.可得c2=5a2.所以m2+m+4=5m.解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程.在已知离心率的情况下求参数的值.着重考查了双曲线的概念与性质.属于基础题.9.(5分)(2012•江苏)如图.在矩形ABCD中.AB=.BC=2.点E为BC的中点.点F在边CD 上.若=.则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形.把已知向量用矩形的边所在的向量来表示.做出要用的向量的模长.表示出要求得向量的数量积.注意应用垂直的向量数量积等于0.得到结果.解答:解:∵.====||=.∴||=1.||=﹣1.∴=()()==﹣=﹣2++2=.故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式.本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数.在区间[﹣1.1]上.f (x)=其中a.b∈R.若=.则a+3b的值为﹣10 .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数.由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0.解关于a.b的方程组可得到a.b的值.从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数.f(x)=.∴f()=f(﹣)=1﹣ a.f()=;又=.∴1﹣a=①又f(﹣1)=f(1).∴2a+b=0.②由①②解得a=2.b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性.考查分段函数的解析式的求法.着重考查方程组思想.得到a.b的方程组并求得a.b的值是关键.属于中档题.(2012•江苏)设α为锐角.若cos(α+)=.则sin(2α+)的值为.11.(5分)考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+.根据cosβ求出sinβ.进而求出sin2β和cos2β.最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+.∴sinβ=.s in2β=2sinβcosβ=.cos2β=2cos2β﹣1=.∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下.求2α+的正弦值.着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式.考查了三角函数中的恒等变换应用.属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中.圆C的方程为x2+y2﹣8x+15=0.若直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1.由题意可知.只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0.整理得:(x﹣4)2+y2=1.即圆C是以(4.0)为圆心.1为半径的圆;又直线y=kx﹣2上至少存在一点.使得以该点为圆心.1为半径的圆与圆C有公共点.∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4.0)到直线y=kx﹣2的距离为d.则d=≤2.即3k2﹣4k≤0.∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系.将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键.考查学生灵活解决问题的能力.属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).若关于x 的不等式f(x)<c的解集为(m.m+6).则实数c的值为9 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系.然后根据不等式的解集可得f(x)=c的两个根为m.m+6.最后利用根与系数的关系建立等式.解之即可.解答:解:∵函数f(x)=x2+ax+b(a.b∈R)的值域为[0.+∞).∴f(x)=x2+ax+b=0只有一个根.即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m.m+6).即为x2+ax+<c解集为(m.m+6).则x2+ax+﹣c=0的两个根为m.m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用.以及根与系数的关系.同时考查了分析求解的能力和计算能力.属于中档题.14.(5分)(2012•江苏)已知正数a.b.c满足:5c﹣3a≤b≤4c﹣a.clnb≥a+clnc.则的取值范围是[e.7] .考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2.而5×﹣3≤≤4×﹣1.于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln.从而≥.设函数f(x)=(x>1).利用其导数可求得f (x)的极小值.也就是的最小值.于是问题解决.解答:解:∵4c﹣a≥b>0∴>.∵5c﹣3a≤4c﹣a.∴≤2.从而≤2×4﹣1=7.特别当=7时.第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc.∴0<a≤cln.从而≥.设函数f(x)=(x>1).∵f′(x)=.当0<x<e时.f′(x)<0.当x>e时.f′(x)>0.当x=e时.f′(x)=0.∴当x=e时.f(x)取到极小值.也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e.=e成立.代入第一个不等式知:2≤=e≤3.不等式成立.从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e.7]双闭区间.点评:本题考查不等式的综合应用.得到≥.通过构造函数求的最小值是关键.也是难点.考查分析与转化、构造函数解决问题的能力.属于难题.二、解答题:本大题共6小题.共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中.已知.(1)求证:tanB=3tanA;(2)若cosC=.求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边.然后两边同时除以c 化简后.再利用正弦定理变形.根据cosAcosB≠0.利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角.及cosC的值.利用同角三角函数间的基本关系求出sinC的值.进而再利用同角三角函数间的基本关系弦化切求出tanC的值.由tanC的值.及三角形的内角和定理.利用诱导公式求出tan(A+B)的值.利用两角和与差的正切函数公式化简后.将tanB=3tanA代入.得到关于tanA的方程.求出方程的解得到tanA的值.再由A为三角形的内角.利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•.∴cb cosA=3cacosB.即bcosA=3acosB.由正弦定理=得:sinBcosA=3sinAcosB.又0<A+B<π.∴cosA>0.cosB>0.在等式两边同时除以cosAcosB.可得tanB=3tanA;(2)∵cosC=.0<C<π.sinC==.∴tanC=2.则tan[π﹣(A+B)]=2.即tan(A+B)=﹣2.∴=﹣2.将tanB=3tanA代入得:=﹣2.整理得:3tan2A﹣2tanA﹣1=0.即(tanA﹣1)(3tanA+1)=0.解得:tanA=1或tanA=﹣.又cosA>0.∴tanA=1.又A为三角形的内角.则A=.点评:此题属于解三角形的题型.