奥本海姆信号与系统(第二版)复习题参考答案

合集下载

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(下册)-z变换(圣才出品)

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(下册)-z变换(圣才出品)

第10章z变换10.1 复习笔记一、z变换1.z变换的定义一个离散时间信号x[n]的z变换定义为其中z是一个复变量。

简单记为2.z变换与傅里叶变换的关系X(re jω)是序列x[n]乘以实指数r-n后的傅里叶变换,即指数加权r-n可以随n增加而衰减,也可以随n增加而增长,这取决于r大于1还是小于1。

若r=1,或等效为|z|=1,z变换就变为傅里叶变换,即(1)在连续时间情况下,当变换变量的实部为零时,拉普拉斯变换演变为傅里叶变换,即在虚轴jω上的拉普拉斯变换是傅里叶变换。

(2)在z变换中是当变换变量z的模为1,即z=e jω时,z变换演变为傅里叶变换。

即傅里叶变换是在复数z平面中半径为1的圆上的z变换。

在z平面上,单位圆在z变换中所起的作用类似于s平面上的虚轴在拉普拉斯变换中所起的作用。

二、z变换的收敛域1.性质1X(z)的收敛域是在z平面内以原点为中心的圆环。

2.性质2收敛域内不包含任何极点。

3.性质3如果x[n]是有限长序列,那么收敛域是整个z平面,可能除去z=0和/或z=∞。

4.性质4如果x[n]是一个右边序列,并且|z|=r0的圆位于收敛域内,那么|z|>r0的全部有限z 值都一定在这个收敛域内。

5.性质5如果x[n]是一个左边序列,而且|z|=r0的圆位于收敛域内,那么满足0<|z|<r0的全部z值都一定在这个收敛域内。

6.性质6如果z[n]是双边序列,而且|z|=r0的圆位于收敛域内,那么该收敛域在z域中一定是包含|z|=r0这一圆环的环状区域。

7.性质7如果x[n]的z变换X(z)是有理的,那么它的收敛域就被极点所界定,或者延伸至无限远。

8.性质8如果x[n]的z变换X(z)是有理的,并且x[n]是右边序列,那么收敛域就位于z平面内最外层极点的外边,亦即半径等于X(z)极点中最大模值的圆的外边。

而且,若x[n]是因果序列,即x[n]为n<0时等于零的右边序列,那么收敛域也包括z=∞。

信号与系统奥本海姆答案

信号与系统奥本海姆答案

系统(第二版)-学习说明(练习答案)系计算机工程系2005.12目录17第35章第62章第83章第109章第119章第132章第140章160章答案1.1从极坐标转换:1.2从笛卡尔极坐标转换:limlim dtdtdt=cos(t)。

因此,信号翻转限制信号对,所以因此,我们知道(2)线性压缩,因为线性压缩。

因此,基态周期奇信号,所有值为零时为零只有当周期复指数时。

10 10复数指数乘以衰减指数。

因此,周期信号。

复指数基本周期信号。

fundamentalperiod我们得到fundamentalperiod complexexponential=3/5。

找不到任何整数整数。

因此,定期1.10。

x(t)=2cos(10t+1)-sin(4t-1)周期第一项第一项,整个信号周期至少有多个第二项。

-3-1-1-2-3-3-3第一项第二项第二项整个信号周期,至少在35.1.12中有多个共同的三项。

图1.12。

翻转信号对,所以,no=-3.1.13其导数图1.14。

因此[n-3]=2x[n-2]+4x[n-3]+4x[n-4])=2x[n-2]+5x输入输出关系y[n]=2x[n-2]+5x[n-3]2x[n-4]输入输出关系的连接序列是反向的。

我们可以很容易地证明[n-3])+4(x输入-输出关系在y[n]=2x[n-2]+5x[n-3]2x[n-4]1.16无记忆性,因为过去值我们可能总是得出系统输出,因为有时可能取决于考虑两个任意输入(sin(t))的未来值,让线性组合任意标量给系统相应的输出线性。

1.18.(a)考虑两个任意输入线性组合任意标量。

给定系统,相应的输出随机输入相应的输出。

考虑第二个输入输出对应的Alsonote+1)B。

因此+1)B.1.19考虑两个任意输入(t-1)让线性组合任意标量。

给定系统,相应的输出为线性。

(ii)考虑相应输出的任意输入。

考虑第二输入输出相应的输出。

考虑两个任意输入[n-2]。

信号与系统奥本海姆第二版答案

信号与系统奥本海姆第二版答案

《国外电子与通信教材系列:信号与系统(第2版)》是美国麻省理工学院(MIT)的经典教材之一,讨论了信号与系统分析的基本理论、基本分析方法及其应用。

全书共分11章,主要讲述了线性系统的基本理论、信号与系统的基本概念、线性时不变系统、连续与离散信号的傅里叶表示、傅里叶变换以及时域和频域系统的分析方法等内容。

作者使用了大量在滤波、采样、通信和反馈系统中的实例,并行讨论了连续系统、离散系统、时域系统和频域系统的分析方法,使读者能透彻地理解各种信号系统的分析方法并比较其异同。

上册:
下册。

信号与系统_第二版_奥本海默 _课后答案[1-10章]

信号与系统_第二版_奥本海默 _课后答案[1-10章]

学霸助手[]-课后答案|期末试卷|复习提纲
学霸h助us手 Contents baz Chapter 1 ······················································· 2 xue Chapter 2 ······················································· 17
e 5 = 5 j0 ,
e -2 = 2 ,jp
e -3 j = 3
-
j
p 2
e 1
2
-
j
3 2
=
, -
j
p 2
e 1+ j =
2
, j
p 4
( ) 1- j e 2 =2
-
j
p 2
ep
j(1- j) = 4 ,
e 1+
1-
j j
=
p 4
e 2 + j 2 = -1p2
1+ j 3
ò e 1.3.
(a)
xue学ba霸zh助usS手hoiug.ncoaml(Sseco&nd EdSitioyn)stems
—Learning Instructions
xu(eEbxe学arzc霸hisue助sshA手onus.wceorms)
Department
of
Computer 2005.12
Enginexeurein学bga霸zh助us手


0
-4tdt
=
1 4
,
P ¥ =0, because
E¥ < ¥
手 om ò (b)
x e , 2(t) = j(2t+p4 )

奥本海姆《信号与系统》(第2版)配套模拟试题及详解

奥本海姆《信号与系统》(第2版)配套模拟试题及详解

4.试确定序列
为______。 A.丌是周期序列 B.是,N=24 C.是,N=12
是否为周期序列Leabharlann 若是,其周期 N2 / 16
圣才电子书

D.是,N=8
十万种考研考证电子书、题库视频学习平台
【答案】B
【解析】因为
,得
,得
。又因为
是有理数,因此是周期序列。设共同周期为 N,则有
圣才电子书 十万种考研考证电子书、题库视频学习平台

图2
【答案】 4
【解析】基波频率 1
2 T
,则四次谐波频率为 41
4

3.周期矩形信号 f(t)的波形如图 3,则该信号的谱线间隔为 0.1Hz,其中,直流分 量为______。
图3 【答案】0.4 【解析】由 f(t)波形可知 T=l0S,基波频率 即谱线间隔为 0.1Hz。其直流分量
试写出满足这些条件的一个信号______。
【答案】 x(t) sin(t) sin(2t)
【解析】由条件②和条件③,设
2
x(t) ane jnt a0 a1e jt a2e j2t a1e jt a2e j2t a0 a12 j sin t a2 2 j sin 2t n2
根据条件④,
2.单边 Z 变换
的原序列,f(k)等于______。
【答案】A 【解析】
1 / 16
圣才电子书 十万种考研考证电子书、题库视频学习平台

3.系统的幅频特性
和相频特性如图 1(a)、(b)所示,则下列信号通过该
系统时,丌产生失真的是______。
图1 A. B. C. D. 【答案】B 【解析】由系统的幅频特性和相频特性可知:若输入信号的频率均处于 w=-5~5 之 间,既丌产生幅度失真又丌产生相位失真。只有 B 满足这一条件。

信号与系统 奥本海姆 第二版 习题详解

信号与系统 奥本海姆 第二版 习题详解

对方程两边同时做反变换得:
y[n] −
1 处有一个二阶极点,因为系统是因果的,所以 H ( z ) 的收敛域是 z > , (b)H ( z) 在 z = 1 3 3 包括单位圆,所以系统是稳定的。
解: (a) x[n] = δ [n + 5] ← → X ( z ) = z , ROC : 全部z 因为收敛域包括单位圆,所以傅立叶变换存在。
( )
χ (s ) = uL{e −2t u (t )} =
H (s ) =
H (s )如图所示。
Y (s ) 1 = 2 . X (s ) s − s − 2
1 1 1 3 3 ( ) , ⇒ H s = − s2 − s − 2 s − 2 s +1 (i )如果系统是稳定的,H (s )的ROC为 − 1〈ℜe {s}〈2.
∞ ∞
n =−∞


x[n]z − n =
− n−2
1 −n ∞ 1 n z = ∑− z ∑ −3 3 n =−∞ n =2
−2 n −n
z n + 2 = 9 z 2 /(1 + 3z ) = 3z /(1 + (1/ 3) z −1 ), z < 1 3 1 = ∑ n =2 3
1 1 (b) H (s) = 1 − 3 s − 2 s +1

(1)系统是稳定的,说明 H (s) 的收敛域应该包括虚轴在内,即: − 1 < Re{s} < 2 , 所以 h(t ) = 1 (− e u (−t ) − e u (t )) 3 (2)系统是因果的,则 H (s) 的收敛域应为 Re{s} > 2 ,所以 h(t ) = 1 (e u (t ) − e u (t )) 3 ( 3 ) 系 统 既 不 因 果 又 不 稳 定 , 则 H (s) 的 收 敛 域 应 为 Re{s} < −1 , 所 以

