乘法公式地灵活运用

合集下载

乘法公式应用综合

乘法公式应用综合

乘法公式应用综合在咱们的数学世界里,乘法公式那可真是个神奇的存在!就像一把万能钥匙,能帮咱们打开好多难题的锁。

先来说说完全平方公式吧,(a ± b)² = a² ± 2ab + b²,这玩意儿可太有用啦!我记得有一次,我去逛菜市场,看到一个卖水果的摊位。

摊主正在算着成本和利润。

他说一箱苹果进价是 a 元,他打算每箱加价 b 元出售。

那按照完全平方公式,他每箱的利润就是 (a + b)² - a² = 2ab +b²。

这可让他一下子就清楚了自己能赚多少钱。

还有平方差公式 (a + b)(a - b) = a² - b²,也是解决问题的好帮手。

比如在装修房子的时候,要计算房间地面的面积。

如果房间的长是 (a + b) 米,宽是 (a - b) 米,那么地面的面积就是 a² - b²平方米。

乘法公式在代数运算中更是大显身手。

比如化简式子 (x + 2y)² - (x - 2y)²,咱们就可以直接套用公式。

先把前面的 (x + 2y)²展开得到 x² +4xy + 4y²,后面的 (x - 2y)²展开得到 x² - 4xy + 4y²,然后一减,4xy 就抵消掉了,剩下 8xy 。

是不是很简单?再看这道题:已知 a + b = 5 ,ab = 3 ,求 a² + b²的值。

这时候咱们就可以用完全平方公式啦,(a + b)² = a² + 2ab + b²,变形一下,a² + b² = (a + b)² - 2ab ,把数值带进去,5² - 2×3 = 19 。

乘法公式在几何图形中也有出色的表现。

比如说一个正方形的边长增加了 x ,那它的面积增加多少呢?原来正方形的边长是 a ,面积就是 a²。

(完整版)乘法公式的灵活运用

(完整版)乘法公式的灵活运用

1乘法公式的灵活运用一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2 =x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2) =x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

乘法公式

乘法公式

1乘法公式一、复习: (a+b)(a-b)= (a+b)2= (a-b)2=归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=② 符号变化,(-x +y )(-x -y )=③ 指数变化,(x 2+y 2)(x 2-y 2)=④ 系数变化,(2a +b )(2a -b )=⑤ 换式变化,[xy +(z +m )][xy -(z +m )]⑥ 增项变化,(x -y +z )(x -y -z )⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2(1)已知2=+b a ,1=ab ,求22b a +。

(2)已知8=+b a ,2=ab ,求2)(b a -的值。

(3)计算19992-2000×1998 (4)已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

(5)已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值。

(6)判断(2+1)(22+1)(24+1)……(22048+1)+1的个位数字是几?(7)运用公式简便计算(1)1032 (2)1982(8)计算(1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)(9)解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。

(2)已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。

(3)已知a (a -1)-(a 2-b )=2,求222a b ab +-的值。

(4)已知13x x -=,求441x x +的值。

(10)四个连续自然数的乘积加上1,一定是平方数吗?为什么?(11)计算 (1)(x 2-x +1)2 (2)(3m +n -p )22 二、乘法公式的用法(一)、套用例1. 计算:()()53532222x y x y +- (-2x -y)(2x -y)(二)、连用:连续使用同一公式或连用两个以上公式解题。

乘法公式灵活运用

乘法公式灵活运用

乘法公式灵活运用乘法公式是数学中常用的一种计算方法,用于求解两个或多个数的乘积。

灵活运用乘法公式可以简化计算,提高解题效率。

本文将从实际问题出发,分析乘法公式的灵活运用方法,以及对应的数学技巧,帮助读者更好地掌握乘法公式的应用。

乘法公式的基本形式是:a×b=c,其中a和b是乘数,c是积。

乘法公式可以用于求解各类数学问题,包括乘法的基本性质、因数分解、最大公约数、公倍数等。

在乘法的基本性质中,乘法公式可以被运用于计算两个数相乘的结果。

例如计算12×35,我们可以使用乘法公式,将12拆解为10+2,35拆解为30+5,然后进行分配律运算:(10+2)×(30+5)=(10×30)+(10×5)+(2×30)+(2×5)=300+50+60+10=420。

