3-图像分割-分类概述
第七章 图像分割_PPT课件
– 鲁棒局部特征,抗变形能力强,适用于匹配
• 7.3 阈值法 —— 全局阈值法
• 思路
– 将分割问题视为面向每一个像素的分类问题,通常使用简单的阈 值不等式判断像素的类别。
• 条件
– 待分割区域与背景区域在像素级特征上存在明显的差异,而两个 区域内部像素在统计上各自具有较强的相似性。从特征直方图上 看,具有明显的双峰分布的图像比较适合使用阈值法进行分割
• 自然图像理解
• 7.2 图像特征概述
•亮度 •直方图 •变换系数 •边缘 •纹理 •关键点
• 7.2 图像特征概述
•亮度
– 空间连续性,稠密性,直观,敏感性
•直方图
– 统计特征,抗线性几何变换
•变换系数
– 频域统计特征,提供一种完全不同的视角
•边缘
– 符合视觉习惯,是形状信息的基础
•纹理
– 局部不连续性和全局相似性的统一
• 7.3 阈值法 —— 全局阈值法
• 如何确定阈值T?
–迭代法 –大津法 (OTSU) –最优阈值法 –最大熵法 –众数法 –矩不变法 ……
• 7.3 阈值法 —— 全局阈值法
• 迭代阈值法
1)选取一个的初始估计值T; 2)用T分割图像。这样便会生成两组像素集合:G1由所有灰度值大 于T的像素组成,而G2由所有灰度值小于或等于T的像素组成。 3)对G1和G2中所有像素计算平均灰度值u1和u2。 4)计算新的阈值:T=1/2(u1 + u2)。 重复步骤(2)到(4),直到T值更新后产生的偏差小于一个事先定 义的参数T0。
• 从优化的角度看,迭代阈值法的目标函数:
• 7.3 阈值法 —— 全局阈值法
• 大津法(OTSU) – 寻找使类间离散度最大化的阈值T – 类间离散度的数学定义
医学图像的分割
第六章医学图像分割医学图像分割是医学图像处理和分析的关键步骤,也是其它高级医学图像分析和解释系统的核心组成部分。
医学图像的分割为目标分离、特征提取和参数的定量测量提供了基础和前提条件,使得更高层的医学图像理解和诊断成为可能。
本章首先对医学图像分割的意义、概念、分类及其研究现状进行了概述,然后分别对基于阈值、基于边缘、基于区域和基于模式识别原理的各种常见医学图像分割方法作了详尽而系统的介绍,接着在对图像分割过程中经常用到的二值图像数学形态学基本运算作了简单叙述之后,较为详细地讨论了医学图像分割效果和分割算法性能的常用评价方法。
第一节医学图像分割的意义、概念、分类和研究现状医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。
如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。
在治疗前后进行相关影像学指标的定量测量和分析,将有助于医生诊断、随访或修订对病人的治疗方案; (3)用于医学图像的三维重建和可视化。
这有助于外科手术方案的制定和仿真、解剖教学参考及放疗计划中的三维定位等;(4)用于在保持关键信息的前提下进行数据压缩和传输。
这在远程医疗中对实现医学图像的高效传输具有重要的价值;(5)用于基于内容的医学图像数据库检索研究。
通过建立医学图像数据库,可对医学图像数据进行语义学意义上的存取和查找。
所谓医学图像分割,就是根据医学图像的某种相似性特征(如亮度、颜色、纹理、面积、形状、位置、局部统计特征或频谱特征等)将医学图像划分为若干个互不相交的“连通”的区域的过程,相关特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同,也就是说在区域边界上的像素存在某种不连续性。
图像分割方法概述
(1) 灰度阈值分割法
是一种最常用的并行区域技术, 它是图像分割中应用数量最多的一类。 阈值分割方法实 [6] 际上是输入图像f到输出图像g的如下变换 : g i, j = 1 ������(������, ������) ≥ ������ 0 ������(������, ������) < ������
(2)区域分裂合并 区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标提取。分裂 合并差不多是区域生长的逆过程:从整个图像出发,不断分裂得到各个子区域,然后再把前 景区域合并,实现目标提取。分裂合并的假设是对于一幅图像,前景区域由一些相互连通的 像素组成的, 因此, 如果把一幅图像分裂到像素级, 那么就可以判定该像素是否为前景像素。 当所有像素点或者子区域完成判断以后, 把前景区域或者像素合并就可得到前景目标。 在这 类方法中, 最常用的方法是四叉树分解法。 设R代表整个正方形图像区域, P代表逻辑谓词。 基本分裂合并算法步骤如下: ① 对任一个区域,如果H(Ri)=FALSE就将其分裂成不重叠的四等份; ② 对相邻的两个区域Ri和Rj,它们也可以大小不同(即不在同一层),如果条件H(Ri∪ Rj)=TRUE满足,就将它们合并起来。 ③ 如果进一步的分裂或合并都不可能,则结束。 分裂合并法的关键是分裂合并准则的设计。这种方法对复杂图像的分割效果较好,但算 法较复杂,计算量大,分裂还可能破坏区域的边界。 基于形变模型的方法 基于形变模型的方法是目前应用较多的分割方法。 从物理学角度, 可将形变模型看成是 一个在施加外力和内部约束条件下自然反应的弹性物体。 在血液图像分割中, 主要应用活动 轮廓模型,又称 Snake 模型,是轮廓曲线在外能和内能的作用下向物体边缘靠近,外力推动 轮廓运动,而内力保持轮廓的光滑性。[7]
图像分割特征提取识别分类分析
Ostu, A threshold selection method from gray level histograms, IEEE Trans. Systems Man Cybernet 9, 62-66 (1979) 最小误差门限法
T. Pun, Entropic thresholding: a new approach, Computer Vision, Graphics, and Image Processing 16,210-239 (1981) 熵门限法
2. 图像分割
3. 形态学图像处理 4. 特征提取 5. 区域描述 6. 识别与分类
形态学图像处理 腐蚀与膨胀 开运算与闭运算 细化与粗化
形态学图像处理
二值图像的逻 辑运算
膨胀 dilation
形态学膨胀应用
腐蚀 erosion
形态学腐蚀应用
开操作与闭操作
轮廓光滑 开:断开狭窄的间断 和消除细的突出物 闭:消弥狭窄的间断 和长细的鸿沟,消除 小的孔洞,填补轮廓 线的断裂
S_任一图像点为目标事件;B_任一图像点为背景事件; P(S)= , P(B)=1-
目标和背景的概率分布密度为高斯分布p(z)和q(z), 则图像 的灰度概率分布密度为 d(z)= p(z)+(1- )q(z) 图像的数学期望和方差为 E= ms+(1- )mB 2= 2s+(1- ) 2B+ (1- ) (ms-mB)2
• 方向模板与统计模板
p204
• 最佳曲面拟合
型
p206
• 纹理检测-空间灰度层共生矩阵,Markov模型,Fractal模
边缘检测技术 • 经典主动边缘模型 (M. Kass, et al, 1988) • 测地线主动边缘模型 (V. Caselles, et al, ICCV, 1995) • 水平集方法(1996)
医学图像处理课件15医学图像分割应用
将图像看作地形地貌,利用水流的模拟过程,寻找局部最小值,实现区域合并, 最终得到分割结果。如:通过模拟水的流动过程实现图像分割。
基于边缘的分割
梯度算子
利用图像边缘的梯度变化较大,通过计算梯度值实现边缘检 测。如:Sobel、Prewitt和Canny算子。
轮廓检测
通过检测图像中的轮廓信息实现分割。如:基于水平集、蛇 模型等算法实现图像分割。
医学图像分割在医学领域应用广泛,包括诊断、治疗和手术 指导等方面。
医学图像分割的应用
病灶检测
手术导航
通过对医学图像进行分割,可以将病灶区域 从图像中提取出来,辅助医生进行诊断和治 疗方案制定。
在手术过程中,医生可以通过医学图像分割 技术,将手术部位与周围组织进行区分,提 高手术的准确性和安全性。
医学研究
医学图像分割的重要性
医学图像分割对于医学研究和诊断具有重要意义,可以帮助医生更好地理解和分 析病变区域,提高诊断准确性和效率。
医学图像分割的挑战ห้องสมุดไป่ตู้
图像质量的差异
01
医学图像存在不同的成像方式、噪声类型和对比度等,这些因
素会影响分割结果的准确性。
器官和病变区域的复杂性
02
人体器官和病变区域具有复杂的形状和纹理,这使得分割过程
医学图像处理课件15-医学 图像分割应用
xx年xx月xx日
目录
• 医学图像分割概述 • 医学图像分割的方法 • 医学图像分割的应用 • 医学图像分割的挑战与未来发展
01
医学图像分割概述
医学图像分割的定义
医学图像分割定义
将医学图像中的不同结构和组织区域划分成独立的部分或对 象,如器官、病变、血管等,以便于进行诊断和治疗。
医学影像处理中的图像分割技术
医学影像处理中的图像分割技术随着数字化和信息化的发展,各行各业都在积极应用计算机技术进行信息处理和分析,医学领域也不例外。