信号与系统奥本海姆第二版课后答案

信号与系统奥本海姆第二版课后答案

信号与系统 奥本海姆第二版 习题解答Department of Computer Engineering2005.12ContentsChapter 1 (2)Chapter 2 (17)Chapter 3 (35)Chapter 4 (62)Chapter 5 (83)Chapter 6 (109)Chapter 7 (119)Chapter 8 (132)Chapter 9 (140)Chapter 10 (160)Chapter 1 Answers1.1 Converting from polar to Cartesian coordinates:111cos 222j eππ==- 111c o s ()222j e ππ-=-=- 2cos()sin()22jj j eπππ=+=2c o s ()s i n ()22jjj eπππ-=-=- 522j jj eeππ==4c o s ()s i n ())144jjj πππ+=+9441j jj ππ=-9441j j j ππ--==-41jj π-=-1.2 055j=, 22j e π-=,233jj e π--=212je π--=, 41j j π+=, ()2221jj eπ-=-4(1)j je π-=, 411j je π+=-12e π-1.3. (a) E ∞=4014tdt e∞-=⎰, P ∞=0, because E ∞<∞ (b) (2)42()j t t x eπ+=, 2()1t x =.Therefore, E ∞=22()dt t x +∞-∞⎰=dt +∞-∞⎰=∞,P ∞=211limlim222()TTTTT T dt dt TTt x --→∞→∞==⎰⎰lim11T →∞=(c) 2()t x =cos(t). Therefore, E ∞=23()dt t x +∞-∞⎰=2cos()dt t +∞-∞⎰=∞, P ∞=2111(2)1lim lim 2222cos()TTTTT T COS t dt dt T Tt --→∞→∞+==⎰⎰(d)1[][]12nn u n x =⎛⎫ ⎪⎝⎭,2[]11[]4nu n n x =⎛⎫ ⎪⎝⎭. Therefore, E ∞=24131[]4nn n x +∞∞-∞===⎛⎫∑∑ ⎪⎝⎭P ∞=0,because E ∞<∞.(e) 2[]n x =()28n j e ππ-+,22[]n x =1. therefore, E ∞=22[]n x +∞-∞∑=∞,P ∞=211limlim1122121[]NNN N n Nn NN N n x →∞→∞=-=-==++∑∑.(f) 3[]n x =cos 4nπ⎛⎫ ⎪⎝⎭. Therefore, E ∞=23[]n x +∞-∞∑=2cos()4n π+∞-∞∑=2cos()4n π+∞-∞∑,P ∞=1limcos 214nNN n NN π→∞=-=+⎛⎫∑ ⎪⎝⎭1cos()112lim ()2122NN n Nn N π→∞=-+=+∑ 1.4. (a) The signal x[n] is shifted by 3 to the right. The shifted signal will be zero for n<1, And n>7. (b) The signal x[n] is shifted by 4 to the left. The shifted signal will be zero for n<-6. And n>0. (c) The signal x[n] is flipped signal will be zero for n<-1 and n>2.(d) The signal x[n] is flipped and the flipped signal is shifted by 2 to the right. The new Signal will be zero for n<-2 and n>4.(e) The signal x[n] is flipped and the flipped and the flipped signal is shifted by 2 to the left. This new signal will be zero for n<-6 and n>0.1.5. (a) x(1-t) is obtained by flipping x(t) and shifting the flipped signal by 1 to the right. Therefore, x (1-t) will be zero for t>-2. (b) From (a), we know that x(1-t) is zero for t>-2. Similarly, x(2-t) is zero for t>-1, Therefore, x (1-t) +x(2-t) will be zero for t>-2. (c) x(3t) is obtained by linearly compression x(t) by a factor of3. Therefore, x(3t) will be zero for t<1.(d) x(t/3) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t) will bezero for t<9.1.6(a) x1(t) is not periodic because it is zero for t<0.(b) x2[n]=1 for all n. Therefore, it is periodic with a fundamental period of 1.(c) x3[n1.7. (a)()1[]vnxε={}1111[][]([][4][][4])22n n u n u n u n u nx x+-=--+----Therefore, ()1[]vnxεis zero for1[]nx>3.(b) Since x1(t) is an odd signal, ()2[]vnxεis zero for all values of t.(c)(){}11311[][][][3][3]221122vn nn n n u n u nx x xε-⎡⎤⎢⎥=+-=----⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭Therefore, ()3[]vnxεis zero when n<3 and when n→∞.(d) ()1554411()(()())(2)(2)22vt tt t t u t u tx x x e eε-⎡⎤=+-=---+⎣⎦Therefore, ()4()vtxεis zero only when t→∞.1.8. (a) ()01{()}22cos(0)tt tx eπℜ=-=+(b) ()02{()}cos()cos(32)cos(3)cos(30)4tt t t tx eππℜ=+==+(c) ()3{()}sin(3)sin(3)2t tt t tx e eππ--ℜ=+=+(d) ()224{()}sin(100)sin(100)cos(100)2t t tt t t tx e e eππ---ℜ=-=+=+1.9. (a)1()tx is a periodic complex exponential.101021()j t j tt jx e eπ⎛⎫+⎪⎝⎭==(b)2()tx is a complex exponential multiplied by a decaying exponential. Therefore,2()tx is not periodic.(c)3[]nx is a periodic signal. 3[]n x=7j neπ=j neπ.3[]nx is a complex exponential with a fundamental period of 22ππ=.(d)4[]nx is a periodic signal. The fundamental period is given by N=m(23/5ππ)=10().3mBy choosing m=3. We obtain the fundamental period to be 10.(e)5[]nx is not periodic. 5[]nx is a complex exponential with 0w=3/5. We cannot find any integer m such that m(2wπ) is also an integer. Therefore,5[]nxis not periodic.1.10. x(t)=2cos(10t+1)-sin(4t-1)Period of first term in the RHS =2105ππ=.Period of first term in the RHS =242ππ=.Therefore, the overall signal is periodic with a period which the least commonmultiple of the periods of the first and second terms. This is equal toπ.1.11. x[n] = 1+74j n e π−25j n e πPeriod of first term in the RHS =1. Period of second term in the RHS =⎪⎭⎫ ⎝⎛7/42π=7 (when m=2)Period of second term in the RHS =⎪⎭⎫ ⎝⎛5/22ππ=5 (when m=1)Therefore, the overall signal x[n] is periodic with a period which is the least common Multiple of the periods of the three terms inn x[n].This is equal to 35.1.12. The signal x[n] is as shown in figure S1.12. x[n] can be obtained by flipping u[n] and thenShifting the flipped signal by 3 to the right. Therefore, x[n]=u[-n+3]. This implies that M=-1 and no=-3.1.13y (t)=⎰∞-tdt x )(τ =dt t))2()2((--+⎰∞-τδτδ=⎪⎩⎪⎨⎧>≤≤--<2,022,12,0,t t tTherefore ⎰-==∞224d t E∑∑∞-∞=∞-∞=----=k k k t k t t g 12(3)2(3)(δδ)This implies that A 1=3, t 1=0, A 2=-3, and t 2=1.1.15 (a) The signal x 2[n], which is the input to S 2, is the same as y 1[n].Therefore ,y 2[n]= x 2[n-2]+21x 2[n-3] = y 1[n-2]+ 21y 1[n-3]=2x 1[n-2] +4x 1[n-3] +21( 2x 1[n-3]+ 4x 1[n-4]) =2x 1[n-2]+ 5x 1[n-3] + 2x 1[n-4] The input-output relationship for S isy[n]=2x[n-2]+ 5x [n-3] + 2x [n-4](b) The input-output relationship does not change if the order in which S 1and S 2 are connected series reversed. . We can easily prove this assuming that S 1 follows S 2. In this case , the signal x 1[n], which is the input to S 1 is the same as y 2[n].Therefore y 1[n] =2x 1[n]+ 4x 1[n-1]= 2y 2[n]+4 y 2[n-1]=2( x 2[n-2]+21 x 2[n-3] )+4(x 2[n-3]+21x 2[n-4]) =2 x 2[n-2]+5x 2[n-3]+ 2 x 2[n-4]The input-output relationship for S is once againy[n]=2x[n-2]+ 5x [n-3] + 2x [n-4]1.16 (a)The system is not memory less because y[n] depends on past values of x[n].(b)The output of the system will be y[n]= ]2[][-n n δδ=0(c)From the result of part (b), we may conclude that the system output is always zero for inputs of the form ][k n -δ, k ∈ ґ. Therefore , the system is not invertible .1.17 (a) The system is not causal because the output y(t) at some time may depend on future values of x(t). For instance , y(-π)=x(0).(b) Consider two arbitrary inputs x 1(t)and x 2(t).x 1(t) →y 1(t)= x 1(sin(t)) x 2(t) → y 2(t)= x 2(sin(t))Let x 3(t) be a linear combination of x 1(t) and x 2(t).That is , x 3(t)=a x 1(t)+b x 2(t)Where a and b are arbitrary scalars .If x 3(t) is the input to the given system ,then the corresponding output y 3(t) is y 3(t)= x 3( sin(t))=a x 1(sin(t))+ x 2(sin(t)) =a y 1(t)+ by 2(t)Therefore , the system is linear.1.18.(a) Consider two arbitrary inputs x 1[n]and x 2[n].x 1[n] → y 1[n] =][01k x n n n n k ∑+-=x 2[n ] → y 2[n] =][02k x n n n n k ∑+-=Let x 3[n] be a linear combination of x 1[n] and x 2[n]. That is :x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding outputy 3[n] is y 3[n]=][03k x n n n n k ∑+-==])[][(2100k bx k ax n n n n k +∑+-==a ][001k x n n n n k ∑+-=+b ][02k x n n n n k ∑+-== ay 1[n]+b y 2[n]Therefore the system is linear.(b) Consider an arbitrary input x 1[n].Lety 1[n] =][01k x n n n n k ∑+-=be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time:x 2[n]= x 1[n-n 1]The output corresponding to this input isy 2[n]=][02k x n n n n k ∑+-== ]n [1100-∑+-=k x n n n n k = ][01011k x n n n n n n k ∑+---=Also note that y 1[n- n 1]=][01011k x n n n n n n k ∑+---=.Therefore , y 2[n]= y 1[n- n 1] This implies that the system is time-invariant.(c) If ][n x <B, then y[n]≤(2 n 0+1)B. Therefore ,C ≤(2 n 0+1)B.1.19 (a) (i) Consider two arbitrary inputs x 1(t) and x 2(t). x 1(t) → y 1(t)= t 2x 1(t-1)x 2(t) → y 2(t)= t 2x 2(t-1)Let x 3(t) be a linear combination of x 1(t) and x 2(t).That is x 3(t)=a x 1(t)+b x 2(t)where a and b are arbitrary scalars. If x 3(t) is the input to the given system, then the corresponding output y 3(t) is y 3(t)= t 2x 3 (t-1)= t 2(ax 1(t-1)+b x 2(t-1))= ay 1(t)+b y 2(t)Therefore , the system is linear.