这样,我们可以通过分解乘数,将原本复杂的乘法运算简化为几个简单的加法和乘法运算。

乘法公式还可以用于因数分解。

因数分解是将一个数分解为多个乘数的乘积,通过应用乘法公式,可以将这个过程简化。

例如对于数45,我们可以将它分解为3×15,然后继续对15进行因数分解,得到3×5×3、这样,45就可以表示为它的全部因数的乘积。

因数分解在数论、代数等领域有着重要的应用,通过乘法公式,我们可以更轻松地完成这个过程。

乘法公式在解决实际问题时,还可以通过一些数学技巧来进一步灵活运用。

例如在乘法运算中,可以通过重新排序进行简化。

如果要计算3×7×5,我们可以将其按需重新排列,得到5×7×3,然后再进行乘法运算:5×7=35,35×3=105、这样,我们可以通过重新排列乘积的顺序,在保持乘数不变的前提下,使得计算更加简单。

此外,乘法公式还可以和其他数学知识相结合,进一步拓展乘法的应用。

例如在代数中,乘法公式可以用于计算多项式的展开式。

七年级数学下册《乘法公式的综合运用》教案、教学设计

七年级数学下册《乘法公式的综合运用》教案、教学设计
4.家长配合监督,关注学生的作业进度,确保作业质量。
5.教师及时批改作业,了解学生的学习情况,为下一步教学提供依据。
d.总结:引导学生总结乘法公式的特点、应用规律和注意事项。
e.作业:布置适量的课后作业,巩固所学知识。
4.教学评价:
a.过程性评价:关注学生在课堂上的参与程度、思考问题和解决问题的能力。
b.终结性评价:通过课后作业和阶段测试,评价学生对乘法公式的掌握程度。
c.个性化评价:针对学生的个体差异,给予有针对性的指导和鼓励。
2.完全平方公式:继续采用具体数字,让学生观察并归纳出完全平方公式:a² + 2ab + b² = (a + b)²。同时,引导学生了解完全平方公式的变式,如a² - 2ab + b² = (a - b)²。
3.公式的推导与应用:通过几何图形、实际例题等方式,讲解乘法公式的推导过程和应用方法,让学生理解乘法公式的实际意义。
2.情境导入:展示一个与学生生活相关的实际问题,如计算一个正方形与一个长方形的面积差,引发学生思考如何简化计算过程,从而引出乘法公式的学习。
(二)讲授新知
1.平方差公式:以具体的数字为例,引导学生观察并发现两个数的平方差与这两个数的和与差之间的关系。通过实际计算,总结出平方差公式:a² - b² = (a + b)(a - b)。
七年级数学下册《乘法公式的综合运用》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握乘法公式的综合运用,包括平方差公式、完全平方公式以及它们的变式。
2.培养学生运用乘法公式进行简便计算的能力,提高运算速度和准确性。
3.通过对乘法公式的运用,使学生能够解决一些实际问题,如面积计算、速度问题等。

