2018年中考数学全真模拟试卷及答案(共五套)

合集下载

吉林省2018年中考数学全真模拟试卷(解析版)

吉林省2018年中考数学全真模拟试卷(解析版)

2018年吉林省中考数学全真模拟试卷(一)一、选择题(本大题共10题,每题3分,共30分)1. 的倒数是()A. B. C. ﹣ D. ﹣【答案】B【解析】解:由×=1,得的倒数是.故选B.2. 下列计算正确的是()A. a+a=2a2B. a2•a=2a3C. (﹣ab)2=ab2D. (2a)2÷a=4a【答案】D【解析】试题分析:A、a+a=2a,故此选项错误;B、a2•a=a3,故此选项错误;C、(﹣ab)2=a2b2,故此选项错误;D、(2a)2÷a=4a,正确.故选:D.考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.3. 下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A. 3cm,4cm,8cmB. 8cm,7cm,15cmC. 5cm,5cm,11cmD. 13cm,12cm,20cm【答案】D【解析】试题分析:根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.考点:三角形三边关系4. 我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A. 众数 B. 平均数 C. 中位数 D. 方差【答案】C【解析】试题分析:中位数是指第5名的成绩,知道是否进入前五就只需要知道中位数是多少就可以.考点:中位数的性质.5. 如图所示正三棱柱的主视图是()A. B. C. D.【答案】B【解析】如图所示正三棱柱的主视图是平行排列的两个矩形,故选B.6. 二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()A. ac+1=bB. ab+1=cC. bc+1=aD. 以上都不是【答案】A【解析】试题分析:根据图象易得C(0,c)且c>0,再利用OA=OC可得A(﹣c,0),然后把A(﹣c,0)代入y=ax2+bx+c即可得到a、b、c的关系式ac+1=b.故选A.考点:二次项系数与系数的关系7. 将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A. 73°B. 56°C. 68°D. 146°【答案】A【解析】试题分析:根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE=∠CBE,可得出∠ABC 的度数.∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.考点:平行线的性质.8. 如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A. B. C. D.【答案】C【解析】试题分析:作FG⊥AB于点G,由AE∥FG,得出,求出Rt△BGF≌Rt△BCF,再由AB=BC求解==.故选:C.考点:1、平行线分线段成比例,2、全等三角形及角平分线视频9. 某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A. 103块B. 104块C. 105块D. 106块【答案】C【解析】试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x块,550×60+(x﹣60)×500>55000 解得,x>104 ∴这批电话手表至少有105块考点:一元一次不等式的应用10. 如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.【答案】A【解析】试题分析:根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).考点:动点问题的函数图象二、填空题(本大题共10题,每题2分,共20分)11. 化简:÷=_____.【答案】m【解析】÷=×.故答案为:.点睛:本题考查了分式的除法运算,其运算法则是:两个分式相除,把除式的分子与分母颠倒位置后,再与被乘式相乘,然后分解因式约分化简.12. 我国南海海域面积为3500000km2,用科学记数法表示3500000为_____.【答案】3.5×106【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,3500000=3.5×106,故答案为:3.5×106.13. 使式子有意义的x取值范围是_____.【答案】x≥﹣1【解析】解:根据题意得:x+1≥0,解得:x≥﹣1.故答案为:x≥﹣1.14. 一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.【答案】6【解析】∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形,故答案为:6.15. 已知x2+x﹣5=0,则代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值为_____.【答案】2【解析】试题分析:先利用乘法公式展开,再合并得到原式=x2+x﹣3,然后利用整体代入的方法计算......................考点:整式的混合运算—化简求值.16. 在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是_____.【答案】16【解析】试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=16.考点:(1)菱形的性质;(2)三角形中位线定理.17. 如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=_____.【答案】2【解析】试题解析:如图,过点P作PE⊥OB于E,∵OP平分∠AOB,∴∠AOB=2∠AOP=2×15°=30°,∵PC∥OA,∴∠PCE=∠AOB=30°,∴PE=PC=×10=5,∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE=5.故答案为:5.18. ⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为_____.【答案】75°或15°【解析】解:有两种情况:①如图1所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OF A=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE==,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图2所示,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OF A=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE═=,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°.故答案为:75°或15°.点睛:本题考查了特殊角的三角函数值和垂径定理的应用.此题难度适中,解题的关键是根据题意作出图形,求出符合条件的所有情况.此题比较好,但是一道比较容易出错的题目.19. 如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)【答案】60【解析】试题分析:根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米,∴BD=,CD=,∴+=100,解得,AD≈60考点:解直角三角形的应用.20. 如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为_____.【答案】【解析】试题分析:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF,设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=,∴FM=.考点:1.旋转的性质;2.全等三角形的判定与性质;3.正方形的性质.三、解答题(本大题共8题,第21、22题每题7分,第23、24、25题每题8分,第26、27题每题10分,第28题12分,共70分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上)21. 计算:()﹣1+﹣2sin30°+(3﹣π)0.【答案】1【解析】试题分析:原式第一项利用负整数指数幂法则计算,第二项利用二次根式的性质化简,第三项利用特殊角的三角函数值计算,最后一项利用零指数幂法则计算即可得到结果.试题解析:原式=-2+3-2×+1=1.考点:1.实数的运算,2.零指数幂,3.负整数指数幂,4.特殊角的三角函数值.22. 已知实数a、b满足(a+2)2+=0,则a+b的值.【答案】1或﹣3【解析】试题分析:根据非负数的性质列式得,a+2=0,b2﹣2b﹣3=0,解得a=﹣2,b=3或﹣1,所以,a+b=﹣2﹣1=﹣3或a+b=1.考点:1、非负数的性质:2、算术平方根;3、非负数的性质:偶次方23. 如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.【答案】(1)m=﹣1,k=2;(2)1<x≤2.【解析】试题分析:试题解析:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1即m=﹣1,∵A(2,1)在反比例函数y=的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由图象可知不等式组0<x+m≤的解集为1<x≤2.点睛:本题主要考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,用待定系数法一次函数的解析式,不等式与函数的关系,解题的关键是求出反比例函数、一次函数的解析式,利用数形结合解决问题.24. 如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.【答案】见解析【解析】试题分析:(1)由在▱ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.试题解析:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.25. 据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_____名,扇形统计图中“基本了解”部分所对应扇形的圆心角为_____;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.【答案】(1). 60 (2). 90°【解析】试题分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)列表得出所有等可能的情况数,找出两人打平的情况数,即可求出所求的概率.试题解析:(1)根据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)根据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)所有等可能的情况有9种,其中两人打平的情况有3种,则P==.考点:1、条形统计图,2、扇形统计图,3、列表法与树状图法视频26. 如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.【答案】(1)见解析;(2)【解析】试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.根据已知条件得到由相似三角形的性质得到求得由切线的性质得到根据勾股定理列方程即可得到结论.试题解析:(1)连接OD.∵OB=OD,∴∠OBD=∠BDO.∵∠CDA=∠CBD,∴∠CDA=∠ODB.又∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD.∵OD是⊙O的半径,∴CD是⊙O的切线;(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,BC=6,∴CD=4.∵CE,BE是⊙O的切线,∴BE=DE,BE⊥BC,∴BE2+BC2=EC2,即BE2+62=(4+BE)2,解得BE=.27. 如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC 是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分弧AC .(1)求过A,B,E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.【答案】(1)y=(x+1)2﹣2;(2)见解析;(3)存在.所求点P坐标为(2,),(﹣4,).【解析】试题分析:(1)根据题意首先求出抛物线顶点E的坐标,再利用顶点式求出函数解析式;(2)利用等边三角形的性质结合圆的有关性质得出∠AMD=∠CMD=∠AMC=60°,进而得出DC=CM=MA=AD,即可得出答案;(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系式求出P点坐标.试题解析:(1)由题意可知,△MBC为等边三角形,点A,B,C,E均在⊙M上,则MA=MB=MC=ME=2,又∵CO⊥MB,∴MO=BO=1,∴A(﹣3,0),B(1,0),E(﹣1,﹣2),抛物线顶点E的坐标为(﹣1,﹣2),设函数解析式为y=a(x+1)2﹣2(a≠0)把点B(1,0)代入y=a(x+1)2﹣2,解得:a=,故二次函数解析式为:y=(x+1)2﹣2;(2)连接DM,∵△MBC为等边三角形,∴∠CMB=60°,∴∠AMC=120°,∵点D平分弧AC,∴∠AMD=∠CMD=∠AMC=60°,∵MD=MC=MA,∴△MCD,△MDA是等边三角形,∴DC=CM=MA=AD,∴四边形AMCD为菱形(四条边都相等的四边形是菱形);(3)存在.理由如下:设点P的坐标为(m,n)∵S△ABP=AB|n|,AB=4 ∴×4×|n|=5,即2|n|=5,解得:n=±,当时,(m+1)2﹣2=,解此方程得:m1=2,m2=﹣4即点P的坐标为(2,),(﹣4,),当n=﹣时,(m+1)2﹣2=﹣,此方程无解,故所求点P坐标为(2,),(﹣4,).考点:二次函数综合题.。