(ii) Consider an arbitrary inputs x 1(t).Let y 1(t)= t 2x 1(t-1)be the corresponding output .Consider a second input x 2(t) obtained by shifting x 1(t) in time:x 2(t)= x 1(t-t 0)The output corresponding to this input is y 2(t)= t 2x 2(t-1)= t 2x 1(t- 1- t 0)Also note that y 1(t-t 0)= (t-t 0)2x 1(t- 1- t 0)≠ y 2(t) Therefore the system is not time-invariant.(b) (i) Consider two arbitrary inputs x 1[n]and x 2[n]. x 1[n] → y 1[n] = x 12[n-2]x 2[n ] → y 2[n] = x 22[n-2].Let x 3(t) be a linear combination of x 1[n]and x 2[n].That is x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding output y 3[n] is y 3[n] = x 32[n-2]=(a x 1[n-2] +b x 2[n-2])2=a 2x 12[n-2]+b 2x 22[n-2]+2ab x 1[n-2] x 2[n-2]≠ ay 1[n]+b y 2[n]Therefore the system is not linear.(ii) Consider an arbitrary input x 1[n]. Let y 1[n] = x 12[n-2]be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time:x 2[n]= x 1[n- n 0]The output corresponding to this input isy 2[n] = x 22[n-2].= x 12[n-2- n 0]Also note that y 1[n- n 0]= x 12[n-2- n 0] Therefore , y 2[n]= y 1[n- n 0] This implies that the system is time-invariant.(c) (i) Consider two arbitrary inputs x 1[n]and x 2[n].x 1[n] →y 1[n] = x 1[n+1]- x 1[n-1] x 2[n ]→y 2[n] = x 2[n+1 ]- x 2[n -1]Let x 3[n] be a linear combination of x 1[n] and x 2[n]. That is :x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding output y 3[n] is y 3[n]= x 3[n+1]- x 3[n-1]=a x 1[n+1]+b x 2[n +1]-a x 1[n-1]-b x 2[n -1]=a(x 1[n+1]- x 1[n-1])+b(x 2[n +1]- x 2[n -1])= ay 1[n]+b y 2[n]Therefore the system is linear.(ii) Consider an arbitrary input x 1[n].Let y 1[n]= x 1[n+1]- x 1[n-1]be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time: x 2[n]= x 1[n-n 0]The output corresponding to this input isy 2[n]= x 2[n +1]- x 2[n -1]= x 1[n+1- n 0]- x 1[n-1- n 0] Also note that y 1[n-n 0]= x 1[n+1- n 0]- x 1[n-1- n 0] Therefore , y 2[n]= y 1[n-n 0] This implies that the system is time-invariant.(d) (i) Consider two arbitrary inputs x 1(t) and x 2(t).x 1(t) → y 1(t)= d O {}(t) x 1 x 2(t) → y 2(t)= {}(t) x 2d OLet x 3(t) be a linear combination of x 1(t) and x 2(t).That is x 3(t)=a x 1(t)+b x 2(t)where a and b are arbitrary scalars. If x 3(t) is the input to the given system, then the corresponding output y 3(t) is y 3(t)= d O {}(t) x 3={}(t) x b +(t) ax 21d O=a d O {}(t) x 1+b {}(t) x 2d O = ay 1(t)+b y 2(t)Therefore the system is linear.(ii) Consider an arbitrary inputs x 1(t).Lety 1(t)= d O {}(t) x 1=2)(x -(t) x 11t -be the corresponding output .Consider a second input x 2(t) obtained by shifting x 1(t) in time:x 2(t)= x 1(t-t 0)The output corresponding to this input isy 2(t)= {}(t) x 2d O =2)(x -(t) x 22t -=2)(x -)t -(t x 0101t t --Also note that y 1(t-t 0)= 2)(x -)t -(t x 0101t t --≠ y 2(t)Therefore the system is not time-invariant.1.20 (a) Givenx )(t =jt e 2 y(t)=t j e 3x )(t =jt e 2- y(t)=t j e 3- Since the system liner+=tj e t x 21(2/1)(jt e 2-))(1t y =1/2(tj e 3+tj e 3-)Thereforex 1(t)=cos(2t))(1t y =cos(3t)(b) we know thatx 2(t)=cos(2(t-1/2))= (j e -jte 2+je jt e 2-)/2Using the linearity property, we may once again writex 1(t)=21( j e -jt e 2+j e jte 2-))(1t y =(j e -jt e 3+je jte 3-)= cos(3t-1)Therefore,x 1(t)=cos(2(t-1/2)))(1t y =cos(3t-1)1.21.The signals are sketched in figure S1.21.1.24 The even and odd parts are sketched in Figure S1.24 1.25 (a) periodic period=2π/(4)= π/2 (b) periodic period=2π/(4)= 2(c) x(t)=[1+cos(4t-2π/3)]/2. periodic period=2π/(4)= π/2 (d) x(t)=cos(4πt)/2. periodic period=2π/(4)= 1/2 (e) x(t)=[sin(4πt)u(t)-sin(4πt)u(-t)]/2. Not period. (f) Not period.1.26 (a) periodic, period=7.(b) Not period.(c) periodic, period=8.(d) x[n]=(1/2)[cos(3πn/4+cos(πn/4)). periodic, period=8. (e) periodic, period=16. 1.27 (a) Linear, stable(b) Not period. (c) Linear(d) Linear, causal, stable(e) Time invariant, linear, causal, stable (f) Linear, stable(g) Time invariant, linear, causal 1.28 (a) Linear, stable(b) Time invariant, linear, causal, stable (c)Memoryless, linear, causal (d) Linear, stable (e) Linear, stable(f) Memoryless, linear, causal, stable (g) Linear, stable1.29 (a) Consider two inputs to the system such that[][][]{}111.S e x n y n x n −−→=ℜand [][][]{}221.Se x n y n x n −−→=ℜNow consider a third inputx3[n]=x2[n]+x 1[n]. The corresponding system outputWill be [][]{}[][]{}[]{}[]{}[][]33121212e e e e y n x n x n x n x n x n y n y n ==+=+=+ℜℜℜℜtherefore, we may conclude that the system is additive Let us now assume that inputs to the system such that [][][]{}/4111.Sj e x n y n e x n π−−→=ℜand[][][]{}/4222.Sj e x n y n e x n π−−→=ℜNow consider a third input x 3 [n]= x 2 [n]+ x 1 [n]. The corresponding system outputWill be[][]{}()[]{}()[]{}()[]{}()[]{}()[]{}()[]{}[]{}[]{}[][]/433331122/4/41212cos /4sin /4cos /4sin /4cos /4sin /4j e m e m e m e j j e e y n e x n n x n n x n n x n n x n n x n n x n e x n e x n y n y n πππππππππ==-+-+-=+=+ℜℜI ℜI ℜI ℜℜ therefore, we may conclude that the system is additive (b) (i) Consider two inputs to the system such that()()()()211111Sdx t x t y t x t dt ⎡⎤−−→=⎢⎥⎣⎦and ()()()()222211S dx t x t y t x t dt ⎡⎤−−→=⎢⎥⎣⎦ Now consider a third input x3[t]=x2[t]+x 1[t]. The corresponding system outputWill be()()()()()()()()()2333211111211dx t y t x t dt d x t x t x t x t dt y t y t ⎡⎤=⎢⎥⎣⎦⎡⎤+⎡⎤⎣⎦=⎢⎥+⎢⎥⎣⎦≠+ therefore, we may conclude that the system is not additiveNow consider a third input x 4 [t]= a x 1 [t]. The corresponding system output Will be()()()()()()()()2444211211111dx t y t x t dt d ax t ax t dt dx t a x t dt ay t ⎡⎤=⎢⎥⎣⎦⎡⎤⎡⎤⎣⎦=⎢⎥⎢⎥⎣⎦⎡⎤=⎢⎥⎣⎦=Therefore, the system is homogeneous.(ii) This system is not additive. Consider the fowling example .Let δ[n]=2δ[n+2]+2δ[n+1]+2δ[n] andx2[n]=δ[n+1]+ 2δ[n+1]+ 3δ[n]. The corresponding outputs evaluated at n=0 are [][]120203/2y andy ==Now consider a third input x 3 [n]= x 2 [n]+ x 1 [n].= 3δ[n+2]+4δ[n+1]+5δ[n]The corresponding outputs evaluated at n=0 is y 3[0]=15/4. Gnarly, y 3[0]≠ ]0[][21y y n +.This[][][][][]444442,1010,x n x n x n y n x n otherwise ⎧--≠⎪=-⎨⎪⎩[][][][][][]4445442,1010,x n x n ax n y n ay n x n otherwise ⎧--≠⎪==-⎨⎪⎩Therefore, the system is homogenous.1.30 (a) Invertible. Inverse system y(t)=x(t+4)(b)Non invertible. The signals x(t) and x 1(t)=x(t)+2πgive the same output (c) δ[n] and 2δ[n] give the same output d) Invertible. Inverse system; y(t)=dx(t)/dt(e) Invertible. Inverse system y(n)=x(n+1) for n ≥0 and y[n]=x[n] for n<0 (f) Non invertible. x (n) and –x(n) give the same result (g)Invertible. Inverse system y(n)=x(1-n) (h) Invertible. Inverse system y(t)=dx(t)/dt(i) Invertible. Inverse system y(n) = x(n)-(1/2)x[n-1] (j) Non invertible. If x(t) is any constant, then y(t)=0 (k) δ[n] and 2δ[n] result in y[n]=0 (l) Invertible. Inverse system: y(t)=x(t/2)(m) Non invertible x 1 [n]= δ[n]+ δ[n-1]and x 2 [n]= δ[n] give y[n]= δ[n] (n) Invertible. Inverse system: y[n]=x[2n]1.31 (a) Note that x 2[t]= x 1 [t]- x 1 [t-2]. Therefore, using linearity we get y 2 (t)= y 1 (t)- y 1 (t-2).this is shown in Figure S1.31(b)Note that x3 (t)= x1 [t]+ x1 [t+1]. .Therefore, using linearity we get Y3 (t)= y1 (t)+ y1 (t+2). this is2(4) y 2(t) periodic, period T; x(t) periodic, period T/2;1.33(1) True x[n]=x[n+N ]; y 1 (n)= y 1 (n+ N 0)i.e. periodic with N 0=n/2if N is even and with period N 0=n if N is odd.(2)False. y 1 [n] periodic does no imply x[n] is periodic i.e. Let x[n] = g[n]+h[n] where0,1,[][]0,(1/2),nn even n even g n and h n n odd n odd⎧⎧==⎨⎨⎩⎩ Then y 1 [n] = x [2n] is periodic but x[n] is clearly not periodic. (3)True. x [n+N] =x[n]; y 2 [n+N 0] =y 2 [n] where N 0=2N (4) True. y 2 [n+N] =y 2 [n]; y 2 [n+N 0 ]=y 2 [n] where N 0=N/2 1.34. (a) ConsiderIf x[n] is odd, x[n] +x [-n] =0. Therefore, the given summation evaluates to zero. (b) Let y[n] =x 1[n]x 2[n] .Theny [-n] =x 1[-n] x 2[-n] =-x 1[n]x 2[n] =-y[n]. This implies that y[n] is odd.