涉及的知识有:平面向量的数量积运算法则.正弦定理.同角三角函数间的基本关系.诱导公式.两角和与差的正切函数公式.以及特殊角的三角函数值.熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图.在直三棱柱ABC﹣A1B1C1中.A1B1=A1C1.D.E分别是棱1上的点(点D 不同于点C).且AD⊥DE.F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣AB1C1是直三棱柱.得到CC1⊥平面ABC.从而AD⊥CC1.结合已知1条件AD⊥DE.DE、CC1是平面BCC1B1内的相交直线.得到AD⊥平面BCC1B1.从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中.A1F⊥B1C1.再用类似(1)的方法.证出A1F⊥平面BCC1B1.结合AD⊥平面BCC1B1.得到A1F∥AD.最后根据线面平行的判定定理.得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣AB1C1是直三棱柱.1∴CC1⊥平面ABC.∵AD⊂平面ABC.∴AD⊥CC1又∵AD⊥DE.DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1.∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中.A1B1=A1C1.F为B1C1的中点∴A1F⊥B1C1.∵CC1⊥平面A1B1C1.A1F⊂平面A1B1C1.∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1.∴A1F∥AD∵A1F⊄平面ADE.AD⊂平面ADE.∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体.考查了直线与平面平行的判定和平面与平面垂直的判定等知识点.属于中档题.17.(14分)(2012•江苏)如图.建立平面直角坐标系xOy.x轴在地平面上.y轴垂直于地平面.单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上.其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小).其飞行高度为3.2千米.试问它的横坐标a 不超过多少时.炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求 y=kx﹣(1+k2)x2(k>0)与x轴的横坐标.求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值.由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中.令y=0.得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0.k>0.∴.当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0.∴炮弹可以击中目标等价于存在 k>0.使ka﹣(1+k2)a2=3.2成立.即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0.两根之积大于0.故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时.k=>0.∴当a不超过6千米时.炮弹可以击中目标.点评:本题考查函数模型的运用.考查基本不等式的运用.考查学生分析解决问题的能力.属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值.则称x0为函数y=f(x)的极值点.已知a.b是实数.1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2.求g(x)的极值点;(3)设h(x)=f(f(x))﹣c.其中c∈[﹣2.2].求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数.根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x.求出g′(x).令g′(x)=0.求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx.得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点.∴f′(1)=3﹣2a+b=0.f′(﹣1)=3+2a+b=0.解得a=0.b=﹣3.(2)由(1)得.f(x)=x3﹣3x.∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0.解得x1=x2=1.x3=﹣2.∵当x<﹣2时.g′(x)<0;当﹣2<x<1时.g′(x)>0.∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时.g′(x)>0.∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t.则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况.d∈[﹣2.2]当|d|=2时.由(2 )可知.f(x)=﹣2的两个不同的根为1和一2.注意到f(x)是奇函数.∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时.∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0.f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0.∴一2.﹣1.1.2 都不是f(x)=d 的根.由(1)知.f′(x)=3(x+1)(x﹣1).①当x∈(2.+∞)时.f′(x)>0.于是f(x)是单调增函数.从而f(x)>f(2)=2.此时f(x)=d在(2.+∞)无实根.②当x∈(1.2)时.f′(x)>0.于是f(x)是单调增函数.又∵f(1)﹣d<0.f(2)﹣d>0.y=f(x)﹣d的图象不间断.∴f(x)=d在(1.2 )内有唯一实根.同理.在(一2.一1)内有唯一实根.③当x∈(﹣1.1)时.f′(x)<0.于是f(x)是单调减函数.又∵f(﹣1)﹣d>0.f(1)﹣d<0.y=f(x)﹣d的图象不间断.∴f(x)=d在(一1.1 )内有唯一实根.因此.当|d|=2 时.f(x)=d 有两个不同的根 x1.x2.满足|x1|=1.|x2|=2;当|d|<2时.f (x)=d 有三个不同的根x3.x4.x5.满足|x i|<2.i=3.4.5.现考虑函数y=h(x)的零点:( i )当|c|=2时.f(t)=c有两个根t1.t2.满足|t1|=1.|t2|=2.而f(x)=t1有三个不同的根.f(x)=t2有两个不同的根.故y=h(x)有5 个零点.( i i )当|c|<2时.f(t)=c有三个不同的根t3.t4.t5.满足|t i|<2.i=3.4.5.而f(x)=t i有三个不同的根.故y=h(x)有9个零点.综上所述.当|c|=2时.函数y=h(x)有5个零点;当|c|<2时.函数y=h(x)有9 个零点.点评:本题考查导数知识的运用.考查函数的极值.考查函数的单调性.考查函数的零点.考查分类讨论的数学思想.综合性强.难度大.19.(16分)(2012•江苏)如图.在平面直角坐标系xOy中.椭圆(a>b>0)的左、右焦点分别为F1(﹣c.0).F2(c.0).已知(1.e)和(e.)都在椭圆上.其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A.B是椭圆上位于x轴上方的两点.且直线AF1与直线BF2平行.AF2与BF1交于点P.(i)若AF1﹣BF2=.求直线AF1的斜率;(ii)求证:PF1+PF2是定值.直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.