2018年中考数学模拟试题及答案共五套

2018年中考数学模拟试题及答案共五套

中考模拟试卷数学试题卷考生须知:1. 本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。

2. 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。

注意可以用多种不同的方法来选取正确答案。

1.-的倒数是( )A. 12007-B.C. -D.12007 2. 下列运算正确的是( ) A .23a a ⋅=6aB .33()y y x x=C .55a a a ÷=D .326()a a =3. 下图中几何体的俯视图是 ( )4.在昆明“世博会”期间,为方便游客参观,铁道部门临时加开了南宁至昆明的直达列车.已知南宁至昆明的路程为828km ,普快列车与直快列车由昆明到南宁时,直快列车平均速度是普快的1.5倍,若直快列车比普快列车晚出发2 h 而先到4h ,求两列车的平均速度分别是多少?设普快列车的速度为x km/h ,则直快列车的速度为1.5xkm /h .依题意,所列方程正确的是( )828828.24 1.5A x x ++= 828828.24 1.5B x x +-=; 828828.24 1.5C x x --=; 828828.24 1.5D x x-+=5. 若⊙O 1和⊙O 2相切,且两圆的圆心距为9,则两圆的半径不可能...是( ) A .4和5 B .7和9 C .10和1 D .9和186.菱形的两条对角线长分别为6㎝、8㎝,则它的面积为( )2cm . (A)6 (B)12 (C)24 (D)487、从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是( )A .12B . 14C .18D .1168.如图为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( )A .6(3+1)mB . 6 (3—1) mC . 12 (3+1) mD .12(3-1)m9.若二次函数2y ax c =+(0a ≠),当x 分别取x 1、x 2(x 1≠x 2)时,函数值相等;则当x 取x 1+x 2时,函数值为( ). (A)a +c (B)a -c (C)-c (D)c 10. 如图,已知△ABC 中,BC =8,BC 边上的高h=4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为( )二. 认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。

2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷及答案2018年中考数学模拟试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)-3的相反数是()A.-1 B.3 C.1 D.-32.(3分)下列运算中,正确的是()A.2x+2y=2xyB.(xy)2÷(xy)3=x-yC.D.2xy-3yx=xy(x2y3)2=x4y53.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱4.(3分)口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移36.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根是38.(3分)若∠α=32°22′,则∠α的余角的度数为57°38′9.(3分)化简:-3的结果是310.(3分)一组数据2、-2、4、1、的方差是5.511.(3分)若关于x的一元二次方程ax2-bx+2=0(a≠0)的一个解是x=1,则3-a+b的值是412.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°13.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为40√5 cm2.14.(3分)如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于75°15.(3分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A=3/516.(3分)抛物线y=mx2-2mx+m-3(m>0)在-1<x<3位于x轴下方,在3<x<4位于x轴上方,则m的值为2三、解答题17.1) $-2+|3\tan30^\circ-1|-(\pi-3)^\circ$2+|\frac{3}{\sqrt{3}}-1|-(\pi-3)^\circ$2+|\sqrt{3}-1|-(\pi-3)^\circ$2+\sqrt{3}-1-(\pi-3)^\circ$2-\sqrt{3}-\pi^\circ$2) $x^2-3x+2=0$x=1$或$x=2$所以方程的解为$x=1$或$x=2$。

