第二章习题答案作业

合集下载

第二章 习题答案

第二章 习题答案

第二章 需求、供给和均衡价格2. 假定表2—1(即教材中第54页的表2—5)是需求函数Q d =500-100P 在一定价格范围内的需求表:表2—1某商品的需求表 价格(元) 1 2 3 4 5需求量 400 300 200 100 0(1)求出价格2元和4元之间的需求的价格弧弹性。

(2)根据给出的需求函数,求P =2元时的需求的价格点弹性。

(3)根据该需求函数或需求表作出几何图形,利用几何方法求出P =2元时的需求的价格点弹性。

它与(2)的结果相同吗?解答:(1)根据中点公式e d =-ΔQ ΔP ·P 1+P 22,Q 1+Q 22),有e d =2002·2+42,300+1002)=1.5(2)由于当P =2时,Q d =500-100×2=300,所以,有e d =-d Q d P ·P Q =-(-100)·2300=23(3)根据图2—4,在a 点即P =2时的需求的价格点弹性为e d =GB OG =200300=23或者 e d =FO AF =23图2—4显然,在此利用几何方法求出的P =2时的需求的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都是e d =23。

3. 假定表2—2(即教材中第54页的表2—6)是供给函数Q s =-2+2P 在一定价格范围内的供给表:表2—2某商品的供给表 价格(元) 2 3 4 5 6供给量 2 4 6 8 10(1)求出价格3元和5元之间的供给的价格弧弹性。

(2)根据给出的供给函数,求P =3元时的供给的价格点弹性。

(3)根据该供给函数或供给表作出几何图形,利用几何方法求出P =3元时的供给的价格点弹性。

它与(2)的结果相同吗?解答:(1)根据中点公式e s =ΔQ ΔP ·P 1+P 22,Q 1+Q 22),有e s =42·3+52,4+82)=43(2)由于当P =3时,Q s =-2+2×3=4,所以,e s =d Q d P ·P Q =2·34=1.5。

(完整版)第二章货币资金习题及答案解析

(完整版)第二章货币资金习题及答案解析

第二章货币资金一、单项选择题1.甲股份有限公司2010年度正常生产经营过程中发生的下列事项中,不影响其2010年度利润表中营业利润的是( )。

A.有确凿证据表明存在某金融机构的款项无法收回,该款项已计提过准备。

B.期末计提带息应收票据利息C.外币应收账款发生汇兑损失D.无法查明原因的现金短缺2.下列情形中,不违背《内部会计控制规范——货币资金》规定的“确保办理货币资金业务的不相容岗位相互分离、制约和监督”原则的是( )。

A.由出纳人员兼任会计档案保管工作B.由出纳人员兼任固定资产明细账及固定资产总账的登记工作C.由出纳人员兼任收入总账和明细账的登记工作D.由出纳人员保管签发支票所需全部印章3.下列经济业务中,企业不得动用库存现金支付的是( )。

A.支付职工奖金65000元B.购买办公用品付款300元C.预付出差人员携带的差旅费5000元D.支付购买设备款1200元4.企业用于办理日常转账结算和现金收付的银行存款户是( )。

