重庆市2018年中考数学一轮复习第三章函数第4节二次函数的图象与性质练习册

合集下载

重庆市2019年中考数学一轮复习(含答案)第三章函数第4节二次函数的图象与性质练习_55

重庆市2019年中考数学一轮复习(含答案)第三章函数第4节二次函数的图象与性质练习_55

第 4 节二次函数的图象与性质(10 年 15 卷 3 考,每年 1 道, 4 分)玩转重庆 10 年中考真题 (2008 ~2018 年)命题点二次函数图象与系数的关系(10 年 3 考,均为判断结论的正误)1.(2011 重庆 7 题 4 分) 已知抛物线y=ax2+bx+c( a≠0) 在平面直角坐标系中的地点如下图,则以下结论中,正确的选项是()A.a>0B. b<0C.c<0D.a+b+c>0第1 题图2.(2012 重庆 10 题 4 分) 已知二次函数y=ax2+bx+c( a≠0) 的图象1如下图,对称轴为x=-2,以下结论中,正确的选项是()A. abc>0B. a+b=0C. 2b+ c>0D. 4a +c<2b第2 题图3.(2013 重庆A卷 12 题 4 分) 一次函数y=ax+b( a≠0) 、二次函数y=ax2+bx和反比率函数ky=x( k≠0)在同向来角坐标系中的图象如图所示,A 点的坐标为( -2,0) .则以下结论中,正确的选项是() A.b=2a+k B.a=b+k C.a>b>0D.a>k>0第 3 题图拓展训练二次函数 y=ax2+bx+c( a≠0)的图象如下图,对称轴是直线x=1.以下结论:①2a+b=1;② b2>4ac;③4a+2b+c>0;④3a+c<0;⑤a+b+2c>0;⑥若方程2ax+bx+c=0(a≠0)的一个根为-12,则另5一根为2. 正确的结论有 ____________(填写正确的序号 ) .第 4 题图答案1. D 【分析】抛物线张口方向向下, a<0;与 y 轴的交点在 x 轴上b方,c>0;对称轴 x=-2a>0,∴ b>0;x=1时,点(1,a+b+c)在 x 轴上方,因此 a+b+c>0.2. D【分析】A.∵抛物线图象张口向上,∴a>0,∵图象与 y 轴交b于负半轴,∴ c<0,∵对称轴在 y 轴左边,∴-2a<0,∴ b>0,∴b1abc<0,故本选项错误;B.∵对称轴:x=-2a=-2,∴a=b,而 a≠0,故本选项错误; C.当 x=1时, a+b+c=2b+c<0,故本选项错误;1D.∵对称轴为 x=-2,图象与 x 轴的一个交点横坐标的取值范围为x1>1,∴与 x 轴的另一个交点横坐标的取值范围为x2<-2,∵当 x =- 2 时, 4a-2b+c<0,即 4a+c<2b,故本选项正确.3. D 【分析】选项逐项剖析正误A∵点 A 在抛物线上,∴4a-2b=0,故 b=2a,又 k≠0,×则 b≠2a+k由抛物线图象知a>0,由 A 知 b=2a,则 b>a,由反比率B函数图象知 k>0,则 a<b+k×C∵ a-b=a-2a=- a<0,因此 a<b×由 A 项知 b=2a,则抛物线的对称轴为 x=-1,极点坐b 4ac-b2标为 ( -2a,4a) ,即 ( -1,-a) ,抛物线的对称轴D与反比率函数的交点为 ( -1,-k) .从题图中可√x=-1显然看出当 x=-1时,点(-1,- k)在点(-1,- a)上方,即- k>-a,即 k<a,故 a>k>0b拓展训练②⑥【分析】①∵-2a=1,∴ 2a+b=0,错误;②∵抛物线与 x 轴有两个交点,∴ b2-4ac>0,∴b2>4ac,正确;③设抛物线与 x 轴交点的横坐标分别为x1,x2,若-1<x1<0,由对称性得,2<x2<3,b则4a+ 2b+c<0,错误;④∵-2a=1,∴-b=2a,∵a-b+c>0,∴3a+c>0,错误;⑤当x=1 时,a+b+c<0,∵c<0,∴a+b+2c<0,错误;⑥若方程2ax+bx+c=0(a≠0)的一个根为-12,由对称性得,另一个根为52,故正确的结论有②⑥.。

3.4二次函数的图象与性质(第3部分)-2018年中考数学试题分类汇编(word解析版)

3.4二次函数的图象与性质(第3部分)-2018年中考数学试题分类汇编(word解析版)