【全真】2018年初中毕业生学业模拟考试数学试题及答案

【全真】2018年初中毕业生学业模拟考试数学试题及答案

2018 年初中毕业生学业模拟考试数学科试题说明: 1.全卷共 4 页,考试用时 100 分钟,满分为120 分;2.答卷前,考生务必用黑色笔迹的署名笔或钢笔在答题卡信息栏填写自己的姓名、考生号和座位号,并用2B铅笔填涂考生号;3.答案一定用黑色笔迹钢笔或署名笔作答,且一定写在答题卡各题目指定地区内相应地点上;如需变动,先划掉本来的答案,而后再写上新的答案;禁止使用铅笔和涂改液,不按以上要求作答的答案无效;4.考生务必保持答题卡的整齐.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10 小题,每题 3 分,共 30 分 ,在每题给出的四个选项中,只有一个是正确的,请将所选选项的字母填涂在答题卡中对应题号的方格内)1.2018 的相反数是A . 2018B. 2018C.1D.1201820182.在广东省十三届人大一次会议上的政府工作报告中指出:广东全省生产总值从2012 年的5.8 万亿元增添到 2017年的 8.99 万亿元,五年年均增添 7.9%.将数据8.99 万亿用科学记数法可表示为A .89.9 1011B.0.899 1013C.8.991012D.8.9910133.以下运算正确的选项是A .2a53a5a5B.a2a3a6B C.( a2)3a5D.( ab)4( ab) 2a2b2DC4.如图,点 P 是∠ AOB 的边 OA 上一点, PC⊥ OB 于点 C, PD ∥OB,∠OPC=35°,则∠ APD 的度数是A.60°B. 55°C.45°D.35°O PA第4题图5.下边四个几何体中,其主视图不是中心对称图形的是A .B .C .D .6.不等式组x 2 2x 1的整数解的个数为2x10A.4 个B.3 个C.2 个D.1 个7.某中学在举行“弘扬中华传统文化念书月”活动结束后,对八年级(1)班 40 位学生所阅念书本数目状况的统计结果以下表所示:阅念书本数目(单位:本)1 2 3 3 以上人数(单位:人)121693这组数据的中位数和众数分别是A .2,2B .1,2C . 3,2D .2,18.已知圆锥的高为3,高所在的直线与母线的夹角为 30 °,则圆锥的侧面积为 A .B .1.5 3C . 2D . 3yyx上的一个动点,连接OP ,若将线9.如图,已知点 P 是双曲线Q·段 OP 绕点 O 逆时针旋转 90 °获得线段线的表达式为A . y3 B . y1 C . yx3xOQ ,则经过点 Q 的双曲P·1Ox33xD . y第9题图x10 .如图,已知 □ABCD 的对角线 AC 、BD 交于点 O ,DE 均分 ∠ ADC交 BC 于点 E ,交 AC 于点 F ,且 ∠ BCD=60 °,BC=2CD ,连接 OE .以下结论:A①OE ∥AB ; ② S平行四边形 ABCD BD CD ;③AO=2BO ; ④ S DOF 2S EOF . B此中建立的个数有A .1 个B .2 个C .3个D .4 个DOFEC第10题图二、填空题(本大题共 6 小题,每题 4 分,共 24 分,请将以下各题的正确答案填写在答题卡相应的地点上)11 .因式分解: a21.12 .某品牌衬衫的进货价为 200 元/件,标价为 300 元 /件,若服饰店将此衬衫打则每件可赢利元.E 13 .已知 (a2) 2b 10 ,则b.a14 .若一个等腰三角形有两边长为 3 和 4,则它的周长为 .F15.如图,已知 P 、Q 分别是 ⊙ O 的内接正六边形 ABCDEF的边 AB 、BC 上的点, AP=BQ ,则 ∠POQ 的度数为.A16 .如图,已知在矩形 ABCD 中,点 E 是 AD 的中点,连接 BE ,将 △ABE沿着 BE 翻折获得 △FBE , EF 交 BC 于点 M ,延伸 BF 、DC 订交于点 G ,若 DG=16,BC=24,则 FM =.A8 折销售, DO Q C PB第15题图ED三、解答题 ( 一)(本大题共 3小题,每题 6 分,共 18 分)MC128 (20180 .B17.计算:( )2sin 45)F2第 16题图Gx22x 1x1x21x 1 ,此中 x5 .18.先化简,再求值:19.如图,已知在△ABC 中, AB=AC ,将△ABC 沿 BC 翻折获得△ A1BC.1 BC;(保存作图印迹,不要求写作法和证明)( 1)用直尺和圆规作出△ A( 2)请判断四边形 AB A1AC 的形状,并证明你的结论.B第 19C 题图四、解答题(二)(本大题共 3 小题,每题 7 分,共 21 分)20.某学校经过层层选拔,最后在甲、乙两名同学中选拔一人参加“中国字谜大会”,在同样测试条件下,两人 4 次测试成绩(单位:分)以下:甲: 78, 87, 81,84, 75乙: 84, 79, 90, 80, 72回答以下问题:( 1)甲成绩的均匀数是,乙成绩的均匀数是;( 2)经计算知S甲2 =18,S乙2 =35.2.你以为选拔参加竞赛更适合;(填甲或乙)(3)假如从甲、乙两人 5 次的成绩中各随机抽取一次成绩进行剖析,求抽到两个人的成绩都不小于 80 分的概率.(用画树状图或列表法解答)21.甲、乙两座城市的高铁站A, B 两站相距 480km.一列特快动车组与一列一般动车组分别从 A,B 两站同时出发相向而行,特快动车组的均匀速度比一般动车组快80km/h,当特快动车组抵达 B 站时,一般动车组恰巧抵达距离 A 站 120km 处的 C 站.求一般动车组和特快动车组的平均速度各是多少?22.以下图,台阶CD 为某校体育场观赛台,台阶每层高0.3 米,AB 为体育场外的一幢竖直居民楼,且AC=51.7 米,设太阳光芒与水平川面的夹角为,当=60 °时,测得居民楼在地面上的影长AE=30 米.(参照数据:3 1.73 )B(1)求居民楼的高度约为多少米?(2)当 =45 °时,请问在台阶的 MN 这层上观看竞赛的学生能否还晒到太阳?请说明原因.M NA E C D第 22题图五、解答题(三)(本大题共 3 小题,每题 9 分,共 27 分)23 .如图, 已知直线 y kxb 与抛物线 y1 x2 mx n 交于点 P( a ,4),与 x 轴交于点 A ,211, S PBC 与 y 轴交于点 C ,PB ⊥ x 轴于点 B ,且 AC=BC ,若抛物线的对称轴为x8.2( 1)求直线和抛物线的函数分析式;( 2)抛物线上能否存在点D ,使四边形 BCPD 为菱形?假如y存在,求出点 D 的坐标;假如不存在,请说明原因.PCAOBx第 23题图24.如图,在 Rt △ ABC 中,∠ C=90°,BD 为 ∠ ABC 的均分线, DF ⊥BD 交的外接圆 ⊙ O 与边 BC 订交于点 M ,过点 M 作 AB 的垂线交 BD 于点交 AB 于点 H ,连接 FN .AB 于点 F ,△ BDFE ,交⊙ O 于点 N ,N(1)求证: AC 是⊙O 的切线;( 2)若 AF=4, tan ∠N=4,求 ⊙ O 的半径长;BH3E( 3)在( 2)的条件下,求 MN 的长.OMFC DA第 24 题图25.如图,已知在 △ABC 中, AB=AC =10cm , BD ⊥ AC 于点 D ,BD= 8cm ,点 M 从 A 出发,沿AC 的方向以 2cm/s 的速度匀速运动,同时直线 PQ 由点 B 出发,沿 BA 的方向以 1cm/s 的速度匀速运动,运动过程中一直保持PQ ∥ AC ,直线 PQ 交 AB 于点 P ,交 B C 于点 Q ,交 BD于点 F ,连接 PM ,设运动的时间为 t (0 t 5) . (1)当 t 为什么值时,四边形 PQCM 是平行四边形?( 2)设四边形 PQCM 的面积为 y cm 2,求 y 与 t 的函数关系式; A( 3)连接 PC ,能否存在某一时辰 t ,使点 M 在 PC 的垂直均分线上?若存在,求出此时 t 的值;若不存在,请说明原因.MPDFB QC第 25题图2018 年澄海区初中毕业生学业模拟考试数学科试题参照答案及评分建议一、选择题(本大题共 10 小题,每题 3 分,共 30 分) 1.B ;2. C ; 3.D ;4.B ;5.A ; 6.B ;7.A ;8. C ; 9.D ;10.C .二、填空题(本大共题6 小题,每题4 分,共 24 分)11. (a 1)( a 1) ; 12. 40;13.2; 14.10 或 11;15. 60°; 16.21.28此题给分板为:每题均为 0分,4分三、 解答题 (一 )(本大题共 3 小题,每题 6 分,共 18 分)17.解:原式4 2 2 2 1 ---------------------------------------------4 分32 . ------------------------------------------------------6分此题给分板为: 0分,1分,2分,3分,4分,5分,6分1(x 1) 2x11)( x 1)x---------------------------------------18.解:原式(x2分x 11x--------------------------------------------------------3分 1x , ----------------------------------------------------------4分115当x5时,原式x 5 5. ---------------------------------5分此题给分板为: 0分,1分,2分,3分,4分,5分,6分19.解:( 1)以下图:△ A BC 为所求的图形; -------------------- 3 分1此题给分板为: 0分,1分,2分,3分( 2)四边形 AB A 1C 是菱形. ---------------------------------------------- 4分A由( 1)可知, AD=A 1D ,且 AA 1⊥BC ,∵ AB=AC ,∴ BD=CD , ---------------------------------------------------------------------5分BD C∴四边形 AB A 1C 是平行四边形, A 1 第19题图∵ AB=AC ,∴平行四边形 AB A 1C 是菱形. ------------------------------------------- 6 分此题给分板为: 0分,1分,2分,3分四、解答题(二)(本大题共3 小题,每题 7 分,共 21 分)20.解:( 1) 81,81----------------------------------------------------------2 分此题给分板为: 0分,1 分,2分( 2)甲--------------------------------------------------------------------------3分此题给分板为: 0分,1 分( 3)列表以下:列表正确 -------------------------------------------------- 5分 乙 /甲 7887 81847584 ( 78,84) ( 87,84) ( 81,84) ( 84,84) (75,84) 79 ( 78,79) ( 87,79) ( 81,79) ( 84,79) (75,79) 90 ( 78,90) ( 87,90) ( 81,90) ( 84,90) (75,90) 80( 78,80) ( 87,80) ( 81,80) ( 84,80) (75,80) 72( 78,72)( 87,72)( 81,72) ( 84,72)(75,72)由上表可知,从甲、乙两人 5 次成绩中各随机抽取一次成绩有25 种等可能结果,此中抽到两个人的成绩都不小于80 分的结果有 9 种. -----------------------------------------------6分980P----------7 分因此抽到两个人的成绩都不小于 分的概率为25 .