考点:圆锥曲线的定义、性质与方程.专题:分(1)根据椭圆的性质和已知(1.e)和(e.).都在椭圆上列式求解.析:(2)(i)设AF1与BF2的方程分别为x+1=my.x﹣1=my.与椭圆方程联立.求出|AF1|、|BF2|.根据已知条件AF1﹣BF2=.用待定系数法求解;(ii)利用直线AF1与直线BF2平行.点B在椭圆上知.可得..由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2.e=.由点(1.e)在椭圆上.得.∴b=1.c2=a2﹣1.由点(e.)在椭圆上.得∴.∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1.0).F2(1.0).又∵直线AF1与直线BF2平行.∴设AF1与BF2的方程分别为x+1=my.x﹣1=my.设A(x1.y1).B(x2.y2).y1>0.y2>0.∴由.可得(m2+2)﹣2my1﹣1=0.∴.(舍).∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=.∴.解得m2=2.∵注意到m>0.∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行.∴.即.由点B在椭圆上知..∴.同理.∴PF1+PF2==由①②得...∴PF1+PF2=.∴PF 1+PF 2是定值.点评: 本题考查椭圆的标准方程.考查直线与椭圆的位置关系.考查学生的计算能力.属于中档题.20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n }和{b n }满足:a n+1=.n ∈N *.(1)设b n+1=1+.n ∈N*.求证:数列是等差数列;(2)设b n+1=•.n ∈N*.且{a n }是等比数列.求a 1和b 1的值.考点: 数列递推式;等差关系的确定;等比数列的性质. 专题: 等差数列与等比数列. 分析:(1)由题意可得.a n+1===.从而可得.可证(2)由基本不等式可得..由{a n }是等比数列利用反证法可证明q==1.进而可求a 1.b 1解答:解:(1)由题意可知.a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n >0.b n >0∴从而(*)设等比数列{a n}的公比为q.由a n>0可知q>0下证q=1若q>1.则.故当时.与(*)矛盾0<q<1.则.故当时.与(*)矛盾综上可得q=1.a n=a1.所以.∵∴数列{b n}是公比的等比数列若.则.于是b1<b2<b3又由可得∴b1.b2.b3至少有两项相同.矛盾∴.从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用.解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答.22、23必做题)(共3小题.满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图.AB是圆O的直径.D.E为圆上位于AB异侧的两点.连接BD并延长至点C.使BD=DC.连接AC.AE.DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵.求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中.已知圆C经过点P(.).圆心为直线ρsin(θ﹣)=﹣与极轴的交点.求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x.y满足:|x+y|<.|2x﹣y|<.求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C.就得找一个中间量代换.一方面考虑到∠B.∠E是同弧所对圆周角.相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵.根据定义可求出矩阵A.从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(.).求出圆的半径.从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径.∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC.∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D.E 为圆上位于AB异侧的两点.∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵.∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1.λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点.∴在ρsin(θ﹣)=﹣中令θ=0.得ρ=1.∴圆C的圆心坐标为(1.0).∵圆C 经过点P(.).∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|.|x+y|<.|2x﹣y|<.∴3|y|<.∴点评:本题是选作题.综合考查选修知识.考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明.综合性强22.(10分)(2012•江苏)设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条.当两条棱相交时.ξ=0;当两条棱平行时.ξ的值为两条棱之间的距离;当两条棱异面时.ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列.并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数.即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对.即可求出相应的概率.从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交.则交点必为正方体8个顶点中的一个.过任意1个顶点恰有3条棱.∴共有8对相交棱.∴P(ξ=0)=.(2)若两条棱平行.则它们的距离为1或.其中距离为的共有6对.∴P(ξ=)=.P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.点评:本题考查概率的计算.考查离散型随机变量的分布列与期望.求概率是关键.23.(10分)(2012•江苏)设集合P n={1.2.….n}.n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A.则2x∉A;③若x∈ A.则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}.故4可求f(4)(2)任取偶数x∈p n.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.可知.若m∈A.则x∈A.⇔k为偶数;若m∉A.则x∈A⇔k为奇数.可求解答:解(1)当n=4时.P={1.2.3.4}.符合条件的集合A为:{2}.{1.4}.{2.3}.{1.3.4}4故f(4)=4(2)任取偶数x∈p n.将x除以2.若商仍为偶数.再除以2….经过k次后.商必为奇数.此时记商为m.于是x=m•2k.其中m为奇数.k∈N*由条件可知.若m∈A.则x∈A.⇔k为偶数若m∉ A.则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定.设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数.当n为偶数时(或奇数时).P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用.解题的关键是准确应用题目中的定义。