(c)ConsiderUsing the result of part (b), we know that x e [n]x o [n] is an odd signal .Therefore, using the result of part (a) we may conclude thatTherefore,(d)ConsiderAgain, since x e (t) x o (t) is odd,Therefore,1.35. We want to find the smallest N 0 such that m(2π /N) N 0 =2πk or N 0 =kN/m,{}1[][0][][]n n x n x x n x n ∞∞=-∞==++-∑∑22[][]e o n n n n x x ∞∞=-∞=-∞=+∑∑222[][][]e on n n n n n x x x∞∞∞=-∞=-∞=-∞==+∑∑∑2[][]0eon n n x x ∞=-∞=∑222[][][].e on n n n n n xx x ∞∞∞=-∞=-∞=-∞==+∑∑∑2220()()()2()().eoet dt t dt t dt t t dt x x x x x ∞∞∞∞-∞-∞-∞-∞=++⎰⎰⎰⎰0()()0.et t dt x x ∞-∞=⎰222()()().e ot dt t dt t dt xx x ∞∞∞-∞-∞-∞=+⎰⎰⎰()()()()()().xy yx t x t y d y t x d t φττττττφ∞-∞∞-∞=+=-+=-⎰⎰where k is an integer, then N must be a multiple of m/k and m/k must be an integer .this implies that m/k is a divisor of both m and N .Also, if we want the smallest possible N 0, then m/k should be the GCD of m and N. Therefore, N 0=N/gcd(m,N). 1.36.(a)If x[n] is periodic0(),0..2/j n N T o e where T ωωπ+= This implies that022o T kNT k T T Nππ=⇒==a rational number . (b)T/T 0 =p/q then x[n] =2(/)j n p q e π,The fundamental period is q/gcd(p,q) and the fundmental frequencyis(c) p/gcd(p,q) periods of x(t) are needed .1.37.(a) From the definition of ().xy t φWe havepart(a) that()().xx xx t t φφ=-This implies that()xy t φis(b) Note from even .Therefore,the odd part of().xx t φis zero.(c) Here, ()().xy xx t t T φφ=-and ()().yy xx t t φφ= 1.38.(a) We know that /22(2)().t t δδ=ThereforeThis implies that1(2)().2t t δδ=(b)The plot are as shown in Figure s3.18. 1.39 We havelim ()()lim (0)()0.u t t u t δδ→→==Also,0022gcd(,)gcd(,)gcd(,)gcd(,).T pp q p q p q p q q p q p pωωππ===/21lim (2)lim ().2t t δδ→∞→∞=01lim ()()().2u t t t δδ→=u Δ'(t ) 1 1/2Δ/2-Δ/2t 0tu Δ'(t )12Δ t 0tu Δ'(t ) 1 1/2Δ-Δttu Δ'(t )1 1/2Δ-Δt 0t⎰⎰∞∞∞--=-=0)()()()()(ττδτττδτd t u d t u t gTherefore,0,0()1,00t g t t undefined for t >⎧⎪=<⎨⎪=⎩()0()()()t u t t δττδτδτ-=-=-1.40.(a) If a system is additive ,then also, if a system is homogeneous,then(b) y(t)=x 2(t) is such a systerm . (c) No.For example,consider y(t) ()()ty t x d ττ-∞=⎰with ()()(1).x t u t u t =--Then x(t)=0for t>1,but y(t)=1 for t>1.1.41. (a) y[n]=2x[n].Therefore, the system is time invariant.(b) y[n]=(2n-1)x[n].This is not time-invariant because y[n- N 0]≠(2n-1)2x [n- N 0]. (c) y[n]=x[n]{1+(-1)n +1+(-1)n-1}=2x[n].Therefore, the system is time invariant .1.42.(a) Consider two system S 1 and S 2 connected in series .Assume that if x 1(t) and x 2(t) arethe inputs to S 1..then y 1(t) and y 2(t) are the outputs.respectively .Also,assume thatif y 1(t) and y 2(t) are the input to S 2 ,then z 1(t) and z 2(t) are the outputs, respectively . Since S 1 is linear ,we may write()()()()11212,s ax t bx t ay t by t +→+where a and b are constants. Since S 2 is also linear ,we may write()()()()21212,s ay t by t az t bz t +→+We may therefore conclude that)()()()(212121t b t a t b t a z z x x s s +−→−+Therefore ,the series combination of S 1 and S 2 is linear. Since S 1 is time invariant, we may write()()11010s x t T y t T -→-and()()21010s y t T z t T -→-Therefore,()()121010s s x t T z t T -→-Therefore, the series combination of S 1 and S 2 is time invariant.(b) False, Let y(t)=x(t)+1 and z(t)=y(t)-1.These corresponds to two nonlinear systems. If these systems are connected in series ,then z(t)=x(t) which is a linear system.00.()().00x t y t =→=0()()()()0x t x t y t y t =-→-=(c) Let us name the output of system 1 as w[n] and the output of system 2 as z[n] .Then11[][2][2][21][22]24y n z n w n w n w n ==+-+-[][][]241121-+-+=n x n x n xThe overall system is linear and time-invariant.1.43. (a) We have())(t y t x s−→−Since S is time-invariant.())(T t y T t x s-−→−-Now if x (t) is periodic with period T. x{t}=x(t-T). Therefore, we may conclude that y(t)=y(t-T).This impliesthat y(t) is also periodic with T .A similar argument may be made in discrete time . (b)1.44 (a) Assumption : If x(t)=0 for t<t 0 ,then y(t)=0 for t< t 0.To prove That : The system is causal.Let us consider an arbitrary signal x 1(t) .Let us consider another signal x 2(t) which is the same as x 1(t)fort< t 0. But for t> t 0 , x 2(t) ≠x 1(t),Since the system is linear,()()()()1212,x t x t y t y t -→-Since ()()120x t x t -=for t< t 0 ,by our assumption =()()120y t y t -=for t< t 0 .This implies that()()12y t y t =for t< t 0 . In other words, t he output is not affected by input values for 0t t ≥. Therefore, thesystem is causal .Assumption: the system is causal . To prove that :If x(t)=0 for t< t 0 .then y(t)=0 for t< t 0 .Let us assume that the signal x(t)=0 for t< t 0 .Then we may express x(t) as ()()12()x t x t x t =-, Where()()12x t x t = for t< t 0 . the system is linear .the output to x(t) will be()()12()y t y t y t =-.Now ,since the system is causal . ()()12y t y t = for t< t 0 .implies that()()12y t y t = for t< t 0 .Therefore y(t)=0 for t< t 0 .(b) Consider y(t)=x(t)x(t+1) .Now , x(t)=0 for t< t 0 implies that y(t)=0 for t< t 0 .Note that the system is nonlinear and non-causal .(c) Consider y(t)=x(t)+1. the system is nonlinear and causal .This does not satisfy the condition of part(a). (d) Assumption: the system is invertible. To prove that :y[n]=0 for all n only if x[n]=0 for all n . Consider[]0[]x n y n =→. Since the system is linear :2[]02[]x n y n =→.Since the input has not changed in the two above equations ,we require that y[n]= 2y[n].This implies that y[n]=0. Since we have assumed that the system is invertible , only one input could have led to this particular output .That input must be x[n]=0 .Assumption: y[n]=0 for all n if x[n]=0 for all n . To prove that : The system is invertible . Suppose that11[][]x n y n → and21[][]x n y n →Since the system is linear ,1212[][][][]0x n x n y n y n -=→-=By the original assumption ,we must conclude that 12[][]x n x n =.That is ,any particular y 1[n] can be produced that by only one distinct input x 1[n] .Therefore , the system is invertible. (e) y[n]=x 2[n]. 1.45. (a) Consider ,()111()()shx x t y t t φ→= and()222()()shx x t y t t φ→=.Now, consider ()()()312x t ax t bx t =+. The corresponding system output will be()()12331212()()()()()()()()()hx hx y t x h t d a x h t d b x t h t d a t b t ay t by t ττττττττφφ∞-∞∞∞-∞-∞=+=+++=+=+⎰⎰⎰Therefore, S is linear .Now ,consider x 4(t)=x 1(t-T).The corresponding system output will be()14411()()()()()()()hx y t x h t d x T h t d x h t T d t T τττττττττφ∞-∞∞-∞∞-∞=+=-+=++=+⎰⎰⎰Clearly, y 4(t)≠ y 1(t-T).Therefore ,the system is not time-invariant.The system is definitely not causal because the output at any time depends on future values of the input signal x(t).(b) The system will then be linear ,time invariant and non-causal. 1.46. The plots are in Figure S1.46.1.47.(a) The overall response of the system of Figure P1.47.(a)=(the response of the system to x[n]+x 1[n])-the response of the system to x 1[n]=(Response of a linear system L to x[n]+x 1[n]+zero input response of S)- (Response of a linear system L to x 1[n]+zero input response of S)=( (Response of a linear system L to x[n]).Chapter 2 answers2.1 (a) We have know that 1[]*[][][]k y x n h n h k x n k ∞=-∞==-∑1[][1][1][1][1]y n h x n h x n =-++-2[1]2[1]x n x n =++-This gives1[]2[1]4[]2[1]2[2]2[4]y n n n n n n δδδδδ=+++-+--- (b)We know that2[][2]*[][][2]k y n x n h n h k x n k ∞=-∞=+=+-∑Comparing with eq.(S2.1-1),we see that21[][2]y n y n =+(c) We may rewrite eq.(S2.1-1) as1[][]*[][][]k y n x n h n x k h n k ∞=-∞==-∑Similarly, we may write3[][]*[2][][2]k y n x n h n x k h n k ∞=-∞=+=+-∑Comparing this with eq.(S2.1),we see that31[][2]y n y n =+2.2 Using given definition for the signal h[n], we may write{}11[][3][10]2k h k u k u k -⎛⎫=+-- ⎪⎝⎭The signal h[k] is non zero only in the rang 1[][2]h n h n =+. From this we know that the signal h[-k] is non zero only in the rage 93k -≤≤.If we now shift the signal h[-k] by n to the right, then the resultant signal h[n-k] will be zero in the range (9)(3)n k n -≤≤+. Therefore ,9,A n =- 3B n =+ 2.3 Let us define the signals11[][]2nx n u n ⎛⎫= ⎪⎝⎭and1[][]h n u n =. We note that1[][2]x n x n =- and 1[][2]h n h n =+ Now,。