第三部分函数及其图象3.4 二次函数的图象与性质【一】知识点清单1、二次函数的图象与性质二次函数的定义;二次函数的图象;二次函数图象的画法;二次函数的性质;求抛物线的顶点和对称轴的方法;二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数的最值;待定系数法求二次函数解析式;二次函数的三种形式2、二次函数与一元二次方程抛物线与x轴的交点;图象法求一元二次方程的近似根;二次函数与不等式(组)【二】分类试题汇编及参考答案与解析一、选择题1.(2018年湖北省襄阳市-第9题-3分)已知二次函数y=x2﹣x+14m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5 D.m>2【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据已知抛物线与x轴有交点得出不等式,求出不等式的解集即可.【解答过程】解:∵二次函数y=x2﹣x+m﹣1的图象与x轴有交点,∴△=(﹣1)2﹣4×1×(m﹣1)≥0,解得:m≤5,故选:A.【总结归纳】本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键.2.(2018年甘肃省白银市/酒泉市/张掖市/武威市/定西市/陇南市-第10题-3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答过程】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【总结归纳】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).3.(2018年山东省潍坊市-第9题-3分)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或6【知识考点】二次函数的最值.【思路分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.【解答过程】解:当h<2时,有﹣(2﹣h)2=﹣1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=﹣(x﹣h)2的最大值为0,不符合题意;当h>5时,有﹣(5﹣h)2=﹣1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选:B.【总结归纳】本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.4.(2018年浙江省宁波市-第11题-4分)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.【知识考点】二次函数的性质;一次函数的图象.【思路分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答过程】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.【总结归纳】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.5.(2018年黑龙江省齐齐哈尔市-第10题-3分)抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>25;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是225≤a<2;⑤不等式mx2﹣4mx+2n>0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A.2个B.3个C.4个D.5个【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组).【思路分析】①利用抛物线对称轴方程可判定;②与y轴相交设x=0,问题可解;③当抛物线过A (﹣1,2)时,带入可以的到2n=3﹣5m,函数关系式中只含有参数m,由抛物线与x轴有两个公共点,则由一元二次方程根的判别式可求;④求出线段AB端点坐标,画图象研究临界点问题可解;⑤把不等式问题转化为函数图象问题,答案易得.【解答过程】解:抛物线对称轴为直线x=﹣故①正确;当x=0时,y=2n﹣1故②错误;把A点坐标(﹣1,2)代入抛物线解析式得:2=m+4m+2n﹣1整理得:2n=3﹣5m带入y1=mx2﹣4mx+2n﹣1整理的:y1=mx2﹣4mx+2﹣5m由已知,抛物线与x轴有两个交点则:b2﹣4ac=(﹣4m)2﹣4m(2﹣5m)>0整理得:36m2﹣8m>0m(9m﹣2)>0∵m>09m﹣2>0即m>故③错误;由抛物线的对称性,点B坐标为(5,2)当y2=ax2的图象分别过点A、B时,其与线段分别有且只有一个公共点此时,a的值分别为a=2、a=a的取值范围是≤a<2;故④正确;不等式mx2﹣4mx+2n>0的解可以看做是,抛物线y1=mx2﹣4mx+2n﹣1位于直线y=﹣1上方的部分,其此时x的取值范围包含在使y1=mx2﹣4mx+2n﹣1函数值范围之内故⑤正确;故选:B.【总结归纳】本题为二次函数综合性问题,考查了二次函数对称轴、与坐标轴交点、对称性、抛物线与x轴交点个数判定、与抛物线有关的临界点问题以及从函数的观点研究不等式.6.(2018年黑龙江省大庆市-第10题-3分)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和13;其中正确结论的个数是()A.1 B.2 C.3 D.4【知识考点】二次函数图象上点的坐标特征;二次函数的最值;抛物线与x轴的交点.【思路分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x﹣1)2﹣4a,则可对①进行判断;计算x=4时,y=a•5•1=5a,则根据二次函数的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于b=﹣2a,c=﹣3a,则方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,然后解方程可对④进行判断.【解答过程】解:抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∵y=a(x﹣1)2﹣4a,∴当x=1时,二次函数有最小值﹣4a,所以①正确;当x=4时,y=a•5•1=5a,∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;∵点C(1,5a)关于直线x=1的对称点为(﹣2,﹣5a),∴当y2>y1,则x2>4或x<﹣2,所以③错误;∵b=﹣2a,c=﹣3a,∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确.故选:B.【总结归纳】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.二、填空题1.(2018年贵州省黔东南州/黔西南州/黔南州-第18题-3分)已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是.x …﹣1 0 1 2 …y …0 3 4 3 …【知识考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【思路分析】根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.【解答过程】解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为:(3,0).【总结归纳】本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.2.(2018年江苏省淮安市-第14题-3分)将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.【知识考点】二次函数图象与几何变换.【思路分析】先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.【解答过程】解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.【总结归纳】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3.(2018年贵州省遵义市-第17题-4分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.【知识考点】二次函数的性质;抛物线与x轴的交点;轴对称﹣最短路线问题.【思路分析】直接利用轴对称求最短路线的方法得出P点位置,再求出AO,CO的长,进而利用勾股定理得出答案.【解答过程】解:连接AC,交对称轴于点P,则此时PC+PB最小,∵点D、E、F分别是BC、BP、PC的中点,∴DE=PC,DF=PB,∵抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,∴0=x2+2x﹣3解得:x1=﹣3,x2=1,x=0时,y=3,故CO=3,则AO=3,可得:AC=PB+PC=3,故DE+DF的最小值为:.故答案为:.【总结归纳】此题主要考查了抛物线与x轴的交点以及利用轴对称求最短路线,正确得出P点位置是解题关键.4.(2018年四川省巴中市-第17题-3分)把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为.【知识考点】二次函数图象与几何变换.【思路分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答过程】解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2).向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x﹣3)2+2,故答案为:y=(x﹣3)2+2【总结归纳】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.三、解答题1.(2018年辽宁省大连市-第22题-9分)【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49. 【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为 ;(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是 . 【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n ,…,56×4,57×3,58×2,59×1. 猜想mn 的最大值为 ,并用你学过的知识加以证明. 【知识考点】配方法;二次函数的性质【思路分析】【发现】(1)观察题目给出的等式即可发现两数相乘,积的最大值为625; (2)观察题目给出的等式即可发现a 与b 的数量关系是a+b=50;【类比】由于m+n=60,将n=60﹣m 代入mn ,得mn=﹣m 2+60m=﹣(m ﹣30)2+900,利用二次函数的性质即可得出m=30时,mn 的最大值为900.【解答过程】解:【发现】(1)上述内容中,两数相乘,积的最大值为625. 故答案为625;(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是a+b=50. 故答案为a+b=50;【类比】由题意,可得m+n=60, 将n=60﹣m 代入mn ,得mn=﹣m 2+60m=﹣(m ﹣30)2+900, ∴m=30时,mn 的最大值为900. 故答案为900.【总结归纳】本题考查了配方法,二次函数的性质,是基础知识,需熟练掌握.2.(2018年浙江省宁波市-第22题-10分)已知抛物线212y x bx c =-++经过点(1,0),(0,32). (1)求该抛物线的函数表达式;(2)将抛物线212y x bx c =-++平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【知识考点】二次函数图象与几何变换;二次函数的性质;二次函数图象上点的坐标特征;待定系数法求二次函数解析式.【思路分析】(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可; (2)指出满足题意的平移方法,并写出平移后的解析式即可.【解答过程】解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x 2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.【总结归纳】此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.。