2012年江苏高考数学试题及答案

2012年江苏高考数学试题及答案

2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则AB = ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +为 ▲ .4.右图是一个算法流程图,则输出的k 的值是 ▲ . 5.函数()f x =的定义域为 ▲ .6.现有10个数,它们能构成一个以1为首项,3-等比数列,若从这10个数中随机抽取一个数,则它小于的概率是 ▲ .7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率m 的值为 ▲ .9.如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点, 点F 在边CD 上,若2AB AF =,则AE BF 的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,(第4题)DABC1 1D 1A1B(第7题)0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =. (1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .(第9题)1A1C(第16题)FDCABE1B17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点 已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和2e ⎛ ⎝⎭,都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线与直线2BF 平行,2AF 与1BF 交于点P .(i )若12AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:1n a n *+=∈N .(1)设11n n nb b n a *+=+∈N ,,求证:数列2nn b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值.绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)准考证号21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作...................答...若多做,则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,D ,E 为圆上位于AB 异侧的两点,连结BD 并延长至点C ,使BD = DC ,连结AC ,AE ,DE . 求证:E C ∠=∠.B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分) 在极坐标中,已知圆C 经过点()4P π,,圆心为直线()sin 3ρθπ-=与极轴的交点,求圆C 的极坐标方程.D .[选修4 - 5:不等式选讲](本小题满分10分)(第21-A 题)已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…,n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈,则2x A ∉;③若nP x A ∈,则2nP x A ∉.(1)求(4)f ;(2)求()f n 的解析式(用n 表示).2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则A∪B={1,2,4,6}.考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是5.考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为6cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为2.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f (x)=其中a,b∈R.若=,则a+3b的值为﹣10.考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx ﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9.考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e 可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.点评:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c 化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC 的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在y=kx﹣(1+k2)x2(k>0)中,令y=0,得kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由f(x)=x3+ax2+bx,得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:(i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5 个零点.(i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.点:圆锥曲线的定义、性质与方程.专题:分(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.析:(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.答:(1)解:由题设知a由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.点评:20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.考点:数列递推式;等差关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b 1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有8对相交棱,∴P(ξ=0)=.(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,∴P(ξ=)=,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.点评:本题考查概率的计算,考查离散型随机变量的分布列与期望,求概率是关键.23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).。