信号与系统第二版课后答案西安交大奥本海姆

信号与系统第二版课后答案西安交大奥本海姆

第一章1.3 解:(a). 2401lim(),04Tt T TE x t dt e dt P ∞-∞∞→∞-====⎰⎰(b) dt t x TP T TT ⎰-∞→∞=2)(21lim121lim ==⎰-∞→dt T TTT∞===⎰⎰∞∞--∞→∞dt t x dt t x E TTT 22)()(lim(c).222lim()cos (),111cos(2)1lim()lim2222TT TTTT T TTE x t dt t dt t P x t dt dt TT∞∞→∞--∞∞→∞→∞--===∞+===⎰⎰⎰⎰(d) 034121lim )21(121lim ][121lim 022=⋅+=+=+=∞→=∞→-=∞→∞∑∑N N n x N P N Nn n N N N n N 34)21()(lim202===∑∑-∞=∞→∞nNNn N n x E (e). 2()1,x n E ∞==∞211lim []lim 112121N NN N n N n NP x n N N ∞→∞→∞=-=-===++∑∑ (f) ∑-=∞→∞=+=NNn N n x N P 21)(121lim 2∑-=∞→∞∞===NNn N n x E 2)(lim1.9. a). 00210,105T ππω===; b) 非周期的; c) 00007,,22mN N ωωππ=== d). 010;N = e). 非周期的; 1.12 解:∑∞=--3)1(k k n δ对于4n ≥时,为1即4≥n 时,x(n)为0,其余n 值时,x(n)为1易有:)3()(+-=n u n x , 01,3;M n =-=- 1.15 解:(a)]3[21]2[][][222-+-==n x n x n y n y , 又2111()()2()4(1)x n y n x n x n ==+-, 1111()2[2]4[3][3]2[4]y n x n x n x n x n ∴=-+-+-+-,1()()x n x n = ()2[2]5[3]2[4]y n x n x n x n =-+-+- 其中][n x 为系统输入。