最经典的乘法公式综合应用与拓展分析

最经典的乘法公式综合应用与拓展分析

最经典的乘法公式综合应用与拓展分析乘法公式是数学中常用的公式之一,它们在各个数学领域中都有广泛的应用。

本文将从学生和教师两个角度综合分析乘法公式的最经典的应用与拓展。

首先,对于学生而言,乘法公式是他们掌握数学知识的基础。

学生在学习数学的过程中,会接触到很多与乘法相关的知识,如乘法口诀、乘法逆元等。

通过乘法公式的学习,学生可以更好地理解和应用乘法的原理和方法。

比如,在解决乘法运算中的复杂问题时,学生可以灵活运用乘法公式,提高解题的效率和准确性。

其次,对于教师而言,乘法公式是他们教学的重要工具。

教师在教授数学知识时,可以通过乘法公式来引导学生掌握乘法的基本操作和运算规则。

此外,乘法公式还可以作为教师讲解和解决数学问题的案例,帮助学生从实践中理解乘法的原理和应用。

例如,在教授高中数学中的二次方程时,教师可以通过乘法公式来引导学生求解方程的根,帮助学生加深对乘法公式的理解和运用。

乘法公式还有很多拓展应用,以下是一些经典的拓展案例:1.方阵乘法:方阵乘法是线性代数中的常用运算,通过乘法公式可以方便地计算两个方阵的乘积。

在实际应用中,方阵乘法广泛用于图像处理、数据压缩等领域。

2.应用于几何图形:通过乘法公式可以计算图形的面积和周长。

例如,计算矩形的面积可以使用乘法公式的形式:面积=长度x宽度。

3.二项式展开:二项式展开是代数中常用的运算,通过乘法公式可以方便地展开一个二项式。

在高中数学中,二项式展开广泛应用于排列组合、概率等问题的求解中。

4.概率与统计:乘法公式在概率和统计中有广泛的应用。

例如,计算多事件的概率时,可以使用乘法公式计算独立事件的联合概率。

此外,在统计学中,乘法公式也被用于计算随机变量的期望和方差等。

总而言之,乘法公式作为数学中的重要工具,在学生和教师的学习和教学中都起到了至关重要的作用。

通过乘法公式的学习和应用,学生可以提高解题的效率和准确性,教师可以引导学生更好地掌握乘法的原理和应用。

此外,乘法公式还有许多拓展应用,可以在其他数学领域中发挥重要作用。

乘法公式的运用技巧

乘法公式的运用技巧
或=(x+3)2 解得:k=3 或k=-3
3.解:原式=x2+2kx+k2 由题意得:原式=(x-4)2
或=(x+4)2 解得:k=4 或k=-4

2.若 x2 2kx 9 是一个完全平方公式,则 k ____3___;
3.若 x2 8x k2 是一个完全平方公式,则k ___4____;
1.解:设a=2008,b=2009 原式=a2-2ab+b2 =(a-b)2 把a=2008,b=2009
代入得:(a-b)2=1
2.解:原式=x2+2kx+32 由题意得:原式=(x-3)2
3、逆着用
计算:1.32+2×1.3×8.7+8.72
解:原式=(1.3+8.7)2 =102 =100
公式可逆,左右互换
4.巧着用
①计算: (2+1)(22+1)(24+1) (28+1)
解:原式=(2-1)(2+1)(22+1)(24+1)(28+1) =(22-1)(22+1)(24+1)(28+1) =(24-1)(24+1)(28+1) =(28-1)(28+1) =216-1
②计算: (3+1)(32+1)(34+1) (38+1)…(32048+1) 1
解:原式= 2 (3-1)(3+1)(32+1)(34+1)… (32048+1) = 1 (34096-1)
2 34096 1
=
2
创造条件,灵活运用
三 拓展提升
1. 20082 2 2008 2009 20092 =___1____;

灵活应用乘法公式巧妙解题

灵活应用乘法公式巧妙解题
关 键 词 : 法公 式 乘 结 构特 征 应用
乘法 公 式 的灵 活 运 用.


分 清 平方 差 公 式 中 的a b 对 号入 座 、。

例 1计 算 (y x)一2X : 3 一 ( 2 3) y
把 具有 特 殊 形 式 的多 项 式 相 乘 的式 子 及 其 结 果 写 成 公 式 的形式 . 就是 “ 法 公 式 ”它 可 按 多 项 式 乘 以 多项 式 的 法 则 进 乘 . 行推导. “ 法公式” 乘 主要 指 :
解 :3_ (y 2



) 一_y
_ ( [ 一

+y [ 了 x -y 3]( 2 3] 一 )
这 两 个 基 本 公 式 应 用 十 分 广 泛 , 巧 性 也 比较 强 . 确 灵 技 正 活 地 应 用 乘 法 公 式 , 以使 运算 简 便 , 半 功 倍 , 而 提 高 学 可 事 从
: X


2 5
例2 计 算 (— +— )a b c d : a b c d (— —+ ) 分 析 : 两 个 括 号 内 相 同 项 归 纳 为 一 类 作 为 a 把 只 有 符 把 , 号 相 反 的项 归 纳 为 一 类 作 为b 再 用 平 方 差公 式计 算 . , 解 : 式 = (— ) (— ) [a b 一 c d ] 原 [a b + c d ](— ) (— )