2012年普通高等学校招生全国统一考试(江苏卷)文科数学及答案

2012年普通高等学校招生全国统一考试(江苏卷)文科数学及答案

2012年普通高等学校招生全国统一考试(江苏卷)数 学(供文科考生使用)锥体的体积公式13V Sh =,其中S 表示锥体的底面积,h 表示锥体的高一、选择题(本大题共14小题,每小题5分,共70分.)1.已知集合{}{}1,2,4,2,4,6A B ==,则A B =U _____2.某学校高一,高二,高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_______名学生.3.设117,,12ia b R a bi i-∈+=-(i 为虚数单位),则a b +的值为______4.右图是一个算法流程图,则输出的k 的值是_______5.函数()f x _______6.现在10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是______7.如图,在长方体1111ABCD A B C D -中,3AB AD ==cm,12AA =cm,则四棱锥11A BB D D -的体积为_______8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+,则m的值为_______9.如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD上,若AB AF ⋅=uu u r uu u r则AE BF ⋅uu u r uu u r 的值是______10.设()f x 是定义在R 上且周期为2的函数,在区间[]1,1-上,()1,10,2,011ax x f x bx x x +-≤<⎧⎪=+⎨≤≤⎪+⎩其中,a b R ∈,若13()()22f f =,则3a b +的值为______11.设α为锐角,若π4cos()65α+=,则πsin(2)12α+的值为__________12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是__________13.已知函数()()2,f x x ax b a b R =++∈的值域为[)0,+∞,若关于x 的不等式()f x c <的解集为(),6m m +,则实数c 的值为________14.已知正数,,a b c 满足:534,ln ln c a b c a c b a c c -≤≤-≥+,则ba的取值范围是________二、解答题(本大题共6小题,共90分.解答题应写出文字说明,证明过程或演算步骤.)15.(本小题14分)在ABC ∆中,已知3AB AC BA BC ⋅=⋅u u u r u u u r u u r u u u r.(1)求证:tan 3tan B A =(2)若cos C =求A 的值.16.(本小题14分)如图,在直三棱柱111ABC A B C -中,1111,,A B AC D E =分别是棱1,BC CC 上的点(点D 不同于点C ),且,AD DE F ⊥为11B C 的中点.求证: (1)平面ADE ⊥平面11BCC B ; (2)直线1A F P 平面ADE .C 1D 1B 1A 1DCBAFC 1B 1A 1E DCBA17.(本小题14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程()()2211020y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.18.(本小题16分)若函数()y f x =在0x x =处取得极大值或极小值,则称0x 为函数()y f x =的极值点.已知,a b 是实数,1和1-是函数()32f x x ax bx =++的两个极值点.(1)求a 和b 的值;(2)设函数()g x 的导函数()()'2g x f x =+,求()g x 的极值点; (3)设()()()h x f f x c =-,其中[]2,2c ∈-,求函数()y h x =的零点个数.19.(本小题16分)如图,在平面直角坐标系xOy 中,椭圆()222210x y a b a b+=>>的左,右焦点分别为()()12,0,,0F c F c -.已知点()1,e和(e 都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i)若12AF BF -=求直线1AF 的斜率; (ii)求证:12PF PF +是定值.20.(本小题16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:1n a n N *+∈(1)设11,n n n b b n N a *+=+∈,求证:数列2{()}n n ba 是等差数列; (2)设1,nn nb b n N a *+=∈,且{}n a 是等比数列,求1a 和1b 的值.1. 【答案】{}1,2,4,6。

2012江苏高考数学文科试卷(含答案)

2012江苏高考数学文科试卷(含答案)

2 x + a , x < 1 , 若 f (1 − a ) = f (1 + a ) , 则 a 的值为___-3/4 − x − 2 a , x ≥ 1
x

12、在平面直角坐标系 xOy 中,已知点 P 是函数 f ( x) = e ( x > 0) 的图象上的动点,该图象 在 P 处的切线 l 交 y 轴于点 M,过点 P 作 l 的垂线交 y 轴于点 N,设线段 MN 的中点的纵坐标
m ≤ ( x − 2) 2 + y 2 ≤ m 2 , x, y ∈ R} , 2
B = {( x, y ) | 2m ≤ x + y ≤ 2m + 1, x, y ∈ R} , 若 A ∩ B ≠ φ , 则 实 数 m 的 取 值 范 围 是
______________[1/2,2+根号 2]
二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过 程活盐酸步骤 。
P
π
15、在△ABC 中,角 A、B、C 所对应的边为 a, b, c
) = 2 cos A, 求 A 的值; 6 1 (2)若 cos A = , b = 3c ,求 sin C 的值. 3
f (0) = ____ (根号 6)/2
π 7
3 12
π
− 2
10、已知 e1 , e2 是夹角为 的值为 5/4 11、 已知实数 a ≠ 0 , 函 数 f ( x) =
→ → → → → → → → → → 2 π 的两个单位向量, a = e1 − 2 e2 , b = k e1 + e2 , 若 a⋅ b = 0 ,则 k 3

