初中数学动态几何问题的求解策略

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当然,本题也可以这样思考,由于三角形AOE与三角形COF全等,则四边形AEOF的面积与三角形AOC的面积相等,而AOC的面积为2,因此AEOF的面积不会随点E、F的变化而变化,是一个定值,且为2.
本题通过建立函数关系或有关图形之间的关系,然后通过简单的计算得出结论的方法应用比较广泛.
第(3)问,也可以通过建立函数关系求得, AEF的面积= ,又 的变化范围为 ,由二次函数知识得 AEF的面积的范围为:
例7:如图,在等腰直角三角形ABC中,斜边BC=4,OA BC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。
(2)判断四边形AEOF的面积是否随点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值.
(3) AEF的面积是否随着点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值。
(A)AC+CB=AD+DB (B) AC+CB<AD+DB
(C) AC+CB>AD+DB (D) AC+CB与AD+DB的大小关系不确定
分析:本题可以通过动手操作一下,度量AC、CB、AD、DB的长度,可以尝试换几个位置量一量,得出结论(C)
例5:如图,过两同心圆的小圆上任一点C分别作小圆的直径CA和非直径的弦CD,延长CA和CD与大圆分别交于点B、E,则下列结论中正确的是(*)
变式1:已知△ABC是半径为2的圆内接三角形,若 ,求∠C的大小.
本题与例1的区别只是AB与圆的半径的关系发生了一些变化,其解题方法与上面一致,在三角形AOB中, ,则 ,即 ,
从而当点C在优弧AB上变化时,∠C所对的弧是劣弧AB,它的大小为劣弧AB的一半,即 ,
当点C在劣弧AB上变化时,∠C所对的弧是优弧AB,它的大小为优弧AB的一半,由∠AOB=1200得,优弧AB的度数为3600-1200=2400,则由同弧所对的圆心角与圆周角的关系得出:∠C=1200,
BC×AP=BP×AB,因此
BC= ,
在三角形BPC中,PC= ,
所以, = 选(B)
当然,本题还可以根据三角形相似得 ,即可计算出结论。
作为一道选择题,到此已经完成,但如果是一道解答题,我们得出的结论只是一个特殊情况,还要进一步证明对一般情况也成立。
例3如图,在等腰直角三角形ABC中,斜边BC=4,OA BC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。
= =36,即当P、Q运动时,四边形QAPC的面积不变。
(3)显然有两种情况:△PAQ∽△ABC,△QAP∽△ABC,
由相似关系得 或 ,解之得 或
建立关系求解,包含的内容多,可以是函数关系,可以是方程组或不等式等,通过解方程、或函数的最大值最小值,自变量的取值范围等方面来解决问题;也可以是通过一些几何上的关系,描述图形的特征,如全等、相似、共圆等方面的知识求解。
因此 或∠C=1200.
变式2:如图,半经为1的半圆O上有两个动点A、B,若AB=1,
(1)判断∠AOB的大小是否会随点A、B的变化而变化,若变化,求出变化范围,若不变化,求出它的值。
(2)四边形ABCD的面积的最大值。
解:(1)由于AB=OA=OB,所以三角形AOB为等边三角形,则∠AOB=600,即∠AOB的大小不会随点A、B的变化而变化。
(1)当t为何值时,三角形QAP为等腰三角形?
(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;
(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
分析:(1)当三角形QAP为等腰三角形时,由于∠A为直角,只能是AQ=AP,建立等量关系, ,即 时,三角形QAP为等腰三角形;
(2)四边形QAPC的面积=ABCD的面积—三角形QDC的面积—三角形PBC的面积
第1问很易得出P为AB中点,则CP=
第2问:如果 CPQ为直角三角形,由于PQ与AC不平行,则∠Q不可能为直角
又点P不与A重合,则∠PCQ也不可能为直角,只能是∠CPQ为直角,即以CQ为直径的圆与AB有交点,设CQ=2x,CQ的中点D到AB的距离DM不大于CD,
,即 ,所以 ,由 ,即 ,而 ,故 ,亦即 时, CPQ可能为直角三角形。
(A) (B)
(C) (D) 的大小不确定
分析:本题可以通过度量的方法进行,选(B)
本题也可以可以证明得出结论,连结DO、EO,则在三角形OED中,由于两边之差小于第三边,则
OE—OD<DE,即OB—OA<DE,因此 ,即
三、建立联系,计算说明
例6:如图,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.
