3月7日 text-base

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于uboot中的TEXT_BASE【转】2009年11月11日星期三 23:03都知道U-BOOT分为两个阶段,第一阶段是(~/cpu/arm920t/start.S中)在FLASH上运行(一般情况下),完成对硬件的初始化,包括看门狗,中断缓存等,并且负责把代码搬移到SDRAM中(在搬移的时候检查自身代码是否在SDRAM中),然后完成C程序运行所需要环境的建立,包括堆栈的初始化等,最后执行一句跳转指令:

ldr pc, _start_armboot

_start_armboot: .word start_armboot,

进入到/lib_arm/board.c中的函数void start_armboot (void),从此就进入了第二阶段。这是在很多资料上都有讲述的,所以勿需多言了。

现在对于第一阶段有几个问题,以前我一直是没有搞明白的,既然在FLASH中的代码是把自己拷贝到SDRAM中,那么在S3C2410的内存地址空间,就有两份的启动代码,第一份就是在FLASH中,第二份就是在SDRAM中。根据链接脚本文件(~/board/smdk2410/u-boot.lds)

OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")

/*OUTPUT_FORMAT("elf32-arm", "elf32-arm", "elf32-arm")*/

OUTPUT_ARCH(arm)

ENTRY(_start)

SECTIONS

{

. = 0x00000000; /* 后记:这个链接起始地址实际上被-Ttest $(TEST_BASE)更新了*/

. = ALIGN(4);

.text :

{

cpu/arm920t/start.o (.text)

*(.text)

}

. = ALIGN(4);

.rodata : { *(.rodata) }

. = ALIGN(4);

.data : { *(.data) }

. = ALIGN(4);

.got : { *(.got) }

. = .;

__u_boot_cmd_start = .;

.u_boot_cmd : { *(.u_boot_cmd) }

__u_boot_cmd_end = .;

. = ALIGN(4);

__bss_start = .;

.bss : { *(.bss) }

_end = .;

}

其中的链接命令 . = 0x00000000;表示地址计数器从0地址开始计数,而且_start 是程序代码段的入口,那么*.text中的所有地址标号(cpu/arm920t/start.S中定义的)就应该从0地址开始计数,那么标号start_armboot(就是void start_armboot (void)函数的入口地址)应该在FLASH中才对啊,所以按照上边的分析,

ldr pc, _start_armboot

_start_armboot: .word start_armboot

此条语句后,并没有跳转到SDRAM中的void start_armboot (void),而是跳转到了FLASH 中的void start_armboot (void)中。

所以就出现了这样的矛盾,在FLASH中有一段代码把自己拷贝到SDRAM中,产生了两份UBOOT 可执行的指令流,但是最后却没有跳转到SDRAM中去运行以提高指令执行的速度。

产生以上的认识是基于以下几个认识(肯定是错误的):

1.*.text中的所有地址标号(在链接时确定)是从0地址开始生成的。

实际上在arm-linux-ld 执行时,原来定义的0x0地址被更新为TEXT_BASE定义的地址。

2.relocate: /* relocate U-Boot to RAM */

adr r0, _start /* r0 <- current position of code */

ldr r1, _TEXT_BASE /* test if we run from flash or RAM */

cmp r0, r1 /* don't reloc during debug */

beq stack_setup

ldr r2, _armboot_start

ldr r3, _bss_start

sub r2, r3, r2 /* r2 <- size of armboot */

add r2, r0, r2 /* r2 <- source end address */

如果不是出于调试阶段,这段搬移代码中的r0和r1肯定不相等的,r0=#0,r1=#TEXT_BASE: 0x33F80000(在./board/smdk2410/config.mk中),所以执行代码的自身拷贝与搬移。

注意:在GNU中:adr r0, _start 作用是获得 _start 的实际运行所在的地址值,而ldr r1, _TEXT_BASE 为获得地址_TEXT_BASE中所存放的数据,其中adr r0, _start翻译成 add r0,(PC+#offset),offset 就是 adr r0, _start 指令到_start 的偏移量,在链接时确定,这个偏移量是地址无关的。而 ldr r1, _TEXT_BASE 指令表示以程序相对偏移的方式加载数据,是索引偏移加载的另外一种形式,等同于ldr r1,[PC+#offset],offset 是 ldr r1, _TEXT_BASE 到 _TEXT_BASE 的偏移量。注意这种用法并不是伪指令,伪指令的特征是 ldr r1, =expr/lable_expr。对于LDR伪指令,ADS的情况有些不一样(细微差别),在ADS中的情况可以参考杜春雷144页。

比较一下:

add r0,(PC+#offset):(PC+#offset)是相对地址,表示把本指令上溯或下溯offset处的地址加载到 r0;

ldr r1,[PC+#offset]:[PC+#offset]也是相对地址,表示把偏移offset处的地址上的数据加载到 r1;

现在继续:

刚才分析所得到的矛盾,肯定是在认识上存在的偏差,经过把U-BOOT进行make后,从所生成的两个.map文件来看(~/u-boot.map和Systen.map),所有的地址标号都是从0x33f80000开始的,就是从SDRAM的高地址开始,等于TEXT_BASE的值,也就是说,链接器是从0x33F80000开始来链接所编译生成的目标文件的,而不是从0地址开始,经过查看,start_armboot=0x33f80d9c,就是说void start_armboot (void)函数的入口地址在SDRAM 中(链接器决定),所以执行

ldr pc, _start_armboot

_start_armboot: .word start_armboot,

PC指针肯定就指向了SDRAM中,换句话就是说进入到SDRAM中了,对于ldr pc, _start_armboot,其仍然是GNU中使用程序相对偏移的方式加载数据,翻译一下就是ldr pc, [pc+pc到_start_armboot的偏移值],结果就把_start_armboot地址中的数start_armboot 放入pc中完成了跳转,而 start_armboot 的值(函数地址)是在链接时就确定了,是相对于 TEXT_BASE 的。因为在整个UBOOT的阶段1中所有的寻址都是相对位置的寻址(虽然链接器认为是阶段1的代码是从地址0x3ff80000中开始链接的),把阶段1的代码放在0地址开始的FLASH中也是可以正确的运行的,如果ARM的复位向量是在0x00000001(假设),那么把代码烧写到从0x00000004处开始的地方,上电时也可以正确的运行(假设ARM的复位向量是在0x00000004成立),当然ARM的复位向量不在这里,只是以此假设来说明以上的对于阶段1的分析。

现在最后一个矛盾就是链接脚本(~/board/smdk2410/u-boot.lds)所描述的链接地址与实际的链接地址不相同的问题,因为根据链接脚本,所有的地址标号应该从0地址开始计数

相关文档
最新文档