2012江苏高考数学试题及答案

2012江苏高考数学试题及答案

绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B = ▲ . 2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生.3.设a b ∈R ,,117i i 12ia b -+=-(i 为虚数单位),则a b +为 ▲ .4.右图是一个算法流程图,则输出的k 的值是 ▲ . 5.函数()f x 的定义域为 ▲ .6.现有10个数,它们能构成一个以1为首项,3-等比数列,若从这10个数中随机抽取一个数,则它小于的概率是 ▲ .★此卷上交考点保存★ 姓名 准考证号(第4题)7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率 m 的值为 ▲ .9.如图,在矩形ABCD 中,2AB BC =,点E 为BC 的中点,点F 在边CD 上,若AB AF AE BF的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上, 0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,[则3a b +的值为 ▲ .11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .[来源:学科网ZXXK]13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ . 14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =. (1)求证:tan 3tan B A =;DABC1 1D 1A1B(第7题)(第9题)(2)若cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数. 1A1C(第16题)FDCABE1B19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛ ⎝⎭都在椭圆上,其中e 为椭圆的离心率. (1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线与直线2BF 平行,2AF 与1BF 交于点P .(i )若12AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:1n a n *+∈N .(1)设11n n n b b n a *+=+∈N ,,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值.(第19题)绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作...................答...若多做,则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,D ,E为圆上位于AB 异侧的两点,连结BD 并延长至点C ,使BD = DC ,连结AC ,AE ,DE . 求证:E C ∠=∠.★此卷上交考点保存★ 姓名 准考证号[来源:Z+xx+]B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分) 在极坐标中,已知圆C 经过点()4P π,,圆心为直线()sin 3ρθπ-=与极轴的交点,求圆C 的极坐标方程.D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.[来源:Z&xx&]22.(本小题满分10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…,n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈,则2x A ∉;③若n P x A ∈ð,则2n P x A ∉ð. (1)求(4)f ;(2)求()f n 的解析式(用n 表示).(第21-A 题)2012年普通高等学校招生全国统一考试(江苏卷)(重点详解)1.{1246},,, 2.15 3.8 4.5 5.(0 6.35[来源:学#科#网Z#X#X#K][来源:学科网]7.详解:连接AC 交BD 于点O ,则四棱锥11A BB D D -的体积为11163BB D D S AO ⋅=.[来源:学*科*网Z*X*X*K]8.详解:222222221c a b b e a a a -===- ,24510m m m +∴=->,.2m =. 9.详解:由AB AF =()AB AD DF +AB DF ∴ AE BF ()()AB BE BC CF AB CF BE BC =++=+()22AB CD DF AB CD AB DF =++=++= 法二:建立直角坐标系,利用坐标运算求解10.详解:由题11()()22f f =-,(1)(1)f f -=,解得3122b a b a ⎧=--⎪⎨⎪=-⎩,,24a b =⎧⎨=-⎩,, 则310a b +=-.11.详解:由α为锐角及4cos 65απ⎛⎫+= ⎪⎝⎭知360ππα<+<,252454532)6cos()6sin(2)32sin(=⨯⨯=++=+παπαπα ,2571)6(cos 2)32cos(2=-+=+παπα[来源:学§科§网Z §X §X §K]]4)32sin[()122sin(ππαπα-+=+∴50217)]32cos()32[sin(22=+-+=παπα. 12.详解:由题圆C :22(4)1x y -+=,(40)C ,,1r =,设(2)M t k t -,为另一圆的圆心,所以[02]CM ,,则22(1)(84)160k t k t +-++≤关于t ∈R 有解,故222(84)64(1)0k t k ∆=+-+≥,则403k ≤≤, ∴k 的最大值是43. 13.详解:由题240a b ∆=-=(1),20x ax b c ++-=的根为 6m m +,,6m m a ++=- (2) ,(6)m m b c +=-(3),由(1) (3)得2222(6)(3)944a a c m m m =-+=-++,由(2) 32a m -+=,故9c =.14.详解:由题a b c ,,>0,534ln ln c a b c a c b a c c --+≤≤≥,,5341c b ca a a∴--≤≤,ln b c a c ≥,令b cx y a a==,,则5341y x y --≤≤且ln 100x y x y y >>≥,,,ln 1x y y ≥化为1e yx y ≥,令1t y =,则e t x t ≥,令e t u t =,则2e (1)t t u t -'=,10t u '>>,,010t u '<<<,,所以1()t u t >,增,01()t u t <<,减,则min e u =,结合图形[e 7]bx a=∈,.17.18.19.20.23.。

