初中数学添加辅助线的方法汇总 教案
初中数学辅助线的做法总结
初中数学辅助线的做法总结一、加法与减法辅助线1.相差减一法:对于计算两个数之差的问题,我们可以使用相减法,即将两个数按位相减,并将每一位之差写在下方。
为了更加清晰,可以在个位上方画一条水平线,表示个位数。
例如:45-23,画线表示为:4-233—2.加减齐次法:当计算加法或减法的时候,两个数位数不同,我们可以借助辅助线将两数齐次,使问题更易解。
例如:34+20,可以在个位上方画一条辅助线,表示个位数相加得4,十位数不变。
+0-----3.补充法:当计算减法时,被减数小于减数,我们可以通过补充的方式,使被减数增加一个数位,将问题转化为一个正常的减法。
例如:36-47,可以在个位上方画一条辅助线,表示个位数不够减,需要向十位借1,并在个位上加10,即变成36+10=46-47,再进行减法运算。
-136+10-47-------1二、乘法与除法辅助线1.竖式计算法:对于较复杂的乘法运算,我们可以使用竖式计算法,将乘法运算拆分为多个小的乘法运算。
例如:36×25,可以将25拆分成20和5,然后依次与36相乘,最后相加。
36×20-----72+180-----9002.倍数计算法:当计算除法时,我们可以利用倍数的性质,将除法问题转化为乘法问题。
分为两种情况:一是被除数为倍数的情况,二是除数为倍数的情况。
例如:115÷5,可以找到被除数和除数都是5的倍数,115÷5=(100+10+5)÷5=20+2+1=233.分数的乘法与除法:对于计算分数的乘除法,我们可以利用分数的定义和简化规则,将计算转化为整数的运算。
例如:(8/5)×(7/3),可以将其转化为整数相乘,然后再进行约分。
8×7=565×3=15所以结果为56/15,再进行约分。
三、几何问题的辅助线1.直角三角形辅助线:解决直角三角形的问题时,可以在直角处画一条垂线,以辅助解题。
初中数学三角形中14种辅助线添加方法
初中数学三角形中14种辅助线添加方法在三角形中,常用的辅助线有中线、高线、中垂线、角平分线等。
下面是三角形中14种辅助线添加方法:1. 三角形中线的添加方法:在三角形的每个顶点上作一条连接对边中点的线段,则这些线段交于一点,且该点到三角形各顶点的距离相等,即为三角形的重心。
2. 三角形中垂线的添加方法:从三角形的顶点向所对边作垂线,垂足分别为A、B、C,则三个垂足所在直线相交于一点,为三角形的垂心。
3. 三角形高线的添加方法:从三角形的顶点向所对边作垂线,垂线所在直线与所对边的交点称为底部端点,连接三个底部端点,则构成一个矩形,其中两个对角线分别为三角形的两个高。
4. 角平分线的添加方法:从角的顶点向其对边作角平分线,将角平分为两个相等的角,且角平分线上的任意一点到两侧边的距离相等。
5. 外接圆的添加方法:三角形三边的中垂线交于一点,则以该点为圆心,三角形三个顶点分别为圆上的三个点的圆称为三角形的外接圆。
6. 内切圆的添加方法:三角形三条边所在直线的交点为内心,以内心为圆心,作内切圆,该圆与三角形的三边相切。
7. 垂直平分线的添加方法:从线段的中点向垂直于该线段的方向作一条线段,则该线段垂直于原线段且平分其长度。
8. 外角平分线的添加方法:从三角形的一顶点作一条射线,使其不在所在直线内,将相邻两个角的外部划分成两个大小相等的角,则这条射线为该顶点所对的角的外角平分线。
9. 旁切圆的添加方法:以三角形的某一边为半径,在其外侧作一条与该边平行的直线,使其与另外两边所在直线相交,其交点则为旁切圆心。
10. 中位线的添加方法:连接三角形任意两个顶点,则连接这两个顶点的中点的线段称为三角形的中位线,三角形三条中位线交于一点,即为三角形重心。
11. 等腰三角形的中线、高线和垂心重合。
12. 等边三角形的中线、高线、垂心和外心重合。
13. 直角三角形的垂心落在斜边上,且斜边上的高线与斜边垂直。
14. 任意三角形的外心到三个顶点的距离相等。
【教育资料】初中数学关于添加辅助线的方法总结学习精品
初中数学关于添加辅助线的方法总结辅助线对于同学们来说都不陌生,解几何题的时候经常用到。
当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。
一条巧妙的辅助线常常使一道难题迎刃而解。
所以我们要学会巧妙的添加辅助线。
添加辅助线的几种方法。