此题给分板为: 0 分, 1分, 2 分, 3分, 4 分21.解:设一般动车组的均匀速度为 x km/h ,则特快动车组的速度为(x +80 ) km/h ,由题意得:480480 120, ---------------------------------------------------------3分 x 80 x解得: x =240, -----------------------------------------------------------------------------4分经查验: x =240 是原分式方程的解. ------------------------------------------------- 5分∴ x +80=320 . ------------------------------------------------------------------------------6 分答:一般动车组的均匀速度为 240km/h ,特快动车组的速度为 320km/h . --- 7 分此题给分板为: 0 分, 1分, 2 分, 3分, 4 分, 5分, 6 分, 7分22.解:( 1)当 α =60时°,在 Rt △ ABE 中,∵ tan60 AB , --------------------------------------------------------------------------- 1分AE∴ AB=30tan60°= 30 3 51.9 米. ------------------------------------------------------2 分B答:居民楼的高度约为 51.9 米; ----------------------------------------------------- 3分此题给分板为: 0 分, 1 分, 2 分, 3 分( 2)当=45°时,学生仍旧晒到太阳.原因以下:-----------------------------4 分MN设点 B 射下的光芒与地面AD 的交点为 F ,与 MC 的交点为 H ,HAE C F∵∠ AFB=45°,∴ AF=AB =51.9, ------------------------------------------------------5分第 22 题图∴ CF =AF ﹣ AC=51.9﹣ 51.7=0.2, ----------------------------------------------------- 6 分∵∠ CFH =45°,∴ CH =CF=0.2 米 <0.3 米,∴居民楼的影子落在台阶 MC 这个侧面上,∴在 MN 这层上观看竞赛的学生仍晒到太阳.-----------------------------------7 分此题给分板为: 0 分, 1分, 2 分, 3分, 4 分五、解答题(三)(本大题共 3 小题,每题9 分,共 27 分)y 23.解:( 1)∵ PB⊥x,P( a, 4), S PBC8 ,P∴ 14OB 8,C D2A O B∴ OB 4 ,∴ P(4, 4),∵AC=BC , CO⊥AB,∴ OA=OB= 4,∴ A(-4, 0), ------------------------------------------------------------------------------1分第 23题图把点 A、P 的坐标代入y kx b 得:4k b4,4k b0k 1解得: 2,b2∴直线的分析式为12, ----------------------------------------2分yx2∵ y1x2mx n 的对称轴为x11,且经过点P(4, 4),22m11∴2(1)2, ----------------------------------------------3 21164m n4 2m 114解得:2,--------------------------------------------------------n10∴抛物线的分析式为y1x211x 10 ;----------------------522此题给分板为:0 分, 1分, 2 分, 3分, 4 分, 5分(2)∵ AC=BC ,∴∠ CAB=∠ CBA ,∵∠ CAB+∠ APB =∠ CBA+∠ CBP=90°,∴∠ APB =∠CBP,分分分∴ CB=CP , --------------------------------------------------------------- 6分作 CD ⊥ PB ,则 CD 均分 PB ,当 PB 均分 CD 时,四边形 BCPD 为菱形,此时点 D 的坐标为 (8, 2), --------------------------------------------7分把 x8 代入 y 1 x 2 11x 10 ,2 2得 y1 11 102 ,64822∴点 D 在抛物线上, ----------------------------------------------------8分∴在抛物线上存在点 D ,使四边形 BCPD 为菱形,此时点 D 的坐标为 (8, 2) . ------------------------------------------9分此题给分板为: 0分,1分,2分,3分,4分24.( 1)证明:连接 OD ,∵ OD=OB ,∴∠ ODB= ∠ OBD ,∵ BD 为∠ ABC 的均分线,∴∠ DBC= ∠ OBD , ∴∠ ODB= ∠ DBC ,∴ OD ∥ BC , -------------------------------------------------------------1分∵ AC ⊥ BC , ∴AC ⊥OD ,∴ AC 是⊙ O 的切线. -------------------------------------------------------------2分此题给分板为: 0 分, 1 分, 2 分 ( 2)∵ OD ∥ BC , ∴∠ AOD= ∠ ABC , ∵∠ N= ∠ ABC ,∴∠ AOD= ∠ N , -----------------------------------------------------------------3分在 Rt △ AOD 中,∵tan AOD tan NAD 4 ,OD3∴ OD3,即 5OD 3AO ,AO5设⊙ O 的半径为 r ,则 5r 3( r 4) ,---------------------------------------4分解得: r 6 ,∴⊙ O 的半径长为 6. -----------------------------------------------------------5 分NB HEOMFCDA第 24题图此题给分板为: 0 分, 1 分, 2 分, 3 分( 3)连接 BN ,∵ BF 为⊙ O 的直径,∴ BN ⊥ FN ,∴∠ NBH+ ∠BFN= 90°, ∵ MN ⊥ FB ,∴∠ HNF+ ∠ BFN=90°, ∴∠ FNH= ∠ NBH , ∴tan NBH tan FNH 4 ,3∴ cos NBH 3 ,sin NBH 4 , ------------------------------------------ 6分5 5∴在 Rt △ FBN 中,BNBF cos NBF 123 36,------------------------------------------ 7分55∴在 Rt △HBN 中,HNBN sin NBH36 4 144,--------------------------------------- 8 分5 5 25由垂径定理可得: MN2HN288. ------------------------------------- 9 分25此题给分板为:0分,1分,2分,3分,4分25.解:( 1)假定四边形 PQCM 是平行四边形,则 PM ∥ QC ,∴AP AM,AB AC∵ AB=AC ,∴ AP=AM ,即 10 t 2t , --------------------------------------------------------------------- 1分解得: t10 ,3∴当 t10时,四边形 PQCM 是平行四边形; --------------------------------------23此题给分板为: 0分,1分,2分( 2)∵ PQ ∥AC ,∴△ PBQ ∽△ ABC , ∴ BFBP ,即 BFt , BDBA810解得: BF 4t ,5∴ FDBDBF 84 t , -------------------------------------------------------------- 35NBHEOMFCDA第 24题图分AHMDP分FBQC第 25题图∵ AB=AC ,∴∠ PBQ= ∠ ACB ,∵ PQ ∥ AC ,∴∠ PQB= ∠ACB ,∴∠ PQB= ∠ PBQ ,∴ PQ=PB = t ,又∵ MC=AC ﹣AM=10﹣ 2 t , ------------------------------------------------------------4 分∴ y1(PQ MC) FD1(t10 2t)(84t ) ,2252 t 28t40 . --------------------------------------------------5分5此题给分板为: 0 分, 1 分, 2 分, 3 分( 3)存在某一时辰 t ,使得点 M 在线段 PC 的垂直均分线上, --------------- 6 分若点 M 在线段 PC 的垂直均分线上,则MP=MC ,过 M 作 MH ⊥AB ,交 AB 与 H , ∵∠ A=∠ A ,∠ AHM =∠ ADB =90°,∴△ AHM ∽△ ADB ,∴HM AH AM ,BDAD AB又∵ AD AB 2 BD 2102 826 ,∴ HMAH 2t , 86 10 ∴ HM8 t , AH 6 t ,5 5∴ HP10 t6 t 10 11 t,5 5在 Rt △ HMP 中,MP 2 HM 2 HP 2( 8 t) 2 (10 11 t )237 t 2 44t 100,-------------------75 5 5∵ MC 2(10 2t )2100 40t4t 2 ,且 MP 2=MC 2,∴ 37 t 244t 100 10040t 4t2,-----------------------------------------------85解得 t20 , t 2 0 (舍去),117∴当 t20时,点 M 在线段 PC 的垂直均分线上. ---------------------------917此题给分板为: 0 分, 1分, 2 分, 3分, 4 分分分分【全真】2018年初中毕业生学业模拟考试数学试题及答案。