广 泛 内涵 及 其 变形 . 公式 中 的ab 以 表示 具 体 的数 , 可 以表 、可 也 示 单 项 式 或 多 项 式 , 要 符 合 某 个 公 式 的 结 构 特 征 。 可 以运 只 就 用 这 个 公 式 .在 进 行 整 式 乘 法 运 算 时若 能仔 细 观 察 乘 式 的结 构 特 征 . 据 它 的特 征 选 择 合 适 的 方 法 , 仅 能使 问题 化 繁 为 根 不 简 , 有助于培养学生的创新思维和探索精神 . 面举例说 明 还 下 之 间 有 怎样 的联 系 ? ”是 不 是体 现 了 由量 变到 质 变 的过 程 ? ” “ 在这里 , 师冷静 思考 , 妙捕捉多媒 体的亮点资 源 , 教 巧 并 灵 活 地 调 整 教 学 方 法 , 智 生 成 新 的 教 学 策 略 , 教 学 顺 利 展 机 使

2024北师大版数学七年级下册1.6.3《乘法公式综合运用》教案3

2024北师大版数学七年级下册1.6.3《乘法公式综合运用》教案3

2024北师大版数学七年级下册1.6.3《乘法公式综合运用》教案3一. 教材分析《乘法公式综合运用》是北师大版数学七年级下册1.6.3的教学内容。

这部分内容是在学生掌握了平方差公式、完全平方公式等乘法公式的基础上进行学习的。

通过这部分的学习,学生能够灵活运用乘法公式解决实际问题,提高他们的解决问题的能力。

二. 学情分析面对七年级的学生,他们在之前的学习中已经掌握了平方差公式、完全平方公式等乘法公式。

但是,他们在运用这些公式解决实际问题时,往往会存在理解不深、运用不灵活的情况。

因此,在教学这部分内容时,需要引导学生深入理解乘法公式的内涵,提高他们解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握乘法公式的运用方法,能够灵活解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。

四. 教学重难点1.重点:乘法公式的运用。

2.难点:灵活运用乘法公式解决实际问题。

五. 教学方法采用自主学习、合作交流、教师引导相结合的教学方法,让学生在探究中掌握知识,提高解决问题的能力。

六. 教学准备1.准备相关的乘法公式的资料,以便在教学中进行查阅。

2.准备一些实际问题,让学生进行练习。

七. 教学过程1.导入(5分钟)教师通过提问的方式,引导学生回顾之前学过的平方差公式、完全平方公式等乘法公式,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过展示一些实际问题,让学生尝试运用乘法公式进行解决。

学生在解决问题的过程中,教师给予适当的引导和提示。

3.操练(10分钟)学生分组进行练习,教师给出一些运用乘法公式的问题,学生通过合作交流,共同解决问题。

4.巩固(5分钟)教师挑选一些学生解决的实际问题,让学生上台进行讲解,以此巩固乘法公式的运用。

5.拓展(5分钟)教师提出一些拓展问题,引导学生深入思考,提高他们解决问题的能力。

八年级数学上册《乘法公式》教案、教学设计

八年级数学上册《乘法公式》教案、教学设计
(三)学生小组讨论
1.教学活动设计:将学生分成若干小组,每组针对以下问题进行讨论:
a.平方差公式和完全平方公式的推导过程;
b.乘法公式在解决实际问题中的应用;
c.运用乘法公式进行整式乘法的优点。
2.教师指导:在学生讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨。
(四)课堂练习
1.教学内容:设计以下几类练习题,巩固学生对乘法公式的掌握:
7.信息技术辅助教学:利用多媒体、网络资源等信息技术手段,形象直观地展示乘法公式的推导过程,提高教学效果。
8.关注个体差异,因材施教:针对不同学生的特点,给予个性化的指导,使每个学生都能在原有基础上得到提高。
9.定期评估,总结提高:通过定期测试和评估,了解学生的学习情况,总结教学经验,不断调整和优化教学方法,提高教学质量。
a.平方差公式:a² - b² = (a + b)(a - b)
通过具体的数值代入,引导学生观察、发现并总结出平方差公式的规律。
b.完全平方公式:a² + 2ab + b² = (a + b)²
同样,通过具体的数值代入,引导学生观察、发现并总结出完全平方公式的规律。
2.教学方法:采用引导式教学,让学生通过观察、思考和总结,自主发现乘法公式的规律。
4.利用信息技术手段,如多媒体、网络资源等,辅助教学,提高课堂教学效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、积极思考的学习态度,使学生养成良好的学习习惯。
3.培养学生合作交流的意识,学会倾听他人意见,提高人际沟通能力。
4.培养学生认识到数学知识在实际生活中的重要性,增强学生的应用意识和实践能力。