信号与系统第二版课后习题解答(6-7-9)奥本海姆

信号与系统第二版课后习题解答(6-7-9)奥本海姆

Chap 66.1 Consider a continuous-time LTI system with frequency response()()|()|H j H j H j e ωωω=and real impulse response h(t). Suppose that we apply an input 00()cos()x t t ωφ=+ to this system .The resulting output can be shown to be of the form0()()y t Ax t t =-Where A is a nonnegative real number representing anamplitude-scaling factor and 0t is a time delay.(a)Express A in terms of |()|H j ω.(b)Express 0t in terms of0()H j ω Solution:(a) For 0()()y t Ax t t =-So 0()()jt Y j AX j e ωωω-=0()()()j t Y j H j Ae X j ωωωω-== So |()|A H j ω=(b) for 0()H j t ωω=- So 0()H j t ωω=-6.3 Consider the following frequency response for a causal and stable LTI system:1()1j H j j ωωω-=+ (a) Show that |()|H j A ω=,and determine the values of A. (b)Determine which of the following statements is true about ()τω,the group delay of the system.(Note()(())/d H j d τωωω=-,where ()H j ωis expressed in aform that does not contain any discontinuities.)1.()0 0for τωω=>2.()0 0for τωω>>3 ()0 0for τωω<>Solution:(a) for |()|1H j ω== So A=1(b) for )(2)()()1()1()(ωωωωωωarctg arctg arctg j j j H -=--=+∠--∠=∠ 212)()(ωωωωτ+=∠-=d j H d So ()0 0for τωω>>6.5 Consider a continuous-time ideal bandpass filter whose frequency response is⎩⎨⎧≤≤=elsewherej H c c,03||,1)(ωωωω (a) If h(t) is the impulse response of this filter, determine a functiong(t) such that)(sin )(t g tt t h c πω= (b) As c ω is increased, dose the impulse response of the filter get more concentrated or less concentrated about the origin?Solution(a) Method 1. Let1()()()()()()2h t x t g t H j X j G j ωωωπ=↔=* They are shown in the figures,where1,sin ()(){0,c c ctx t X j t ωωωωωωπ<=↔=> So we can get()2cos(2)()2[(2)(2)]c c c g t t G j ωωπδωωδωω=↔=-++Method 2. Using the inverse FT definition,it is obtained331(){}2c c c cj t j t h t e d e d ωωωωωωωωπ--=+⎰⎰ 11{sin 3sin }{sin }{2cos 2}c c c c t t t t t tωωωωππ=-= (b) more concentrated.Chap 77.1 A real-valued signal x(t) is know to be uniquely determined by its samples when the sampling frequency is 10,000s ωπ=.For what values of ω is ()X j ω guaranteed to be zero?Solution:According to the sampling theorem 2s M w w > That is 110000500022M s w w ππ<== So if 5000M w w π>=,0)(=jw X7.2 A continuous-time signal x(t) is obtained at the output of an ideal lowpass filter with cutoff frequency 1,000c ωπ=.If impulse-train sampling is performed on x(t), which of the following sampling periods would guarantee that x(t) can be recovered from its sampled version using an appropriate lowpass filter?(a) 30.510T -=⨯(b) 3210T -=⨯(c) 410T -= Solution: π1000==c M w wFrom the sampling theorem,∴π20002=>M s w w ,that is 3102000222-==<πππM s w T ∴the conditions (a) and (c) are satisfied with the sampling theorem,(b) is not satisfied.7.3 The frequency which, under the sampling theorem,must be exceeded by the sampling frequency is called the Nyquist rate. Determine the Nyquist rate corresponding to each of the following signals:(a)()1cos(2,000)sin(4,000)x t t t ππ=++ (b)sin(4,000)()t x t tππ=(c) 2sin(4,000)()()t x t t ππ= Solution: (a))4000sin()2000cos(1)(t t t x ππ++=max(0,2000,4000)4000M w πππ==∴ the Nyquist rate is 28000s M w w π>= (b) sin(4000)()t x t tππ= 4000M w π=∴ the Nyquist rate is 28000s M w w π>= (c) 2sin(4000)()t x t t ππ⎛⎫= ⎪⎝⎭ 2sin(4000)()t x tt ππ⎛⎫= ⎪⎝⎭221(1cos(8000))2t t ππ=- ∴8000M w π=∴the Nyquist rate is 216000s M w w π>=7.4 Let x(t) be a signal with Nyquist rate 0ω. Determine the Nyquist rate for each of the following signals:(a)()(1)x t x t +- (b)()dx t dt(c)2()x t(d)0()cos x t t ωSolution:(a) we let 1()()(1)y t x t x t =+-So 1()()()(1)()j j Y j X j e X j e X j ωωωωωω--=+=+So the Nyquist rate of signal (a) is 0ω.(b) we let 2()()dx t y t dt= So 2()()Y j j X j ωωω=So the Nyquist rate of signal (b) is 0ω.(c) we let 23()()y t x t = So 31()()*()2Y j X j X j ωωωπ= So the Nyquist rate of signal (c) is 20ω.(d) we let 40()()cos y t x t t ω=For 000cos [()()]FT t ωπδωωδωω→-++ So 4001()((()(())2Y j X j X j ωωωωω=-++ So the Nyquist rate of signal (d) is 03ω7.9 Consider the signal 2sin 50()()t x t tππ= Which we wish to sample with a sampling frequency of 150s ωπ= to obtain a signal g(t) with Fourier transform ()G j ω.Determine the maximum value of 0ω for which it is guaranteed that0()75() ||G j X j for ωωωω=≤Where ()X j ω is the Fourier transform of x(t).Solution: 2sin(50)()t x t t ππ⎛⎫= ⎪⎝⎭))100cos(1(2122t t ππ-= ∴100M w π=But π150=s wthe figure about before-sampling and after-sampling of )(jw H isWe can see that only when π500≤w , the before-sampling and after-sampling of )(jw H have the same figure.So if 0..)..(75)(w w for jw X jw G ≤=The maximum value of 0w is π50.Chap 99.2 Consider the signal 5()(1)tx t e u t -=- and denote its Laplace transform by X(s).(a)Using eq.(9.3),evaluate X(s) and specify its region of convergence. (b)Determine the values of the finite numbers A and 0t such that theLaplace transform G(s) of 50()()t g t Ae u t t -=-- has the same algebraic form as X(s).what is the region of convergencecorresponding to G(s)?Solution:(a). According to eq.(9.3), we will getdt e t x s X st -∞∞-⎰=)()(dt e t u e st t --∞∞--=⎰)1(5dt e t s )5(1+-∞⎰= )5()5()5()5()5(1)5(+=+--=+-=+-+-∞+-s e s e s e s s t s ROC: Re{s}>-5(b). )()(05t t u Aet g t --=-−→←LT 0)5(5)(t s e s A s G ++-=, Re{s}<-5 ∴If )()(s X s G =then it ’s obviously that A=-1, 10-=t , Re{s}<-5.9.5 For each of the following algebraic expressions for the Laplace transform of a signal, determine the number of zeros located in the finite s-plane and the number of zeros located at infinity: (a)1113s s +++ (b) 211s s +- (c) 3211s s s -++ Solution :(a).1, 1 )3)(1(423111+++=+++s s s s s ∴it has a zero in the finite s-plane, that is 2-=sAnd because the order of the denominator exceeds the order of the numerator by 1∴ X(s) has 1 zero at infinity.(b). 0, 1 11)1)(1(1112-=-++=-+s s s s s s ∴it has no zero in the finite s-plane.And because the order of the denominator exceeds the order of the numerator by 1∴ X(s) has 1 zero at infinity.(c). 1, 0 11)1)(1(112223-=++++-=++-s s s s s s s s s ∴it has a zero in the finite s-plane, that is 1=sAnd because the order of the denominator equals to the order of the numerator∴ X(s) has no zero at infinity.9.7 How many signals have a Laplace transform that may be expressed as 2(1)(2)(3)(1)s s s s s -++++ in its region of convergence?Solution:There are 4 poles in the expression, but only 3 of them have different real part.∴ The s-plane will be divided into 4 strips which parallel to the jw-axis and have no cut-across.∴ There are 4 signals having the same Laplace transform expression.9.8 Let x(t) be a signal that has a rational Laplace transform with exactly two poles located at s=-1 and s=-3. If2()() ()t g t e x t and G j ω=[ the Fourier transform of g(t)]converges, determine whether x(t) is left sided, right sided, or two sided.Solution:)()(2t x e t g t =∴)2()(-=s X s G ROC: R(x)+Re{2}And x(t) have three possible ROC strips:),1(),1,3(),3,(+∞-----∞∴g(t) have three possible ROC strips: ),1(),1,1(),1,(+∞---∞ IF jw s s G jw G ==|)()(Then the ROC of )(s G is (-1,1)∴)(t x is two sides. 9.9 Given that1(),{}Re{}sat e u t Re s a s a -↔>-+ Determine the inverse Laplace transform of22(2)(),Re{}3712s X s s s s +=>-++ Solution: It is obtained from the partial-fractional expansion:22(2)2(2)42()712(4)(3)43s s X s s s s s s s ++-===+++++++,Re{}3s >-We can get the inverse Laplace transform from given formula and linear property.43()4()2()t t x t e u t e u t --=-9.10 Using geometric evaluation of the magnitude of the Fourier transform from the corresponding pole-zero plot ,determine, for each of the following Laplace transforms, whether the magnitude of the corresponding Fourier transform is approximately lowpass, highpass, or bandpass. (a):1}Re{,.........)3)(1(1)(1->++=s s s s H (b):221(),{}12s H s e s s s =ℜ>-++ (c):232(),{}121s H s e s s s =ℜ>-++ Solution:(a). 1}Re{,.........)3)(1(1)(1->++=s s s s H It ’s lowpass.(b).21}Re{,.........1)(22->++=s s s s s H It ’s bandpass.(c). 1}Re{., (1)2)(223->++=s s s s s H It ’shighpass.9.13 Let ()()()g t x t x t α=+- ,Where ()()t x t e u t β-=. And the Laplace transform of g(t) is 2(),1{}11s G s e s s =-<ℜ<-. Determine the values of the constants αand βSolution:()()()g t x t x t α=+-,and ()()t x t e u t β-=The Laplace transform : ()()()G s X s X s α=+- and ()1X s s β=+,Re{}1s >-From the scale property of Laplace transform,()1X s s β-=-+,Re{}1s < So 2(1)(1)()()()111s G s X s X s s s s βαββαβαα--+=+-=+=+-+-,1Re{}1s -<< From given 2()1s G s s =-,1Re{}1s -<< We can determine : 11,2αβ=-=。

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(下册)-通信系统(圣才出品)

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(下册)-通信系统(圣才出品)

第8章通信系统8.1 复习笔记几个基本概念:(1)调制:将某一个载有信息的信号嵌入另一个信号中的过程。

(2)解调:将载有信息的信号提取出来的过程。

(3)复用:将若干个彼此独立的信号,合并为一个可在同一信道上同时传输的复合信号的方法。

(4)幅度调制:正弦幅度调制和正弦频率调制。

(5)正弦幅度调制:一个复指数信号或正弦信号c(t)的振幅被载有信息的信号x(t)相乘。

信号x(t)称为调制信号,而信号c(t)称为载波信号,已调信号y(t)是这两个信号的乘积,即。

一、复指数与正弦幅度调制1.正弦幅度调制的两种常用的形式(1)载波信号c(t)为如下复指数:(2)载波信号是正弦的频率ωc都称为载波频率。

2.复指数载波的幅度调制选θc=0,已调信号y(t)是。

(1)信号的傅里叶变换x(t)、y(t)和c(t)的傅里叶变换分别为X(jω)、Y(jω)和C(jω)。

已调输出y(t)的频谱是输入的谱,只是在频率轴上位移了一个等于载波频率ωc的量。

(2)解调将x(t)从已调信号y(t)中恢复出来,只要将y(t)乘以复指数,即在频域,这等于把已调信号的频谱在频率轴上往回挪到调制信号原先所在的频谱位置。

3.正弦载波的幅度调制取θc=0,载波是正弦波。

(1)信号的傅里叶变换①载波信号的频谱②已调信号的频谱(2)解调只要就能从y(t)中恢复出x(t);否则,这两个重复的频谱将会有重叠。

二、正弦幅度调制的解调1.同步解调同步解调是指解调器载波在相位上与调制器载波是同相的解调过程。

(1)解调器载波在相位上与调制器载波是同相假设,已调信号为原始信号可通过用y(t)来调制同样一个正弦载波并用一个低通滤波器把它恢复出来,即于是ω(t)由两项之和组成:一项是原始信号的一半,另一项则是用原始信号的一半去调制一个2ωc的正弦载波。

因此应该应用低通滤波器就相应于保留第一项,消除掉第二项。

(2)调制器和解调器在相位上不同步在复指数载波的情况下,用θc代表调制用载波的相位,用代表解调用载波的相位,即如果,那么ω(t)将有一个复振幅因子。

信号与系统奥本海姆第二版答案

信号与系统奥本海姆第二版答案

第1章信号与系统1.1复习笔记1,连续时间和离散时间信号1个连续时间信号和离散时间信号(1)连续时间信号(图1-1(a))①定义连续时间信号是指自变量是连续变量的信号,并且该信号是在自变量的连续值上定义的。

②代表自变量由T表示,表示连续时间。

连续时间信号表示为X(T)。

(2)离散时间信号(图1-1(b))①定义离散时间信号的自变量仅在一组离散值中选择,并且仅在离散时间点定义信号。

②代表自变量由N表示,N表示离散时间。

离散时间信号表示为x [n]。

说明:hwocrtemp_ ROC60图1-1信号的图形表示(a)连续的时间表示;(b)离散时间信号2.信号能量和功率(1)有限间隔内信号的总能量和功率①描述中的连续时间信号x(T):hwocrtemp_ roc120中的总能量说明:hwocrtemp_ ROC130哪里x |是X的模块(可能是复数)。

通过将上述公式除以长度t2-t1,可以获得平均功率。

②描述中的离散时间信号x [n]:hwocrtemp_ roc140中的总能量说明:hwocrtemp_ ROC150将其除以interval_中的点数即可。

Roc160获得该范围内的平均功率。

(2)无限间隔内信号的总能量和功率①无限时间连续时间信号的总能量x(T)说明:hwocrtemp_ ROC180无限时间连续时间信号x(T)的平均功率说明:hwocrtemp_ ROC220②无限时间中离散时间信号x [n]的总能量说明:hwocrtemp_ ROC190无限时间间隔内离散时间信号x [n]的平均功率说明:hwocrtemp_ ROC230(3)根据信号能量和功率的限制进行分类①该信号的总能量有限,即:hwocrtemp_ Roc240,该信号的平均功率为零。