其中医学影像处理就是医学领域应用计算机技术进行信息处理和分析的重要方向之一。
医学影像处理旨在提高医疗领域的诊断效率、减少诊断误差、改善医疗保健质量。
其中影像分割技术是医学影像处理的重要组成部分。
本文将介绍医学影像处理中的图像分割技术。
一、图像分割技术的概述图像分割是指将数字图像分割成若干个互不重叠的子区域,并使得每个子区域内的像素具有相似的特征,以达到对图像信息的提取、分析或处理等目的。
在医学影像处理中,图像分割技术可以将数字影像中的组织、器官、病变等部位分离开来,从而对医学影像进行定量化分析和诊断。
目前,医学影像分割技术已成为医学领域中应用最广泛的技术之一。
二、图像分割的方法和分类图像分割方法可以分为基于阈值分割、基于聚类分割、基于边缘分割和基于区域分割等四类。
1.基于阈值分割基于阈值分割的方法是最简单、最快速的图像分割方法之一。
它将图像中每个像素的像素值与一个预设的阈值进行比较,将像素值大于或小于阈值的像素划分到不同的子区域中。
基于阈值分割的方法通常适用于图像中只包含两种物体的情况。
2.基于聚类分割基于聚类分割的方法是通过将图像中的像素聚为类别,以区分出不同的物体或背景。
该方法首先将图像中的像素按照其像素值进行聚类,然后根据像素值相似度,判断像素是否属于同一类别。
基于聚类分割的算法通常适用于多物体和多层次的图像分割。
3.基于边缘分割基于边缘分割的方法是通过检测图像中的边缘,将像素划分到边缘不同侧的子区域中。
该方法通常使用边缘检测算法,如Sobel、Canny等进行边缘检测。
4.基于区域分割基于区域分割的方法是通过对区域进行最小化或最大化,以得到对图像的有效划分。
该方法通常使用一些叫做分割匹配算法的方法,如meanshift、K-means等进行区域划分。
三、医学影像分割的应用医学影像分割技术的应用非常广泛,可以用于各种医学检查和诊断,如疾病诊断、手术指导、药物研究等。
图像分割
图像分割胡辑伟信息工程学院图像分割●概述●间断检测●边缘连接和边界检测●阈值处理●基于区域的分割●分割中运动的应用图像分割●分割的目的:将图像划分为不同区域●三大类方法✓根据区域间灰度不连续搜寻区域之间的边界,在间断检测、边缘连接和边界检测介绍✓以像素性质的分布进行阈值处理,在阈值处理介绍✓直接搜寻区域进行分割,在基于区域的分割中介绍图像分割●概述✓在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分一般称为目标或前景✓为了辨识和分析目标,需要将有关区域分离提取出来,在此基础上对目标进一步利用,如进行特征提取和测量✓图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程图像分割●概述(续)✓特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域✓图像分割算法是基于亮度值的不连续性和相似性不连续性是基于亮度的不连续变化分割图像,如图像的边缘根据制定的准则将图像分割为相似的区域,如阈值处理、区域生长、区域分离和聚合图像分割举例PR=0.718PR=0.781#249061#253036#169012PR=0.800PR=0.607PR=0.758PR=0.759PR=0.933PR=0.897PR=0.763PR=0.933PR=0.897PR=0.953PR=0.951PR=0.670PR=0.865PR=0.710#134052Image MDL MML ERL1ERL2#3096#85048#175043#182053#219090pr=0.521 pr=0.480 pr=0.861pr=0.740pr=0.375pr=0.613pr=0.822 pr=0.565pr=0.401pr=0.858pr=0.820 pr=0.850pr=0.789pr=0.890pr=0.914Row 1: Image Row 2: RPCL Row 3: CAC Row 4: ERL基于边缘生长的图像分割算法结果参考文献:林通,“基于内容的视频索引与检索方法的研究”,北京大学数学科学学院,博士论文,2001。
医学图像分割介绍课件
01
02
阈值分割对噪声较为敏感,噪声的存在可能会影响分割效果。
抗噪性能差
考虑区域特征
基于区域的分割方法考虑了像素间的空间关系和区域内的特征相似性,通过将具有相似性质的像素聚合成一个区域来图像质量的要求较低,适用于目标与背景差异不明显、光照不均匀、噪声较多的情况。