A.临时存款户B.基本存款户C.专用存款户D.一般存款户5.企业将准备用于有价证券投资的现金存入证券公司指定的账户时,应借记的会计科目是( )。

A.银行存款B.其他货币资金C.其他应收款D.短期投资6.企业发现现金短缺属于无法查明的其他原因,按照管理权限经批准处理时,应在以下科目核算( )。

A.其他应收款B.管理费用C.其他应付款D.财务费用7.企业采用托收承付方式销售商品,其销售收入确认的时间是( )。

A.发出商品时B.发出商品时并向银行办妥托收手续时C.发出商品时并办妥托运手续时D.购买单位承付全部货款8.企业进行外币存款核算时,使用的会计科目是 ( )。

.A.其他货币资金B.银行存款C.备用金D.其他应收款9.下列各项中,不通过“其他货币资金”科目核算的是( )。

A.信用证存款B.银行本票存款C.信用卡存款D.备用金10.下列款项中,可以采用托收承付方式结算的有()。

A.商品交易的货款B.提供劳务的款项C.代销商品的款项D.赊销商品的款项11.企业将款项汇往外地开立采购专用账户时,应借记的会计科目是()。

高等工程数学第二章习题及答案

高等工程数学第二章习题及答案

第2章 线性代数方程组数值解法 研究n 阶线性方程组Ax b =的数值解法.()ij A a =是n n⨯矩阵且非奇异,12(,,,)Tn x x x x = ,12(,,,)Tn b b b b =两类数值方法:(1) 直接法:通过有限次的算术运算,若计算过程中没有舍入误差,可以求出精确解的方法.Ax b Gx d == 等价变换G 通常是对角矩阵、三角矩阵或者是一些结构简单的矩阵的乘积.(2) 迭代法:用某种极限过程去逐次逼近方程组的解的方法.(1)()i i Ax b x Bx k x Bx k +==+−−−−−→=+ 等价变换建立迭代格式,0,1,i =一、向量范数与矩阵范数 1. 向量范数【定义】 若对nK 上任一向量x ,对应一个非负实数x ,对任意,nx y R ∈及K α∈,满足如下条件(向量范数三公理) (1) 非负性:0x ≥,且0x =的充要条件是0x =;(2)齐次性:x xαα=;(3)三角不等式:x y x y+≤+.则称x为向量x的范数.常用的向量范数: (1) 1—范数11nii x x ==∑(2) 2—范数12221()ni i x x ==∑(3) ∞—范数1max ii nxx ∞≤≤=(4) 一般的p —范数11()pnpi pi xx ==∑2. 矩阵范数【定义】 若n nK ⨯上任一矩阵()ij n n A a ⨯=,对应一个非负实数A ,对任意的,n nA B K ⨯∈和K α∈,满足如下条件(矩阵范数公理):(1) 非负性:0A ≥,且0A =的充要条件是0A =;(2)齐次性:A Aαα=;(3)三角不等式:A B A B +≤+;(4)乘法不等式:AB A B≤.则称A为矩阵A的范数.矩阵范数与向量范数是相容的:Ax A x≤向量范数产生的从属范数或算子范数:10max maxx x AxA Ax x=≠==常见从属范数:(1) 1—范数111max ||nij j ni A a ≤≤==∑(2) ∞—范数11max ||nij i nj A a ∞≤≤==∑(3) 2—范数2A =谱半径1()max ||H i i n A A ρλ≤≤=,iλ为H A A 的特征值.H A 为A 的共轭转置. 注:矩阵A 的谱半径不超过A 的任一范数,即()A A ρ≤范数等价性定理:,s t x x为n R 上向量的任意两种范数,则存在常数12,0c c >,使得12,ns t s c x x c x x R ≤≤ ∀∈.注:矩阵范数有同样的结论. 【定理2.1】是任一向量范数,向量序列()k x 收敛于向量*x 的充要条件是()*0,k x x k -→ →∞二、 Gauss 消去法 1.顺序Gauss 消去法 将方程Ax b =写成如下形式11112211,121122222,11122,1n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a ++++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩其中记,1,1,2,,.i n i a b i n +==消元过程:第一次消元:设110a ≠,由第2,3,,n 个方程减去第一个方程乘以1111/(2,3,,)i i m a a i n == ,则将方程组中第一个未知数1x消去,得到同解方程11112211,1(1)(1)(1)22222,1(1)(1)(1)22,1n n n n n n n nn n n n a x a x a x a a x a x a a x a x a ++++++=⎧⎪ ++=⎪⎨⎪⎪ ++=⎩其中, (1)11,2,3,,;2,3,,,1ijij i j a a m a i n j n n =-==+ . 1111/i i m a a =,2,3,,i n = .第二次消元:设(1)220a ≠,.由第2,3,,n 个方程减去方程组中的第2个方程乘以(1)(1)2222/(3,4,,)i i m a a i n == ,则将方程组第2个未知数2x 消去,得到同解方程11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(2)(2)(2)33,1n n n n n n n n n nnn n n n a x a x a x a x a a x a a x a a x a x a a x a x a ++++++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ ++=⎩其中(2)(1)(1)22, 3,4,,; 3,4,,,1ij ij i j a a m a i n j n n =-==+ . (1)(1)2222/i i m a a =,3,4,,i n = .经过1n -次消元后,原方程组变成等价方程组11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(1)(1),1n n n n n n n n n n n nn n n n a x a x a x a x a a x a a x a a x a x a a x a +++--+++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ =⎩其中()(1)(1), 1,2,,k k k ij ij ik ij a a m a i k k n --=-=++ , 1,2,,,1j k k n n =+++ .(1)(1)/k k ik ik kkm a a --=,1,2,,i k k n =++ ;1,2,,1k n =- .回代过程:(1)(1),1(1)(1)(1),1,,1/[]/,1,2,,2,1.n n n n n m n i i i ii n i j j i j j i x a a x a a x a i n n --+---+=+⎧=⎪⎨=-=--⎪⎩∑计算量:按常规把乘除法的计算次数合在一起作为Gauss 消去法总的计算量,而略去加减法的计算次数. 在消去过程中,对固定的消去次数(1,2,,1)k k n =- ,有:除法(1)(1),,/,1,1,,k k ik i k k k m a a i k k n --= =++ 共计n k -次;乘法(1),,1,2,,;1,2,,,1k ik k j m a i k k n j k k n n - =++ =+++ 共计()(1)n k n k --+次.因此,消去过程总的计算量为1311[()(1)]3n k M n k n k n k n-==--++-≈∑ 回代过程的乘除法计算次数为21()2n n +.与消去法计算量相比可以略去不计.所以, Gauss 消去法总的计算量大约为313n .2. Gauss-Jordan 消去法Gauss-Jordan 消去法是Gauss 消去法的一种变形.此方法的第一次消元过程同Gauss 消去法一样,得到(1)(1)(1)(1)11112213311,1(1)(1)(1)(1)22223322,1(1)(1)(1)(1)32233333,1(1)(1)(1)(1)2233,1,,,,n n n n n n n n n nn nn n n n a x a x a x a x a a x a x a x a a x a x a x a a x a x a x a ++++⎧++++=⎪ +++=⎪ +++=⎨ +++= ⎪⎪⎪⎪⎩其中,(1)11,2,,,1jj a a j n n ==+ . 第二次消元:设(1)220a ≠,由第1,3,4,,n 个方程减去第2个方程乘以(1)(1)2222/(1,3,4,,)i i m a a i n == ,则得到同解方程组(2)(2)(2)11113311,1(1)(2)(2)(2)22223322,1(2)(2)(2)33333,1(2)(2)33,1,,,n n n n n n n n n nnn n n n a x a x a x a a x a x a x a a x a x a a x a x a +++++ +++= +++= ++= ++= (2),⎧⎪⎪⎪⎨⎪⎪⎪⎩继续类似的过程,在第k 次消元时,设(1)k kk a -,将第i 个方程减去第k 个方程乘以(1)(1)/k k ik ik kk m a a --=,这里1,3,4,1,1,,i k k n =-+ .经过1n -次消元,得到(2)1111,1(1)(2)2222,1(2)(2)33,1,,,n n n n n a x a a x a a x a +++⎧ =⎪ =⎪⎪ ⎨⎪⎪⎪ =⎩其中()(1)(1),1,2,,1,1,,k k k ij ij ik kj a a m a i k k n --=-=-+ ;1,2,,,1; 1,2,,1j n n k n =+=- .此时,求解回代过程为(1)(1),1/,1,2,,n i i i n iix a a i n --+= = 经统计,总的计算量约为312M n ≈次乘除法. 从表面上看Gauss-Jordan 消去法似乎比Gauss 消去法好,但从计算量上看Gauss -Jordan 消去法明显比Gauss消去法的计算量要大,这说明用Gauss-Jordan 消去法解线性方程组并不可取.但用此方法求矩阵的逆却很方便. 3.列选主元Gauss 消去法在介绍Gauss 消去法时,始终假设(1)0k kk a -≠,称(1)k kka -为主元.若(1)0k kka -=,显然消去过程无法进行.实际上,既使(1)0k kka -≠,但(1)k kka -很小时,用它作除数对实际计算结果也是很不利的.称这样的(1)k kka -为小主元.【例2.2】设计算机可保证10位有效数字,用消元法解方程1112120.3100.7,0.9,x x x x -⎧⨯+=⎪⎨ +=⎪⎩【解】经过第一次消元:第2个方程减去第1个方程乘以212111/m a a =得1112(1)(1)222230.3100.7x x a x a -⎧⨯+=⎪⎨ =⎪⎩其中(1)1222222111/0.333333333310a a a a =-=-⨯,(1)123323211113(/)0.233333333310a a a a a =-⋅=-⨯于是解得(1)(1)223221/0.7000000000,0.0000000000,x a a x ⎧==⎪⎨=⎪⎩而真解为120.2,0.7x x = =注:造成结果失真的主要因素是主元素11a太小,而且在消元过程中作了分母,为避免这个情况发生,应在消元之前,作行交换.【定义】 若 (1)(1)||max ||k k k r k ik k i na a --≤≤=,则称(1)||k k r k a - 为列主元素. k r 行为主元素行,这时可将第 k r行与第k 行进行交换,使(1)||k k r k a - 位于交换后的等价方程组的 (1)k kk a - 位置,然后再施实消去法,这种方法称为列选主元Gauss 消去法或部分主元Gauss 消去法.【例2.3】 应用列选主元Gauss 消去法解上述方程. 【解】 因为2111a a >,所以先交换第1行与第2行,得1211120.9,0.3100.7,x x x x -⎧+=⎪⎨⨯+=⎪⎩ 然后再应用Gauss 消去法,得到消元后的方程组为1220.9,0.7.x x x ⎧+=⎨=⎩回代求解,可以得到正确的结果.即120.2,0.7x x = =.三、三角分解法 设方程组Ax b =的系数矩阵A 的顺序主子式不为零.即1112121222110,1,2,,.kk k k k kka a a a a a k n a a a ∆=≠=在Gauss 消去法中,第一次消元时,相当于用单位下三角阵211131111010010n m L m m -⎡⎤⎢⎥- ⎢⎥⎢⎥=- ⎢⎥ ⎢⎥⎢⎥- ⎢⎥⎣⎦ ,左乘方程组Ax b =,得11A x b =,其中11121(1)(1)122211(1)200n n n nn a a a a a A L a a -(1)⎡⎤⎢⎥ ⎢⎥==⎢⎥ ⎢⎥⎢⎥ ⎣⎦ ,1(1)(1)111,11,1,1(,,,)Tn n n n b L b a a a -+++== .第二次消元时,相当于用单位下三角阵1232210101001n L m m - ⎡⎤⎢⎥ ⎢⎥⎢⎥= - ⎢⎥⎢⎥⎢⎥ - ⎢⎥⎣⎦0 ,左乘方程组11A x b =,得22A x b =其中11121(1)(1)22211(2)(2)221333(2)(2)300000n n n n nn a a a a a A L L A a a a a --⎡⎤ ⎢⎥ ⎢⎥⎢⎥== ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦ ,11(1)(2)(2)2211,12,13,1,1(,,,,).Tn n n n n b L L b a a a a --++++==经过1n -次消元,最后得到等价方程组11n n A x b --=其中11121(1)222111111221(1)n n n n n n nn a a a a a A L L L L A a (1)--------⎡⎤⎢⎥ ⎢⎥==⎢⎥⎢⎥⎢⎥ ⎣⎦1111(1)(1)112221,12,1,1(,,,)n Tn n n n n n n b L L L L b a a a --------+++==注意到1n A -是一个上三角阵,记111111221n n n U A L L L L A -------==则121()n A L L L U LU -==其中,121n L L L L -= . 不难验证21313212_1111n n nn m L m m m m m ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 1 ⎢⎥⎣⎦是单位下三角阵.于是解线性方程组Ax b =,就转化为解方程 LUx b =,若令Ux y =就得到一个与 Ax b =等价的方程组Ly b Ux y =⎧⎨=⎩【定理2.2】 若 A 为 n 阶方阵,且 A 的所有顺序主子式0k ∆≠,1,2,,k n = .则存在唯一的一个单位下三角矩阵 L 和一个上三角矩阵 U ,使A LU =.在上述过程中,若不假设A 的顺序主子式都不为零,只假设A 非奇异,那么Gauss 消去法将不可避免要应用两行对换的初等变换.第一次消元,将第1行与第1r 行交换,相当于将方程组Ax b =左乘矩阵11r P :1111r r P Ax P b=经第一次消元得11111111r r L P Ax L P b--=即系数矩阵为11111r A L P A-=,其中110111r P ⎡⎢ ⎢ 1= 1 0 1 ⎣0 0 ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦1 列 1r列 类似地,经1n -次消元,有121111111,22,11n n n n n r n n r r A L P L P L P A----------= .如果预先知道每一个(1,2,,1)iir P i n =- ,则在消元之前就全部作交换,得 1211,2,1,n n n r n r r A P P P A PA----== ,其中,1211,2,1,n n n r n r r P P P P ----= .即原方程变为PAx Pb =然后再消元,相当于对PA 做三角分解PA LU =由以上讨论,可得结论 【定理2.3】 若A 非奇异,则一定存在排列矩阵 P ,使得 PA 被分解为一个单位下三角阵和一个上三角1 行1行r阵的乘积,即PA LU =成立.这时,原方程组Ax b = 等价于 PAx Pb =,即等价于求解LUx Pb =令Ux y =则Ly Pb =实际求解时,先解方程组Ly Pb =,再根据 y 求解 Ux y =,即得原方程组Ax b =的解. 这种求解方法称为三角分解法.常用三角分解方法有以下几种. 1.Doolittle 分解方法 假设系数矩阵A 不需要进行行交换,且三角分解是唯一的. 记21121110n n l L l l ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ ⎢⎥⎣⎦ , 11121222n n nn u u u u u U u ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ 0 ⎣⎦ 于是有1112111121222212222112111110n n n n n n n n nn a a a u u u u u a a a l l l a a a ⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎣⎦⎣⎦ nn u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥0 ⎣⎦从前面讨论A 的LU 分解过程可看出,L 、U 的元素都是用有关的(1)k ij a -来表示的,而它们的计算较麻烦.现在给出直接从系数矩阵A ,通过比较等式的两边逐步把L 和U 构造出来的方法,而不必利用Gauss 消去法的中间结果(1)k ij a -.计算步骤: (1) 由L 阵的第1行分别乘U 阵的各列,先算出U 阵的第1行元素 11,1,2,,j j u a j n = = .然后,由L 阵的各行分别去乘U 阵的第1列,算出L 阵的第1列元素1111/,2,3,,i i l a a i n = = .(2)现假设已经算出U 阵的前1r -行元素,L 阵的前1r -列元素,下面来算U 阵的第r 行元素,L 阵的第r 列元素.由L 阵的第r 行分别乘U 阵的第j 列(,1,,)j r r n =+ ,得11r ij rk kj rjk a l u u -==+∑所以,得U 阵的第r 行元素11,,1,,r rj rj rk kj k u a l u j r r n-==- =+∑ .再由L 阵的第i 行(1,2,,)i r r n =++ 分别去乘U 阵的第r 列,得11r ir ik kr ir rrk a l u l u -==+∑,所以,得L 阵的第r 列元素11[]/,1,2,,.r ir ir ik kr rr k l a l u u i r r n -==- =++∑取1,2,,r n = 逐步计算,就可完成三角分解A LU =;(3)解与Ax b = 等价的方程组Ly b Ux y =⎧⎨=⎩逐次用向前代入过程先解Ly b = 得1111,2,3,,.i i i ij j j y b y b l y i n -==⎧⎪⎨=- =⎪⎩∑然后再用逐次向后回代过程解Ux y =得1/,()/,1,2,,2,1.n n nn n i i ij j ii j i x y u x y u x u i n n =+=⎧⎪⎨=- =--⎪⎩∑2.Crout 分解方法仍假设系数矩阵A 不需要进行行交换,且三角分解是唯一的.即ˆA L=ˆU .与Doolittle 分解方法的区别在111212122211n n n n nn a a a a a a a a a ⎡⎤ ⎢⎥ ⎢⎥=⎢⎥ ⎢⎥⎢⎥ ⎣⎦ 1122ˆˆl l ⎡⎤ 0⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥⎣⎦ 122ˆ1ˆ10n u u ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1 ⎣⎦ 比较两边,则可推导出与Doolittle 分解方法类似的公式,不过Crout 分解方法是先算ˆL 的第r 列,然后再算ˆU的第r 行.3.Cholesky 分解方法若 A 为对称正定矩阵,则有 ˆT U L =,即11()()TT T A LDL LD LD LL ===其中L 为下三角阵. 进一步展开为1121111211112122221222221212n n n n n n nn n n nn a a a l l l l a a a l l l l l l l a a a ⎡⎤⎡⎤ ⎢⎥⎢⎥ 0 ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦⎣⎦ 0nn l ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦ 比较两边对应元素,容易得到12121()r rr rr rk k l a l -==-∑ ,11()/r ir ir ik rk rrk l a l l l -==-∑ 1,2,,;1,2,,.r n i r r n ==++Cholesky 分解的优点:不用选主元. 由21rrr rk k a l ==∑ 可以看出||1,2,,.rk l k r ≤=这表明中间量rk l得以控制,因此不会产生由中间量放大使计算不稳定的现象. Cholesky 分解的缺点:需要作开方运算. 