2012江苏省高考数学真题(含答案)

2012江苏省高考数学真题(含答案)

绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B = ▲ . 解析:由已知,集合{124}A =,,,{246}B =,,,所以A B = {1,2,4,6}. 答案:{1,2,4,6},2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 解析:由已知,高二人数占总人数的310,所以抽取人数为3501510⨯=. 答案:153.设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 ▲ . 解析:由已知,2117i 117i i 2515i 2515ii ===53i 12i (12i)(12i 1-4i 5a b --+++==+--+()(1+2)). ∴538a b +=+=.答案:8.4.右图是一个算法流程图,则输出的k解析:将1k =带入0=0不满足, 将2k =带入40-<不满足, 将3k =带入20-<不满足, 将4k =带入00=不满足, 将5k =带入40>满足, 所以5k =. 答案:5.5.函数()f x 的定义域为 ▲ . 解析:由题意6012log 0x x >⎧⎨-≥⎩,所以x ∈.答案:6.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ .解析:满足条件的数有1,-3,33-,53-,73-,93-;所以63105p ==. 答案:35.7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.解析:12632V =⨯=. 答案:6.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+m 的值为 ▲ . DABC 1 1D 1A1B(第7题)解析:22450m m e mm ⎧++==⎪⎨⎪>⎩,解得2m =. 答案:2.9.如图,在矩形ABCD中,2AB BC =,点E 为BC 的中点,点F 在边CD上,若AB AF = AE BF的值是 ▲ .解析:以A 为坐标原点,AB,AD 所在直线分别为x 轴和y 轴建立 平面直角坐标系, 则由题意知:点B ,点E),设点F (,)a b ,所以AB =u u u r ,(,)AF a b =u u u r;由条件解得点(1,2)F ,所以AE =uu u r,()12BF uu u r ;所以AE BF =uu u r uu u rg10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 ▲ . 解析:因为2T =,所以(1)(1)f f -=,求得20a b +=.由13()()22f f =,2T =得11()()22f f =-,解得322a b +=-.联立20322a b a b +=⎧⎨+=-⎩,解得24a b =⎧⎨=-⎩所以310a b +=-.答案10-(第9题)11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .解析: Q α为锐角,2663πππα∴<+<,4cos 65απ⎛⎫+= ⎪⎝⎭Q ,3sin 65απ⎛⎫∴+= ⎪⎝⎭;12cos 66sin 22sin 253αααππ⎛π⎛⎫∴+= ⎫⎛⎫++= ⎪ ⎪⎭⎝⎭⎪⎝⎭⎝,sin 2sin 2sin 2cos cos 2sin 1234343450ααααπππππππ⎛⎫⎛⎫⎛⎫⎛⎫∴+=+-=+-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭答案:50.12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .解析:圆C 的圆心为(4,0),半径为1;由题意,直线2y kx =-上至少存在一点00(,2)A x kx -,以该点为圆心,1为半径的圆与圆C 有公共点;故存在0x R ∈,使得11AC ≤+成立,即min 2AC ≤;而min AC 即为点C 到直线2y kx =-2≤,解得403k ≤≤,即k 的最大值是43. 答案:4313.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .解析:由值域为[0)+∞,得240a b =-=V ,即24a b =;2222()42a a f x x ax b x ax x ⎛⎫∴=++=++=+ ⎪⎝⎭,2()2a f x x c ⎛⎫∴=+< ⎪⎝⎭解得2a x +<;Q 不等式()f x c <的解集为(6)m m +,,)()622a a∴-=,解得9c =. 答案:914.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .答案:[,7]e二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC ⋅=⋅ .(1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 解析:16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE . 解析:17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.1A1C(第16题)FDCA B E1B解析:18.(本小题满分16分)若函数()y f x =在0x x =处取得极大值或极小值,则称0x 为函数()y f x =的极值点. 已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数. 解析:19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛⎝⎭都在椭圆上,其中e 为椭圆的离心率. (1)求椭圆的方程;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线与直线2BF 平行,2AF 与1BF 交于点P .(i )若12AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.解析:(第19题)20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b满足:1n a n *+∈N .(1)设11n n n b b n a *+=+∈N ,,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值. 解析:绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)准考证号21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作...................答...若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,D ,E 为圆上位于AB 异侧的两点,连结BD 并延长至点C ,使BD = DC ,连结AC ,AE ,DE . 求证:E C ∠=∠. 解析:B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.解析:21-A 题)C .[选修4 - 4:坐标系与参数方程](本小题满分10分)在极坐标中,已知圆C 经过点()4P π,,圆心为直线()sin 3ρθπ-=与极轴的交点,求圆C 的极坐标方程. 解析:D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <. 解析:【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ. 解析:23.(本小题满分10分)设集合{12}n P n =,,,…,n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈,则2x A ∉;③若n P x A ∈ð,则2n P x A ∉ð. (1)求(4)f ;(2)求()f n 的解析式(用n 表示). 解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012江苏高考数学文科试卷(含答案)word
2012江苏高考数学试卷(文科)
一.填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上。