2018年数学中考第一轮复习讲义:2018年数学中考第一轮复习讲义:第13讲 二次函数图像与性质

2018年数学中考第一轮复习讲义:2018年数学中考第一轮复习讲义:第13讲  二次函数图像与性质

第十三讲二次函数图像与性质1.一般地,形如 的函数叫做二次函数,当a ,b 时,是一次函数.2.二次函数y =ax 2+bx +c 的图象是 ,对称轴是直线x= ,顶点坐标是( , ).3.抛物线的开口方向由a 确定,当a >0时,开口 ;当a <0时,开口 ;a 的值越 ,开口越 .4.抛物线与y 轴的交点坐标为 .当c >0时,与y 轴的 半轴有交点;当c <0时,与y 轴的 半轴有交点;当c =0时,抛物线过 .5.若a >0,当x =2b a-时,y 有最小值,为 ; 若a <0,当x =2b a-时,y 有最大值,为 . 6.当a >0时,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧,y 随x 的增大而 ;当a <0时,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧.y 随x 的增大而 .7.当m >0时,二次函数y =ax 2的图象向 平移 个单位得到二次函数y =a (x +m)2的图象;当k >0时,二次函数y =ax 2的图象向 平移 个单位得到二次函数y =ax 2+k 的图象.平移的口诀:左“ ”右 “ ”;上“ ”下“ ”.1.(2017哈尔滨)抛物线y=﹣(x+)2﹣3的顶点坐标是( )A .(,﹣3) B .(﹣,﹣3) C .(,3)D .(﹣,3)2. (2017.江苏宿迁)将抛物线y=x 2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是( )A .y=(x+2)2+1B .y=(x+2)2﹣1C .y=(x ﹣2)2+1D .y=(x ﹣2)2﹣13.(2017广西)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是( )A .y=(x ﹣1)2+1B .y=(x+1)2+1C .y=2(x ﹣1)2+1D .y=2(x+1)2+14.(2016·福建龙岩·4分)已知抛物线y=ax 2+bx+c 的图象如图所示,则|a ﹣b+c|+|2a+b|=( )A .a+bB .a ﹣2bC .a ﹣bD .3a5.已知二次函数y = (x +m )2 - n 的图象如图所示,则一次函数y = mx + n 与反比例函数mn y x= 的图象可能是( )(第5题图) A. B. C. D.6. 如图抛物线2y ax bx c =++的图象交x 轴于A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =OC . 下列结论:①22b c -=;②12a =;③1ac b =-;④0a b c+>. 其中正确的个数有( )A .1个B .2个C .3个D .4个知识点一、求二次函数图象的顶点坐标【例题】(2017四川眉山)若一次函数y=(a+1)x+a 的图象过第一、三、四象限,则二次函数y=ax 2﹣ax ( )A.有最大值 B.有最大值﹣ C.有最小值 D.有最小值﹣【考点】H7:二次函数的最值;F7:一次函数图象与系数的关系.【分析】一次函数y=(a+1)x+a 的图象过第一、三、四象限,得到﹣1<a <0,于是得到结论.【解答】解:∵一次函数y=(a+1)x+a 的图象过第一、三、四象限, ∴a+1>0且a <0,∴﹣1<a <0,∴二次函数y=ax 2﹣ax由有最小值﹣,故选D .【变式】(2017湖北随州)对于二次函数y=x 2﹣2mx ﹣3,下列结论错误的是( )A .它的图象与x 轴有两个交点B .方程x 2﹣2mx=3的两根之积为﹣3C .它的图象的对称轴在y 轴的右侧D .x <m 时,y 随x 的增大而减小【考点】HA :抛物线与x 轴的交点;H3:二次函数的性质.【分析】直接利用二次函数与x 轴交点个数、二次函数的性质以及二次函数与方程之间关系分别分析得出答案.【解答】解:A 、∵b 2﹣4ac=(2m )2+12=4m 2+12>0,∴二次函数的图象与x 轴有两个交点,故此选项正确,不合题意;B 、方程x 2﹣2mx=3的两根之积为: =﹣3,故此选项正确,不合题意;C 、m 的值不能确定,故它的图象的对称轴位置无法确定,故此选项错误,符合题意;D 、∵a=1>0,对称轴x=m ,∴x <m 时,y 随x 的增大而减小,故此选项正确,不合题意;故选:C .知识点二、二次函数图象的增减性及其其它性质【例题】(2015江苏常州)已知二次函数2(1)1y x m x =+-+,当x >1时,y 随x 的增大而增大,而m 的取值范围是( )A .1m =-B .3m =C .1m ≤-D .1m ≥-【答案】D .【分析】根据二次函数的性质即可做出判断. 【解析】抛物线的对称轴为直线12m x -=-,∵当x >1时,y 的值随x 值的增大而增大,∴112m --≤,解得:1m ≥-.故选D . 【点评】本题考查了二次函数的性质,能正确地判断出确定出对称轴是解题的关键.【变式】(2016•鄂州)如图,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a+3b+c <0;③c >﹣1;④关于x 的方程ax 2+bx+c (a≠0)有一个根为﹣其中正确的结论个数有( )A.1个B.2个C.3个D.4个【分析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y<0,可判断②;由OA=OC,且OA<1,可判断③;把﹣代入方程整理可得ac2﹣bc+c=0,结合③可判断④;从而可得出答案.【解答】解:由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴方程为x=2,所以﹣>0,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>,故②错误;由图象可知OA<1,∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac﹣b+1=0,两边同时乘c可得ac2﹣bc+c=0,即方程有一个根为x=﹣c,由②可知﹣c=OA,而当x=OA是方程的根,∴x=﹣c是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C.【点评】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.知识点三二次函数的对称轴【例题】(2015湖南怀化)二次函数y=2x+2x的顶点坐标为,对称轴是直线.【答案】(-1,-1);直线x=-1.【分析】将二次函数配成顶点式,然后得出顶点坐标和对称轴.【解析】y=2x+2x=2(1)x+-1,从而得出抛物线的顶点坐标(-1,-1);对称轴直线x=-1.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.【变式】(2016·四川南充)抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=﹣2 D.直线x=2【分析】先把一般式化为顶点式,然后根据二次函数的性质确定抛物线的对称轴方程.【解答】解:∵y=x2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=﹣1.故选B.【点评】本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(﹣,),对称轴为直线x=﹣.知识点四、二次函数的最大(小)值【例题】(2017•玉林)对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A.开口向下B.对称轴是x=m C.最大值为0 D.与y轴不相交【考点】H3:二次函数的性质;H7:二次函数的最值..【分析】根据二次函数的性质即可一一判断.【解答】解:对于函数y=﹣2(x﹣m)2的图象,∵a=﹣2<0,∴开口向下,对称轴x=m,顶点坐标为(m,0),函数有最大值0,故A、B、C正确,故选D.【点评】本题考查二次函数的性质,解题的关键是熟练掌握二次函数的性质,属于基础题,中考常考题型.【变式】(2016•天津)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x 的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若1≤x≤3<h,当x=3时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.知识点五、二次函数图象与系数的关系【例题】(2017山东烟台)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④【考点】H4:二次函数图象与系数的关系.【分析】由抛物线开口方向得到a>0,然后利用抛物线抛物线的对称轴得到b 的符合,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进行判断;利用抛物线的对称轴方程得到b=﹣2a,加上x=﹣1时,y>0,即a﹣b+c>0,则可对④进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,而x=﹣1时,y>0,即a﹣b+c>0,∴a+2a+c>0,所以④错误.