②如果平均功率P∞是有限的,则其能量是无限的。

③具有无限大的P∞和E∞的信号。

2,自变量的变换基本转型(1)时移①X(t-t0)表示具有延迟|的X(T)。

信号与系统第二版课后习题解答(6-7-9)奥本海姆

信号与系统第二版课后习题解答(6-7-9)奥本海姆

Chap 66.1 Consider a continuous-time LTI system with frequency response()()|()|H j H j H j e ωωω=and real impulse response h(t). Suppose that we apply an input 00()cos()x t t ωφ=+ to this system .The resulting output can be shown to be of the form0()()y t Ax t t =-Where A is a nonnegative real number representing anamplitude-scaling factor and 0t is a time delay.(a)Express A in terms of |()|H j ω.(b)Express 0t in terms of0()H j ω Solution:(a) For 0()()y t Ax t t =-So 0()()jt Y j AX j eωωω-= 0()()()j t Y j H j Ae X j ωωωω-== So |()|A H j ω=(b) for 0()H j t ωω=- So 0()H j t ωω=-6.3 Consider the following frequency response for a causal and stable LTI system:1()1j H j j ωωω-=+ (a) Show that |()|H j A ω=,and determine the values of A. (b)Determine which of the following statements is true about ()τω,the group delay of the system.(Note()(())/d H j d τωωω=-,where ()H j ωis expressed in aform that does not contain any discontinuities.)1.()0 0for τωω=>2.()0 0for τωω>>3 ()0 0for τωω<>Solution:(a) for |()|1H j ω== So A=1(b) for )(2)()()1()1()(ωωωωωωarctg arctg arctg j j j H -=--=+∠--∠=∠ 212)()(ωωωωτ+=∠-=d j H d So ()0 0for τωω>>6.5 Consider a continuous-time ideal bandpass filter whose frequency response is⎩⎨⎧≤≤=elsewherej H c c,03||,1)(ωωωω (a) If h(t) is the impulse response of this filter, determine a functiong(t) such that)(sin )(t g t t t h c πω=(b) As c ω is increased, dose the impulse response of the filter get more concentrated or less concentrated about the origin?Solution(a) Method 1. Let1()()()()()()2h t x t g t H j X j G j ωωωπ=↔=* They are shown in the figures,where1,sin ()(){0,c c ctx t X j t ωωωωωωπ<=↔=> So we can get()2cos(2)()2[(2)(2)]c c c g t t G j ωωπδωωδωω=↔=-++Method 2. Using the inverse FT definition,it is obtained331(){}2c c c cj t j t h t e d e d ωωωωωωωωπ--=+⎰⎰ 11{sin 3sin }{sin }{2cos 2}c c c c t t t t t tωωωωππ=-= (b) more concentrated.Chap 77.1 A real-valued signal x(t) is know to be uniquely determined by its samples when the sampling frequency is10,000s ωπ=.For what values ofω is ()X j ω guaranteed to be zero? Solution:According to the sampling theorem 2s M w w > That is 110000500022M s w w ππ<== So if 5000M w w π>=,0)(=jw X7.2 A continuous-time signal x(t) is obtained at the output of an ideal lowpass filter with cutoff frequency 1,000c ωπ=.If impulse-train sampling is performed on x(t), which of the following sampling periods would guarantee that x(t) can be recovered from its sampled version using an appropriate lowpass filter?(a) 30.510T -=⨯(b) 3210T -=⨯(c) 410T -= Solution: π1000==c M w wFrom the sampling theorem,∴π20002=>M s w w ,that is 3102000222-==<πππM s w T ∴the conditions (a) and (c) are satisfied with the sampling theorem,(b) is not satisfied.7.3 The frequency which, under the sampling theorem, must be exceeded by the sampling frequency is called the Nyquist rate. Determine the Nyquist rate corresponding to each of the following signals:(a)()1cos(2,000)sin(4,000)x t t t ππ=++ (b)sin(4,000)()t x t tππ=(c) 2sin(4,000)()()t x t t ππ= Solution: (a) )4000sin()2000cos(1)(t t t x ππ++=max(0,2000,4000)4000M w πππ==∴ the Nyquist rate is 28000s M w w π>= (b) sin(4000)()t x t tππ= 4000M w π=∴ the Nyquist rate is 28000s M w w π>= (c) 2sin(4000)()t x t t ππ⎛⎫= ⎪⎝⎭ 2sin(4000)()t x tt ππ⎛⎫= ⎪⎝⎭221(1cos(8000))2t t ππ=- ∴8000M w π=∴the Nyquist rate is 216000s M w w π>=7.4 Let x(t) be a signal with Nyquist rate 0ω. Determine the Nyquist rate for each of the following signals:(a)()(1)x t x t +- (b)()dx t dt(c)2()x t(d)0()cos x t t ωSolution:(a) we let 1()()(1)y t x t x t =+-So 1()()()(1)()j j Y j X j e X j e X j ωωωωωω--=+=+ So the Nyquist rate of signal (a) is 0ω.(b) we let 2()()dx t y t dt= So 2()()Y j j X j ωωω=So the Nyquist rate of signal (b) is0ω. (c) we let 23()()y t x t = So 31()()*()2Y j X j X j ωωωπ= So the Nyquist rate of signal (c) is 20ω.(d) we let 40()()cos y t x t t ω=For 000cos [()()]FT t ωπδωωδωω→-++ So 4001()((()(())2Y j X j X j ωωωωω=-++ So the Nyquist rate of signal (d) is 03ω7.9 Consider the signal 2sin 50()()t x t tππ= Which we wish to sample with a sampling frequency of 150s ωπ= to obtain a signal g(t) with Fourier transform ()G j ω.Determine the maximum value of 0ω for which it is guaranteed that0()75() ||G j X j for ωωωω=≤Where ()X j ω is the Fourier transform of x(t).Solution: 2sin(50)()t x t t ππ⎛⎫= ⎪⎝⎭))100cos(1(2122t t ππ-= ∴100M w π=But π150=s wthe figure about before-sampling and after-sampling of )(jw H isWe can see that only when π500≤w , the before-sampling and after-sampling of )(jw H have the same figure.So if 0..)..(75)(w w for jw X jw G ≤=The maximum value of 0w is π50.Chap 99.2 Consider the signal 5()(1)t x t e u t -=- and denote its Laplace transform by X(s).(a)Using eq.(9.3),evaluate X(s) and specify its region of convergence. (b)Determine the values of the finite numbers A and 0t such that the Laplace transform G(s) of 50()()t g t Ae u t t -=-- has the same algebraic form as X(s).what is the region of convergencecorresponding to G(s)?Solution:(a). According to eq.(9.3), we will getdt e t x s X st -∞∞-⎰=)()(dt e t u e st t --∞∞--=⎰)1(5dt e t s )5(1+-∞⎰=)5()5()5()5()5(1)5(+=+--=+-=+-+-∞+-s e s e s e s s t s ROC:Re{s}>-5 (b). )()(05t t u Ae t g t --=-−→←LT 0)5(5)(t s e s A s G ++-=, Re{s}<-5 ∴ If )()(s X s G =then it ’s obviously that A=-1, 10-=t , Re{s}<-5.9.5 For each of the following algebraic expressions for the Laplace transform of a signal, determine the number of zeros located in the finite s-plane and the number of zeros located at infinity: (a)1113s s +++ (b) 211s s +- (c) 3211s s s -++ Solution :(a).1, 1)3)(1(423111+++=+++s s s s s ∴ it has a zero in the finite s-plane, that is 2-=sAnd because the order of the denominator exceeds the order of the numerator by 1∴ X(s) has 1 zero at infinity.(b). 0, 111)1)(1(1112-=-++=-+s s s s s s ∴ it has no zero in the finite s-plane.And because the order of the denominator exceeds the order of the numerator by 1∴ X(s) has 1 zero at infinity.(c). 1, 011)1)(1(112223-=++++-=++-s s s s s s s s s ∴ it has a zero in the finite s-plane, that is 1=sAnd because the order of the denominator equals to the order of the numerator∴ X(s) has no zero at infinity.9.7 How many signals have a Laplace transform that may be expressed as 2(1)(2)(3)(1)s s s s s -++++ in its region of convergence?Solution:There are 4 poles in the expression, but only 3 of them have different real part.∴ The s-plane will be divided into 4 strips which parallel to the jw-axis and have no cut-across.∴ There are 4 signals having the same Laplace transform expression.9.8 Let x(t) be a signal that has a rational Laplace transform with exactly two poles located at s=-1 and s=-3. If2()() ()t g t e x t and G j ω=[ the Fourier transform of g(t)]converges, determine whether x(t) is left sided, right sided, or two sided.Solution:)()(2t x e t g t =∴)2()(-=s X s G ROC: R(x)+Re{2}And x(t) have three possible ROC strips:),1(),1,3(),3,(+∞-----∞∴g(t) have three possible ROC strips: ),1(),1,1(),1,(+∞---∞ IF jw s s G jw G ==|)()(Then the ROC of )(s G is (-1,1)∴)(t x is two sides. 9.9 Given that1(),{}Re{}sat e u t Re s a s a -↔>-+ Determine the inverse Laplace transform of22(2)(),Re{}3712s X s s s s +=>-++ Solution: It is obtained from the partial-fractional expansion:22(2)2(2)42()712(4)(3)43s s X s s s s s s s ++-===+++++++,Re{}3s >-We can get the inverse Laplace transform from given formula and linear property.43()4()2()t t x t e u t e u t --=-9.10 Using geometric evaluation of the magnitude of the Fourier transform from the corresponding pole-zero plot ,determine, for each of the following Laplace transforms, whether the magnitude of the corresponding Fourier transform is approximately lowpass, highpass, or bandpass. (a): 1}Re{,.........)3)(1(1)(1->++=s s s s H (b): 221(),{}12s H s e s s s =ℜ>-++(c): 232(),{}121s H s e s s s =ℜ>-++ Solution:(a). 1}Re{,.........)3)(1(1)(1->++=s s s s H It ’s lowpass.(b).21}Re{,.........1)(22->++=s s s s s H It ’s bandpass.(c). 1}Re{., (1)2)(223->++=s s s s s H It ’s highpass.9.13 Let ()()()g t x t x t α=+- ,Where ()()t x t e u t β-=. Andthe Laplace transform of g(t) is 2(),1{}11s G s e s s =-<ℜ<-. Determine the values of the constantsαand βSolution: ()()()g t x t x t α=+-,and ()()t x t e u t β-=The Laplace transform : ()()()G s X s X s α=+- and()1X s s β=+,Re{}1s >- From the scale property of Laplace transform, ()1X s s β-=-+,Re{}1s < So 2(1)(1)()()()111s G s X s X s s s s βαββαβαα--+=+-=+=+-+-,1Re{}1s -<< From given 2()1s G s s =-,1Re{}1s -<< We can determine : 11,2αβ=-=。