本题包容的内涵十分丰富,还可以提出很多问题研究:
比如,比较线段EF与AO长度大小等(可以通过A、E、O、F四点在以EF为直径的圆上得出很多结论)
例8:如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动。如果P、Q同时出发,用t秒表示移动的时间(0≤t≤6),那么:
当然还有其它方法。同学们可以继续研究。
2、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点,
(1)写出点O到△ABC的三个顶点A、B、C距离的大小关系。
(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
(2)四边形ABCD的面积由三个三角形组成,其中三角形AOB的面积为 ,而三角
形AOD与三角形BOC的面积之和为 ,又由梯形
的中位线定理得三角形AOD与三角形BOC的面积之和 ,要四边形
ABCD的面积最大,只需EH最大,显然EH≤OE= ,当AB∥CD时,EH=OE,因此
四边形ABCD的面积最大值为 + = .
当点C在劣弧AB上变化时,∠ACB所对的弧是优弧AB,它的大小为优弧AB的一半,由∠AOB=600得,优弧AB的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=1500,
因此,本题的答案有两个,分别为300或1500.
反思:本题通过点C在圆上运动的不确定性而引起结果的不唯一性。从而需要分类讨论。这样由点C的运动变化性而引起的分类讨论在解题中经常出现。
AEF的面积 .
本题也可以根据三角形AEF与三角形OEF的面积关系确定 AEF的面积范围:
不难证明 AEF的面积≤ OEF的面积,它们公用边EF,取EF的中点H,显然由于 OEF为等腰直角三角形,则OH⊥EF,作AG⊥EF,显然AG≤AH=AG(= ),所以 AEF的面积≤ OEF的面积,而它们的和为2,因此 AEF的面积 .
对于本题同学们还可以继续思考:四边形ABCD的周长的变化范围.
变式3:如图,有一块半圆形的木板,现要把它截成三角形板块.三角形的两个顶点分
别为A、B,另一个顶点C在半圆上,问怎样截取才能使截出的三角形的面积最大?要求说明理由.
分析:要使三角形ABC的面积最大,而三角形ABC的底边AB为圆的直径为常量,只需AB边上的高最大即可。过点C作CD⊥AB于点D,连结CO,
作为训练同学们可以综合上述方法求解:
练习
1、已知 ABC为直角三角形,AC=5,BC=12,∠ACB为直角,P是AB边上的动点(与点A、B不重合),Q是BC边上动点(与点B、C不重合)
(1)如图,当PQ∥AC,且Q为BC的中点,求线段CP的长。
(2) 当PQ与AC不平行时, CPQ可能为直角三角形吗?若有可能,求出线段CQ的长的取值范围;若不可能,请说明理由。
分析:点C的变化是否影响∠ACB的大小的变化呢?我们不妨将点C改变一下,如何变化呢?可能在优弧AB上,也可能在劣弧AB上变化,显然这两者的结果不一样。那么,当点C在优弧AB上变化时,∠ACB所对的弧是劣弧AB,它的大小为劣弧AB的一半,因此很自然地想到它的圆心角,连结AO、BO,则由于AB=OA=OB,即三角形ABC为等边三角形,则∠AOB=600,则由同弧所对的圆心角与圆周角的关系得出:∠ACB= ∠AOB=300,
(1)判断 OEF的形状,并加以证明。
(2)判断四边形AEOF的面积是否随点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值.