改进的Cholesky 分解: 改为使用分解T A LDL =即11121121121221222121111n n n n n n n n nn a a a d l l l d a a a l l d a a a ⎡⎤ 1 ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 1 1 ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎢⎥ ⎣⎦⎣⎦⎣⎦ 2n l ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1⎣⎦其中21ˆl 1ˆn l 2ˆn l ˆnn l 1ˆn u12111()/r r rr rk k k r ir ir ik k rk rk d a l d l a l d l d-=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑,1,2,,;1,2,,.r n i r r n ==++Cholesky 分解方法或平方根法:应用Cholesky 分解可将Ax b =分解为两个三角形方程组T Ly b L x y ⎧= ⎪⎨= ⎪⎩分别可解得111111/,()/.i i i ik k ii k y b l y b l y l i n -=⎧=⎪⎨=-, =2,3,,⎪⎩∑和1/,()/1,.n n nn n i i ki k ii k i x y l x y l x l i n n =+⎧=⎪⎨=-, =--2,,2,1⎪⎩∑改进的Cholesky 分解方法或改进的平方根法:应用改进的Cholesky 分解,将方程组Ax b =分解为下面两个方程组1,,T Ly b L x D y -= ⎧⎨= ⎩同理可解得1111,,2,3,,.i i i ik k k y b y b l y i n ==⎧=⎪⎨=- =⎪⎩∑和1/,/,1,2,,2,1.n n n n i i i ki k k i x y d x y d l x i n n =+⎧=⎪⎨=- =--⎪⎩∑ 4.解三对角方程组的追赶法若()ij n n A a ⨯=满足1||||,1,2,,.nii ij j j ia a i n =≠> =∑则称A 为严格对角占优矩阵.若A 满足1||||,1,2,,.nii ij j j ia a i n =≠≥ =∑且其中至少有一个严格不等式成立,则称A 为弱对角占优矩阵.现在考虑Ax d = 的求解,即11112222211111n n n n n n n n n b c x d a b c x d a b c x d d a b x -----⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ = ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 系数矩阵A 满足条件11||||0,||||||,,0,2,3,, 1.||||0,i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+ ≠=-⎨⎪>>⎩采用Crout 分解方法11112222221111n n n n n n n b c a b c a b c a b βαβγαγα---⎡⎤ ⎡⎤⎢⎥ 1 ⎢⎥⎢⎥ ⎢⎥⎢⎥ = ⎢⎥⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎣⎦ ⎣⎦ 1n β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥1 ⎢⎥⎢⎥ 1 ⎣⎦其中,,,i i i αβγ为待定系数.比较上式两边可得到111111,;,,2,3,,;,2,3,, 1.i i i i i i i i i b c a b i n c i n ααβγγβααβ-= == =+ == =-进而可导出1111111,2,3,,.,/,,2,3,,./(),2,3,, 1.i i i i i i ii i i i a i n b c b b i n c b i n γαβααββαβ--⎧= =⎪= =⎪⎨=- =⎪⎪=- =-⎩由此可看出,真正需要计算的是(1,2,,1)i n β=- ,而i α可由,i i b a 和1i β-产生.因此,实现了A 的Crout 分解后,求解Ax d =就等价于解方程组Ly dUx y =⎧⎨=⎩从而得到解三对角方程组的追赶法公式: (1) 计算i β的递推公式:1111/,/(),2,3,, 1.i i i i i c b c b i n ββαβ-⎧=⎪⎨=- =-⎪⎩(2) 解方程组Ly d =:11111/()/(),2,3,,.i i i i i i i y d b y d a y b a i n β--⎧=⎪⎨=-- =⎪⎩(3) 解方程组Ux y =:1,1,2,,2,1.n n i i i i x y x y x i n n β+⎧=⎪⎨=- =--⎪⎩追赶法的乘除法次数是66n -次.将计算121n βββ-→→→ 及12n y y y →→→ 的过程称之为“追”的过程,将计算方程组Ax d =的解121n n x x x x -→→→→ 的过程称之为“赶”的过程.四、迭代法 将Ax b =改写为一个等价的方程组 x Bx k =+建立迭代公式 (1)(),0,1,2,.i i x Bx k i +=+ =称矩阵B 为迭代矩阵.【定义】 如果对固定的矩阵B及向量k,对任意初始猜值向量(0)x ,迭代公式(1)()i i +()i()*lim i i x x →+∞=成立,其中*x 是一确定的向量,它不依赖于(0)x 的选取.则称此迭代公式是收敛的,否则称为发散的.如果迭代收敛,则应有**,x Bx k =+1. 收敛性()()*,0,1,2,i i x x i ε=- =为第i步迭代的误差向量.则有(1)(1)*()*()(),0,1,2,.x x B x x B i εε++=-=-==所以,容易推出()(0),0,1,2,,i i B i εε= =其中,(0)(0)*xxε=-为初始猜值的误差向量.设n nB K ⨯∈,lim 0i i B →+∞=⇔ ()1B ρ<.迭代法收敛基本定理: 下面三个命题是等价的 (1) 迭代法(1)()i i x Bx k +=+收敛;(2)()1B ρ<;(3) 至少存在一种矩阵的从属范数⋅,使1B <注:当条件()1B ρ<难以检验时,用1B 或B ∞等容易求出的范数,检验11B <或1B∞<来作为收敛的充分条件较为方便.常用迭代法如下. 2.Jacob 迭代 考察线性方程组Ax b =,设A 为非奇异的n 阶方阵,且对角线元素0ii a ≠(1,2,,)i n = .此时,可将矩阵A 写成如下形式A D L U =++,1122(,,,)nn D diag a a a = ,21313212000n n a L a a a a ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 0 ⎢⎥⎣⎦ ,12131232000n n a a a a a U ⎡⎤ ⎢⎥ ⎢⎥⎢⎥= 0 ⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎣⎦ ,建立Jacobi 迭代公式(1)1()1(),i i x D L U x D b +--=-++迭代矩阵11()J B D L U I D A --=-+=-J B 的具体元素为112111122122221200n n J n n nn nn a a a a a a B a a a a a a ⎡⎤ - -⎢⎥⎢⎥⎢⎥- - ⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥- - 0 ⎢⎥⎣⎦ Jacobi 迭代法的分量形式如下1(1)()()111(),j n i i i jj jm m jm m m m j jj xb a x a x a -+==+=--∑∑1,2,,;0,1,2,.j n i = =3.Gauss-Seidel 迭代容易看出,在Jacobi 迭代法中,每次迭代用的是前一次迭代的全部分量()(1,2,,)i jx j n = .实际上,在计算(1)i j x +时,最新的分量(1)(1)(1)121,,,i i i j x x x +++- 已经算出,但没有被利用.事实上,如果Jacobi 迭代收敛,最新算出的分量一般都比前一次旧的分量更加逼近精确解,因此,若在求(1)i j x+时,利用刚刚计算出的新分量(1)(1)(1)121,,,i i i j x x x+++- ,对Jacobi 迭代加以修改,可得迭代公式1(1)(1)()111(),j ni i i jj jm m jm m m m j jj xb a x a x a -++==+=--∑∑1,2,,;0,1,2,.j n i = =矩阵形式(1)1()1()(),0,1,2,.i i x D L Ux D L b i +--=-++-+=1()G B D L U -=--+注:(1)两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更快一些.(2)但也有这样的方程组,对Jacobi 迭代法收敛,而对Gauss-Seidel 迭代法却是发散的. 【例2.4】 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下面的方程组121232342,46,4 2.x x x x x x x ⎧- =⎪-+-=⎨⎪-+=⎩初始猜值取0(0,0,0)x =. 【解】 Jacobi 迭代公式为(1)()12(1)()()213(1)()321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下 (1)(2)(3)(4)(0.5,1.5,0.5),(0.875,1.75,0.875),(0.938,1.938,0.938),(0.984,1.969,0.984).T T T T x x x x ====Gauss-Seidel 迭代公式为(1)()12(1)(1)()213(1)(1)321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下(1)(2)(3)(4)(0.5,1.625,0.9063),(0.9063,1.9532,0.9883),(0.9883,2.0,0.9985),(0.9985,1.999,0.9998).T T T T x x x x ====从这个例子可以看到,两种迭代法作出的向量序列(){}i x 逐步逼近方程组的精确解*(1,2,1)T x =,而且Gauss-Seidel 迭代法收敛速度较快.一般情况下,当这两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更3.超松弛迭代法为了加快迭代的收敛速度,可将Gauss-Seidel 迭代公式改写成1(1)()(1)()11(),j ni i i i jjj jm m jm m m m jjj xx b a x a x a -++===+--∑∑ 1,2,,;0,1,2,.j n i = =并记1(1)(1)()11(),j ni i i jj jm m jm m m m jjj rb a x a x a -++===--∑∑称 (1)i j r + 为 1i + 步迭代的第 j 个分量的误差向量.当迭代收敛时,显然有所有的误差向量(1)0(),1,2,,.i j r i j n +→→∞=为了获得更快的迭代公式,引入因子R ω∈,对误差向量 (1)i j r + 加以修正,得超松弛迭代法(简称SOR 方法)(1)()(1),0,1,2,.i i i j j j x x r i ω++=+ =即1(1)()(1)()1(),j ni i i i jjj jm mjm m m m jjjxx b a xa x a ω-++===+--∑∑1,2,,;0,1,2,.j n i = =适当选取因子ω,可望比Gauss-Seidel 迭代法收敛得更快.称ω为松弛因子.特别当1ω=时,SOR 方法就是Gauss-Seidel 迭代法.写成矩阵向量形式(1)1()1()[(1)](),j i x D L D U x D L b ωωωωω+--=+--++0,1,2,.i =迭代矩阵为1()[(1)].B D L D U ωωωω-=+--实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的. 4.迭代收敛其它判别方法:用迭代法收敛基本定理来判断收敛性时,当n 较大时,迭代矩阵的谱半径计算比较困难,因此,人们试图建立直接利用矩阵元素的条件来判别迭代法的收敛定理. (1) 若方程组Ax b =中的系数矩阵A 是对称正定阵,则 Gauss-Seidel 迭代法收敛. 对于SOR 方法,当02ω<< 时迭代收敛(2)若A 为严格对角占优阵,则解方程组 Ax b = 的Jacobi 迭代法,Gauss -Seidel 迭代法均收敛. 对于SOR 方法,当01ω<< 时迭代收敛.【例2.5】 设线性方程组为121221,32,x x x x ⎧+=-⎪⎨+=⎪⎩建立收敛的Jacobi 迭代公式和Gauss -Seidel 迭代公式. 【解】 对方程组直接建立迭代公式,其Jacobi 迭代矩阵为0230J B -⎡⎤=⎢⎥- ⎣⎦,显见谱半径()1J B ρ=>,故Jacobi 迭代公式发散.同理Gauss -Seidel 迭代矩阵为0206G B -⎡⎤=⎢⎥ ⎣⎦,谱半径()61G B ρ=>,故Gauss -Seidel 选代公式也发散. 若交换原方程组两个方程的次序,得一等价方程组121232,21,x x x x ⎧+=⎪⎨+=-⎪⎩其系数矩阵显然对角占优,故对这一等价方程组建立的Jacobi 迭代公式,Gauss -Seidel 迭代公式皆收敛. (3)SOR 方法收敛的必要条件是 02ω<<【定理2.5】 如果A 是对称正定阵,且02ω<<,则解Ax b =的SOR 方法收敛.注:当(0,2)ω∈ 时,并不是对任意类型的矩阵A ,解线性方程组Ax b =的SOR 方法都是收敛的.当SOR 方法收敛时,通常希望选择一个最佳的值opt ω使SOR 方法的收敛速度最快.然而遗憾的是,目前尚无确定最佳超松弛因子opt ω的一般理论结果.实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的.【例2.6】 求解线性方程组Ax b =,其中10.3000900.308980.30009100.4669110.274710.30898A - -- -0.46691 0= - -- 00.274711(5.32088,6.07624,8.80455,2.67600).T b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ - ⎣⎦ =-分别利用Jacobi 迭代法,Gauss -Seidel 迭代法,SOR 迭代法求解. 【解】其结果列入下表中,方程组精确解(五位有效数字)为*(8.4877,6.4275, 4.7028,4.0066).T x =-Jacobi 迭代法计算结果i()1i x()2i x ()3i x ()4i x ()2||||i r0 012.3095 1 5.3209 6.0762 -8.8046 2.6760 5.3609 27.97113.5621 -5.2324 1.90143.631820 8.4872 6.4263 -4.7035 4.0041 0.0041 218.48606.4271 -4.7050 4.0063 0.0028Gauss-Seidel 迭代法计算结果i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 5.3209 7.6730 -5.2220 2.8855 3.6202 28.51506.1933 -5.1201 3.90040.49098 8.4832 6.4228 -4.7064 4.0043 0.0078 98.48556.4252-4.70554.00550.0038SOR 迭代法计算结果(1.16ω=)i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 6.1722 9.1970 -5.2320 3.6492 3.6659 29.69416.1177 -4.8999 4.43351.33136 8.4842 6.4253 -4.7005 4.4047 0.0051 78.48686.4288-4.70314.00650.0016计算结果表明,若求出精确到小数点后两位的近似解,Jacobi 迭代法需要21次,Gauss -Seidel 迭代法需要9次,而SOR 迭代法(选松弛因子 1.16ω=)仅需要7次,起到加速作用.5.误差分析 【定理2.6】设 *x 是方程 Ax b = 的惟一解,v ⋅ 是某一种向量范数,若对应的迭代矩阵其范数1v B <,则迭代法(1)(),0,1,2,.i i xBx k i +=+ = 收敛,且产生向量序列(){}i x 满足()*()(1)||||||||||||1||||i i i vv vvB x x x x B --≤--()*(1)(0)||||||||||||1||||i i vv vvB x x x x B -≤--【证明】 由迭代收敛基本定理的(3)知,迭代法(1)(),0,1,2,.i i x Bx k i +=+ =收敛到方程的解*x .于是,由迭代公式立即得到(1)*()*(1)()()(1)(),().i i i i i i x x B x x x x B x x ++--=--=-为书写方便把v 范数中v 略去,有估计式(1)*()*||||||||||||,i i x x B x x +-≤⋅-(1)()()(1)||||||||||||.i i i i x x B x x +--≤⋅-再利用向量范数不等式||||||||||||x y x y -≥-于是得第一个不等式()(1)(1)()()*(1)*()*||||||||||||||||||||(1||||)||||,i i i i i i i B x x x x x x x x B x x -++ -≥-≥--- ≥--再反复递推即第二个不等式.注:(1)若事先给出误差精度ε,利用第二个不等式可得到迭代次数的估计(1)(0)(1||||)ln ln ||||||||v v v B i B x x ε⎡⎤->⎢⎥-⎣⎦ (2)在||||v B 不太接近1的情况下,由第一个不等式,可用()(1)||||i i v x x ε--<作为控制迭代终止的条件,并取 ()i x 作为方程组 Ax b = 的近似解.但是在||||v B 很接近1时,此方法并不可靠.一般可取1,2,v =∞或F .【例2.7】 用Jacobi 迭代法解方程组123123123202324,812,231530.x x x x x x x x x ⎧++=⎪++=⎨⎪-+=⎩问Jacobi 迭代是否收敛?若收敛,取(0)(0,0,0)T x =,需要迭代多少次,才能保证各分量的误差绝对值小于610-?【解】 Jacobi 迭代的分量公式为(1)()()123(1)()()213(1)()()3121(2423)201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x +++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩Jacobi 迭代矩阵J B 为130102011088210155J B ⎡⎤ - -⎢⎥⎢⎥⎢⎥=- -⎢⎥⎢⎥⎢⎥- ⎢⎥⎣⎦,由5251||||max ,,1208153J B ∞⎧⎫==<⎨⎬⎩⎭知,Jacobi 迭代收敛. 因设(0)(0,0,0)Tx =,用迭代公式计算一次得(1)(1)(1)12363,, 2.52x x x = = =而(1)(0)|||| 2.x x ∞-=于是有6110(1)13ln ln 13.23i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所以,要保证各分量误差绝对值小于610-,需要迭代14次.【例2.8】 用Gauss -Seidel 迭代法解例2.11中的方程组,问迭代是否收敛?若收敛,取(0)(0,0,0)Tx =,需要迭代多少次,才能保证各分量误差的绝对值小于610-?【解】 Gauss -Seidel 迭代矩阵G B 为102403601()03025524000G B D L U - - ⎡⎤⎢⎥=-+= -⎢⎥⎢⎥ 38 -3⎣⎦显然1||||14G B =<,所以迭代收敛. Gauss -Seidel 迭代分量公式为(1)()()123(1)(1)()213(1)(1)(1)3121(2423),201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x ++++++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩因取(0)(0,0,0)T x =,故迭代一次得(1)(1)(1)1231.2, 1.35, 2.11x x x = = =于是有(1)(0)|||| 2.11x x ∞-=,计算得6110(1)14ln ln 10.2.114i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所在,要保证各分量误差绝对值小于610-,需要迭代11次.。