..........
1、已知集合},2,0,1{},4,2,2,1{-=-=B A 则_______,=⋂B A {-1,2}
2、函数)
12(log
)(5
+=x x f 的单调增区间是__________
(-1/2,+∞)
3、设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________1
4、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________3 Read a ,b If a >b Then m ←a Else m ←b End If Print m
5、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是__1/3
6、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___
2
=s
16/5
7、已知,2)4
tan(=+πx 则x x
2tan tan 的值为__________4/9 8、在平面直角坐标系xOy 中,过坐标原点的一条
直线与函数x x f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________4
9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f (根号6)/2
3ππ12
7
10、已知→

2
1
,e e 是夹角为
π3
2的两个单位向量,
,
,22121→
→→→→→
+=-=e e k b e e a 若0=⋅→
→b a ,则k 的值为5/4
11、已知实数
≠a ,函数
⎩⎨
⎧≥--<+=1
,21,2)(x a x x a x x f ,若
)
1()1(a f a f +=-,则a 的值为___-3/4
12、在平面直角坐标系xOy 中,已知点P 是函数
)
0()(>=x e x f x 的图象上的动点,该图象在P 处的切线
l
交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,
设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________(e+1/e )/2 13、设7
21
1a a a
≤≤≤≤Λ,其中7
5
3
1
,,,a a a a 成公比为q 的等
比数列,6
4
2
,,a a a 成公差为1的等差数列,则q 的最
小值是________3
3
2
-
14、设集合
}
,,)
2(2
|),{(222
R y x m y x m y x A ∈≤+-≤=,
}
,,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的
取值范围是______________[1/2,2+根号2]
二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程活盐酸步骤。

15、在△ABC 中,角A 、B 、C 所对应的边为c b a ,, (1)若,cos 2)6sin(A A =+π
求A 的值;(2)若c
b A 3,3
1
cos ==,求C sin 的值.
16、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,
AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点
求证:(1)直线E F ‖平面PCD ;(2)平面BEF ⊥平面PAD
F
E
A
C
D
17、请你设计一个包装盒,如图所示,ABCD是边
长为60cm的正方形硬纸片,切去阴影部分所示的
四个全等的等腰直角三角形,再沿虚线折起,使
得ABCD四个点重合于图中的点P,正好形成一个正
四棱柱形状的包装盒,E、F在AB上是被切去的
等腰直角三角形斜边的两个端点,设AE=FB=xcm
(1)若广告商要求包装盒侧面积S(cm2)最大,
试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试
问x应取何值?并求出此时包装盒的高与底面边
长的比值。

P
D C
x
x
A B
18、如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆
12
42
2=+y x 的顶点,过坐标原点的直线交椭圆于
P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,
设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB
N M P
A
x y B
C
19、已知a ,b 是实数,函数,
)(,)(23
bx x x g ax x
x f +=+= )
(x f '和)(x g '是)(),(x g x f 的导函数,若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性一致 (1)设0>a ,若函数)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围;
(2)设,0<a 且b a ≠,若函数)(x f 和)(x g 在以a ,b 为端点的开区间上单调性一致,求|a -b |的最大值
20、设M 为部分正整数组成的集合,数列}{n
a 的首
项1
1
=a
,前n 项和为n
S ,已知对任意整数k 属于M ,
当n>k 时,)
(2k n k n k
n S S S S
+=+-+都成立
(1)设M={1},2
2
=a
,求5
a 的值;(2)设M={3,
4},求数列}{n
a 的通项公式
(2)设a<0,且a ≠b,若f(x)和g(x)在以a,b 为端点的开区间上单调性一致,求b a -的最小值。

相关文档
最新文档