计算复杂度高
基于区域的分割方法通常需要迭代或动态规划来计算最优解,计算复杂度较高,耗时较长。
VS
利用边缘信息
基于边缘的分割方法利用图像中不同区域间的边缘信息进行分割,通过检测和跟踪边缘来实现图像分割。
对噪声敏感
基于边缘的分割方法对噪声较为敏感,噪声的存在可能会干扰边缘检测和跟踪。
对细节保留较好
基于阈值的分割方法
随着技术的发展,基于区域的分割方法逐渐兴起,如区域生长、分裂合并等。
基于区域的分割方法
利用图像中的边缘信息进行分割,如Canny边缘检测等。
基于边缘的分割方法
近年来,基于模型的分割方法成为研究热点,如水平集方法、变分法等。
基于模型的分割方法
02
CHAPTER
医学图像分割的基本原理
由于设备性能、采集参数等因素,医学图像中可能出现伪影。这些伪影可能导致图像分割算法误判,影响分割精度。
伪影
噪声
人体器官会随着呼吸、心跳等生理活动而发生动态变化,这要求图像分割算法能够适应这种变化,并准确地进行分割。
病变组织如肿瘤的生长、扩散等,也会导致图像的动态变化。分割算法需要能够识别并处理这些变化。
动态生理变化
病变组织的动态变化
05
CHAPTER
医学图像分割的未来展望
深度学习技术为医学图像分割提供了强大的工具,通过训练深度神经网络,可以实现高精度的图像分割。
图像分割算法的原理及实现
图像分割算法的原理及实现图像分割是一种将图像按照某种特定的准则进行拆分的技术,它被广泛应用于计算机视觉领域中的目标定位、图像识别以及医疗领域的病变检测等领域。
图像分割算法的实现要点包括图像特征提取、分割方法选择、分割效果评估等内容。
本文将从原理和实现两个层面对图像分割算法进行深入讲述。
一、图像分割算法原理的概述1.1 图像分割算法的基本原理图像分割是将图像按照其特征和相似性划分为若干个具有这些特征的部分的过程。
通常情况下,图像分割的基本原理是:首先通过预处理将图像中的噪声去除或减小,再进行特征提取来识别图像中感兴趣的目标或区域;接着根据预先设定的分割方法将图像划分为若干个子目标或子区域。
1.2 图像分割算法基本分类按照分割策略,图像分割算法可分为以下三类。
1.2.1 基于阈值的图像分割算法基于阈值的图像分割算法,是将图像根据像素值的分布情况进行分割。
分割时,选择一个阈值,通过枚举阈值的不同取值,找到最佳分割点,将图像分成两个子区域。
此类方法实现简单,但对于复杂场景和多目标识别效果会比较差。
1.2.2 基于区域的图像分割算法这类方法首先根据图像特征将图像中不同的区域分割出来,再通过分割区域外的连续边界将相邻区域进行合并。
1.2.3 基于边缘处理的图像分割算法这类方法首先对图像中的边缘进行检测,再根据边缘连接将图像区域划分为不同的部分。
此类方法对噪声敏感较小,但对于曲线和空间位置的变化比较大的图像难以处理。
二、图像分割算法实现的方法和技术2.1 图像特征提取在实现图像分割的过程中,需要对图像进行特征提取。
主要有以下两种方法。
2.1.1 基于像素点的特征提取方法这种方法主要是根据像素点的位置、颜色等特征进行分割。
其中,像素点的位置是指在图像中的坐标位置,而像素点的颜色是指在图像中的颜色属性。
2.1.2 基于图像区域的特征提取方法这种方法是根据不同区域的纹理、形状或颜色等进行分割。
该方法常用的特征提取技术包括SIFT、SURF、LBP等。
数字图像处理---图像分割
数字图像处理---图像分割图像分割概述图像分析概念:对图像中感兴趣的⽬标进⾏检测和测量,以获得它们的客观信息,从⽽建⽴对图像的描述步骤:1. 图像分割2. 特征识别3. 对象分类4. 建⽴联系概述图像分割概念:将图像划分为互不重叠的区域并提取感兴趣⽬标的技术基本策略:基于灰度值的两个基本特性:不连续性和相似性通过检测不连续性先找边,后确定区域通过检测相似性,在⼀定阈值下找到灰度值相似区域,区域外轮廓即为对象边界⽅法基于边缘的分割⽅法:先提取区域边界,再确定边界限定区域区域分割:确定每个像素归属区域,从⽽形成区域图区域⽣长:将属性接近的连通像素聚集成区域分裂-合并分割:即存在图像划分,也存在图像合并边缘检测算⼦---边缘分割法边缘定义:图像中像素灰度有阶跃变化或屋顶变化的像素的集合分类:阶跃状屋顶状特点:属于⾼频信号区域往往为闭合连线边缘检测流程滤波⇒增强⇒检测⇒定位边缘检测算⼦基本思想:计算局部微分算⼦⼀阶微分:⽤梯度算⼦进⾏运算特点:对于阶跃状变化会出现极⼤值(两侧都是正值,中间最⼤)对于屋顶状变化会过零点(两侧符号相反)不变部分为0⽤途:检测图像中边的存在注意事项:由于结果图中存在负值,因此需要处理后使⽤处理⽅法:取绝对值加最⼩值阈值法⼆阶微分:通过拉普拉斯算⼦计算特点:对于阶跃状变化会过零点(两侧符号相反)对于屋顶状变化会出现负极⼤值(两侧都是正值,中间最⼩)不变部分为0⽤途:检测图像中边的存在常⽤边缘检测算⼦Roberts 