故选C.【变式】(2017年江苏扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2【考点】H4:二次函数图象与系数的关系.【分析】抛物线经过C点时b的值即可.【解答】解:把C(2,1)代入y=x2+bx+1,得22+2b+1=1,解得b=﹣2.故b的取值范围是b≥﹣2.故选:C.知识点六、二次函数图象的平移【例题】(2017江苏盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.【考点】H6:二次函数图象与几何变换.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.【变式】(2016·山东省滨州市·3分)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣)2﹣B.y=﹣(x+)2﹣C.y=﹣(x﹣)2﹣ D.y=﹣(x+)2+【考点】二次函数图象与几何变换.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+﹣3=﹣(x﹣)2﹣.故选A.【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.【典例解析】【例题1】(2017山东临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,可得y=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.【解答】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误.∴正确的有②③,故选B.【点评】本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型.【例题2】(2017山东泰安)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm2【考点】H7:二次函数的最值.【分析】在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t ≤4),则PC=(6﹣t)cm,CQ=2tcm,利用分割图形求面积法可得出S=t2四边形PABQ﹣6t+24,利用配方法即可求出四边形PABQ的面积最小值,此题得解.【解答】解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,∴AC==6cm.设运动时间为t(0≤t≤4),则PC=(6﹣t)cm,CQ=2tcm,∴S四边形PABQ=S△ABC﹣S△CPQ=AC•BC﹣PC•CQ=×6×8﹣(6﹣t)×2t=t2﹣6t+24=(t﹣3)2+15,∴当t=3时,四边形PABQ的面积取最小值,最小值为15.故选C.【例题3】(2017甘肃天水)如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n (m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【考点】HC:二次函数与不等式(组);H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.【例题4】(2016·四川攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形【考点】二次函数图象与系数的关系.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C 错误;由a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A 点坐标为(﹣1,0), ∴a ﹣b+c=0,而b=﹣2a , ∴a+2a+c=0, ∴3a+c=0, ∴选项C 错误;当a=,则b=﹣1,c=﹣,对称轴x=1与x 轴的交点为E ,如图, ∴抛物线的解析式为y=x 2﹣x﹣, 把x=1代入得y=﹣1﹣=﹣2, ∴D 点坐标为(1,﹣2), ∴AE=2,BE=2,DE=2,∴△ADE 和△BDE 都为等腰直角三角形, ∴△ADB 为等腰直角三角形, ∴选项D 正确. 故选D .【点评】本题考查了二次函数y=ax 2+bx+c 的图象与系数的关系:当a >0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y 轴的交点坐标为(0,c ).热点1:(2017乌鲁木齐)如图,抛物线y=ax 2+bx+c 过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a≥0,其中所有正确的结论是②④⑤.【考点】H4:二次函数图象与系数的关系.【分析】由开口方向、对称轴及抛物线与y轴交点位置可判断①;由x=3时的函数值及a>0可判断②;由抛物线的增减性可判断③;由当x=﹣时,y=a•(﹣)2+b•(﹣)+c=且a﹣b+c=0可判断④;由x=1时函数y取得最小值及b=﹣2a可判断⑤.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,抛物线与y轴交于负半轴,则c<0,∴abc>0,故①错误;∵抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=﹣时,y=a•(﹣)2+b•(﹣)+c==,∵当x=﹣1时,y=a﹣b+c=0,∴当x=﹣时,y=a•(﹣)2+b•(﹣)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(﹣,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=﹣2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.热点2:(2017湖北咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x >4 .【考点】HC:二次函数与不等式(组).【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.热点3:(2016·山东省菏泽市·3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C 6,若点P(11,m)在第6段抛物线C6上,则m= ﹣1 .【考点】二次函数图象与几何变换;抛物线与x轴的交点.【专题】规律型.【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C 4顶点坐标为(7,﹣1),A4(8,0);C 5顶点坐标为(9,1),A5(10,0);C 6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.一、选择题1.(2016·山东省滨州市·3分)抛物线y=2x 2﹣2x+1与坐标轴的交点个数是( )A .0B .1C .2D .32.二次函数2(2)1y x =+-的图象大致为( ) A . B .C . D .3.已知二次函数3+2+-=2x x y ,当x ≥2时,y 的取值范围是( ) A .y ≥3 B .y ≤3 C .y >3 D .y <34.(2016·四川眉山·3分)若抛物线y=x 2﹣2x+3不动,将平面直角坐标系xOy 先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为( )A .y=(x ﹣2)2+3B .y=(x ﹣2)2+5C .y=x 2﹣1D .y=x 2+45.二次函数y=a 2x +bx+c 的图象如图所示,则下列关系式错误的是( )6.(2016·湖北黄石·3分)以x 为自变量的二次函数y=x 2﹣2(b ﹣2)x+b 2﹣1的图象不经过第三象限,则实数b 的取值范围是( ) A .b ≥ B .b ≥1或b ≤﹣1 C .b ≥2 D .1≤b ≤27.二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1),其中正确结论的个数是( )A.4个B. 3个C. 2个D. 1个8.(2016•沈阳)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣49.(2016·黑龙江齐齐哈尔·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(每小题5分,满分20分)10.二次函数243y x x=--的顶点坐标是(,).11.(2016·黑龙江哈尔滨·3分)二次函数y=2(x﹣3)2﹣4的最小值为﹣4 .12.(2017浙江义乌)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+313.抛物线y=ax2+bx+2经过点(﹣2,3),则3b﹣6a= .14.(2017湖南株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为.15.(2017•玉林)已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c<2;③0<m<错误!超链接引用无效。