(3) AEF的面积是否随着点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值。
分析:本题结论很难发现,先从特殊情况入手。最特殊情况为E、F分别为AB、AC中点,显然有ΔEOF为等腰直角三角形。还可发现当点E与A无限接近时,点F与点C无限接近,此时ΔEOF无限接近ΔAOC,而ΔAOC为等腰直角三角形,几种特殊情况都可以得出ΔEOF为等腰直角三角形。一般情况下成立吗?OE与OF相等吗?∠EOF为直角吗?能否证明。如果它们成立,便可以推出三角形OFC与三角形OEA全等,一般情况下这两个三角形全等吗?
分析:能否将DN和NM进行转化,与建立三角形两边之和大于第三边等问题,很自然地想到轴对称问题,由于ABCD为正方形,因此连结BN,显然有ND=NB,则问题就转化为BN+NM的最小值问题了,一般情况下:BN+NM≥BM,只有在B、N、M三点共线时,BN+NM=BM,因此DN+MN的最小值为BM=
本题通过建立平面上三个点中构成的三角形中的两边之和大于第三边及共线时的两边之和等于第三边的特殊情况求最小值,最后通过勾股定理计算得出结论。
考数学试题中动态几何问题的求解策略
近年来,随着九年义务教育课程标准的深入实施,动态几何已悄悄进入到中考数学试题中,而且要求越来越高,越来越突出探究能力的考查。编制好的动态几何的题已成为中考命题者努力追求的目标之一。下面谈谈中考数学中动态几何的一些解题策略。
例1:已知⊙O的弦AB的长等于⊙O的半径,点C在⊙O上变化(不与A、B)重合,求∠ACB的大小.
由于CD≤CO,当O与D重合,CD=CO,因此,当CO与AB垂直时,即C为半圆弧
的中点时,其三角形ABC的面积最大。
本题也可以先猜想,点C为半圆弧的中点时,三角形ABC的面积最大,故只需另选一个位置C1(不与C重合),,证明三角形ABC的面积大于三角形ABC1的面积即可。如图
显然三角形ABC1的面积= AB×C1D,而C1D< C1O=CO,则三角形ABC1的面积= AB×C1D< AB×C1O=三角形ABC的面积,因此,对于除点C外的任意点C1,都有三角形ABC1的面积小于三角形三角形ABC的面积,故点C为半圆中点时,三角形ABC面积最大.
一、特殊探路,一般推证
例2如图,⊙O1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A不重合),直线PA交⊙O2于点C,PB切⊙O2于点B,则 的值为
(A) (B) (C) (D)
分析:本题是一道选择题,给出四个答案有且只有一个是正确的,因此可以取一个特殊位置进行研究,当点P满足PB⊥AB时,可以通过计算得出PB=
本题还可研究三角形ABC的周长何时最大的问题。
提示:利用周长与面积之间的关系。要三角形ABC的周长最大,AB为常数,只需AC+BC最大,而(AC+BC)2=AC2+CB2+2AC×BC=AB2+4×ΔABC的面积,因此ΔABC的面积最大时,AC+BC最大,从而ΔABC的周长最大。
从以上一道题及其三个变式的研究我们不难发现,解决动态几何问题的常见方法有:
不难从题目的条件可得:OA=OC,∠OCF=∠OAE,而AE=CF,则ΔOEA≌ΔOFC,则OE=OF,且∠FOC=∠EOA,所以∠EOF=∠EOA+∠AOF=∠FOC+∠FOA=900,则∠EOF为直角,故ΔEOF为等腰直角三角形。
二、 动手实践,操作确认
例4(2003年广州市中考试题)在⊙O中,C为弧AB的中点,D为弧AC上任一点(与A、C不重合),则
(即例3的第2Βιβλιοθήκη Baidu第3问)
分析:(2)本题的方法很多,其一,可以建立四边形AEOF与AE长的函数关系式,如设AE=x,则AF= ,
而三角形AOB的面积与三角形AOE的面积之比= ,而三角形AOB的面积= ,则三角形AOE的面积= ,同理三角形AOF的面积= ,因此四边形AEOF的面积= ;即AEOF的面积不会随点E、F的变化而变化,是一个定值,且为2.
相关文档
最新文档