算⼦Prewitt 算⼦Sobel 算⼦Kirsch 算⼦Laplacian 算⼦Marr 算⼦交叉⽅向⼀阶锐化问题:锐化处理结果对具有矩形特征的物体的边缘提取较为有效,但是对于不规则形状的边缘提取,则存在信息上的缺损解决思想:利⽤⽆⽅向的锐化算法交叉微分算⼦交叉Roberts 算⼦公式:f ′x =|f (x +1,y +1)−f (x ,y )|f ′y =|f (x +1,y )−f (x ,y +1)|模板:f ′x =−1001,f ′y =01−1特点:算法简单,对噪声敏感,效果较梯度算⼦较好交叉Prewitt 算⼦模板:d ′x =011−101−1−10,d ′y =−1−10−101011特点:与Sobel 相⽐有⼀定抗⼲扰性,图像效果较⼲净交叉Sobel 算⼦模板:d ′x =012−101−2−10,d ′y =−2−10−101012特点:锐化的边缘信息较强kirsch 算⼦(⽅向算⼦)模板:特点在计算边缘强度的同时可以得到边缘⽅向各⽅向间的夹⾓为45°分析取其中最⼤的值作为边缘强度,与之对应的⽅向作为边缘⽅向若取最⼤值绝对值,则仅需要前四个模板即可Nevitia 算⼦[][][][][][]特点:各⽅向间的夹⾓为30°Laplacian算⼦同图像增强中的Laplacian算⼦优点:各向同性、线性和位移不变对细线和孤⽴点检测效果较好缺点对噪声敏感,有双倍加强作⽤不能检测出边缘⽅向常产⽣双像素边缘使⽤之前需要对图像进⾏平滑Marr算⼦在Laplacian算⼦基础上发展⽽来平滑函数采⽤⾼斯正态分布函数h(x,y)=e−x2+y2 2σ2σ为⽅差⽤h(x,y)对图像f(x,y)平滑克表⽰为g(x,y)=h(x,y)∗f(x,y) *代表卷积令r表⽰从原点出发的径向距离,即r2=x2+y2利⽤⾼斯-拉普拉斯滤波器(LOG滤波器)▽2h=(r2−2σ2σ4)e−r22σ2即可利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置在该算⼦中σ越⼩边缘位置精度越⾼,边缘细节变化越多;σ越⼤平滑作⽤越⼤,但是细节损失越⼤,边缘点定位精度越低过程1. 通过⼆维⾼斯函数对图像进⾏卷积降噪2. ⽤⼆阶导数差分算⼦计算图像强度的⼆阶导数3. 利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置优点:能快速得到⼀个闭合的轮廓缺点:对噪声敏感Canny边缘检测算⼦最优边缘检测算⼦应有的指标低误判率⾼定位精度抑制虚假边缘过程:1. 计算图像梯度2. 梯度⾮极⼤值抑制3. 双阈值提取边缘点计算图像梯度⾼斯函数的⼀阶导数模板:−11−11,−1−111⾮极⼤值抑制 NMS思想:梯度幅值图像M(x,y),仅保留梯度⽅向上的极⼤值点过程初始化N(x,y)=M(x,y)对每⼀点在梯度⽅向和反梯度⽅向各找n 个点,若M(x,y)⾮最⼤值,则置零,否则保持不变对NMS 结果⼆值化(双阈值提取边缘点)使⽤两个阈值T 1,T 2:T 2>>T 1由T 1得到E 1(x ,y ),低阈值边缘图:更⼤的误检率由T 2得到E 2(x ,y ),⾼阈值边缘图:更可靠边缘连接初始化E (x ,y )=E 2(x ,y )对E (x ,y )中的每个点在E 1(x ,y )中寻找延长部分进⾏连接输出E (x ,y )Canny 边缘检测算⼦步骤1. ⾼斯滤波器平滑2. ⼀阶偏导计算梯度幅值与⽅向3. 对梯度幅值进⾏⾮极⼤值抑制4. 双阈值算法检测连接边缘Canny 边缘检测算⼦优点参数较⼩计算效率⾼得到边缘连续完整双阈值选择T Low =T HIGH ∗0.4曲⾯拟合法出发点:基于差分检测图像边缘的算⼦往往对噪声敏感四点拟合灰度表⾯法⽤⼀平⾯p (x ,y )=ax +by +c 来拟合四邻域像素灰度值定义均⽅差为ε=∑[p (x ,y )−f (x ,y )]2模板a =12−1−111,b =12−11−11特点:先平均后求差分,对噪声由抑制作⽤边缘跟踪出发点:噪声边检测需要归整边缘像素概念:将检测的边缘点连接成线过程:边缘提取连接成线⽅法光栅扫描跟踪法全向跟踪法光栅扫描跟踪法概念:采⽤电视光栅⾏扫描顺序,结合门限检测,对遇到的像素进⾏分析并确定其是否是边缘的跟踪⽅法具体步骤:[][][][]确定检测阈值d(较⾼)超过d的点作为对象点确定跟踪阈值t(较低)确定跟踪邻域扫描下⼀⾏,跟踪邻域内灰度差⼩于t的,接受为对象点若没有对象点,则该曲线跟踪结束重新从下⼀⾏开始利⽤d寻找对象点并进⾏跟踪扫描结束后跟踪结束特征可以不是灰度级跟踪准则根据具体问题灵活运⽤最好再进⾏⼀次其他⽅向的跟踪全向跟踪Hough变化检测法问题:如何连接边界点集基本思想利⽤xoy直⾓坐标系直线y=ax+b,待求极坐标系内点(ρ,θ),已知求点到线的变化ρ=xcosθ+ysinθ原理:过每个点的直线系分别对应极坐标系上的⼀条正弦曲线,如正弦曲线存在共同交点(ρ′,θ′),则必定在平⾯上共线实现:使⽤交点累积器或直⽅图,寻找相交线段最多的参数空间的点,再寻找对应的直线线段特点:对ρ、θ量化过粗会导致直线参数不精确,过细会导致计算量增加获得直线抗噪能⼒强可以⽤来检测直线阈值分割法基本思想:通过阈值T⽣成⼆值图,在四邻域中有背景的像素就是边界像素特点:适⽤于物体与背景有强对⽐的情况下,且物体或背景的灰度较单⼀可以先求背景再求物体可以得到封闭且连通区域的边界通过交互获得阈值通过直⽅图得到阈值基本思想:边界上的点灰度值出现次数较少⽅法:选取直⽅图⾕底的最⼩灰度值作为阈值缺点:会受到噪声⼲扰改进:取两个峰值之间的某个固定位置降噪简单图像的阈值分割判断分析法最佳熵⾃动阈值法复杂图像的阈值分割步骤⾃动平滑直⽅图确定区域类数⾃动搜索多个阈值特征空间聚类k均值聚类步骤任意选取K个初始聚类中⼼值使⽤最⼩距离判别,将新读⼊的像素分⾄K类重新计算中⼼值,等于⼀类元素的平均值重新聚类直⾄新旧差异不⼤区域增长通过像素集合的区域增长实现:根据应⽤选取种⼦选择描述符种⼦根据描述符扩张直⾄没有新的节点加⼊集合简单区域扩张法以未划分点与起点灰度差⼩于阈值T作为描述符优缺点:1. 不好确定阈值2. ⽆法分割缓慢变化边界质⼼区域增长法以未划分点与区域平均灰度值差⼩于阈值T作为描述符分裂合并法实现:1. 对于灰度级不同的区域划分为四个⼦区域2. 若相邻⼦区域所有像素灰度级相同,则合并3. 反复进⾏直⾄不再进⾏新的分裂合并操作Processing math: 100%。
9第九章数字图像处理之图像分割资料
10/29/2018
对图像g(x,y)采用Laplacian算子进行边缘检测,可得:
g h( x, y ) * f ( x, y ) (
2 2
r
2
2
4
)e
e2 2 2
* f ( x, y )
2 h * f ( x, y )
• 模板:可以用多种方式被表示为数字形式。定义数字形式的拉普拉斯 的基本要求是,作用于中心像素的系数是一个负数,而且其周围像素 的系数为正数,系数之和必为0。对于一个3x3的区域,经验上被推荐 最多的形式是:
0
1 0
10/29/2018
1
-4 1
0
1 0
1 1
1 -8
1 1
1
1
1
• 拉普拉斯算子的分析: – 优点: • 各向同性、线性和位移不变的; • 对细线和孤立点检测效果较好。 – 缺点: • 对噪音的敏感,对噪声有双倍加强作用; • 不能检测出边的方向; • 常产生双像素的边缘。
• 公式:
f x f ( x 1, y 1) f ( x 1, y 1) f y f ( x 1, y 1) f ( x 1, y 1)
• 模板:
-1
1 1
fx
’
fy’
-1
• 特点:与梯度算子检测边缘的方法类似,对噪声敏感,但效果较梯度 算子略好。
10/29/2018
例1:
原始图像
梯度算子
Roberts算子
Prewitt算子
10/29/2018
Sobel算子
Kirsch算子
图像分割方法综述
图像分割方法综述作者:侯红英高甜李桃来源:《电脑知识与技术》2019年第05期摘要:图像分割是图像处理中的一项关键技术,并且在工业、医学、军事等诸多领域得到了广泛应用。
该文主要对传统的图像分割方法和近年来出现的一些新方法进行了综述。
介绍了传统方法中的阈值法、区域法、边缘检测法以及新方法中的超像素法和语义分割法,分析了各种方法的原理及特点。
关键词:图像分割;传统方法;语义中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2019)05-0176-021 引言图像分割是对图像进行分析的重要步骤之一。
图像分割是根据相似性规则将一幅图像划分为多个子图像区域的过程 [1]。
每个子区域中的每个像素在某些度量或计算的特征(如灰度,颜色,纹理和形状)下是相似的。
我们还可以从数学的角度来理解图像分割:整个图像区域用集合R来表示,那么图像分割则是要把R分成一组连通且非空的子集,使得,且存在判断区域一致性的逻辑谓词,满足为真,为假。