如何灵活运用乘法公式

如何灵活运用乘法公式

如何灵活运用乘法公式同学们学习过乘法公式以后,基本上能够记住它们的特点,能够直接运用它们了。

但是,有些问题并不能直接运用公式,而需要创造条件,使之符合乘法公式的特点,然后才能运用公式,下面就来介绍几种常用的方法。

一、分组、结合法例1. 计算:()()z y x z y x -+++。

分析:本题看做多项式乘多项式来解比较烦琐,但如果适当分组,就能运用平方差公式了,把每个括号中的前两项当成一组就行了。

解:原式()[]()[]()22222z y xy 2x z y x z y x z y x -++=-+=-+++=。

例2. 计算:()()d c b a d c b a ++-+-+。

分析:本题每个括号里面有4项,看上去不好直接运用公式,但把它们进行分组、结合,就可以用平方差公式了。

解:原式=()()[]()()[]()()222222c bc 2bd ad 2a c b d a c b d a c b d a -+-++=--+=--+-++二、拆项、添项法例3. 计算:()()()()1171717176842+++++。

分析:本题直接计算比较烦琐,但如果利用拆项的方法把6拆成71-,就可以用平方差公式了。

解:原式=()()()()()11717171717842+++++-()()()()1171717178422++++-= ()()()1171717844+++-= ()()1171788++-==11716+-167=。

例4. 已知多项式()()()()()11x 1x 1x 1x 1x 16842++++++,求当2x =时多项式的值。

分析:把2x =代入后可仿例1解,也可以在多项式()()()()()1x 1x 1x 1x 1x 16842+++++前面添上一项1x -,再除以这项,这样就可以用平方差公式求解。

解:原式()()()()()()11x 1x ...11x 1x 1x 1x 1x 1x 1x 3216842+--==+-+++++-=,当2x =时,原式322=。

最经典的乘法公式综合应用与拓展(学生、教师两用版)

最经典的乘法公式综合应用与拓展(学生、教师两用版)

八年级数学上册乘法公式的综合应用与拓展 (学生版)•、基本公式1. 平方差公式:(a+b)(a-b)=a 2-b 22例:计算 1999 -2000 X 199822 22. 完全平方公式(a+b) =a +2ab+b (a-b)例:运用公式简便计算3. 完全平方公式a+b(或a-b)、ab 、a 2+b 2这三者任意知道两项就可以求出第三项(a+b)2、(a-b) 2、ab 这三者任意知道两项就可以求出第三项① a 2 b 2 = (a b)2 - 2aba 2b 2 = (a-b) 2+2ab2 2 2 2② (a-b) =(a+b) -4ab(a+b) =(a-b) +4ab(2)完全平方公式变用 2:两个完全平方公式之和的整合2 2 2 2(a+b) + (a-b) =2 (a+b)例1 •已知a b 2 , ab =1,求a 2 b 2的值。