添辅助线有二种情况:▌1、按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
▌2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
初中辅助线教案
初中辅助线教案教案标题:初中辅助线教案教案目标:1. 了解辅助线的概念和作用;2. 掌握绘制辅助线的方法;3. 运用辅助线解决几何问题。
教学重点:1. 辅助线的定义和作用;2. 绘制辅助线的方法;3. 运用辅助线解决几何问题。
教学难点:1. 运用辅助线解决复杂几何问题;2. 灵活运用辅助线的方法。
教学准备:1. 教师准备:教学投影仪、教学PPT、绘图工具、练习题和答案;2. 学生准备:课本、练习本、铅笔、直尺和量角器。
教学过程:Step 1: 引入(5分钟)教师通过提问和展示几何图形,引导学生思考辅助线的作用。
解释辅助线在解决几何问题中的重要性,并激发学生的学习兴趣。
Step 2: 理论讲解(15分钟)教师通过PPT或板书,详细讲解辅助线的定义、作用和绘制方法。
重点解释辅助线如何帮助我们解决几何问题,以及在何种情况下使用辅助线能够更好地理解和解决问题。
Step 3: 练习演示(15分钟)教师选择一些常见的几何问题,向学生演示如何使用辅助线解决这些问题。
通过实际操作,让学生理解辅助线的应用方法,并引导他们思考如何运用辅助线解决其他类似的问题。
Step 4: 学生练习(20分钟)学生在教师的指导下,使用课本或练习册上的题目进行练习。
教师可以提供不同难度的题目,帮助学生逐步掌握辅助线的运用技巧。
Step 5: 总结归纳(5分钟)教师与学生一起总结辅助线的作用和绘制方法,并强调辅助线在几何问题中的重要性。
鼓励学生在今后的学习中积极运用辅助线,提高解决问题的能力。
Step 6: 作业布置(5分钟)教师布置相关的作业,要求学生运用辅助线解决几何问题,并在下节课前完成。
同时,提醒学生复习和巩固今天所学的知识。
教学延伸:教师可以引导学生自主探究辅助线的其他应用场景,并组织小组讨论和分享。
同时,鼓励学生在生活中观察和应用几何知识,培养他们的几何思维能力。
教学评估:1. 教师观察学生在课堂上的参与和表现;2. 批改学生的练习册和作业,评估他们对辅助线的掌握程度;3. 针对学生的问题和困惑,及时给予指导和解答。
第十二章第三讲全等的构造-巧添辅助线(教案)
1.教学重点
-核心知识:全等三角形的判定方法(SSS、SAS、ASA、AAS)及其在实际问题中的应用。
-巧添辅助线的方法及其应用,包括延长两边、构造平行线、利用特殊线段(中点、角平分线、高线)等。
-典型例题的分析与解答,强化全等三角形构造的解题技巧。
举例解释:在讲解全等三角形判定方法时,重点强调SAS判定法中,两边及其夹角必须一一对应相等。通过具体例题,如“已知三角形ABC中,AB=AC,点D在BC上,BD=DC,证明三角形ABD全等于三角形ACD”,让学生直观理解SAS判定法的应用。
其次,我发现学生们在分组讨论和实验操作环节,表现得非常积极。他们通过互相交流、探讨,不仅提高了自己的思考能力,还学会了如何团队合作。这一点让我深感欣慰,也证明了我的教学方法是有效的。
然而,我也注意到,在小组讨论过程中,有些学生较为内向,不愿意发表自己的观点。为了解决这个问题,我计划在今后的教学中,多关注这部分学生,鼓励他们大胆表达自己的看法,提高他们的自信心。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等三角形的基本概念、判定方法以及巧添辅助线的技巧。同时,我们也通过实践活动和小组讨论加深了对全等构造的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,我认识到教学反思的重要性。通过反思,我可以发现自己在教学过程中的不足,及时调整教学方法,以便更好地满足学生的需求。同时,我也将继续学习,提高自己的教育教学水平,为学生们提供更优质的教学。
此外,对于教学难点和重点的把握,我认为自己在课堂上还需要进一步加强。在讲解全等三角形的判定方法和巧添辅助线的过程中,我应该更加明确地指出每个方法的关键点,并通过更多典型的例题来帮助学生巩固知识点。
八年级数学:常见辅助线的作法辅导教案