图像分割是为了使图像更容易理解和分析,从而需要对图像的表示形式加以简化和变换。
2 传统的图像分割方法图像有低级、中级和高级三种语义。
传统图像分割方法主要是利用了图像的低级语义,比如颜色、文理以及形状等。
常用方法主要有阈值法、区域法以及边缘检测法。
2.1 阈值法阈值法的基本原理是结合图像的灰度特征计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值进行比较,最后根据比较的结果将像素划分到相应的类别[2]。
因此,阈值法的关键是根据一定的准则来求出最优灰度阈值。
典型的全局单阈值分割方法是由Prewitt等人提出的直方图双峰法。
该方法假设图像具有不同的目标和背景,并且其灰度直方图具有双峰分布特性,选择两个峰值之间的谷相对应的灰度级作为阈值。
通常,目标和背景之间的对比度在图像中的每个地方都各不相同,并且难以用一个全局阈值将目标与背景分离。
因此,有必要根据图像的局部特征使用不同的阈值进行图像分割。
图像分割技术的原理及方法
浅析图像分割的原理及方法一.研究背景及意义研究背景:随着人工智能的发展,机器人技术不断地应用到各个领域。
信息技术的加入是智能机器人出现的必要前提。
信息技术泛指包括通信技术、电子技术、信号处理技术等相关信息化技术的一大类技术。
它的应用使得人们今天的生活发生了巨大变化。
从手机到高清电视等家用电器设备出现使我们的生活越来越丰富多彩。
在一些军用及民用领域近几年出现了一些诸如:图像制导、无人飞机、无人巡逻车、人脸识别、指纹识别、语音识别、车辆牌照识别、汉字识别、医学图像识别等高新技术。
实现它们的核心就是图像处理、机器视觉、模式识别、智能控制、及机器人学等相关知识。
其中图像处理具有重要地位。
而图像分割技术是图像分析环节的关键技术。
研究图像分割技术的意义:人类感知外部世界的两大途径是听觉和视觉,尤其是视觉,同时视觉信息是人类从自然界中获得信息的主要来源,约占人类获得外部世界信息量的80%以上。
图像以视觉为基础通过观测系统直接获得客观世界的状态,它直接或间接地作用于人眼,反映的信息与人眼获得的信息一致,这决定了它和客观外界都是人类最主要的信息来源,图像处理也因此成为了人们研究的热点之一。
人眼获得的信息是连续的图像,在实际应用中,为便于计算机等对图像进行处理,人们对连续图像进行采样和量化等处理,得到了计算机能够识别的数字图像。
数字图像具有信息量大、精度高、内容丰富、可进行复杂的非线性处理等优点,成为计算机视觉和图像处理的重要研究对象。
在一幅图像中,人们往往只对其中的某些区域感兴趣,称之为前景,这些区域内的某些空间信息特性(如灰度、颜色、轮廓、纹理等)通常与周围背景之间存在差别。
图像分割就是根据这些差异把图像分成若干个特定的、具有独特性质的区域并提取感兴趣目标的技术和过程。
在数字图像处理中,图像分割作为早期处理是一个非常重要的步骤。
为便于研究图像分割,使其在实际的图像处理中得到有效的应用,严格定义图像分割的概念是十分必要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分割所得到的全部子区域的总和 (1)
Ri R
i 1
n
(并集)应能包括图像中所有象素,
或者说分割应将图像中的每个象 素都分进某1个子区域中
(2) 对所有的i和j, i≠j,有Ri∩Rj=φ
各个子区域是互不重叠的,或者 说1个象素不能同时属于2个区域
分割 准则 应可 适用 于所 有区 域和 象素
图像分割
本章目录
1 概述和分类
2 基于边缘的检测
3 基于区域的分割
4 基于阈值的分割
• 前面主要讲述的是图像预处理方面的知识
• 主要介绍图像分析的问题,即着眼于找出图像
中哪些事物,也即是模式识别问题,主要从统
计模式识别来讲
图像输入 光电变换 数字化
预处理 图像增强 图像恢复 图像编码
图像分割 阈值分割 边缘检测 区域分割 描述 解释
• 图像分割的概念
– 根据灰度、彩色、空间纹理、几何形状等
特征把图像划分成若干个互不相交的区域,
使得这些特征在同一区域内,表现出一致
性或相似性,而在不同区域间表现出明显 的不同。
– 把图像分解成构成它的部件和对象的过程
– 有选择性地定位感兴趣对象在图像中的位置
和范围
•
图像分割的基本思路
1. 从简到难,逐级分割
• 区域的外轮廓就是对象的边
图像分割介绍
• 定义
灰度、颜 色、纹理
对应单个 区域和多 个区域