【数学课件】2018年中考数学3.5二次函数的图象与性质复习课件随堂演练

【数学课件】2018年中考数学3.5二次函数的图象与性质复习课件随堂演练
交点. 没有
考点一 二次函数的图象与性质 命题角度❶
(5年2考)
二次函数的图象与性质
【分析】Βιβλιοθήκη 结合二次函数的图象,利用二次函数的性质
对每个选项进行判断即可.
命题角度❷
二次函数的图象与字母系数的关系
(2017·保定模拟)如图,二次函数y=ax2+bx+c 的图象与x轴的交点的横坐标分别为-1,3,则下列结
顶点坐标是(h,k).
(3)交点式:y=a(x-x1)(x-x2),其中x1,x2是二次函 数与x轴的交点的横坐标,a≠0.
知识点二 二次函数的图象与性质 1.二次函数的图象与性质
2.二次函数图象的特征与a,b,c的关系
知识点三 抛物线的平移 1.将抛物线解析式化成顶点式y=a(x-h)2+k, 顶点坐标为(h,k).
)
7.若抛物线y=x2+bx+c经过A(-2,0),B(4,0)两点, 则这条抛物线的解析式为 ____________ . y=x2-2x-8
考点三 二次函数与方程、不等式的关系
(5年0考)
(2017·青岛)若抛物线y=x2-6x+m与x轴没有交点, 则m的取值范围是 .
【分析】
利用根的判别式Δ <0列不等式求解即可.
3.(2017·烟台)二次函数y=ax2+bx+c(a≠0)的图象 如图所示,对称轴是直线x=1.下列结论: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正确的是(
A.①④ C.①②③
)
C B.②④ D.①②③④

考点二 确定二次函数的解析式
(5年3考)
一个二次函数的图象的顶点坐标是(2,4),且过 另一点(0,-4),则这个二次函数的解析式为( )

2018年全国中考数学真题分类 二次函数概念、性质和图象解析版(精品文档)

2018年全国中考数学真题分类  二次函数概念、性质和图象解析版(精品文档)