八年级数学:常见辅助线的作法辅导教案学员姓名:学科教师:年级:辅导科目:授课日期××年××月××日时间A / B / C / D / E / F段主题常见辅助线的作法教学内容1.了解添置辅助线的基本方法,会添置几类常见的辅助线;2.逐步培养数学语言运用能力和逻辑表达能力。
(此环节设计时间在10-15分钟)说明:结合上次课的预习思考部分内容,让学生总结“倍长中线”法作辅助线的基本特征并对以下两题进行分析总结。
1.在△ABC中,AC=5,中线AD=7,则AB边的取值范围是( )A.2<AB<12B.4<AB<12C.9<AB<19D.10<AB<19答案:C2.如图,点E是BC的中点,∠BAE=∠CDE,延长DE到点F使得EF=DE,联结BF,则下列说法正确的是()①BF∥CD②△BFE≌△CDE③AB=BF④△ABE为等腰三角形A.①②③B.②③④C.①③④D.①②③④答案:AAEB CDF(此环节设计时间在50-60分钟)案例一:“倍长中线”法作辅助线例1:已知,在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EFEDBCA F解析:延长中线AD 到点G ,使得DG =AD ,联结BG ,可证∆DBG ≌∆DCA (SAS ),得到BG =AC ,∠G =∠CAD ,因为BE =AC ,所以BE =BG ,从而得等腰三角形BEG ,利用角的等量代换,得到∠F AE =∠AEF 从而得证。
试一试:已知,如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE =EC ,过D 作BA DF //交AE 于点F ,DF =AC . 求证:AE 平分BAC ∠FDABCE解析:延长中线AE 到点G ,使得GE =AE ,联结DG ,可证∆DEG ≌∆CEA (SAS ),得到DG =AC ,∠G =∠CAE ,因为DF =AC ,所以DF =DG ,从而得等腰三角形DGF ,利用角的等量代换,得到∠CAE =∠BAE 从而得证。
初中数学辅助线的制作教案
初中数学辅助线的制作教案教学目标:1. 理解辅助线在解题中的作用和意义;2. 学会使用直尺和圆规制作辅助线;3. 能够运用辅助线解决一些基本的数学问题。
教学重点:1. 辅助线的作用和意义;2. 使用直尺和圆规制作辅助线的方法;3. 运用辅助线解决数学问题。
教学准备:1. 教学PPT;2. 直尺、圆规;3. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾已学的几何知识,提问:我们在解几何题时,有没有遇到过困难?2. 学生回答,教师总结:解几何题时,有时候我们需要添加一些额外的线段或图形,来帮助我们更直观地理解和解决问题,这些额外的线段或图形就叫做辅助线。
二、新课讲解(15分钟)1. 讲解辅助线的作用和意义:辅助线可以帮助我们更好地理解和解决几何问题,有时候甚至可以简化问题的解决过程。
2. 讲解如何使用直尺和圆规制作辅助线:a. 画线段:使用直尺和圆规,按照题目要求画出线段;b. 画平行线:使用直尺和圆规,按照题目要求画出平行线;c. 画垂线:使用直尺和圆规,按照题目要求画出垂线;d. 画圆:使用圆规,按照题目要求画出圆。
3. 示例:解决一道具体的几何题目,演示如何添加辅助线,并解释辅助线的作用。
三、课堂练习(15分钟)1. 布置练习题,让学生独立完成;2. 学生互相交流解题过程,教师进行点评和指导。
四、总结与反思(5分钟)1. 引导学生总结本节课所学的内容,提问:辅助线在解题中的作用是什么?2. 学生回答,教师总结:辅助线可以帮助我们更好地理解和解决几何问题,有时候甚至可以简化问题的解决过程。
3. 教师提出问题:如何才能更好地运用辅助线解决数学问题?4. 学生思考,教师总结:需要我们在解题过程中灵活运用辅助线,结合已学的几何知识,找到解决问题的方法。
教学反思:本节课通过讲解辅助线的作用和意义,以及如何使用直尺和圆规制作辅助线,让学生掌握了辅助线的制作方法,并能够运用辅助线解决一些基本的数学问题。
初中 辅助线 教案
初中辅助线教案教学目标:1. 让学生掌握辅助线的概念和作用。
2. 培养学生正确画辅助线的方法。
3. 培养学生运用辅助线解决几何问题的能力。
教学重点:1. 辅助线的概念和作用。
2. 正确画辅助线的方法。
教学难点:1. 辅助线的运用。
教学准备:1. 课件或黑板。