将图像分成各具特性的区域,并提取出感兴趣目标的技术和过程 图像处理过渡到图像分析的关键步骤,也是一种基本 的计算机视觉技术 借助集合概念进行正式的定义: 令R代表整个图像区域,对R的分割可看做将R分成若 干个满足以下条件的非空子集(子区域)R1,R2,R3…Rn
(3) i=1,2…n,有 P(Ri)=TRUE (4) 对i≠j,有 P(Ri∪Rj)=FALSE (5) 对i=1,2…n,Ri是 连通的区域
在分割后得到的属于同1个 区域中的象素应该具有某些
相同特性
在分割后得到的属于不同区
域中的象素应该具有一些不
同的特性 要求同1个子区域内的 象素应当是连通的
2. 控制背景环境,降低分割难度
3. 把焦点放在增强感兴趣对象,缩小不相干 图像成分的干扰上
•
图像分割的基本思路
1.从简到难,逐级分割
1)分割矩形区域
2)定位牌照 3)定位文字
• 图像分割的基本思路
2.控制背景环境,降低分割难度 背景环境:路面、天空
•
图像分割的基本思路
3. 把焦点放在增强感兴趣对象,缩小不相干 图像成分的干扰上 1)感兴趣的对象:汽车牌照
原始像素
图像处理
无论是图像处理、分析、理解与识别,其基础工 作一般都建立在图像分割的基础上; 将图像中有意义的特征或者应用所需要的特征信 息提取出来;
图像分割的最终结果是将图像分解成一些具有某 种特征的单元,称为图像的基元;
相对于整幅图像来说,这种图像基元更容易被快 速处理。
图像特征
• 图像特征是指图像中可用作标志的属性,它可以 分为统计特征和视觉特征两类。 • 图像的统计特征是指一些人为定义的特征,通过 变换才能得到,如图像的直方图、矩、频谱等; • 图像的视觉特征是指人的视觉可直接感受到的自 然特征,如区域的亮度、纹理或轮廓等。
图像分割的基本原理
图像分割是将图像划分成若干个互不相交 的小区域的过程,小区域是某种意义下具有共 同属性的像素的连通集合。
• 如不同目标物体所占的图像区域、前景所占的 图像区域等; • 连通是指集合中任意两个点之间都存在着完全 属于该集合的连通路径; • 对于离散图像而言,连通有4连通和8连通之分, 如图5-1所示。
• 图像分割是进行图像分析的关键步骤, 也是进一步理解图像的基础; • 不同种类的图像,不同的应用要求所需 要提取的特征不相同,特征提取方法也 就不同; • 不存在一种所谓普遍适用的最优方法。
图像的边缘
• 图像的边缘对人类的视觉系统具有重要的意义, 它是人类判别物体的重要依据,是图像的最基本 特征。 • 所谓边缘(又称为边沿),是指其周围像素灰度有 阶跃变化或屋顶变化的那些像素的集合。 • 边缘广泛存在于物体与背景之间、物体与物体之 间、基元与基元之间。因此,它是图像分割所依 赖的重要特征。
• 基于运动的分割-通过视频物体运动进行分割
根据灰度的不连续性和相似性,分成两类:
•边缘检测法:利用区域间之灰度不连续性,确定区 域的边界或边缘的位置。 •区域生成法:利用区域内灰度的相似性,将像素 (点)分成若干相似的区域。 二者相辅相成,可以结合使用。前者相当于用点定 义线(边缘),而后者作为两个面的相交确定一条 曲线(边缘线)。
特征提取 图像识别
图像分析理解
图像处理过程
• 图像分析系统的构成
分割 预处理
问题 图像获取
表示与描述
中级处理
知识库
低级处理
识别 与 解释
高级处理
结果
图像分割的地位
小 语义符号 操 作 对 象 数 据 大 原始图像 图像理解 目标识别 图像分析 特征提取 图像分割 低 高 语 义 抽 象 程 度
目标描述
2)不相干图像成分:非矩形区域
•
值的两个基本特性:
1. 不连续性——区域之间 2. 相似性——区域内部 – 根据图像像素灰度值的不连续性 • 先找到点、线(宽度为1)、边(不定宽度)
•
再确定区域
•
图像分割的基本策略
– 根据图像像素灰度值的相似性
• 通过选择阈值,找到灰度值相似的区域
(a)
(b)
图5-1
4连通和8连通
4连通指的是从区域上一点出发,可通过4个方向, 即上、 下、左、右移动的组合,在不越出区域的前提 下,到达区域内的任意像素;
8连通方法指的是从区域上一点出发,可通过左、 右、上、下、左上、右上、左下、右下这8个方向的移 动组合来到达区域内的任意像素。
概述和分类
分割 准则 应能 帮助 确定 各区 域象 素有 代表 性的 特性
图像分割方法分类
• 基于边缘的分割-先确定边缘象素,并把它们连 接在一起,以构成所需的边界 • 基于区域的分割-把各象素划归到各个物体或区 域中 • 基于阈值的分割-通过阈值对不同物体进行分割
• 基于聚类的分割-通过阈值对不同物体进行分割