2018中考数学模拟试题含答案(精选5套)

2018中考数学模拟试题含答案(精选5套)

2018年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( ) A. ×10B. ×108C. ×109D. ×10104. 估计8-1的值在( ) A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形B. 矩形C. 正方形D. 菱形6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2= 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2+ 2x-1=(x - 1)2B. - x 2 +(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2+ 2x + 1圆弧 角 扇形 菱形 等腰梯形 A. B. C. D.(第9题图)(第7题图)11. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 112. 如图,△ABC 中,∠ C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3)+(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……(第21题图)(第23题图)(参考数值:sin20°≈,cos20°≈,tan20°≈)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案哪种方案的总费用最低26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x (第24题图)轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ; (2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形若存在,求出所有点P 的坐标;若不存在,请说明理由.2018年初三适应性检测参考答案与评分意见一、选择题说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. (或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =, …………1分∴这组样本数据的平均数是. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是,∴估计全校1200人参加活动次数的总体平均数是,有×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°,∴BG = CG ·tan20° …………………5分 =10×=, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - = .答:树AB 的高度约为米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分 在Rt △MNP 中,有x 2= 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2018年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- B、0 D 、22、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-34、如图是某几何题的三视图,下列判断正确的是( )A、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( ) A 、0a b +> B 、0a b -> C 、0ab > D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、 C 、 D 、BDE左视图俯视图二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2018年中考数学模拟试题及答案(共五套)

2018年中考数学模拟试题及答案(共五套)

中考模拟试卷数学卷一、仔细选一选。

(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。

2018年中考模拟试卷数学试卷及答案(1)

2018年中考模拟试卷数学试卷及答案(1)

2018年中考模拟试卷 数学卷 满分120分 考试时间100分钟考生须知:※ 本试卷分试题卷和答题卷两部分..※ 答题前,必须在答题卷的密封区内填写校名、姓名和准考证号. ※ 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.※ 考试结束后,上交试题卷和答题卷.试 题 卷一、细心选一选<本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请你把正确选项前的字母填涂在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.jgbWZYfygu 1.下列各组数中,互为相反数的是< ▲ )【原创】 A .2和21 B .︒30sin 和21-C .2)2(-和2)2(D .12-和21- 2.如果代数式y x a 124-与b a y x +-3561时同类项,那么< ▲ )【原创】 A .6,2-==b a B .8,3-==b a C .5,2-==b a D .9,3-==b a 3.为了记录本月蔬菜价格的变化情况,应选用的统计图是< ▲ )【原创】 A .扇形统计图 B .条形统计图 C .折线统计图 D .都可以4.2018年3月18日,美国内布拉斯加州,沙丘鹤飞过升起的月亮。

美国航空航天局发布消息说,19日,月球将到达19年来距离地球最近位置,它与地球的距离仅有356578千M ,从地球上观看,月球比远地点时面积增大14%,亮度增加30%,号称“超级月亮”。

其中356578千M 精确到万位是< ▲ )【原创】jgbWZYfygu A .51057.3⨯ B .61035.0⨯ C .5106.3⨯ D .5104⨯ 5.要得到二次函数122+--=x x y 的图象,则需将2)1(2+--=x y 的图象< ▲ )【原创】A .向右平移两个单位B .向下平移1个单位C .关于x 轴做轴对称变换D .关于y 轴做轴对称变换6.如果一个空间几何体的主视图和左视图都是边长为2的正三角形,俯视图是圆且中间有一点。

2018年九年级数学模拟试卷及答案

2018年九年级数学模拟试卷及答案

2018年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .52.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 5 3.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .06.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,若CD=4,AC=12,则△ABC 的面积 为( ▲ )A .48B .50C .54D .60(第4题) A BCD (第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ . 10.分解因式x 3+6x 2+9x 的结果是 ▲ . 11.计算 33-13的结果是 ▲ . 12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是 ▲ . 13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =kx 的图像上,则当x >1时,y 的取值范围是 ▲ .16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0, x -12<x 3.,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m .(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a = ▲ ,初赛成绩为1.70m 所在扇形图形的圆心角为 ▲ °; (2)补全条形统计图;(3)这组初赛成绩的众数是 ▲ m ,中位数是 ▲ m ; (4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m 的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n 个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n 的值为 ▲ ;(2)当n =2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD 绕点C 旋转得到矩形FECG ,点E 在AD 上,延长ED 交FG 于点H . (1)求证:△EDC ≌△HFE ; (2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论. ②当AB 与BC 的比值为 ▲ 时,四边形BEHC 为菱形.(第21题)ACDGFEH22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点. (1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。