2. 几何图形。
教学过程:一、导入(5分钟)1. 引导学生回顾已学过的几何知识,如点、线、面的基本概念。
2. 提问:同学们,你们知道什么是辅助线吗?它在几何学习中有什么作用呢?二、新课讲解(15分钟)1. 讲解辅助线的定义:辅助线是在解决几何问题时,为了方便分析和解决问题而引入的额外线条。
2. 讲解辅助线的作用:辅助线可以帮助我们更好地理解和解决几何问题,如证明线段平行、相等,证明三角形全等等。
3. 讲解正确画辅助线的方法:在画辅助线时,要尽量保持图形的原始形状和大小,避免随意改变图形。
三、实例讲解(15分钟)1. 举例讲解如何运用辅助线证明线段平行。
2. 举例讲解如何运用辅助线证明三角形全等。
3. 举例讲解如何运用辅助线求解几何问题。
四、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 引导学生互相讨论,解决练习题中的问题。
五、总结与拓展(5分钟)1. 总结本节课所学内容,让学生明确辅助线的作用和正确画法。
2. 拓展思考:同学们,你们还能想到辅助线在生活中的应用吗?教学反思:本节课通过讲解辅助线的概念、作用和正确画法,让学生掌握了辅助线的基本知识。
在实例讲解和课堂练习环节,学生能够运用辅助线解决实际问题,达到了本节课的教学目标。
但在拓展环节,学生对辅助线在生活中的应用了解不够,需要在今后的教学中加以引导和拓展。
初中常用辅助线的教案
初中常用辅助线的教案教学目标:1. 了解并掌握初中阶段几何图形中常用的辅助线,如角平分线、垂直平分线、中位线、高线等;2. 学会运用辅助线解决几何证明和计算问题;3. 提高学生分析问题、解决问题的能力;4. 培养学生空间想象能力和逻辑思维能力。
教学内容:1. 辅助线的概念及作用;2. 初中常用辅助线的基本作法;3. 辅助线在几何证明和计算中的应用。
教学过程:一、导入(5分钟)1. 引导学生回顾已学过的几何知识,提问:在几何学习中,我们遇到过哪些需要添加辅助线的问题?2. 学生分享自己的经验,教师总结并强调辅助线在几何中的重要性。
二、新课讲解(20分钟)1. 讲解辅助线的概念:辅助线是解决几何问题时,为了方便分析和解决问题而添加的线段。
2. 讲解初中常用辅助线:a. 角平分线:从一个角的顶点出发,将这个角平分的线段;b. 垂直平分线:从一个点的出发,与这个点所在线段垂直并将其平分的线段;c. 中位线:连接三角形两个中点的线段;d. 高线:从三角形一个顶点垂直于对边的线段;e. 平行线:在同一平面内,永不相交的两条直线。
3. 讲解辅助线的作法:a. 角平分线:从一个角的顶点出发,画出角的内部或外部的一条线段,使其与角的两边成等角;b. 垂直平分线:从一个点的出发,画出一条垂直于这个点所在线段的线段,并将其平分;c. 中位线:连接三角形两个中点;d. 高线:从一个顶点出发,垂直于对边,交对边于一点;e. 平行线:使用平行公理或平行线性质,画出同一平面内永不相交的两条直线。
4. 举例讲解辅助线在几何证明和计算中的应用。
三、课堂练习(15分钟)1. 让学生独立完成课本上的练习题,巩固所学知识;2. 教师挑选几道具有代表性的题目进行讲解,解答学生疑问。
四、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结辅助线的作用和应用;2. 学生分享自己的学习心得,教师给予鼓励和指导。
教学评价:1. 课后作业:布置一些有关辅助线的几何题目,检验学生掌握程度;2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状况。
第十二章全等三角形构造辅助线的方法(教案)
在教学过程中,教师要针对重点内容进行详细讲解和示范,对于难点内容,要采用生动的例子和多种教学方法,帮助学生理解和掌握。通过反复练习,使学生能够灵活运用所学知识解决实际问题。
四、教学流程
(一)导入新课(用时5分钟)
-举例:已知三角形ABC中,AB=AC,BC边上的中线AD等于BC的一半,证明三角形ABD和三角形ACD全等。
2.教学难点
a.辅助线构造的时机与位置选择:如何根据题目条件,判断在何处构造辅助线,这是学生解题过程中的一个难点。
-举例:在三角形ABC中,角BAC为直角,AB=AC,点D在BC上,且BD=DC,如何通过构造辅助线证明三角形ABD和三角形ACD全等?