第二章练习题及参考答案

第二章练习题及参考答案

第二章练习题及参考答案《马克思主义基本原理概论》练习题及参考答案第二章认识世界和改造世界一、单项选择题1、唯物论认识论的基本原则和核心是(A )A反映论 B实践论 C先验论 D可知论2、人类认识发展的根本动力是(B )A科学兴趣 B社会实践 C求知欲望 D好奇心3、物质生产实践主要处理(A )A人与自然的关系 B人与人的关系 C对抗性矛盾的关系 D非对抗性矛盾的关系4、真理总是与谬误相比较而存在,相斗争而发展的,因而(A )A真理与谬误的对立是相对的 B真理中包含谬误的认识C谬误中包含一定的真理性认识 D谬误是真理不可摆脱的对立面5、认识的最终目的是(B )A发现真理 B改造世界 C创立科学理论 D改造客观规律6、人的认识能力是至上的,又是非至上的属于(D)观点A客观唯心论 B主观唯心论 C旧唯物论 D辩证唯物主义7、认识的本质在于( B )A主体创造 B能动反映 C社会实践 D客观存在8、人类认识运动的基本过程是(C)A概念——判断——推理 B感觉——知觉——表象C个别——一般——个别 D一般——个别——一般9、马克思认为“理论一经掌握群众,就会变成物质的力量”说明(B )A实践对理论有决定作用 B理论对实践有指导作用C理论比实践更为重要 D实践比理论重要10、真理是对客观事物和规律的(D )A本质认识 B深刻认识 C内在认识 D正确认识11、法国科学家路易·巴斯德说:“在观察事物之际,机遇偏爱有准备的头脑”。

这句话强调了(B )A人们对每一事物都要细心观察 B 人们在认识事物时要有理性指导C人们获得感性经验的重要性 D人们要充分发挥意识能动性12、人的认识是不是真理,要看(D)A能否满足人们的需要 B能否被大多数人认可C能否付诸实践 D能否在实践中取得预期效果13、“不唯上,不唯书,不唯师,只唯实”说明( B )A书本知识是不重要的 B一切从实际出发C上级的指示和决议不能成为行动的依据D没有直接经验就没有发言权14、从认识发展的规律看,“熟知”与“真知”的关系是(B )A熟知即真知 B熟知不等于真知 C熟知起源于真知 D熟知必然转化为真知15、唯心论与不可知论的关系是( B)A唯心论都是不可知论 B唯心论有可知论与不可知论之分C主观唯心论是可知论,客观唯心论是不可知论D客观唯心论是可知论,主观唯心论是不可知论16、认识的起点是感觉,这是( D )A唯物主义的观点 B唯心主义的观点C辩证唯物主义的观点 D唯物论和唯心论都可以承认的观点17、对不可知论最令人信服的驳斥是(C )A科学知识 B丰富的经验 C社会实践 D人类的认识能力18、判断对某一事物的认识是否完成的标志是( D)A占有的感性材料是否十分丰富真实B感性认识是否上升到理性认识C这一认识是否反复多次D理性认识是否运用于实践并取得预期效果19、唯物论和彻底的唯心论的认识论都是(B )A反映论 B可知论 C能动的革命的反映论 D先验论20、假象是(C )A人们认识中发生的错觉 B从正面反映本质的现象C从反面歪曲本质的现象 D不表现本质的现象21、实践作为检验认识真理性的标准具有不确定性的含义是(D)A实践标准是不可靠的 B科学理论也是检验真理的标准C除了实践标准还有其他标准D实践的历史局限性决定检验理论是一个过程22、辩证唯物主义认识论与唯心论认识论的区别是( C )A世界是可以被认识的 B认识发展是辩证的过程C客观事物是认识的对象 D社会实践是认识的基础23、人类活动的“两个尺度”是(C)A认识与实践 B真理与谬误 C真理与价值 D抽象与具体24、人们的下列活动中属于最基本的实践活动的是(C)A医生给病人做手术 B法官审理案件 C农民播种小麦 D科学家进行化学实验25、当代自然科学的发展日新月异,新的研究成果层出不穷,根本原因是(D)A科学家的聪明才智决定的正确的科技政策决定的C环境与资源的状况决定的 D生产实践的需要决定的26、“离开革命实践的理论是空洞的理论,不以革命的理论为指导的实践是盲目的实践”说明(C)A要重视实践对理论的决定作用 B要发挥理论对实践的指导作用C要坚持理论与实践相结合的原则 D要在实践中丰富和发展理论27、从本质上看,认识是( D)A主体心灵的主观创造 B主体心灵对客体的直觉C主体对客体的直接反映 D主体对客体的能动反映28、“从物到感觉和思想”与“从思想和感觉到物”的对立,属于(B)A辩证法与形而上学的对立B唯物主义反映论与唯心主义先验论的对立C经验论与唯理论的对立D能动的革命的反映论与消极的被动的反映论的对立29、“人的认识是主体对客体的直接反映”的观点属于(C )A主观唯心主义认识论B客观唯心主义认识论C形而上学唯物主义认识论 D辩证唯物主义认识论30、我们看到苹果的形状和颜色,嗅到它的气味,摸到它的光滑,尝到它的滋味,在意识中就形成对苹果的整体感性形象。

物理作业 第二章 典型习题答案与解析

物理作业 第二章 典型习题答案与解析

【第二章典型习题】1.教室门框的高度最接近于()A 1米B 2米C 5米D 8米2.小明同学用刻度尺测出一个物体的长度为,下面物体中最接近这个数值的是( )A、物理课本的厚度B、一根粉笔的长度C、黑板的长度D、饮水杯的高度3.章天同学用一把刻度尺4次测量物理课本的宽度,下列记录数据中错误的是()A.B.C.D.4.以相同速度同方向飞行的加油机和受油机,选地面为参照物,它们是的;选其中的任何一个为参照物,另一个是的。

5.小船在河里顺流而下,船上坐着一个人,河岸上有树,那么相对于船来说,人是_____的,树是_______的(填“运动”或“静止”)6.诗人曾写下这样的诗句:“人在桥上走,桥流水不流”。

其中“桥流水不流”,诗人选择的参照物是( )A、桥B、河岸C、水D、岸上的树7.小明骑自行车在沱江河堤上沿河岸向下游行驶,感觉无风,但堤上柳树的枝叶却在随风飘动,此时的风向是( )A、向下游B、向上游C、向河对岸D、从对岸吹过来8.坐在逆水驶向上游的船中的乘客,我们说他静止是以下列哪个物体为参照物的?( )A.河岸上的树B.船舱C.迎面驶来的船D.河水9.临沂是一座历史文化名城,今天的临沂更是美丽壮观。

位于临沂市中心处的某大酒店建有观光电梯,乘客在竖直上下的过程中便可欣赏到临沂城的美丽景色。

在这一过程中,下列说法正确的是 ( )A.以电梯内的某一乘客为参照物,其他乘客是运动的B.以电梯为参照物,所有乘客都是运动的C.以地面上的树为参照物,乘客是运动的D.以路面上行驶的汽车为参照物,乘客是静止的10.谁也没有我跑得快!我是()A.高速奔驰的磁悬浮列车B.高空翱翔的超音速战机C.让万物生长的阳光D.把“神六"送上天的“长征”运载火箭11.即将开工建设的京沪高速列车运行速度可达350㎞/h,这个速度相当于m/s,两地之间的铁路线长为1400㎞,那么列车从北京到上海至少需要h.12.飞机在10min内飞行了180km,它的速度是_________km/h,合_____m/s。

第二章课后作业答案

第二章课后作业答案

第二章线性表习题(答案)1.描述以下三个概念的区别:头指针,头结点,首元素结点。

首元结点是指链表中存储线性表中第一个数据元素a1的结点。

为了操作方便,通常在链表的首元结点之前附设一个结点,称为头结点,该结点的数据域中不存储线性表的数据元素,其作用是为了对链表进行操作时,可以对空表、非空表的情况以及对首元结点进行统一处理。

头指针是指向链表中第一个结点(或为头结点或为首元结点)的指针。

若链表中附设头结点,则不管线性表是否为空表,头指针均不为空。

否则表示空表的链表的头指针为空。

2.填空:(1)在顺序表中插入或删除一个元素,需要平均移动一半元素,具体移动的元素个数与插入或删除的位置有关。

(2)在顺序表中,逻辑上相邻的元素,其物理位置也相邻。

在单链表中,逻辑上相邻的元素,其物理位置不一定相邻。

(3)在带头结点的非空单链表中,头结点的存储位置由头指针指示,首元素结点的存储位置由头结点的next域指示,除首元素结点外,其它任一元素结点的存储位置由其直接前趋的next域指示。

3.已知L是无表头结点的单链表,且P结点既不是首元素结点,也不是尾元素结点。

按要求从下列语句中选择合适的语句序列。

a. 在P结点后插入S结点的语句序列是:(4)、(1)。

b. 在P结点前插入S结点的语句序列是:(7)、(11)、(8)、(4)、(1)。

c. 在表首插入S结点的语句序列是:(5)、(12)。

d. 在表尾插入S结点的语句序列是:(11)、(9)、(1)、(6)。

供选择的语句有:(1)P->next=S; (2)P->next= P->next->next; (3)P->next= S->next;(4)S->next= P->next; (5)S->next= L; (6)S->next= NULL;(7)Q= P; (8)while(P->next!=Q) P=P->next;(9)while(P->next!=NULL) P=P->next; (10)P= Q;(11)P= L; (12)L= S; (13)L= P;4.设线性表存于a[n]中且递增有序。