2018年中考九年级数学模拟试卷及答案

2018年中考九年级数学模拟试卷及答案

中考九年级数学模拟试卷(满分150分,考试时间100分钟)考生注意:考生务必按答题要求在答题纸规定的位置上作答,.本试卷含三个大题,共25题.答题时,1在草稿纸、本试卷上答题一律无效..除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或2计算的主要步骤.24分)题,每题4分,满分一、选择题(本大题共6a.下列二次根式中,与1是同类二次根式的是(▲)2a?4a42a a(;(CD)(A.));;(B)名学生报名参加班级选拔赛,他们72.某班要推选学生参加学校的“诗词达人”比赛,有名参加学校比赛.小红要判断自己能否参加学校3的选拔赛成绩各不相同,现取其中前名学生成绩的(▲)比赛,在知道自己成绩的情况下,还需要知道这7)方差.(D)平均数;(B)中位数;(C(A)众数;所示,这个13.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图不等式组是(▲),?2?2,xx?2,x?2,x????)(DC(B)()(A)????.3;x???3;x??3xx??3;?????1图那么下列平移过程正确的是(▲)l:,4.如果将直线l:平移后得到直线x2?2y?y?2x21个单位;l向右平移2向左平移2个单位;(B)将l(A)将11个单位.l向下平移2个单位;(D)将C()将l向上平移211所按如图230°和60°角的三角板ABC5.将一把直尺和一块含BAF的大小为(▲)=40°,那么∠示的位置放置,如果∠CDE(B)15°;(A)10°;.)25°(DC()20°; 2图O不重在射线OM上(点P与点AOD、直线ABCD相交于点O,射线OM平分∠,点P6.的位置关系是(▲)相离,那么圆ABP与直线CD合),如果以点P为圆心的圆与直线)不确定(D.C()相交;)相切;()相离;(A B分)分,满分二、填空题(本大题共12题,每题448共页第九年级数学1 4页11.计算:▲.7??aa222的值是▲.,且,那么8.如果8?a?bb?b?4?aa.方程的根是▲.9 22x?4?k y x10.已知反比例函数,在其图像所在的每个象限内,的值增大而减的值随)?y?0(k x小,那么它的图像所在的象限是第▲象限.2x2y?),那么所得新抛物线.如果将抛物线平移,使平移后的抛物线顶点坐标为(1,211▲.的表达式是如果将这样相同厚度的书叠起来的将12.6本相同厚度的书叠起来,它们的高度是9厘米.厘米,那么这些书有▲本.高度是42这八个数中,任意抽取一个数,这个数恰好是合数的概率84,5,6,7,,13.从12,3,是▲.名学生进行调查,14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100并绘成如图3所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的▲(填百分数).a?AD,的中点,设,AD//BCBC=2AD,E、F分别是边AD、BC415.如图,在梯形ABCD中,b?ABEFba 的线性组合表示)等于.▲(结果用,那么、4 ,那么它的一条对角线长是▲.16.如果一个矩形的面积是40,两条对角线夹角的正切值是3AA外,且圆在圆A、C为圆心画圆,如果点B17.已知正方形ABCD,AB=1,分别以点r的取值范围是▲.与圆C外切,那么圆C的半径长??)90????(0'AB绕,边AC,将△18.如图5ABC的边AB绕着点A顺时针旋转得到????)90?(0???'AC??90?′C′得到时,,联结B′着点A逆时针旋转C′.当我们称△A B a,那么它的“双旋三角形”的面.ABC的“双旋三角形”如果等边△ABC的边长为是△a.积是▲(用含的代数式表示)A人数30E DA B′24108′C C CB B F3 2 2.5 1 0.5 1.5 时间(小时)5图 4图图3三、解答题(本大题共7题,满分78分)九年级数学第2页共4页(本题满分10分)19.1312?1.计算:)(8??1)??(2232?3.(本题满分10分)20,?2x?y2?解方程组:?22.1?2xy?y?x?5分)21.(本题满分10分,每小题满分各5BD⊥AC,垂足为点,已知:如图6,在△ABC中,AB=13AC=8,D,,?cos?BAC13AAEBD的中点,联结并延长,交边BC于点F.E是EAD?求(1) 的余切值;BFD (2) 求的值.E CFCB F22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 6图某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.yy xx关于份,支付甲印刷厂的费用为写出(1)设该学校需要印刷艺术节的宣传资料元,的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD,DC∥AB,对角线AC平分∠BCD,CDA.EA⊥AC,垂足为点在边点ECB的延长线上,的中点;)求证:B是EC(12,若,相交于点(2)分别延长CD、EAFECAC??DCBA求证:.FC:ACAD:AF?7图 E分,每小题满分各4分)12.24(本题满分九年级数学第共3页4页x22xOy)?mx?3m0(my??x?2轴交于点(如图8)已知平面直角坐标系,抛物线与y,顶点为DB 左侧),与,对称轴轴交于点CA、B(点A在点yl,联结DC为直BC,过点C作直.的垂线,垂足为点E )时,C(0,3(1)当点求这条抛物线的表达式和顶点坐标;①1x;求证:∠②DCE=∠BC1m(2的值.)当CB平分∠DCO时,求8 图分)小题满分4小题满分5分,第(3)分,第25.(本题满分14分,第(1)小题满分5(2)的ACC 在半径OB上,中,∠已知:如图9,在半径为2的扇形AOBAOB=90°,点、CD.于点垂直平分线交OA于点D,交弧ABE,联结BE 的正弦值;(1)若C是半径OB中点,求∠OCD2BC?BO?BE AB是弧的中点,求证:;2()若E 的长.是以DCECD为腰的等腰三角形时,求CD)联结(3CE,当△ AA AEDBBBO OOC备用图备用图9图初三调研考数学卷参考答案九年级数学第4页共4页题,满分24分)一、选择题:(本大题共8 A.4.C;5.A;6.1.C ;2.B;3.D ;分)题,满分二、填空题:(本大题共124814x?.10 8.2;9..一、三;7;;a2322?1)y?2(x?14.28%;;28.;13..11 ;1281122-1?r?2ba?...10;17 .;15 .1816 ;a24 三.(本大题共7题,满分78分)分)(本题满分1019.13121?计算:.)??8?(2(?1)232?3 2解原式分=.……………………………………………各32?3?2?22?3?2 2分.……………………………………………………………………………=2?3 10分)20.(本题满分①2,x?y?2?解方程组:?22②1.?x2xy?y??21??x?y1y?x?1(x?)?y,得分…………………………或3解:将方程②变形为,2?y?y?2,2x2x???由此,原方程组可以化为两个二元一次方程组:分………3??.1;??x?yx?y?1??,?3?1,xx??21分别解这两个二元一次方程组,得到原方程组的解是:4分………??.?4;y?y?0??21分,每小题满分各5分)21. (本题满分10 AC1()∵BD⊥,∴∠ADB=.90°5在Rt△ADB中,,AB=13,cos?BAC?135 分∴.………………………………………………2513???cosAD?AB??BAC1322?ADAB12?BD?. (1)∵E是BD的中点,∴DE=6.AD5.…………………………………………2中,Rt在△ADE分??EAD?cot DE6九年级数学第5页共4页5.即的余切值是EAD?6 1分,………………………………………DQ//AF,交边BC于点Q (2)过点D作=3.∴CD=8,AD=5,∵AC3CQCD 分.………………………………………………………∵DQ//AF ,∴2??5ADFQ 分……………………………………1DQ,∴BF=FQ.∵E是BD的中点,EF//5BF 分.……………………………………………………………………………∴1?8CF分)(2)小题满分6分,第(1)小题满分4分,第22.(本题满分10%903x??100?0.y 分,……………………………………2解:(1)由题意可知,y x x270.y?100?之间的函数关系式是:分,………………………………∴1与x0x?分为整数.…………………………………………………且1它的定义域是:262??600?0.27y?100时,支付甲印刷厂的费用:分.…2(元)(2)当600?x256400??80%?30.?200?0.3100?3支付乙印刷厂的费用为:分(元).………256<262,∵1分∴当该学校需要印刷艺术节的宣传资料600份时,应该选择乙印刷厂比较优惠.…6分).(本题满分12分,每小题满分各23证明:(1)∵DC∥AB,∴∠DCB=∠CAB.……………………………………………1分∵AC平分∠BCD,∴∠DCB=∠BCA.∴∠CAB=∠BCA.………………………………………………………………………1分∴BC=BA.………………………………………………………………………………1分∵EA⊥AC,∴∠CAB+∠BAE=90°,∠BCA+∠E=90°. ∴∠BAE=∠E.…………1分∴BA=BE.…………………………………………………………………………………1分∴BC=BE,即B是EC的中点.………………………………………………………1分2,∴)∵.(2EC??DCACACEC::DC?AC∵∠DCA=∠ACE,∴△DCA∽△ACE.………………………………………………2分∴.……………………………………………………………………1分EC:AE?ACAD:∵∠FCA=∠ECA,AC=AC,∠FAC=∠EAC,∴△FCA≌△ECA.…………………2分∴AE=AF,EC=FC.∴.…………………………………………………………………1分FCAD:AF?AC:24.(本题满分12分,每小题4分)九年级数学第6页共4页22233m?)?m0(my??x?2mx?3)可得:,(0(1)①由抛物线,3经过点C1?m?∴分(负数不符合题意,舍去).......................................................123??2y??xx ∴抛物线的表达式:分. (1)分).…………………………………………………………………2∴顶点坐标D(1,42x3x??x??2y B左侧),A、B(点A与在点轴交于点②由抛物线1x?l是直线,………………………………………………,对称轴1分可得B(3,0)l DE=CE=1.1,3)∵CE⊥直线,即,∴E(DE中,△DEC∴在.Rt???1DCEtan CECO 中,,Rt∵在△BOC1tan?OBC?? BOOBC???DCE2分∴=45°.………………………………………………………………OBC???BCE.∵CE//OB,∴1分BCE.………………………………………………………………………∴∠DCE=∠x22y)0m?2mx?3m?(y??x与在点B左侧)与,轴交于点A、B(点A(2) 由抛物线222l)3mm)(Em,D(m,4)m0C(,3),0B(3m对称轴为直线可得:,,,,.,轴交点C,顶点为D22m?DE?m3COmBO?3?CEm .…………………………………,,1∴分,2mDEm??tan?DCE?在Rt△DEC中,.mCE2m3COm??OBC??tan中,BOC.在Rt△m3BO分OBC.…………………………………1OBC∵∠DCE、∠都是锐角,∴∠DCE=∠OBCBCE???.//OB,∴∵CE∠OBC.∴∠DCB=2∠BCE=2OBC.∠DCB=2∠OCB=∵CB 平分∠DCO,∴∠分OBC=30°.……………………………………………1∵∠OCB+∠OBC=90°,∴∠33?tan?OBC,∴.…………………………………………………1分∴?m333525114.25(本题满分分,第()小题分,第()小题分,第()小题4分)页7 九年级数学第4 共页OC=1.C是半径OB中点,BO=2,∴(1)∵.………………………………………………………1分∵DE垂直平分AC,∴AD=CD a aaDC?DO?2?设AD=,,则,5222222 2解得:在Rt△DOC 中,分.,即….DCOCDO??a12(?a)???a435?2?DO?∴.443DO中,△DOC2分在Rt.……………………………………………??OCDsin?5DC3.即∠OCD的正弦值是5. EO、EC、(2)联结AE 分AE=BE.……………………………………………………1∵E是弧AB的中点,∴分AE=EC.……………………………………………………1∵DE垂直平分AC,∴.EBC=∠ECB∴BE=EC.∴∠分.……………………………………………………1∵OE=OB,∴∠EBC=∠OEB ∠∴∠ECB=OEB.……………………………………………1分=∠EBO,∴△BCE∽△BEO.又∵∠CBEBEBC2BC?BO?BE ……………………………………………………1分∴..∴?BOBE、是以CD3)联结AE为腰的等腰三角形可得:OE,由△DCE(DEA.,∴ED=AD.∴∠DAE=∠①当CD=ED时,∵CD=AD B重合.D与点O重合,点C与点∵OA=OE,∴∠DAE=∠OEA.∴点2分CD=BO=2.…………………………………………………………………………∴.CD=AD=CE=AE时,∵②当CD=CECD=AD,CE=AE,∴∴四边形ADCE是菱形,∴AD//EC..90°,∴∠COE=90°∵∠AOB=2222,在设CD=Rt△COE中,.a?ECEO??4CO?a DOC 中,.在Rt△22222)a?CO??CDDO?(?a22222(负数舍去).∴.整理得,解得08?4?a?a22a??3?)a2aa??(??4 2分CD∴=.………………………………………………………………………2?32或时,△DCE是以CD2综上所述,当CD的长是为腰的等腰三角形.232?九年级数学第8页共4页九年级数学第9页共4页。