在学生小组讨论环节,我对每个小组的讨论成果进行了点评和总结。我认为这是一个很好的机会,让学生从不同角度看待问题,拓展思维。但同时,我也为了提高学生的课堂专注力,我打算在接下来的教学中,引入一些课堂互动游戏,让同学们在轻松愉快的氛围中学习。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等三角形的性质、构造辅助线的方法及其在几何证明中的应用。通过实践活动和小组讨论,我们加深了对全等三角形构造辅助线的理解。我希望大家能够掌握这些知识点,并在解决几何问题时能够灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,在实践活动和小组讨论环节,我发现同学们的参与度很高,能够积极发表自己的观点和想法。但在讨论过程中,也有部分同学显得比较被动,可能是因为他们对讨论主题不够熟悉,或者是对自己的观点缺乏信心。针对这一问题,我计划在今后的教学中,多设计一些开放性的问题和实践活动,鼓励同学们大胆表达,提高他们的自信心。
初中数学辅助线的使用教案
初中数学辅助线的使用教案教学目标:1. 理解辅助线的基本概念和作用;2. 学会使用辅助线解决几何问题;3. 掌握辅助线的作法和相关定理;4. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 辅助线的基本概念和作用;2. 辅助线的作法和相关定理;3. 使用辅助线解决几何问题。
教学难点:1. 辅助线的作法和相关定理的理解和应用;2. 解决实际问题时辅助线的选择和运用。
教学准备:1. 教师准备相关的几何题目和案例;2. 学生准备笔记本和笔。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的几何知识,如线段、角度、三角形等;2. 提问学生:在解决几何问题时,有没有遇到过难以解决的情况?;3. 引入辅助线概念,引导学生思考辅助线在解决几何问题中的作用。
二、基本概念和作用(15分钟)1. 讲解辅助线的基本概念,如辅助线是什么、辅助线的作用等;2. 通过示例和案例,让学生理解辅助线在解决几何问题中的重要性;3. 引导学生总结辅助线的作用,如简化问题、提供新的思路等。
三、辅助线的作法和相关定理(20分钟)1. 讲解辅助线的作法,如如何作垂直平分线、角平分线等;2. 引导学生掌握辅助线的相关定理,如垂直平分线的性质、角平分线的性质等;3. 通过示例和练习题,让学生巩固辅助线的作法和相关定理。
四、使用辅助线解决几何问题(15分钟)1. 引导学生理解如何使用辅助线解决几何问题;2. 通过示例和练习题,让学生学会使用辅助线解决实际问题;3. 引导学生总结使用辅助线解决几何问题的方法和技巧。
五、巩固练习(10分钟)1. 给学生发放练习题,让学生独立完成;2. 引导学生思考如何在解决实际问题时,选择合适的辅助线;3. 解答学生的问题,并进行指导。
六、总结和反思(5分钟)1. 引导学生总结本节课所学的内容,如辅助线的基本概念、作用、作法等;2. 让学生反思自己在解决几何问题时,如何运用辅助线;3. 布置作业,让学生进一步巩固所学知识。
初中数学关于添加辅助线的方法总结
初中数学关于添加辅助线的方法总结辅助线关于同学们来说都不生疏,解几何题的时候经常用到。
当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。
一条巧妙的辅助线常常使一道难题迎刃而解。
因此我们要学会巧妙的添加辅助线。
添加辅助线的几种方法。
添辅助线有二种情形:▌1、按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
▌2、按差不多图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做差不多图形,添辅助线往往是具有差不多图形的性质而差不多图形不完整时补完整差不多图形,因此“添线”应该叫做“补图”!如此可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个差不多图形:当几何中显现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的差不多图形:当几何问题中显现一点发出的二条相等线段时往往要补完整等腰三角形。
显现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的差不多图形:显现等腰三角形底边上的中点添底边上的中线;显现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的差不多图形。
(4)直角三角形斜边上中线差不多图形显现直角三角形斜边上的中点往往添斜边上的中线。
显现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线差不多图形。
(5)三角形中位线差不多图形几何问题中显现多个中点时往往添加三角形中位线差不多图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当显现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线差不多图形;当显现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线差不多图形。
初中数学添加辅助线方法汇总
初中数学增添协助线的方法汇总作协助线的基本方法一:中点、中位线,延伸线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延伸中线或中位线作协助线,使延伸的某一段等于中线或中位线;另一种协助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的均分线,能够把图形按轴对称的方法,并借助其余条件,而旋转180度,获得全等形,,这时协助线的做法就会应运而生。
其对称轴常常是垂线或角的均分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角相互当合,而后把图形旋转必定的角度,就能够获得全等形,这时协助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“居心”和“没心”旋转两种。
四 :造角、平、相像,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,常常与相像形相关。
在制造两个三角形相像时,一般地,有两种方法:第一,造一个协助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相像,和差积商见。
” 托列米定理和梅叶劳定理的证明协助线分别是造角和平移的代表)五:两圆若订交,连心公共弦。
假如条件中出现两圆订交,那么协助线常常是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,协助线常常是连心线或内外公切线。
七:切线连直径,直角与半圆。
假如条件中出现圆的切线,那么协助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么协助线是过直径(或半径)端点的切线。
即切线与直径互为协助线。