奥本海姆信号与系统(第二版)复习题参考答案

奥本海姆信号与系统(第二版)复习题参考答案

第一章作业解答1.9解:(b )jt t t j e e e t x --+-==)1(2)(由于)()(2)1()1())(1(2t x e e e T t x T j t j T t j ≠==++-+-++-,故不是周期信号;(或者:由于该函数的包络随t 增长衰减的指数信号,故其不是周期信号;) (c )n j e n x π73][= 则πω70= 7220=ωπ是有理数,故其周期为N=2; 1.12解:]4[1][1)1(]1[1][43--=--==+---=∑∑∞=∞=n u m n mk k n n x m k δδ-3 –2 –1 0 1 2 3 4 5 6 n1…减去:-3 –2 –1 0 1 2 3 4 5 6 nu[n-4]等于:-3 –2 –1 0 1 23 4 5 6 n…故:]3[+-n u 即:M=-1,n 0=-3。

1.14解:x(t)的一个周期如图(a)所示,x(t)如图(b)所示:而:g(t)如图(c)所示……dtt dx )(如图(d )所示:……故:)1(3)(3)(--=t g t g dtt dx 则:1t ,0t 3,32121==-==;A A 1.15解:该系统如下图所示: 2[n](1)]4[2]3[5]2[2]}4[4]3[2{21]}3[4]2[2{]3[21]2[][][1111111222-+-+-=-+-+-+-=-+-==n x n x n x n x n x n x n x n x n x n y n y即:]4[2]3[5]2[2][-+-+-=n x n x n x n y(2)若系统级联顺序改变,该系统不会改变,因为该系统是线性时不变系统。

(也可以通过改变顺序求取输入、输出关系,与前面做对比)。

1.17解:(a )因果性:)(sin )(t x t y =举一反例:当)0()y(,0int s x t =-=-=ππ则时输出与以后的输入有关,不是因果的;(b )线性:按照线性的证明过程(这里略),该系统是线性的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章作业解答
1.9
解:(b )jt t t j e e e t x --+-==)1(2)(
由于)()(2)1()1())(1(2t x e e e T t x T j t j T t j ≠==++-+-++-,故不是周期信号;
(或者:由于该函数的包络随t 增长衰减的指数信号,故其不是周期信号;) (c )n j e n x π73][= 则πω70= 7
2
20
=
ωπ
是有理数,故其周期为N=2; 1.12
解:]4[1][1)1(]
1[1][4
3--=--==+---=∑∑∞
=∞
=n u m n m
k k n n x m k δδ
-3 –2 –1 0 1 2 3 4 5 6 n
1

减去:
-3 –2 –1 0 1 2 3 4 5 6 n
u[n-4]
等于:
-3 –2 –1 0 1 2
3 4 5 6 n

故:]3[+-n u 即:M=-1,n 0=-3。

1.14
解:x(t)的一个周期如图(a)所示,x(t)如图(b)所示:
而:g(t)如图(c)所示
……dt
t dx )
(如图(d )所示:
……故:
)1(3)(3)
(--=t g t g dt
t dx 则:1t ,0t 3,3
2121==-==;A A 1.15
解:该系统如下图所示: 2[n]
(1)
]
4[2]3[5]2[2]}4[4]3[2{2
1
]}3[4]2[2{]3[2
1
]2[][][1111111222-+-+-=-+-+-+-=-+
-==n x n x n x n x n x n x n x n x n x n y n y
即:]4[2]3[5]2[2][-+-+-=n x n x n x n y
(2)若系统级联顺序改变,该系统不会改变,因为该系统是线性时不变系统。

(也可以通过改变顺序求取输入、输出关系,与前面做对比)。

1.17
解:(a )因果性:)(sin )(t x t y =
举一反例:当)0()y(,0int s x t =-=-=ππ则时输出与以后的输入有关,不是因果的;
(b )线性:按照线性的证明过程(这里略),该系统是线性的。

1.20
解:(a ))(2
1)2cos()(221t j t
j e e t t x -+=
= 则:)(2
1
)}(21{)(33221t j t j t j t j e e e e T t y --+=+=;
(b) t j j t j j t j t j e e e e e e t t x 2121)12()12(22
1
21)(21))21(2cos()(-----+=+=-=
则:)3
1(3cos )(212121)()3
1
(3)31
(331312-=+=+=-----t e e e
e e e t y t j t j t j j t j j (注意:此系统不是时不变系统。

) 1.21
(b)x(2-t)
(c
)x(2t+1)
(d)x(4-t/2)
1.22
1 x[n+3]
1 x[-n+3]
1
1
1
解:
x[3n+1]
1
1
1 1
x[n+1]
(注意:离散信号压缩后,只取整数点的值,压缩后会损失信息)
(e) x[n]u[3-n]=x[n]
1
1
1
1 x[n]u[3-n]
则:)]()([21)(t x t x t x e -+=
,)]()([2
1
)(t x t x t x o --=分别如下图所示:
(注意:在对信号做奇偶分解时,尽量用图形的方式直观;而表达式烦琐,且容易出错)
1.25
解:(a))3
4cos(3)(π
+
=t t x 是周期信号, 40=ω 2
20
π
ωπ
=
=
T
1.26
解:(a ))176sin(
][+=n n x π 7
60π
ω=
则:
3
7
20
=
ωπ
为有理数,故该信号是周期的,其周期N=7; (b ))81cos(][π-=n n x 8
10=
ω 则:
πωπ
1620
=为无理数,故该信号不是周期的;
1.27
先证明几个基本的系统:时移系统、反折系统、尺度系统的线性、时不变、因果、稳定性; 一:时移系统:)()(1t t x t y -=
(1)线性:
)
()()()(122111t t x t y t t x t y -=-=
令:
满足可加性)()()1()1()()()()()(2121133213t y t y t x t x t t x t y t x t x t x +=-+-=-=→+=满足齐次性)()()()()()(11114414t ky t t kx t t x t y t kx t x =-=-=→=
故:时移系统是线性系统; (2)时不变性:)()(111t t x t y -=
令:)()()()()(101122012t t t x t t x t y t t x t x --=-=→-=
而:)()(01101t t t x t t y --=-
统。

故时移系统是时不变系)
()(201t y t t y =-
(3)因果性:由定义可知,当01≥t ,则系统是因果的;否则为非因果系统; (4)记忆性:由定义可知,时移系统是记忆系统;
(5)稳定性:由于信号进行时移后,不影响幅度,故时移系统是稳定的;
二 反折系统: 线性、时变、非因果、记忆、稳定; 三 尺度系统:线性、时变、非因果、记忆、稳定;
(a) )2()2()(t x t x t y -+-=
解:由于该系统由时移与反折系统所组成,故性质由二者决定: 线性、时变、非因果、记忆、稳定;
(b ))(]3[cos )(t x t t y =
线性(略):是线性的 时不变性:)(]3[cos )(1t x t t y =
令:)(]3[cos )(]3[cos )()()(0122012t t x t t x t t y t t x t x -==→-= 而:)()](3[cos )(01001t t x t t t t y --=-
故系统时变)
()(201t y t t y ≠-
(总结:若y(t)与x(t)之间的关系除了x(t)的形式外,还包括有关于t 的函数,则该系统是时变系统)
因果性:输出仅与x(t)的当前值有关,故系统因果;
(注意,因果性的定义:仅与当前值或以前值有关【二者只要满足一个就是】)
记忆性:输出仅与x(t)的当前值有关,故为非记忆系统;
稳定性:由于cos3t 是有界的函数,则x(t)有界,y(t)有界,故系统稳定;
(c )⎰∞-=t
d x t y 2)()(ττ
解:线性:该系统是线性的(参考1小题证明);
时不变性:
⎰∞
-=t
d x t y 211)()(ττ
令:)()(012t t x t x -=
则:


⎰⎰-∞
--∞
-∞
-∞
-===--==0
21210201222)(')'('
)()()(t t t t t
t
d x d x t d t x d x t y τ
ττττττ
τττ令
而:


-∞
--∞
-==-00221)(2101)()()(t t t t d x d x t t y τ
τττ
故系统时变)
()(201t y t t y ≠-
(注意,若这里的积分上限是t ,不是2t ,则系统是时不变的) 其他为:记忆、非因果,不稳定; (d )该式改写为:
)()]2()([)(t u t x t x t y -+=
线性:系统是线性、时变、因果、记忆、稳定的; 1.31
解:(a) )2()((112--=t x t x t
x
由于该系统是LTI 系统,则)2()((112--=t y t y t y
(b ))1()1((113-++=t x t x t
x
由于该系统是LTI 系统,则
)1()1()(113-++=t y t y t y。

相关文档
最新文档