2018年全国中考数学真题分类 二次函数概念、性质和图象(一)一、选择题1.(2018山东滨州,10,3分)如图,若二次函数(a ≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A 、点B (-1,0)则①二次函数的最大值为a +b +c ;②a -b +c <0;③b ²-4ac <0;④当y >0时,-1<x <3.其中正确的个数是( ) A .1 B .2 C .3 D .4第10题图【答案】B【解析】由图像可知,当x =1时,函数值取到最大值,最大值为:a +b +c ,故①正确;因为抛物线经过点B (-1,0),所以当x =-1时,y =a -b +c =0,故②错误;因为该函数图象与x 轴有两个交点A 、B ,所以b ²-4ac >0,故③错误;因为点A 与点B 关于直线x =1对称,所以A (3,0),根据图像可知,当y >0时,-1<x <3,故④正确;故选B . 【知识点】数形结合、二次函数的图像和性质2. (2018四川泸州,10题,3分)已知二次函数22233y ax ax a =+++(其中x 是自变量),当2x ≥时,y 随x 的增大而增大,且21x -≤≤时,y 的最大值为9,则a 的值为( ) A.1或2- B.2-或2 C.2 D.1【答案】D【解析】原函数可化为y=a(x+1)2+3a 2-a+3,对称轴为x=-1,当2x ≥时,y 随x 的增大而增大,所以a>0,抛物线开口向上,因为21x -≤≤时,y 的最大值为9,结合对称轴及增减性可得,当x=12y ax bx c =++xy -1BOCAx =1时,y=9,带入可得,a 1=1,a 2=-2,又因为a>0,所以a=1 【知识点】二次函数,增减性3. (2018甘肃白银,10,3)如图是二次函数2(,,y ax bx c a b c =++是常数,0)a ≠图像的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x =1,对于下列说法:①0ab <,②20a b +=,③30a c +>,④()(a b m am b m +≥+为常数),⑤当13-<x <时,0y >,其中正确的是( )A.①②④B.①②⑤C.②③④D.③④⑤【答案】A【思路分析】由抛物线的图像结合对称轴、与x 轴的交点逐一判断即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4节 二次函数的图象与性质课时1 二次函数图象与性质、抛物线与系数a 、b 、c 的关系(建议答题时间:20分钟)1. (2017长沙)抛物线y =2(x -3)2+4的顶点坐标是( )A. (3,4)B. (-3,4)C. (3,-4)D. (2,4)2. (2017金华)对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( ) A. 对称轴是直线x =1,最小值是2 B. 对称轴是直线x =1,最大值是2 C. 对称轴是直线x =-1,最小值是2 D. 对称轴是直线x =-1,最大值是23. (2017连云港)已知抛物线y =ax 2(a >0)过A (-2,y 1)、B (1,y 2)两点,则下列关系式一定正确的是( )A . y 1>0>y 2B . y 2>0>y 1C . y 1>y 2>0D . y 2>y 1>04. (人教九上41页第6题改编)对于二次函数y =-3x 2-12x -3,下面说法错误的是( )A . 抛物线的对称轴是x =-2B . x =-2时,函数存在最大值9C . 当x >-2时,y 随x 增大而减小D . 抛物线与x 轴没有交点5. (2017眉山)若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax ( )A . 有最大值a 4B . 有最大值-a4C . 有最小值a 4D . 有最小值-a46. (2017广州)a ≠0,函数y =a x与y =-ax 2+a 在同一直角坐标系中的大致图象可能是( )7. (2017重庆巴蜀月考)已知二次函数y =a 2x +bx +c (a ≠0)的图象如图所示,对称轴为直线x =1,下列结论中正确的是( )A . abc >0B . b =2aC . a +c >D . 4a +2b +c >0第7题图 第9题图 第11题图8. (2017乐山)已知二次函数y =x 2-2mx (m 为常数),当-1≤x ≤2时,函数值y 的最小值为-2,则m 的值是( )A . 32 B . 2 C . 32或 2 D . -32或 29. (2017日照)已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a +b +c =0;③a -b +c <0;④抛物线的顶点坐标为(2,b );⑤当x <2时,y 随x 增大而增大.其中结论正确的是( )A . ①②③B . ③④⑤C . ①②④D . ①④⑤10. (2017广州)当x =________时,二次函数y =x 2-2x +6有最小值________.11. (2017兰州)如图,若抛物线y =ax 2+bx +c 上的P (4,0),Q 两点关于它的对称轴x =1对称,则点Q 的坐标为________.