假如条件中有直角三角形,那么作协助线常常是斜边为直径作协助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为协助线。
即直角与半圆互为协助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是协助线;如遇弦,则弦心距为协助线。
2023年九年级数学中考压轴复习专题几何综合——添加辅助线
1
(2)若弦MN垂直于AB,垂足为G, = ,MN= 3,求⊙O的半径;
4
(3)在(2)的条件下,当∠BAC=36°时,求线段CE的长
【详解】
(3) 作∠ABC的平分线BF交AC于F,连接AD
∵∠BNC=36°,AB=AC
∴∠ABC=∠ACB=72°
∵BF平分∠ABC
∴∠ABF=∠CBP=36°
∴∠BFC=72°即∠BAF=∠ABF、
∠BFC=∠ACB
∴BC=BF=AF
∵∠CBF=∠BAC,∠C=∠C
∴△CBF∽△CAB
∴BC²=CF·AC
设BC=x则AF=x
∴CF=2-x
∴x²=2(2-x)解得:x=± 5 − 1
∴BC= 5 − 1
∴AB是⊙O的直径
∴∠ADB=90°
∵AB=AC
1
∴CD=BD= BC
【分析】①由旋转性质证明△ABD∽△ACE即可判断;
②由①的结论可得,∠ABD=∠ACE,进而得到∠BOC=∠CAB=45°,即可判断∠COD;
③证明△ABD为等腰三角形即可判断;
④由题意直线BD、CE相交于点O,当AD⊥AC时,△AOC的面积最大,通过勾股定理计
算求出最大值,进而进行判断
试炼场:
从而得出∠ODE=90°,即可得证DE是CO的切线;
3
1
(2)连接OM,先求出MG= ,得出OG= OM,最后用勾股定理求解,即可得
2
2
出结论;
(3)作∠ABC的平分线交AC于F,判断出△BCF∽△ACB,得出比例式求成
BC= 5 − 1,连接AD,再求出CD=
例式求解,即可得出结论
5−1
,再判断出△DEC∽△ADC,得出比
(完整版)初中数学添加辅助线的方法汇总
初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、夕卜离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角一一直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
初二几何辅助线添加方法
初中数学辅助线1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍;含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形;它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决;辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:1在梯形内部平移一腰;2梯形外平移一腰3梯形内平移两腰4延长两腰5过梯形上底的两端点向下底作高6平移对角线7连接梯形一顶点及一腰的中点;8过一腰的中点作另一腰的平行线;9作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的;通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键;作辅助线的方法一:中点、中位线,延线,平行线;如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的;二:垂线、分角线,翻转全等连;如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生;其对称轴往往是垂线或角的平分线;三:边边若相等,旋转做实验;如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生;其对称中心,因题而异,有时没有中心;故可分“有心”和“无心”旋转两种;四:造角、平、相似,和、差、积、商见;如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关;在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移;故作歌诀:“造角、平、相似,和差积商见;”五:面积找底高,多边变三边;如遇求面积,在条件和结论中出现线段的平方、乘积,仍可视为求面积,往往作底或高为辅助线,而两三角形的等底或等高是思考的关键;如遇多边形,想法割补成三角形;反之,亦成立;另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”;初中几何常见辅助线口诀人说几何很困难,难点就在辅助线;辅助线,如何添把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;线段垂直平分线,常向两端把线连;线段和差及倍半,延长缩短可试验;线段和差不等式,移到同一三角去;三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;四边形平行四边形出现,对称中心等分点;梯形问题巧转换,变为△和□;平移腰,移对角,两腰延长作出高;如果出现腰中点,细心连上中位线;上述方法不奏效,过腰中点全等造;证相似,比线段,添线平行成习惯;等积式子比例换,寻找线段很关键;直接证明有困难,等量代换少麻烦;斜边上面作高线,比例中项一大片;三角形中作辅助线的常用方法举例一.倍长中线1:已知△ABC,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD; 二、截长补短法作辅助线;在△ABC 中,AD 平分∠BAC,∠ACB =2∠B,求证:AB =AC +CD; 三、延长已知边构造三角形:例如:如图7-1:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BC 分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角; 证明:分别延长DA,CB,它们的延长交于E 点,∵AD ⊥AC BC ⊥BD 已知∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件; 四、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 例如:如图8-1:AB ∥CD,AD ∥BC 求证:AB=CD;分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决; 证明:连接AC 或BD∵AB ∥CD AD ∥BC 已知∴∠1=∠2,∠3=∠4 两直线平行,内错角相等 在△ABC 与△CDA 中 ∵⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC∴△ABC ≌△CDA ASA∴AB =CD 全等三角形对应边相等五、有和角平分线垂直的线段时,通常把这条线段延长;例如:如图9-1:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E ;求证:BD =2CE分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长; 证明:分别延长BA,CE 交于点F;∵BE ⊥CF 已知∴∠BEF =∠BEC =90° 垂直的定义在△BEF 与△BEC 中,ABC DEF25-图19-图DCBA E F 12A BCD18-图1234ABCD E17-图O∵⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE 六、连接已知点,构造全等三角形;例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D; 分析:要证∠A =∠D,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC,AC =BD,若连接BC,则△ABC 和△DCB 全等,所以,证得∠A =∠D; 证明:连接BC,在△ABC 和△DCB 中∵⎪⎩⎪⎨⎧===)()()(公共边已知已知CB BC DB AC DC AB∴△ABC ≌△DCB SSS∴∠A =∠D 全等三角形对应边相等七、取线段中点构造全等三有形;例如:如图11-1:AB =DC,∠A =∠D 求证:∠ABC =∠DCB; 分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中 ∵ ⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等 在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB; 二 由角平分线想到的辅助线D BA110-图O 111-图D CBAM N口诀:图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种; ①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边;通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件; 与角有关的辅助线 一、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试;下面就几何中常见的定理所涉及到的辅助线作以介绍; 如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE 、DF,则有△OED ≌△OFD,从而为我们证明线段、角相等创造了条件; 1-2,AB 21如图图1-2ADBCEF图2-1ABCDE F图示3-1ABCD HE如图所示,在直角梯形ABC D 中,∠A =90°,AB ∥DC,AD =15,AB =16,BC =17. 求CD 的长. 解:过点D 作DE ∥BC 交AB 于点E.又AB ∥CD,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围;解:过点B作BM)(2121CH BGBC GH EF --==512=⨯=BE ED BD DH 6251252DHBC)(AD ABCD =⨯=⨯+=∴梯形S 25252522222100)25()25(AE CE AC ==+=+15cm20cm12cmDCEACD ABD S S S ∆∆∆==DBEABCD S S ∆=梯形2222DH AC DH DE EH -=-=9121522=-=1612202222=-=-=DH BD BH )(15012)169(21212cm DH BE S DBE =⨯+⨯=⋅=∆150cA B DC E Hm 如图所示,四边形ABCD 中,AD 不平行于BC,AC =BD,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形. 证明:延长AD 、BC 相交于点E,如图所示. ∵AC =BD,AD =BC,AB =BA, ∴△DAB ≌△CBA. ∴∠DAB =∠CBA. ∴EA =EB.又AD =BC,∴DE =CE,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°, ∴∠EDC =∠EAB,∴DC ∥AB.又AD 不平行于BC,∴四边形ABCD 是等腰梯形. 三、作对角线即通过作对角线,使梯形转化为三角形;例9如图6,在直角梯形ABCD 中,AD//BC,AB ⊥AD,BC=CD,BE ⊥CD 于点E,求证:AD=DE; 解:连结BD,由AD//BC,得∠ADB=∠DBE ; 由BC=CD,得∠DBC=∠BDC; 所以∠ADB=∠BDE;又∠BAD=∠DEB=90°,BD=BD, 所以Rt △BAD ≌Rt △BED, 得AD=DE;四、作梯形的高 1、作一条高例10如图,在直角梯形ABCD 中,AB//DC,∠ABC=90°,AB=2DC,对角线AC ⊥BD,垂足为F,过点F 作EF//AB,交AD 于点E,求证:四边形ABFE 是等腰梯形;证:过点D 作DG ⊥AB 于点G,则易知四边形DGBC 是矩形,所以DC=BG; 因为AB=2DC,所以AG=GB;从而DA=DB,于是∠DAB=∠DBA;又EF//AB,所以四边形ABFE 是等腰梯形; 2、作两条高例11、在等腰梯形ABCD 中,AD//BC,AB=CD,∠ABC=60°,AD=3cm,BC=5cm, 求:1腰AB 的长;2梯形ABCD 的面积.解:作AE ⊥BC 于E,DF ⊥BC 于F,又∵AD ∥BC, ∴四边形AEFD 是矩形, EF=AD=3cm ∵AB=DC∵在Rt △ABE 中,∠B=60°,BE=1cmA B C D A B C D E A B C D E F∴AB=2BE=2cm,cm BE AE 33==∴2342)(cm AEBC AD S ABCD =⨯+=梯形例12如图,在梯形ABCD 中,AD 为上底,AB>CD,求证:BD>AC;证:作AE ⊥BC 于E,作DF ⊥BC 于F,则易知AE=DF; 在Rt △ABE 和Rt △DCF 中, 因为AB>CD,AE=DF;所以由勾股定理得BE>CF;即BF>CE; 在Rt △BDF 和Rt △CAE 中 由勾股定理得BD>AC 五、作中位线1、已知梯形一腰中点,作梯形的中位线;例13如图,在梯形ABCD 中,AB//DC,O 是BC 的中点,∠AOD=90°,求证:AB +CD=AD;证:取AD 的中点E,连接OE,则易知OE 是梯形ABCD 的中位线,从而OE=21AB +CD ①在△AOD 中,∠AOD=90°,AE=DE 所以AD OE 21=②由①、②得AB +CD=AD;2、已知梯形两条对角线的中点,连接梯形一顶点与一条对角线中点,并延长与底边相交,使问题转化为三角形中位线;例14如图,在梯形ABCD 中,AD//BC,E 、F 分别是BD 、AC 的中点,求证:1EF//AD ;2)(21AD BC EF -=;证:连接DF,并延长交BC 于点G,易证△AFD ≌△CFG则AD=CG,DF=GF由于DE=BE,所以EF 是△BDG 的中位线 从而EF//BG,且BG EF 21=因为AD//BG,AD BC CG BC BG -=-=所以EF//AD,EF )(21AD BC -=3、在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的;例15、在梯形ABCD 中,AD ∥BC, ∠BAD=900,E 是DC 上的中点,连接AE 和BE,求∠AEB=2∠CBE;解:分别延长AE与BC ,并交于F点∵∠BAD=900且AD∥BC∴∠FBA=1800-∠BAD=900又∵AD∥BC∴∠DAE=∠F两直线平行内错角相等∠AED=∠FEC 对顶角相等DE=EC E点是CD的中点∴△ADE≌△FCE AAS∴ AE=FE在△ABF中∠FBA=900且AE=FE∴ BE=FE直角三角形斜边上的中线等于斜边的一半∴在△FEB中∠EBF=∠FEB∠AEB=∠EBF+ ∠FEB=2∠CBE例16、已知:如图,在梯形ABCD中,AD//BC,AB⊥BC,E是CD中点,试问:线段AE和BE之间有怎样的大小关系解:AE=BE,理由如下:延长AE,与BC延长线交于点F.∵DE=CE,∠AED=∠CEF,∠DAE=∠F∴△ADE≌△FCE∴AE=EF∵AB⊥BC, ∴BE=AE.ABDCEF。