第二章课后习题答案

第二章课后习题答案

第二章课后习题答案第二章牛顿定律2-1如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A)ginθ(B)gcoθ(C)gtanθ(D)gcotθ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcotθ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止.当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A)不为零,但保持不变(B)随FN成正比地增大(C)开始随FN增大,达到某一最大值后,就保持不变(D)无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()μgR(B)必须等于μgR(C)不得大于μgR(D)还应由汽车的质量m决定(A)不得小于分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A)它的加速度方向永远指向圆心,其速率保持不变(B)它受到的轨道的作用力的大小不断增加(C)它受到的合外力大小变化,方向永远指向圆心(D)它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(mgcoθ)使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程v2FNmginθm可判断,随θ角的不断增大过程,轨道支持力FN也将不R断增大,由此可见应选(B).2-5图(a)示系统置于以a=1/4g的加速度上升的升降机内,A、B两物体质量相同均为m,A所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A)58mg(B)12mg(C)mg(D)2mg分析与解本题可考虑对A、B两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B两物体受力情况如图(b)所示,图中a′为A、B两物体相对电梯的加速度,ma′为惯性力.对A、B两物体应用牛顿第二定律,可解得FT=5/8mg.故选(A).讨论对于习题2-5这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB、a和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6图示一斜面,倾角为α,底边AB长为l=2.1m,质量为m的物体从题2-6图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?解取沿斜面为坐标轴O某,原点O位于斜面顶点,则由牛顿第二定律有mginαmgμcoαma(1)又物体在斜面上作匀变速直线运动,故有l11at2ginαμcoαt2coα22则t2l(2)gcoαinαμcoα为使下滑的时间最短,可令dt0,由式(2)有dαinαinαμcoαcoαcoαμinα0则可得tan2α1o,49μ此时t2l0.99gcoαinαμcoα2-7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00某102kg,乙块质量为m2=1.00某102kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1)两物块以10.0m·s-2的加速度上升;(2)两物块以1.0m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a上升时,有FT-(m1+m2)g=(m1+m2)a(1)FN2-m2g=m2a(2)解上述方程,得FT=(m1+m2)(g+a)(3)FN2=m2(g+a)(4)(1)当整个装置以加速度a=10m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94某103N乙对甲的作用力为F′N2=-FN2=-m2(g+a)=-1.98某103N(2)当整个装置以加速度a=1m·s-2上升时,得绳张力的值为FT=3.24某103N此时,乙对甲的作用力则为F′N2=-1.08某103N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8如图(a)所示,已知两物体A、B的质量均为m=3.0kg物体A以加速度a=1.0m·s-2运动,求物体B与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B及滑轮列动力学方程,有mAg-FT=mAa(1)F′T1-Ff=mBa′(2)F′T-2FT1=0(3)考虑到mA=mB=m,FT=F′T,FT1=F′T1,a′=2a,可联立解得物体与桌面的摩擦力Ffmgm4ma7.2N2讨论动力学问题的一般解题步骤可分为:(1)分析题意,确定研究对象,分析受力,选定坐标;(2)根据物理的定理和定律列出原始方程组;(3)解方程组,得出文字结果;(4)核对量纲,再代入数据,计算出结果来.2-9质量为m′的长平板A以速度v′在光滑平面上作直线运动,现将质量为m的木块B轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2,木块相对平板以初速度-v′作匀减速运动直至最终停止.由运动学规律有-v′2=2a由上述各式可得木块相对于平板所移动的距离为mv22μgmm解2以木块和平板为系统,它们之间一对摩擦力作的总功为W=Ff(+l)-Ffl=μmg式中l为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有μmg由上述各式可得11mv2mmv222mv22μgmm2-10如图(a)所示,在一只半径为R的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN的分力来提供的,由于支持力FN始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示O某y坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程FNinθmanmRω2inθ(1)Rh(3)且有coθR由上述各式可解得钢球距碗底的高度为hR可见,h随ω的变化而变化.gω22-11火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m的火车,以速率v沿半径为R的圆弧轨道转弯,已知路面倾角为θ,试求:(1)在此条件下,火车速率v0为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2)如果火车的速率v≠v0,则车轮对铁轨的侧压力为多少?分析如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNinθ提供(式中θ角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0时,则会产生两种情况:如图所示,如v>v0时,外轨将会对车轮产生斜向内的侧压力F1,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解(1)以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有v2FNinθm(1)解(1)(2)两式可得火车转弯时规定速率为v0gRtanθ(2)当v>v0时,根据分析有v2FNinθF1coθm(3)RFNcoθF1inθmg0(4)解(3)(4)两式,可得外轨侧压力为v2F1mcoθginθR当v<v0时,根据分析有v2FNinθF2coθm(5)RFNcoθF2inθmg0(6)解(5)(6)两式,可得内轨侧压力为v2F2mginθcoθR2-12一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m,圆筒半径为R,演员骑摩托车在直壁上以速率v作匀速圆周螺旋运动,每绕一周上升距离为h,如图所示.求壁对演员和摩托车的作用力.分析杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1和v2两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN的水平分量FN2提供,而竖直分量FN1则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有FN1mg0(1)FN2v2m(2)Rv2vcoθv2πR2πR2h2(3)22FNFN1FN2(4)以式(3)代入式(2),得FN2m4π2R2v24π2Rmv222(5)2222R4πRh4πRh将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22FNFN1FN224π2Rv22mg4π2R2h2与壁的夹角φ为FN24π2Rv2arctanarctan222FN14πRhg讨论表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13一质点沿某轴运动,其受力如图所示,设t=0时,v0=5m·s-1,某0=2m,质点质量m=1kg,试求该质点7s末的速度和位置坐标.分析首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解由题图得0t52t,Ft5t7355t,由牛顿定律可得两时间段质点的加速度分别为a2t,0t5a355t,5t7对0<t<5s时间段,由adv得dtvtv00dvadt积分后得v5t再由v2d某得dtd某vdt某00某t积分后得某25tt将t=5s代入,得v5=30m·s-1和某5=68.7m对5s<t<7s时间段,用同样方法有133dvv0vt5a2dt得v35t2.5t82.5t再由得某=17.5t2-0.83t3-82.5t+147.87将t=7s代入分别得v7=40m·s-1和某7=142m2-14一质量为10kg的质点在力F的作用下沿某轴作直线运动,已知F =120t+40,式中F的单位为N,t的单位的s.在t=0时,质点位于某=5.0m处,其速度v0=6.0m·s-1.求质点在任意时刻的速度和位置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v(t);由速度的定义v=d某/dt,用积分的方法可求出质点的位置.解因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有2某某5d某vdt5t120t40mdvdt依据质点运动的初始条件,即t0=0时v0=6.0m·s-1,运用分离变量法对上式积分,得vv0dv12.0t4.0dt0tv=6.0+4.0t+6.0t2又因v=d某/dt,并由质点运动的初始条件:t0=0时某0=5.0m,对上式分离变量后积分,有d某6.04.0t6.0tdt某t2某00某=5.0+6.0t+2.0t2+2.0t32-15轻型飞机连同驾驶员总质量为1.0某103kg.飞机以55.0m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0某102N·s-1,空气对飞机升力不计,求:(1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离.分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有dvαtdtvtαtdvv00mdtα2t得vv02mFmam因此,飞机着陆10s后的速率为v=30m·s-1又tα2d某vdt某0002mt某故飞机着陆后10s内所滑行的距离某某0v0tα3t467m6m2-16质量为m的跳水运动员,从10.0m高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2,其中b为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求:(1)运动员在水中的速率v与y的函数关系;(2)如b/m=0.40m-1,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解(1)运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P-Ff-F=ma由题意P=F、Ff=bv2,而a=dv/dt=v(dv/dy),代入上式后得-bv2=mv(dv/dy)考虑到初始条件y0=0时,v0t2gh,对上式积分,有vdvmdy0v0vbvv0eby/m2gheby/m(2)将已知条件b/m=0.4m-1,v=0.1v0代入上式,则得ymvln5.76mbv0某2-17直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136kg,长l=3.66m.求当它的转速n=320r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解设叶片根部为原点O,沿叶片背离原点O的方向为正向,距原点O为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有dFTFTrFTrdr由于r=l时外侧FT=0,所以有m2ωrdrltFTrdFTlrmω2rdrlmω2222πmn222FTrlrlr2ll上式中取r=0,即得叶片根部的张力FT0=-2.79某105N负号表示张力方向与坐标方向相反.2-18一质量为m的小球最初位于如图(a)所示的A点,然后沿半径为r 的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.分析该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mginα,而与法向加速度an相对应的外力是支持力FN和重力的法向分量mgcoα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man.由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解小球在运动过程中受到重力P和圆轨道对它的支持力FN.取图(b)所示的自然坐标系,由牛顿定律得Ftmginαmdv(1)dtmv2FnFNmgcoαm(2)R由vdrdαrdα,得dt,代入式(1),并根据小球从点A运动到点Cdtdtv的始末条件,进行积分,有vv0vdvα90orginαdα得v则小球在点C的角速度为2rgcoαωv2gcoα/rrmv2mgcoα3mgcoα由式(2)得FNmr由此可得小球对圆轨道的作用力为FN3mgcoαFN负号表示F′N与en反向.2-19光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0,求:(1)t时刻物体的速率;(2)当物体速率从v0减少到12v0时,物体所经历的时间及经过的路程.解(1)设物体质量为m,取图中所示的自然坐标,按牛顿定律,有mv2FNmanRFfmatdvdt由分析中可知,摩擦力的大小Ff=μFN,由上述各式可得v2dvμRdt取初始条件t=0时v=v0,并对上式进行积分,有t0dtRvdvμv0v2vRv0Rv0μt(2)当物体的速率从v0减少到1/2v0时,由上式可得所需的时间为t物体在这段时间内所经过的路程Rμv0vdt0tt0Rv0dtRv0μtRln2μ2-20质量为45.0kg的物体,由地面以初速60.0m·s-1竖直向上发射,物体受到空气的阻力为Fr=kv,且k=0.03N/(m·s-1).(1)求物体发射到最大高度所需的时间.(2)最大高度为多少?分析物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解(1)物体在空中受重力mg和空气阻力Fr=kv作用而减速.由牛顿定律得mgkvmdv(1)dt某2-25如图(a)所示,电梯相对地面以加速度a竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1和m2的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1>m2,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.分析如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B作受力分析,其中F1=m1a,F2=m2a分别为作用在物体A、B上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有m1gm1aFT1m1ar(1)m2gm2aFT2m2ar(2)FT2FT2(3)由上述各式可得arm1m2gam1m22m1m2gam1m2FT2FT2由相对加速度的矢量关系,可得物体A、B对地面的加速度值为a1aram1m2g2m2am1m22m1am1m2gm1m2a2araa2的方向向上,a1的方向由ar和a的大小决定.当ar<a,即m1g-m2g-2m2a>0时,a1的方向向下;反之,a1的方向向上.某2-26如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m的滑块B放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.分析这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:(1)参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA的运动,这时,滑块沿斜面的加速度aBA,不再是它相对于地面的加速度aB了.必须注意到它们之间应满足相对加速度的矢量关系,即aB=aA+aBA.若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F=maA.(2)坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3)在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcoα,事实上只有当aA=0时,正压力才等于mgcoα.解1取地面为参考系,以滑块B和三棱柱A为研究对象,分别作示力图,如图(b)所示.B受重力P1、A施加的支持力FN1;A受重力P2、B施加的压力FN1′、地面支持力FN2.A的运动方向为O某轴的正向,Oy轴的正向垂直地面向上.设aA为A对地的加速度,aB为B对的地加速度.由牛顿定律得FN1inαmaA(1)FN1inαmaB某(2)FN1coαmgmaBy(3)FN1FN1(4)设B相对A的加速度为aBA,则由题意aB、aBA、aA三者的矢量关系如图(c)所示.据此可得aB某aAaBAcoα(5)aByaBAinα(6)解上述方程组可得三棱柱对地面的加速度为aAmginαcoα2mminαmginαcoαmmin2α滑块相对地面的加速度aB在某、y轴上的分量分别为aB某aBymmgin2αmmin2α则滑块相对地面的加速度aB的大小为aBaa2B某2Bym22mmm2in2αginαmmin2α其方向与y轴负向的夹角为amcotαθarctanB某arctanaBymmA与B之间的正压力FN1mmgcoα2mminα解2若以A为参考系,O某轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B的动力学方程分别为mginαmaAcoαmaBA(1)mgcoαFN1maAinα0(2)又因FN1inαmaA0(3)FN1FN1(4)由以上各式可解得aAaBAmginαcoαmmin2αmmginαmmin2α由aB、aBA、aA三者的矢量关系可得m22mmm2in2αaBginαmmin2α以aA代入式(3)可得FN1mmgcoαmmin2α。