2018届人教版中考数学模拟试卷(含答案)

2018届人教版中考数学模拟试卷(含答案)

21. (8 分 )某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的 方式进行问卷调查, 调查结果分为 “ A.非常了解”、 “ B.了解”、 “ C.基本了解”三个等级, 并根据调查结果绘制了如下两幅不完整的统计图.
(1)这次调查的市民人数为 ________人, m= ________, n= ________; (2)补全条形统计图; (3)若该市约有市民 100000 人,请你根据抽样调查的结果, 估计该市大约有多少人对“社 会主义核心价值观”达到“ A.非常了解”的程度.
CF = BE, = BE.(3 分)在△ DFC 和△ AEB 中, ∠ CFD =∠ BEA,∴△ DFC ≌△ AEB(SAS) ,(6 分 )∴CD
DF = AE,
= AB,∠ C=∠ B,∴ CD ∥ AB.(8 分 ) 21.解: (1)500 12 32(3 分 ) (2)对“社会主义核心价值观”达到“
A. 1 个 B. 2 个 C.3 个 D.4 个 二、填空题 (每小题 3 分,共 24 分 ) 11.如图所示,在 Rt△ ABC 中,∠ B=________.
第 11 题图
第 16 题图
12.《“一带一路”贸易合作大数据报告 (2017) 》以“一带一路”贸易合作现状分析和 趋势预测为核心,采集调用了 8000 多个种类,总计 1.2 亿条全球进出口贸易基础数据 , ,
A. 92° B. 108 ° C. 112 ° D. 124 °
第 9 题图
第 10 题图
10.如图,抛物线
y1

1 2(
x+
1)
2

1

y2= a(x- 4)2- 3
交于点

2018年中考模拟试卷 数学(含答案)

2018年中考模拟试卷 数学(含答案)

2018年中考模拟试卷 数学考生须知:1. 本试卷分试题卷和答题卷两部分。

满分120分,考试时间100分钟。

2. 答题时,必须在答题卷密封区内写明校区、考场、座位号、姓名、班级等内容。

答题必须书写在各规定区域之内,超出答题区域的答案将被视为无效。

一、选择题:(每小题3分,共30分)1、下列各数中互为相反数的是 ------------------------------------------------- ( ▲ )A 、2和21 B 、-2和-21C 、-2和|-2|D 、2和21 2、方程0132=++x x 的根的---------------------------------------------------------------------- - -- ( ▲ ) A 、有两个相等实数根 B 、有两个不相等实数根 C 、有一个实数根 D 、无实数根3、⊙1O 半径为3cm ,1O 到直线L 的距离为2cm ,则直线L 与⊙1O 位置关系为-------------- ( ▲ ) A 、相交 B 、相切 C 、相离 D 、不能确定4、下列六个结论:①垂直于弦的直径平分这条弦; ②有理数和数轴上的点一一对应; ③三角形的内切圆和外切圆是同心圆; ④相等圆心角所对的弦相等。

⑤圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线;⑥一个圆锥的侧面积是一个面积为4π平方厘米的扇形,那么这个圆锥的母线长L 和底面半径R 之间的函数关系是正比例函数。

其中正确的结论的个数是 --------------------------------------------- ( ▲ ) A 、0个 B 、1个 C 、2个 D 、3个5、一个几何体是由一些大小相同的小正方块摆成的,三视图如图所示,则组成这个几何体的小正方块有A 、4个B 、5个C 、6个D 、7个(第5题)6、已知a b >且000a b a b ≠≠+≠,,,则函数y ax b =+与a by x+=在同一坐标系中的图象不可能是---------------------------------------------------------------------- -----------------------------------------------( ▲ )(第6题)7、抛物线y=ax ²+bx+c(a ≠0)的对称轴是直线x=2,且经过点p(3‚0).则a+b+c 的值为------( ▲ )俯视图A .B .C .D .A 、 1B 、 2C 、 –1D 、 08、兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长 为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现 树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得 此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面 上的影长为4.4米,则树高为----------------------------( ▲ ) A 、11.5米B 、11.75米C 、11.8米D 、12.25米9、一次数学课上,章老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形.且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为---------------------------------------------- ( ▲ )平方厘米 A 、50 B 、 50或40 C 、50或40或30 D 、 50或30或2010、如图点A 是5×5网格图形中的一个格点(小正方形的顶点),图中每个小正方形的边长为1,以A 为其中的一个顶点,面积等于25的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是( ▲ ) A 、14 B 、 15 C 、16 D 、 17(第10题)(第12题)二、填空题:(每小题4分,共24分) 11、函数3-=x y 中,自变量x 取值范围是 ▲ ,函数12-=x y 中,自变量x 取值范围是 ▲ 。

2018中考数学模拟试题与答案

2018中考数学模拟试题与答案

. . .2018 年 初 中 升 学 模 拟 考 试(一)九 年 数 学 试 卷题 号 一 二 三 四 五 六 七 八 总 分 得 分(考试时间:120分钟;试卷满分:150分)温馨提示:请考生把所有的答案都写在答题卡上,写在试卷上不给分,答题要求见答题卡。