课时2 抛物线的平移、解析式的确定、与方程(不等式)的关系(建议答题时间:20分钟)1. (2017重庆南开模拟)将二次函数y =(x -1)2+2的图象向左平移2个单位,再向下平移3个单位,则新的二次函数解析式为( )A . y =(x -3)2-1B . y =(x +1)2+5C . y =(x +1)2-1D . y =(x -3)2+52. (2017徐州)若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是( )A . b <1且b ≠0B . b >1C . 0<b <1D . b <13. (2017苏州)二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( )A . x 1=0,x 2=4B . x 1=-2,x 2=6C . x 1=32,x 2=52D . x 1=-4,x 2=04. (2017绵阳)将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A . b >8B . b >-8C . b ≥8D . b ≥-85. (2017天津)已知抛物线y =x 2-4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M ,平移该抛物线,使点M 平移后的对应点M ′落在x 轴上,点B 平移后的对应点B ′落在y 轴上,则平移后的抛物线解析式为( )A . y =x 2+2x +1B . y =x 2+2x -1C . y =x 2-2x +1D . y =x 2-2x -16. (2017随州)对于二次函数y =x 2-2mx -3,下列结论错误的是( )A . 它的图象与x 轴有两个交点B . 方程x 2-2mx =3的两根之积为-3C . 它的图象的对称轴在y 轴的右侧D . x <m 时,y 随x 的增大而减小7. (2018原创)在-2,-1,0,1,2五个数字中,任取一个作为a ,使不等式组⎩⎪⎨⎪⎧x +a ≥01-x >x +2无解,且函数y =ax 2+(a +2)x +12a +1的图象与x 轴只有一个交点,那么a 的值为( )A . 0B . 0或-2C . 2或-2D . 0,2或-28. (2017青岛)若抛物线y =x 2-6x +m 与x 轴没有交点,则m 的取值范围是________.9. 注重开放探究(2017上海)已知一个二次函数的图像开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是________.(只需写一个)10. (2017武汉)已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是________.11. (2017鄂州)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y =(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是________.12. (2017杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上.若m<n,求x0的取值范围.答案第1课时 二次函数图象与性质,抛物线与系数a 、b 、c 的关系1. A2. B3. C 【解析】画出抛物线y =ax 2(a >0)的草图如解图,根据图象可知,y 1>0,y 2>0,且y 1>y 2.第3题解图4. D 【解析】由y =-3x 2-12x -3=-3(x +2)2+9,可知对称轴是x =-2,选项A 正确;抛物线的开口向下,顶点坐标是(-2,9),当x =-2时,y 存在最大值9,选项B 正确;开口向下,当x >-2时,图象处于对称轴的右边,y 随x 增大而减小,选项C 正确;当y =0时,一元二次方程-3x 2-12x -3=0有实数解,所以抛物线与x 轴有交点,选项D 错误.5. B 【解析】∵一次函数y =(a +1)x +a 的图象过第一、三、四象限,∴⎩⎪⎨⎪⎧a +1>0a <0,解得-1<a <0,∵二次函数y =ax 2-ax =a (x -12)2-a 4,又∵-1<a <0,∴二次函数y =ax 2-ax 有最大值,且最大值为-a4.6. D 【解析】如果a >0,则反比例函数y =ax 图象在第一、三象限,二次函数y =-ax 2+a图象开口向下,排除A ;二次函数图象与y 轴交点(0,a )在y 轴正半轴,排除B ;如果a <0,则反比例函数y =a x 图象在第二、四象限,二次函数y =-ax 2+a 图象开口向上,排除C ;故选D .7. D 【解析】观察函数图象,抛物线开口向下,则a <0.对称轴在y 轴右边,则a 、b 异号,∴b >0.