第二章课后习题及答案

第二章课后习题及答案

第二章心理辅导的理论基础一、理论测试题(一)单项选择题1.()是根据操作性条件反射原理,强调行为的改变是依据行为后果而定的。

A •强化法B •系统脱敏法C.代币法D •来访者中心疗法2•在对学生进行心理辅导时,常使用的“强化法”属于()。

A •行为改变技术B •认知改变法C.运动改变法D •精神分析法3•在心理辅导的行为演练中,系统脱敏法是由()首创。

A .皮亚杰B •沃尔帕C艾利斯D •罗杰斯4•心理辅导老师帮李晓明建立焦虑等级,让他想象引起焦虑的情境,然后逐渐减少焦虑等级,直至完全放松,以缓解其考试焦虑,这种方法是()。

A •强化法B •系统脱敏法C.理性一情绪疗法D •来访者中心疗法5 •行为塑造法是根据()的操作条件反射研究结果而设计的培育和养成新反应或行为模式的一项行为治疗技术,是操作条件作用法强化原则的有力应用之一。

A .皮亚杰B •斯金纳C.艾利斯D .奥苏贝尔6.()就是运用代币并编制一套相应的激励系统来对符合要求的目标行为的表现进行肯定和奖励。

A .强化法B .理性一情绪疗法C.代币法D .来访者中心疗法7.李老师通过奖励小红花来表扬学生的行为,这种心理辅导方法属于()。

A .系统脱敏法B •代币法C.行为塑造法D .来访者中心疗法8.晓红是韩老师班上的学生,她孤僻、羞涩,当她主动与同学交谈或请教老师时,韩老师就给予肯定或激励。

这种心理辅导方法是()。

A .强化法B •系统脱敏法C.来访者中心法D .理性一情绪疗法9.()不是行为改变的基本方法。

A .强化法B .代币法C.自我控制法D .演练法10.小伟过分害怕狗,通过让他看狗的照片,谈论狗,远看狗到近看狗、摸狗、抱狗,消除对狗的惧怕反应,这是行为训练的()。

A .全身松弛训练B .系统脱敏法C.行为塑造法D .肯定性训练11.当一位胆小的学生敢于主动向教师提问时,教师教师耐心解答并给予表扬和鼓励。

的这种做法属于行为改变方法中的()。

第二章习题答案参考

第二章习题答案参考

第二章 金属切削机床设计22. 什么是传动组的级比和级比指数?常规变速传动系的各传动组的级比指数有什么规律性? 传动组的级比是指主动轴上同一点传往被动轴相邻两传动线的比值,用ϕxi 表示。

级比ϕxi 中的指数X i 值称为级比指数,它相当于由上述相邻两传动线与被动轴交点之间相距的格数。

设计时要使主轴转速为连续的等比数列,必须有一个变速组的级比指数为1,此变速组称为基本组。

基本组的级比指数用X 0表示,即X 0 = 1,后面变速组因起变速扩大作用,所以统称为扩大组。

第一扩大组的级比指数X 1一般等于基本组的传动副数P 0,即X 1 = P 0。

第二扩大组的作用是将第一扩大组扩大的变速范围第二次扩大,其级比指数X 2等于基本组的传动副数和第一扩大组传动副数的乘积,即X 2 = P 0×P 1。

如有更多的变速组,则依次类推。

上述设计是传动顺序和扩大顺序相一致的情况,若将基本组和各扩大组采取不同的传动顺序,还有许多方案。

25. 某机床主轴转速n =100~1120 r/min ,转速级数z =8,电动机转速n 电=1440 r/min ,试设计该机床主传动系,包括拟定结构式和转速图,画出主传动系图。

解:2.111001120min max ===n n R n ===-712.11Z n R φ 1.41查表可获得8级转速为 100,140,200,280,400,560,800,1120拟定8级转速的结构式:根据级比规律和传动副前多后少、传动线前密后疏的的原则确定4212228⨯⨯=241.141.111max ≤===ϕ主u 符合要求4/182.2/141.133min ≥===--ϕ主u 符合要求最后扩大组的变速范围:8441.1)12(4)1(≤===--i i P x i R ϕ符合要求 绘制传动系统图如下:26. 试从ϕ=1.26,z =18级变速机构的各种传动方案中选出其最佳方案,并写出结构式,画出转速图和传动系图。

第二章习题及答案

第二章习题及答案

电工学第二章习题一、填空题1. 两个均为40F μ的电容串联后总电容为 80 F μ,它们并联后的总电容为 20F μ。

2. 表征正弦交流电振荡幅度的量是它的 最大值 ;表征正弦交流电随时间变化快慢程度的量是 角频率ω ;表征正弦交流电起始位置时的量称为它的 初相 。

三者称为正弦量的 三要素 。

3. 电阻元件上任一瞬间的电压电流关系可表示为 u = iR ;电感元件上任一瞬间的电压电流关系可以表示为dtdiLu =L ;电容元件上任一瞬间的电压电流关系可以表示为dtduCi =C 。

由上述三个关系式可得, 电阻 元件为即时元件; 电感 和 电容 元件为动态元件。

4. 在RLC 串联电路中,已知电流为5A ,电阻为30Ω,感抗为40Ω,容抗为80Ω,那么电路的阻抗为 50Ω ,该电路为 容 性电路。

电路中吸收的有功功率为 750W ,吸收的无功功率又为 1000var 。

二、选择题1. 某正弦电压有效值为380V ,频率为50Hz ,计时始数值等于380V ,其瞬时值表达式为( B )A 、t u 314sin 380=V ;B 、)45314sin(537︒+=t u V ;C 、)90314sin(380︒+=t u V 。

2. 一个电热器,接在10V 的直流电源上,产生的功率为P 。

把它改接在正弦交流电源上,使其产生的功率为P/2,则正弦交流电源电压的最大值为(D ) A 、; B 、5V ; C 、14V ; D 、10V 。

3. 提高供电电路的功率因数,下列说法正确的是( D )A 、减少了用电设备中无用的无功功率;B 、减少了用电设备的有功功率,提高了电源设备的容量;C 、可以节省电能;D 、可提高电源设备的利用率并减小输电线路中的功率损耗。

4. 已知)90314sin(101︒+=t i A ,︒+=30628sin(102t i )A ,则( C )A 、i1超前i260°;B 、i1滞后i260°;C 、相位差无法判断。

第二章习题与答案

第二章习题与答案

第二章会计科目、会计账户和借贷复式记账法一、单项选择题1.账户是根据()开设的,用来连续、系统地记载各项经济业务的一种手段。

A.会计凭证B.会计对象C.会计科目D.财务指标2.根据借贷记账法的原理,记录在账户贷方的是()。

A.费用的增加B.收入的增加C.负债的减少D.所有者权益的减少3.会计科目是()的名称。

A.会计账户B.会计等式C.会计对象D.会计要素4借贷记账法的记账规则是()。

A.同增、同减、有增、有减B.同收、同付、有收、有付C.有增必有减,增减必相等D.有借必有贷,借贷必相等5.在借贷记账法中,账户的哪一方记录增加,哪一方记录减少是由()决定的。

A.账户的性质B.记账规则C.账户的结构D.业务的性质6.复试记账法的基本理论依据是()的平衡原理。

A.资产=负债+所有者权益B.收入–费用=利润C.期初余额+本期增加数-本期减少数=期末余额D.借方发生额=贷方发生额8.按照借贷记账法的记录方法,下列四组账户中,增加额均记在贷方的是()。

A.资产类和负债类B.负债类和所有者权益类C.成本类和损益类D.损益类中的收入和支出类9.会计科目与账户之间的区别在于()。

A.反映经济内容不同B.账户有结构而会计科目无结构C.分类的对象不同D.反映的结果不同10.按照借贷记账法的记录方法,下列账户的贷方登记增加额的是()。

A.库存现金B.应收账款C.应付账款D.原材料11.按照借贷记账法的记录方法,下列账户中,账户的借方登记增加额的是()。

A.实收资本B.应付职工薪酬C.累计折旧D.所得税费用12.目前我国会计制度规定,企业会计采用的记账方法是()。

A.增减记账法B.现金收付记账法C.借贷记账法D.财产收付记账法13.账户的基本结构分为左右两方,其基本依据是()。

A.登记收支业务B.借贷原理C.收付原理D.资金在运动中量的增加和减少14.不属于损益类会计科目的是()。

A.投资收益B.管理费用C.主营业务成本D.生产成本15.下列属于资产类的会计科目是()。

哈工大大学物理第二章 作业题+答案

哈工大大学物理第二章   作业题+答案
方向向下。
T1 m1 ( g a1 ) 0.2 (9.8 1.96) 1.57 N 1 T2 T1 0.785 N 2 m g T2 0.1 9.8 0.785 a2 2 1.95 m s 2 m2 0.1
方向向下。
a3
方向向上。
m3 g T2 0.05 9.8 0.785 5.9 m s 2 m3 0.05
5
物体受力: 真实力:重力 mg, 、斜面对它的正压力 N 惯性力: ma0
mg N ( ma0 ) mar
mgsin ma0sin mar mgcos N ma0cos 0
解得
N m ( g 0a) c o s; ar (g a0 ) sin
A

mg N ma
x 方向: mg sin max m(ar a0 sin ) y 方向: ma y N mg cos ma0 cos 解得
N m ( g 0a) c o s; ar (g a0 ) sin
解法二: 以升降机为参考系(非惯性系) ,建立坐标系如图,
解 当雨滴均匀运动时 得 所以当速率为 4.0 m s 时
1
mg k v 2 k mg / 25
F ma mg k v 2 mg

16 9 mg mg 25 25 a 9 g / 25
12. 2-12 质量为 m 的物体系于长度为 R 的绳子的一个端点上,在竖直平面内绕 绳子另一端点(固定)作圆周运动.设时刻物体瞬时速度的大小为 ,绳子 与竖直向上的方向成 θ 角,如图所示。(1) 求t时刻绳中的张力 T 和物体的 切向加速度 at;(2) 说明在物体运动过程中 at 的大小和方向如何变化?