一、选择题(每小题3分,共30分)1.-12的倒数是( ) A .2 B .12C .-12D .-22.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米,将0.000 000 000 22用科学记数法表示为( ) A .0.22×l0-9 B .2.2×l0-10 C .22×l0-11 D .0.22×l0-8 3.如图是某几何体的三视图,该几何体是( )A .正方体B .三棱锥C .圆柱D .圆锥第3题图 笫4题图 4.如图是根据某地某段时间的每天最低温度绘成的折线图,那么这段时间最低温度的中位数,众数分别是( )A .4℃,4℃B .4℃,5℃C .4.5℃,5℃D .4.5C ,4℃ 5.不等式组x 1x+12⎧⎨-⎩≤,>的解集在数轴上可表示为( )6.下列计算,正确的是 ( )A .2a 2+a =3a 2B .2a -1=12a(a ≠0) C .(-a 2)3÷a 4=-a D .2a 2·3a 3=6a 5 7.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( )A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形8.小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示: 移植棵数(n) 成活数(m)成活率(m/n)移植棵数(n) 成活数(m) 成活率(m/n) 50 47 0.940 1500 1335 0.890 270 235 0.870 3500 3203 0.915 400 369 0.923 7000 6335 0.905 7506620.88314000126280.902①随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;②当移植的棵数是1500时,表格记录成活数是1335,所以这种树苗成活的概率是0.890;③若小张移植10000棵这种树苗,则可能成活9000棵;④若小张移植20000棵这种树苗,则一定成活18000棵.其中合理的是 ( )A .①③B .①④C .②③D .②④9.如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,P 为对角线BD 上一点(不与点B ,D 重合),PM ⊥BC ′于点M ,PN ⊥AD 于点N 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8. 2017 南京国际马拉松于 4 月 16 日在本市正式开跑.本次参赛选手共 12629 人,将 12629 用科学记数法表示为 ▲ .
9. 因式分解:a3-2a2+a= ▲ . 10.计算: 4 - 8 = ▲ .
2 11.已知 x1,x2 是方程 x2-4x+3=0 的两个实数根,则 x1 + x2= ▲ . 12.将点 A(2,-1)向左平移 3 个单位,再向上平移 4 个单位得到点 A′,则
3+4(x-1)>-9,
-4 -3 -2 -1 0 1 2 3 4
19.(7 分)某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调 查,调查的结果分为 A(不喜欢)、B(一般)、C(比较喜欢)、D(非常 喜欢)四个等级,图 1、图 2 是根据采集的数据绘制的两幅不完整的统计图. 请根据统计图提供的信息,回答下列问题:
8,5,7,5,8,6,8,则这组数据的众数和中位数分别为
A.5,7
B.6,7
C.8,5
D.8,7
5.如图,AB 是⊙O 的弦,半径 OC⊥AB,AC∥OB,则∠BOC 的度数为
A.30°
B.45°
C.60°
D.75°
y
A O
A
B
C (第 5 题)
C
B
O
x
(第 6 题)
6.如图,△ABC
三个顶点分别在反比例函数
2018 年中考数学全真模拟试卷及答案(共五套)
2018 年中考数学全真模拟试卷及答案(一)
注意事项: 1.本试卷共 6 页.全卷满分 120 分.考试时间为 120 分钟.考生答题全部答在 答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人 相符合,再将自己的姓名、准考证号用 0.5 毫米黑色墨水签字笔填写在答题卡上. 3.答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用 橡皮擦干净后,再选涂其他答案.答非选择题必须用 0.5 毫米黑色墨水签字笔写 在答题卡上的指定位置,在其它位置答题一律无效.
y=1Biblioteka x,y=k x的图像上,若∠C=
90°,
AC∥y 轴,BC∥x 轴,S△ABC=8,则 k 的值为
A.3
B.4
C.5
D.6
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程, 请把答案直接填写在答.题.卡.相.应.位.置.上)
7. 若式子 x2-2在实数范围内有意义,则 x 的取值范围是 ▲ .
46
40 20
20
AB C D
等级
图1
图2
(第 19 题)
20.(8 分)如图,在平行四边形 ABCD 中,对角线 AC、BD 交于点 O,DE∥AC
交 BC 的延长线于点 E. (1)求证:△ABC≌△DCE;
A
D
(2)若 CD=CE,求证:AC⊥BD.
O
B
C
E
(第 20 题)
21.(7 分)运动会上,甲、乙、丙三位同学进行跳绳比赛,通过“手心手背”游 戏决定谁先跳,规则如下:三个人同时各用一只手随机出示手心或手背,若 其中有一个人的手势与另外两个不同,则此人先进行比赛;若三个人手势相 同,则重新决定.那么通过一次“手心手背”游戏,甲同学先跳绳的概率是 多少?
点 A′的坐标是 ▲ . 13.如图,点 A、B、C、D 都在方格纸的格点上,若△ AOB 绕点 O 按逆时针方
向旋转到△ COD 的位置,则旋转角为 ▲ °.
A
D
C
A
B
D
O
(第 13 题)
E
B
C
P
(第 14 题)
14.如图,在平行四边形 ABCD 中,点 E 为 AB 边上一点,将△ AED 沿直线 DE 翻折,点 A 落在点 P 处,且 DP⊥BC,则∠EDP= ▲ °.
15.如图,正五边形 ABCDE 的边长为 2,分别以点 C、D 为圆心,CD 长为半径 画弧,两弧交于点 F,则⌒ BF 的长为 ▲ .
A A
B
F
E
C
D
(第 15 题)
E
F
O
G
B
C
(第 16 题)
16.如图,在等腰△ ABC 中,AB=AC=5,BC=6,半径为 1 的⊙O 分别与 AB、 AC 相切于 E、F 两点,BG 是⊙O 的切线,切点为 G,则 BG 的长为 ▲ .
(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
A.a2+a3=a5 B.a2 a3=a6
C.a4÷a2=a2 D.(a2)4=a6
3.不透明的布袋中有 2 个红球和 3 个白球,所有球除颜色外无其它差别.某同 学从布袋里任意摸出一个球,则他摸出红球的概率是
A.
3 5
B.
2 5
C.
2 3
D.
1 2
4.某篮球兴趣小组 7 名学生参加投篮比赛,每人投 10 个,投中的个数分别为:
22.(6 分)如图,已知点 P 为∠ABC 内一点,利用直尺和圆规确定一条过点 P 的 直线,分别交 AB、BC 于点 E、F,使得 BE=BF.(不写作法,保留作图痕 迹)
A
P
B
C
(第 22 题)
23.(7 分)如图,用细线悬挂一个小球,小球在竖直平面内的 A、C 两点间来回 摆动,A 点与地面距离 AN=14cm,小球在最低点 B 时,与地面距离 BM= 5cm,∠AOB=66°,求细线 OB 的长度.
三、解答题(本大题共 11 小题,共 88 分.请在答.题.卡.指.定.区.域.内作答,解答 时应写出文字说明、证明过程或演算步骤)
17.(6 分)先化简,再求代数式的值:(1-m+1 2)÷
m2+2m+1 m2-4
,其中 m=1.
18.(7
分)解不等式组
x+3 2
≥x+1,
并把解集在数轴上表示出来.
4.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共 6 小题,每小题 2 分,共计 12 分.在每小题所给出的四 个选项中,恰.有.一.项.是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.下列实数中,无理数是
A.2
B.-
1 2
2.下列运算正确的是
C.3.14
D. 3
(1)C 等级所占的圆心角为 ▲ °; (2)请直接在图 2 中补全条形统计图; (3)若该校有学生 1000 人,请根据调查结果,估计“比较喜欢”的学生人
数为多少人.
某校“中学生喜欢数学的程度”的扇形统计图 的程度”的条形统计图
某校“中学生喜欢数学
D
C
32%
BA 23% 10%
人数(人)
80
64
60
相关文档
最新文档