抛物线与y 轴的交点在x 轴上方,则c >0,∴abc <0,选项A 错误;由抛物线的对称轴x =-b2a=1,∴b =-2a ,选项B 错误;当x =-1时,y =a -b +c <0,∴a +c <b ,选项C 错误;根据对称性可知,当x =2时,y =4a +2b +c >0,选项D 正确.8. D 【解析】因为二次函数的对称轴为x =m ,所以对称轴不确定,因此需要讨论研究x 的范围与对称轴的位置关系,①当m ≥2时,此时-1≤x ≤2落在对称轴的左边,当x =2时y 取得最小值-2,即-2=22-2m ×2,解得m =32<2(舍);②当-1<m <2时,此时在对称轴x =m 处取得最小值-2,即-2=m 2-2m ·m ,解得m =-2或m =2,又-1<m <2,故m =2;③当m ≤-1时,此时-1≤x ≤2落在对称轴的右边,当x =-1时y 取得最小值-2,即-2=(-1)2-2m ×(-1),解得m =-32,综上所述,m =-32或 2.9. C 【解析】∵抛物线与x 轴交于(4,0),对称轴为x =2,∴抛物线与x 轴的另一个交点为(0,0).故①正确;∵抛物线经过原点,∴c =0.∵抛物线的对称轴为x =2,即-b2a =2,∴4a +b =0,∴4a +b +c =0,故②正确;当x =-1时,抛物线的函数图象在x 轴上方,∴a (-1)2+(-1)b +c >0,即a -b +c >0,故③错误;∵c =0,4a +b =0,∴抛物线的解析式为y =-b 4x 2+bx =-b 4(x -2)2+b ,∴抛物线的顶点坐标为(2,b ),故④正确;由图象可知,抛物线开口向上,对称轴为x =2,当x <2时,y 随x 的增大而减小.故⑤错误.综上所述,①②④正确. 10. 1,5 11.(-2,0)第2课时 抛物线的平移、解析式的确定、与方程(不等式)的关系1. C2. A3. A 【解析】∵二次函数y =ax 2+1的图象经过点(-2,0),∴代入得a (-2)2+1=0,解得a =-14,∴所求方程为-14(x -2)2+1=0,解方程得x 1=0,x 2=4.4. D 【解析】将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的函数为y =(x -3)2-1,与一次函数联立得⎩⎪⎨⎪⎧y =(x -3)2-1y =2x +b ,整理得x 2-8x +8-b =0,∵两个函数图象有公共点,∴方程x 2-8x +8-b =0有解,则(-8)2-4(8-b )≥0,解得b ≥-8.5. A 【解析】∵抛物线与x 轴交于A 、B 两点,∴令y =0,即x 2-4x +3=0,解得,x 1=1,x 2=3,∴A (1,0),B (3,0),∵y =x 2-4x +3=(x -2)2-1,∴M (2,-1).∵要使平移后的抛物线的顶点在x 轴上,需将图象向上平移1个单位,要使点B 平移后的对应点落在y 轴上,需向左平移3个单位,∴M ′(-1,0),则平移后二次函数的解析式为y =(x +1)2,即y =x 2+2x +1.6. C 【解析】∵Δ=(-2m )2-4×1×(-3)=4m 2+12>0,∴图象与x 轴有两个交点,A 正确;令y =0得:x 2-2mx -3=0,方程的解即抛物线与x 轴交点的横坐标,由A 知图象与x 轴有两个交点,故方程有两个根,再根据一元二次方程根与系数的关系可得两根之积为ca=-31=-3,B 正确;根据抛物线对称轴公式可得对称轴为x =-b 2a =--2m 2=m ,∵m 的值不能确定,故对称轴是否在y 轴的右侧不能确定,C 错误;∵a =1>0,抛物线开口向上,∴对称轴的左侧的函数值y 随x 的增大而减小,由C 知抛物线对称轴为x =m ,∴当x <m 时,y 随x 的增大而减小,D 正确,故选C .7. B 【解析】解不等式x +a ≥0得x ≥-a ,解不等式1-x >x +2得x <-12,因为不等式组无解,故-a ≥-12,解得a ≤12;当a ≠0时,b 2-4ac =(a +2)2-4a (12a +1)=0,解得a=2或-2,当a =0时,函数是一次函数,图象与x 轴有一个交点,所以当a =0,2或-2时,图象与x 轴只有一个交点,但a ≤12,∴a =0或-2.8. m >9 9. y =x 2-1(答案不唯一)10. 13<a <12或3<a <-2 【解析】令y =0,即ax 2+(a 2-1)x -a =0,(ax -1)(x +a )=0,∴关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的交点为(1a ,0)和(-a ,0),即m=1a 或m =-a ,又∵2<m <3,则13<a <12或-3<a <-2. 11. 2≤m ≤8 【解析】∵将抛物线y =(x +1)2向下平移m 个单位,得到抛物线y =(x +1)2-m ,由平移后抛物线与正方形ABCD 的边有交点,则当点B 在抛物线上时,m 取最小值,此时(1+1)2-m =2,解得m =2,当点D 在抛物线上时,m 取最大值,此时(2+1)2-m =1,解得m =8,综上所述,m 的取值范围是2≤m ≤8. 12. 解:(1)由题意知(1+a )(1-a -1)=-2, 即a (a +1)=2, ∵y 1=x 2-x -a (a +1), ∴y 1=x 2-x -2;(2)由题意知,函数y 1的图象与x 轴交于点(-a ,0)和(a +1,0),当y 2的图象过点(-a ,0)时,得-a 2+b =0;当y 2的图象过点(a +1,0)时,得a 2+a +b =0;(3)由题意知,函数y 1的图象的对称轴为直线x =12,所以点Q (1,n )与点(0,n )关于直线x=12对称.因为函数y 1的图象开口向上,所以当m <n 时,0<x 0<1.。

相关文档
最新文档