初中辅助线的使用技巧教案
初中辅助线的使用技巧教案教学目标:1. 理解辅助线在几何证明中的作用;2. 学会使用常见的辅助线技巧解决几何问题;3. 提高学生解决几何问题的能力和逻辑思维能力。
教学重点:1. 辅助线的作用和意义;2. 常见辅助线技巧的运用。
教学难点:1. 辅助线的添加和运用;2. 灵活运用辅助线技巧解决实际问题。
教学准备:1. 教学课件或黑板;2. 几何图形和题目。
教学过程:一、导入(5分钟)1. 向学生介绍辅助线在几何证明中的重要性;2. 引导学生思考辅助线的作用和意义。
二、辅助线的作用和意义(10分钟)1. 解释辅助线的作用:连接已知点,构造新的图形,转化问题等;2. 强调辅助线在解决几何问题中的重要性。
三、常见辅助线技巧的运用(15分钟)1. 三角形中的辅助线技巧:角平分线、中线、高线等;2. 四边形中的辅助线技巧:对角线、中位线、平行线等;3. 圆形中的辅助线技巧:切线、弦、弧等。
四、实例讲解和练习(10分钟)1. 通过具体的几何题目,讲解如何使用辅助线技巧解决问题;2. 引导学生思考和发现辅助线的添加和运用;3. 让学生进行练习,巩固所学知识。
五、总结和拓展(5分钟)1. 总结本节课所学的内容和辅助线技巧;2. 鼓励学生灵活运用辅助线技巧解决实际问题;3. 提出一些拓展问题,激发学生的思考。
教学反思:本节课通过讲解辅助线的作用和意义,以及常见辅助线技巧的运用,让学生掌握了辅助线的基本使用方法。
在实例讲解和练习中,学生能够灵活运用所学知识解决问题。
但在拓展部分,学生可能还需要更多的练习和指导,以提高他们解决复杂几何问题的能力。
在今后的教学中,可以增加一些综合性的练习题目,让学生更好地掌握辅助线的使用技巧。
全等三角形六种常用辅助线的添加方法和技巧
全等三角形六种常用辅助线的添加方法和技巧下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!全等三角形是初中数学中的重要概念,对于解决与三角形相关的问题具有重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。
如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。
有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线。
九:面积找底高,多边变三边。
如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。
如遇多边形,想法割补成三角形;反之,亦成立。
另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。
若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。
(8)特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明(9)半圆上的圆周角出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。
二.基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。
(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。
通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
4.圆中常用辅助线的添法在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。
(1)见弦作弦心距有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。
(2)见直径作圆周角在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。
(3)见切线作半径命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。
(4)两圆相切作公切线对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。
(5)两圆相交作公共弦对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。
三角形中作辅助线的常用方法举例一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM +AN > MD +DE +NE;(1) 在△BDM 中,MB +MD >BD ; (2) 在△CEN 中,CN +NE >CE ; (3) 由(1)+(2)+(3)得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +ECA BCDEN M11-图ABCDEF G21-图(法二:)如图1-2,延长BD交AC于F,延长CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF>BD+DG+GF (三角形两边之和大于第三边)(1)GF+FC>GE+CE(同上) (2)DG+GE>DE(同上) (3)由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。
二、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D为△ABC内的任一点,求证:∠BDC>∠BAC。
没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC处于在外角的位置,∠BAC处于在内角的位置;AB CDEFG12图证法一:延长BD 交AC 于点E ,这时∠BDC 是△EDC 的外角, ∴∠BDC >∠DEC ,同理∠DEC >∠BAC ,∴∠BDC >∠BAC 证法二:连接AD ,并延长交BC 于F∵∠BDF 是△ABD 的外角∴∠BDF >∠BAD ,同理,∠CDF >∠CAD ∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC 。