第二章 课后作业参考答案

第二章    课后作业参考答案

第二章会计处理方法练习题一(一)目的:掌握会计确认的基本方法(1)根据上表中的资料,判断哪些项目分别属于资产要素、负债要素和所有者权益要素。

练习题一参考答案要点(1)资产要素的有:(2);(4);(5);(7);(9);(11);(12);(13);(14);(15);(16);(17);(18) 负债要素的有:(6);(8);(10);(19)所有者权益要素的有:(1);(3);(20)(2)负债表存货项目中。

严格来说,此处是不对的。

因为“生产成本”是费用类账户。

练习题二(二)目的:掌握权责发生制与收付实现制1.资料绿叶公司2005年10月份发生如下经济业务:(1)支付本月的水电费300元。

(2)预付下个月房屋租金2 000元。

(3)支付上月工商部门罚款500元。

(4)销售商品收入20 000元,款项尚未收到。

(5)支付上月购货款38 000元。

(6)采购员报销差旅费2 500元,退回多余现金500元(出差前预借3 000元)。

(7)收到上月销售货款500 000,存入银行。

2.要求分别根据权责发生制和现金收付制,确认和计算本月收入与费用(将结果填入下表)。

练习题二参考答案要点练习题三(三)目的:掌握会计确认的基本方法1.资料上扬公司2005年12月发生如下经济交易与事项:(1)10日,与甲公司签订购货合同,协议购买A材料50万元,约定合同签订之日起10日内预付购货定金10万元。

(2)12日,有一批产品完工验收入库,这批产品的生产成本为20万元。

(3)18日,根据购货合同预付甲公司购货定金10万元。

(4)20日,公司发生失窃事件,丢失现金5万元。

(5)25日,以银行存款预付下年度财产保险费3万元。

(6)28日,以银行存款支付本季度贷款利息费用9万元,其中前两个月已预提6万元。

(7)31日,计算出本月产品销售应缴纳的税金5万元,但尚未实际缴纳。

(8)31日,计算出本月应负担的工资费用15万元,其中管理人员5万元,生产工人10万元,公司每月的工资在下月上旬发放。

第二章 练习题 --外部环境(含答案)新1

第二章 练习题 --外部环境(含答案)新1

【例题9· 多选题】
• 甲公司决定进军欧洲市场,为此进行了详细的市场分析。 下列选项中,属于宏观环境分析的情况有( )。 A.欧盟针对来自我国的相关产品制定了进口限制 B.欧盟国家整体经济增速下降 C.欧盟技术创新能力较强 D.欧盟市场中人口平均受教育程度较高
• 正确答案:ABCD

【例题10· 多选题】
• 甲公司计划通过设立合资企业的形式进入某发展 中国家。下列选项中,属于甲公司对该国经济环 境进行分析时需要考虑的有( )。 A.甲公司所在行业在该国技术进步速度较快 B.该国近年来GDP增速较快 C.甲公司在该行业拥有较多专利 D.该国汇率波动较大 • 正确答案:BD

【例题11· 多选题】
• 甲公司是国内第二大互联网游戏企业,公司除了考虑继续 增加市场份额之外,还要考虑新资本进入给企业带来的威 颁布法规对互联网游戏产业进行限制 B.互联网游戏产业整体增长速度 C.互联网游戏的同质性普遍较强 D.现有互联网游戏企业是否在基础设施方面投入足够 的资金 • 正确答案:AD

【例题8· 多选题】
• 甲公司是一家日用化学品生产企业,在对 本产业进行分析时,公司管理层认为产业 竞争出现加剧的迹象。下列选项中,能够 帮助该公司管理层判断产业竞争出现加剧 现象的有( )。 A.产业成长缓慢 B.竞争对手实力相当 C.生产能力过剩 D.进入障碍低而退出障碍高 • 正确答案:ABCD
【例题12· 多选题】
• 下列针对产品生命周期进行描述的选项中,不正确的 有( )。 A.导入期的经营风险非常高 B.成熟期表现为市场增长率下降 C.成长期对资金的需求较旺盛,会出现现金短缺 D.衰退期的战略目标是重点转向在巩固市场份额 的同时提高投资报酬率 • 『正确答案』BD 『答案解析』产品生命周期四个阶段中,衰退期表现 为市场增长率下降,选项B错误。成熟期的战略目标 是重点转向在巩固市场份额的同时提高投资报酬率, 选项D错误。

马原,第二章 习题及答案

马原,第二章  习题及答案

第二章认识的本质及其发展规律一、单项选择题1.马克思主义认为,从实践的活动机制看,实践是( A )A.主体与客体通过一定的中介发生相互作用的过程B.道德行为和政治活动C.科学实验D.生活、行为、现实、实事等感性活动2.实践的主体是( B )A.绝对精神B.具有思维能力、从事社会实践和认识活动的人C.人D.人的意识3.实践的客体是( D )A.绝对精神的对象化B.客观物质世界C.人的意识的创造物D.实践和认识活动所指向的对象4.实践的中介是( A )A.各种形式的工具、手段及其运用的程序和方法B.对一事物存在和发展有联系的各种要素的总和C.构成事物一切要素的总和D.受命于主观,见之于客观的活动5.马克思主义认为,主客体之间的价值关系是指( D )A.主体对客体的物质欲望和要求B.主体对客体的能动反映C.主体对客体的改造和变革的结果D.客体对于主体的有用性和效益性6.“社会上一旦有技术上的需要,则这种需要会比十所大学更能把科学推向前进。

”这说明( C )A.实践是认识的来源B.技术推动了科学的发展C.实践是认识发展的动力D.科学进步是实践的目的7.科学家尼葛洛庞帝说:“预测未来的最好办法就是把它创造出来。

”从认识和实践的关系看,这句话对我们的启示是( C )A.认识总是滞后于实践B.实践和认识互为先导C.实践高于(理论的)认识,因为它不仅具有普遍性的品格,而且具有直接现实性的品格D.实践与认识是合一的8.感性认识和理性认识的区别是( C )A.感性认识是可靠的,理性认识是不可靠的B.感性认识来源于实践,理性认识来源于书本C.感性认识是对现象的认识,理性认识是对本质的认识D.感性认识来源于直接经验,理性认识来源于间接经验9.“真理和谬误的对立,只是在非常有限的范围内才有意义”是( B )A.形而上学的观点B.唯物辩证法的观点C.诡辩论的观点D.相对主义的观点10.真理和谬误之间的相互关系是( C )A.在任何情况下都是绝对对立的B.没有相互转化的可能性C.在一定条件下可以相互转化D.两者之间没有原则区别11.“听其言必责其用,观其行必求其功。

第二章习题答案(作业)

第二章习题答案(作业)

第⼆章习题答案(作业)第⼆章习题答案2(1)为什么计算机内部采⽤⼆进制表⽰信息?既然计算机内部所有信息都⽤⼆进制表⽰,为什么还要⽤到⼗六进制和⼋进制数?参考答案:(略)2(7)为什么计算机处理汉字时会涉及到不同的编码(如,输⼊码、内码、字模码)?说明这些编码中哪些是⽤⼆进制编码,哪些不是⽤⼆进制编码,为什么?参考答案:(略)3.实现下列各数的转换。

(1)(25.8125)10= (?)2= (?) 8= (?) 16(2)(101101.011)2 = (?)10= (?) 8= (?) 16= (?) 8421(3)(0101 1001 0110.0011)8421 = (?)10= (?) 2= (?) 16(4)(4E.C)16 = (?)10= (?) 2参考答案:(1)(25.8125)10 = (1 1001.1101)2 = (31.64) 8 = (19.D) 16(2)(101101.011)2 = (45.375)10 = (55.3) 8 = (2D.6) 16 = (0100 0101.0011 0111 0101) 8421(3)(0101 1001 0110.0011)8421 = (596.3)10 = (1001010100.01001100110011…) 2 = (254.4CCC…) 16 (4)(4E.C)16 = (78.75)10 = (0100 1110.11) 24.假定机器数为8位(1位符号,7位数值),写出下列各⼆进制数的原码和补码表⽰。

+0.1001,–0.1001,+1.0,–1.0,+0.010100,–0.010100,+0,–0参考答案:(后⾯添0)原码补码+0.1001:0.1001000 0.1001000–0.1001: 1.1001000 1.0111000+1.0:溢出溢出–1.0:溢出 1.0000000+0.010100:0.0101000 0.0101000–0.010100: 1.0101000 1.1011000+0:0.0000000 0.0000000–0: 1.0000000 0.00000005.假定机器数为8位(1位符号,7位数值),写出下列各⼆进制数的补码和移码表⽰。

线性代数第二章习题部分答案

线性代数第二章习题部分答案

线性代数第二章习题部分答案第二章向量组的线性相关性§2-1 §2-2 n维向量,线性相关与线性无关(一)一、填空题1. 设3 α1?α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,?1,1)T, 则α= (1,2,3,4)T . 2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α1?3α2+α3= (?5,0,2)T .3. 设矩阵A= 5 ,设βi为矩阵A的第i个列向量,则2β1+β2?β3= (?2,8,?2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0 k1+2k2+k3=0?3k2?k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。

2. α1=(1,?1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,?1)T, α3=(5,?3,t)T,问t 取何值时该向量组线性相关。

解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 13?1 +k3 5?3t =0即 k1+k2+5k3=0k1+3k2?3k3=0?k2+tk3=0k1+k2+5k3=0k2?4k3=0?k2+tk3=0k1+k2+5k3=0k1+3k2?3k3=0(t?4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。

解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=?k1a1?k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=?k1k1+k2a1?k2k1+k2a2.五、已知向量组α1,α2,?,α2n,令β1=α1+α2,β2=α2+α3,?,β2n=α2n+α1,求证向量组β1,β2,?,β2n线性相关。

第二章作业及答案

第二章作业及答案

第二章练习题及参考答案一、辨析题(请先判断对错,再说明原因)1. 凡是亲眼所见,亲耳所听的都是直接经验,是对客观事物最真实的、最本质的反映。

二、材料分析题1.阅读下面有关真理论述的材料:【材料1】马克思说:“人的思维是否具有客观的真理性,这不是一个理论的问题,而是一个实践的问题。

人应该在实践中证明自己的思维的真理性,即自己思维的现实性和力量,……”毛泽东说:“真理的标准只能是社会实践。

”【材料2】实用主义者詹姆斯说:“凡是有利于我们工作,并使我们得到效果的东西就是真理,这也是真理的唯一标准。

”【材料3】诺贝尔奖获得者、华人科学家丁肇中在谈到他的科学研究体会时说:“20世纪70年代,人们已经知道所有的基本粒子是由3种夸克组成的。

我的问题是,为什么只有3种夸克?为了寻找新夸克,我决定建筑一个高灵敏度的探测器。

当时所有的人都认为只有3种夸克,因为3种夸克可以解释所有的现象,所以这个实验室被费米国家实验室和西欧核子中心拒绝了,认为是不可能的。

1972年到1974年间,我们在布鲁克海文国家实验室用一个比较低能的加速器来做这个实验,终于发现了一种新夸克。

这表示,以前说只有3种夸克的观念是错的,有四种夸克。

有了第四种,就可能有第五种、第六种,把以往的观念改变了。

”根据上述材料请回答:⑴材料1、2的观点一致吗?为什么?用马克思主义认识论的观点分析材料2的观点。

⑵材料3中的科学发现过程在认识论上对我们发现和发展真理有哪些启示?答案要点:一、辨析题1.这种观点是错误的。

亲眼所见,亲耳所听是感性认识的感觉阶段,是直接的感性经验。

由于认识主体和客体的局限性和特殊性,有些是对客观事实的真实反映,有些则是不符合客观事实的虚假反映或骗局。

视觉和听觉是感性认识,它们具有直接性、丰富性,但是它的缺点是直观性和表面性,不能深入、全面地反映事物,有待于在感性经验的基础上,用科学态度加以分析,上升为理性认识,才能把握事物的本质。

该命题夸大感觉在认识中的作用,将感觉与事实相混淆,在理论上容易导致主观唯心主义。

高等数学第二章习题详细解答答案

高等数学第二章习题详细解答答案

1 ⎧ 2 1 ⎪ x sin , x ≠ 0 (2)∵ y = ⎨ ,而 lim y = lim x 2 sin = 0 = y x = 0 ,所以函数在 x = 0 处连续 x x →0 x →0 x ⎪ x=0 ⎩ 0,
1 x = 0 ,所以函数在 x = 0 点处可导. 而 lim x →0 x−0 x 2 sin
−2 sin cos (x + Δx) − cos x 3.解: ( cos x)′ = lim = lim Δx → 0 Δx →0 Δx Δx sin 2 x + Δx 2 = − sin x = - lim sin ⋅ lim Δx → 0 Δx → 0 Δx 2 2
4. 解:(1)不能,(1)与 f ( x ) 在 x0 的取值无关,当然也就与 f ( x ) 在 x0 是否连续无关, 故是 f ′( x0 ) 存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1) 5 x
9 −1 = 4 ,而 y′ = (x 2 )′ = 2 x ,令 2 x = 4 , 3 −1
得: x = 2 ,所以该抛物线上过点 (2, 4) 的切线平行于此割线. 10.解:(1)连续,但因为
f (0+ h )− f (0 ) = h
因而 lim
h→0
3
h −0 1 = 2/ 3 h h
f (0 + h) − f (0) 1 = lim 2 / 3 = +∞ ,即导数为无穷大。 → h 0 h h
∴ f +′(0) ≠ f −′(0) = −1 ,所以 f ′(0) 不存在.
13. 解 : 当 x > 0 时 , f ( x) = x 是 初 等 函 数 , 所 以 f ′( x) = 3 x ; 同 理 , 当 x < 0 时

第二章 习题及答案

第二章 习题及答案

第二章 金属切削原理与刀具班级_____________ 学号____________姓名_____________ 成绩____________一、 选择题:1、车削细长轴时,车刀的主偏角应取[ D ]A 、30ºB 、45ºC 、60 ºD 、90 º2、粗车时,选择切削用量的顺序是[ B ]A 、f v a c p →→B 、c p v f a →→C 、c p v a f →→D 、f a v p c →→3、车细长轴时,为防止工件产生弯曲和振动,应尽量减少[ D ]A 、轴向力B 、前角C 、主偏角D 、径向力4、积屑瘤对粗加工有利的原因是[ A ]A 、保护刀具、增加实际前角B 、积屑瘤硬度高C 、提高加工表面质量D 、加大切削深度5、增加一般外圆粗车刀的刀刃的抗冲击能力的角度是[ B ]A 、大主偏角B 、负刃倾角C 、正刃倾角D 、大后角6、车削加工中影响已加工表面残留面积大小的主要因素是[ B ]A 、切削速度c vB 、进给量fC 、背吃刀量p aD 、工件转速n7、降低切削温度最有效的措施是[ A ]A 、浇注切削液B 、增大刀尖圆角半径C 、增大主偏角D 、适当增大前角8、与高速钢刀具的耐热性相比,硬质合金刀具的耐热性[ C ]A 、较低B 、相等C 、较高D 、不确定9、当刀尖是主切削刃上最低点时,刃倾角为[ A ]A 、负B 、零C 、正D 、不确定10、纵向走刀车外圆时消耗功率最大的力是[ A ]A 、切向力B 、径向力C 、轴向力D 、不确定11、车外圆时,若刀尖低于工件中心,则将增大的工作角度是[ B ]A 、前角B 、后角C 、主偏角D 、副偏角12、YG 类硬质合金刀具主要用于加工[ D ]A 、陶瓷B 、金刚石C 、钢D 、铸铁13、在切削平面中测量的主切削刃与基面之间的夹角是[ D ]A 、前角B 、后角C 、主偏角D 、刃倾角14、YT 类硬质合金刀具主要用于加工[ A ]A 、钢B 、铸铁C 、陶瓷D 、金刚石二、判断题1、积屑瘤使刀具的实际前角增大,并使切削轻快省力,所以对精加工有利。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)作业(第二章习题答案.第二章习题答案2(1)为什么计算机内部采用二进制表示信息?既然计算机内部所有信息都用二进制表示,为什么还要用到十六进制和八进制数?参考答案:(略)2(7)为什么计算机处理汉字时会涉及到不同的编码(如,输入码、内码、字模码)?说明这些编码中哪些是用二进制编码,哪些不是用二进制编码,为什么?参考答案:(略)3.实现下列各数的转换。

(1)(25.8125)= (?)= (?) = (?) 162108(2)(101101.011)= (?)= (?) = (?) = (?) 8421 101682(3)(0101 1001 0110.0011)= (?)= (?) = (?)28421 1016(4)(4E.C)= (?)= (?) 21016参考答案:(1)(25.8125)= (1 1001.1101)= (31.64) = 8 10 2(19.D) 16(2)(101101.011)= (45.375)= (55.3) = (2D.6)8 2 10= (0100 0101.0011 0111 0101) 842116(3)(0101 1001 0110.0011)= (596.3)= 10 8421(1001010100.01001100110011…) = (254.4CCC…)216(4)(4E.C)= (78.75)= (0100 1110.11) 210 164.假定机器数为8位(1位符号,7位数值),写出下列各二进制数的原码和补码表示。

+0.1001,–0.1001,+1.0,–1.0,+0.010100,–0.010100,+0,–0参考答案:(后面添0)原码补码+0.1001:0.1001000 0.1001000–0.1001: 1.1001000 1.0111000+1.0:溢出溢出–1.0:溢出 1.0000000+0.010100:0.01010000.0101000–0.010100: 1.0101000 1.1011000 +0:0.0000000 0.0000000–0: 1.0000000 0.00000005.假定机器数为8位(1位符号,7位数值),写出下列各二进制数的补码和移码表示。

.+1001,–1001,+1,–1,+10100,–10100,+0,–0参考答案:(前面添0)移码补码+1001:10001001 00001001 –1001:01110111 11110111+1:10000001 00000001–1:011111111 11111111+10100:10010100 00010100–10100:01101100 11101100+0:10000000 00000000–0:10000000 000000006.已知[x],求x补(1)[x]=1.1100111 (2)[x]补补=10000000[x])4 (=0.1010010 (3)[x] 补补=11010011参考答案:0.0011001B x = –=1.1100111 [x]1()补10000000B ==10000000 [x]2()x = –补128–.(3)[x]=0.1010010 x = +0.101001B 补(4)[x]=11010011 x = –101101B = –45 补7.假定一台32位字长的机器中带符号整数用补码表示,浮点数用IEEE 754标准表示,寄存器R1和R2的内容分别为R1:0000 017AH,R2:FFFFF895H。

不同指令对寄存器进行不同的操作,因而,不同指令执行时寄存器内容对应的真值不同。

假定执行下列运算指令时,操作数为寄存器R1和R2的内容,则R1和R2中操作数的真值分别为多少?(1)无符号数加法指令(2)带符号整数乘法指令(3)单精度浮点数减法指令参考答案:R1 = 0000 017AH = 0000 0000 0000 0000 00000001 0111 1010R2 = FFFF F895H = 1111 1111 1111 1111 11111000 1001 0101(1)对于无符号数加法指令,R1和R2中是操作数的无符号数表示,因此,其真值分别为R1:17AH, R2:FFFF F895H。

(对应十进制分别32 )1899–4 294 965 397=2、378为中是操和R22)对于带符号整数乘法指令,R1(作数的带符号整数补码表示,由最高位可知,的真值为为负数。

R1为正数,R2R1111 0110 1011= –+17AH=378, R2的真值为。

–18990000阶码为,表示其为正数,03)R1:符号位为(000 0000 0000 0001 0111 尾数部分为0000,,126指数为–1010,故其为非规格化浮点数,,用十六进制表示尾数为1尾数中没有隐藏的111100000010+0.00000000为真值表示的,0100=+0.0002F4H故R1-126 +0.0002F4H ×2。

1111 阶码为,表示其为负数,1R2: 符号位为111 1111 1111 1000 1001 ,尾数部分为1111尾数,即是一个阶码非00101,故其为全1 NaN。

非数位,用补码表示带符号整32M的字长为.假定机器8语言上执行的C数。

下表第一列给出了在机器M请参照已有的表栏内容完成程序中的关系表达式,表中后三栏内容的填写说关系表达式型果1 00…0B = 00…0B0 == 0U 无1 11…1B (––1 < 0 1) < 有0 00…0B (0)–1 < 0U无321 > 2147483647 11…1B (2–1) 有> 0 00…0B(0)无–2147483647 –1311 011…1B (2有–1) > 2147483647U > 311 100…0B (–22147483647 ––1 ) 有3112147483647 011…1B (2–> 1) < 无31100…0B(2(int)) 31011…1B (22147483648U –1) > 31100…0B (––2–2) 1 > 11…1B (–1) > –(unsigned) 1 > 11…10B (–2 –2)31)(>11…1B311…10B(29.以下是一个C语言程序,用来计算一个数组a中每个元素的和。

当参数len为0时,返回值应该是0,但是在机器上执行时,却发生了存储器访问异常。

请问这是什么原因造成的,并说明程序应该如何修改。

1 float sum_elements(float a[], unsigned len)2 {3 int i;4 float result = 0;56 for (i = 0; i <= len–1; i++)7 result += a[i];8 return result;9 }参考答案:时,len=0,所以,当参数len 的类型是unsigned,是最大可表示的无符11…1执行len-1的结果为号数,因而,任何无符号数都比它小,使得循环体发生存储引起数组元素的访问越界,被不断执行,器访问异常。

型,或循环的测试条件改为intlen声明为只要将。

i<len 设某浮点数格式为:10.阶1补6位位5,补码采用一位符号位,其中,移码的偏置常数为16 。

基数为4,+19+1.75,(1)用这种格式表示下列十进制数:。

–1/8位定写出该格式浮点数的表示范围,并与12(2)点补码整数表示范围比较。

入法进行舍入)舍1(假定采用参考答案:01故阶码,4+1.75 = +1.11B = )(1 0.011100B×+0.011100尾数为1 +16 = 17 = 10001B, 为的补码,1.1100B×= 4。

=00 =1 ×4130Q×41.30Q0 10001 011100。

即0.011100,所以+1.75表示为3故阶码为,+19 = +10011B = 0.010011B×4所,3 + 16 = 19 = 10011B, 尾数为0.010011 。

以+19表示为0 10011 010011 = –––1/8 = 0.125 = 0.001B –0.100000 ×1–,4数为–尾15 1 码阶为–+ 16 = = 01111B,1/8–,所以0.100000的补码,即1.100000 1 01111 100000表示为。

)该格式浮点数表示的范围如下。

(2111110.111111B ×正数最大值:40.333×,即:915 30 410(≈2≈)00000 0.001Q×4 正数最小值:0.000001B ×,即:10––16 –34)24(≈10≈00000:即,4 ×0.000001B –:值大最数负16––0.001×411111:,4即×数最小值:–1.000000B 负154–1.000×910–10~因此,该格式浮点数的数量级在10 之间。

11~位定点补码整数的表示范围为:–212112047~–2048+(2–1),即:定点数和浮点数的表示范围相差非由此可见,常大。

下列几种情况所能表示的数的范围是什么?11.16位无符号整数(1)16位原码定点小数(2)位补码定点小数)316(位补码定点整数)16(4,移码的偏置常下述格式的浮点数(基数为2(5)128)数为阶1位8位7参考答案:16。

1–2~0)无符号整数:1(.–15–15)2。

) ~–(2)原码定点小数:–(12+ (1––15)。

~+ (1–23()补码定点小数:–1(4)补码定点整数:–32768 ~+32767。

–7+127 –7–128。

×)×22~–2(5)浮点数:负数:–(1–2–135 –7+127 。

2) ×~(1–2正数:+212. 以IEEE 754单精度浮点数格式表示下列十进制数。

+1.75,+19,–1/8,258参考答案:0, 故阶码×2为1.11B +1.75 = +1.11B = 0+127=01111111B, 数符为0,尾数为1.110…0,小数点前为隐藏位,所以+1.7表示为0 01111111110 0000 0000 0000 0000 0000,用十六进制表示为3FE00000H。

4,故阶码为24+127 19 = +10011B =+1.0011B ×+= 10000011B, 数符为0,尾数为1.00110…0,所以+19表示为0 10000011 001 1000 0000 00000000 0000,用十六进制表示为41980000H。

相关文档
最新文档