2例 2.已知 a • b = 8 , ab = 2,求(a - b)的值。

例3.已知a - b = 4, ab = 5,求a 2 b 2的值。

2 2例 4 .已知 m +n =7, mn= —18,求 m — mr+ n 的值.例 5 (3)已知:x+2y=7 , xy=6,求(x-2y)2 的值.例6.已知a +丄=5,求(1) a 2+W , (2) (a —丄)2的值.a a a(1)完全平方公式变用 1:利用已知的两项求第三项2 2 2=a -2ab+b (1) 1032(2) 19821 1例7.已知x -― =3,求x4■ ~4的值。

x x3=a -b二、公式的灵活运用1. 对公式的基本变用 _ 2 2(1)位置变化,x y -y x =x_y(2 )符号变化,(彳勺片—x j_y 2= x 2-y 22. 整体思想的应用(1 )应用整体思想,首先要能识别公式中的“两数”2 2例1计算(-a +4b )分析:运用公式(a +b )2=a 2+2ab +b 2时, ______ 就是公式中的a, _____ 就是公式中的b ;若将题目变形为(4b -a 2)2时,则 ________ 是公式中的a ,而 _______ 就是公式中的b .(解略)练习 1•计算:5x 23y 25x 2-3y 2练习2•计算: x -y z x -y —z 练习 3.计算:Ixy z m Jlxy- z m 1练习 4.计算:x ■ y -2z x y 6z(2 )应用应用整体思想,其次能正确选取负号和减号 例计算:(-2 x 2-5)(2 x 2-5)分析:本题两个因式中“-5 ”相同,“2x 2”符号相反,因而 ______ 是公式(a +b )( a -b )= a 2-b 2中的a,而 _____ 则是公式中的b .解:原式=(3 )应用整体思想,要善于分组加括号例&解下列各式(1) (2) (3) 已知 a 24b 2=i3, ab=6,求(a^bj ,(a_b j 的值。

乘法结合律的应用

乘法结合律的应用

乘法结合律的应用乘法结合律是数学中的重要性质之一,它指的是在进行连续乘法运算时,无论怎样添加括号改变乘法顺序,最后的结果都是相同的。

这个性质在实际生活和学习中有着广泛的应用。

本文将探讨乘法结合律在不同领域的应用,并通过实例来加深理解。

一、乘法结合律在代数中的应用在代数中,乘法结合律是数学运算的基础,它使得我们可以通过改变运算次序简化计算。

例如,对于三个数a、b和c,乘法结合律可以表示为:(a * b) * c = a * (b * c)。

这意味着我们可以先计算a和b的乘积,然后再与c相乘,或者先计算b和c的乘积,再与a相乘,最终结果都是一样的。

这个性质在解方程、化简表达式等代数问题中经常被使用。

以解方程为例,假设有一个方程式:2x * 3y = 4xy。

我们可以利用乘法结合律将方程左侧的乘法运算改写为(2 * 3) * (xy),得到6xy = 4xy。

接着,我们可以将两边的xy合并,得到6x = 4。

最后,通过除法运算解出x的值,找到方程的解。

二、乘法结合律在几何中的应用乘法结合律在几何学中也有着广泛的应用。

例如,在计算长方形的面积时,我们需要将长和宽相乘,通过乘法结合律,可以将长方形的面积表示为长乘以宽:面积 = 长 * 宽。

同样,乘法结合律在计算圆的面积时也起到了重要作用。

圆的面积公式为:面积= π * 半径^2。

我们可以将这个公式中的乘法运算改写为:(π * 半径) * 半径,即(π * r) * r。

这样,我们可以更方便地计算出圆的面积。

三、乘法结合律在经济中的应用乘法结合律在经济学中也有着实际应用。

例如,在计算折扣率时,我们需要通过乘法运算来计算优惠后的价格。

假设有一个商品原价为100元,打八折后的价格可以通过使用乘法结合律来计算:100 * 0.8 = 80元。

同样,在计算利润时,我们也需要使用乘法结合律。

假设一个企业的销售额为1000万元,利润率为10%,我们可以通过乘法运算来计算企业的利润:1000 * 0.1 = 100万元。

学习乘法公式的十个层次

学习乘法公式的十个层次

学习乘法公式的十个层次乘法公式是初中数学中极其重要的公式,应用十分广泛.解题时,若能根据题目特点灵活运用,则能达到迅速解题的目的.下面谈谈学习乘法公式的十个层次.一、对号入座,直接套用公式分清题中哪些数或式可以看作公式中的a、b,对号入座,直接套用公式.例1 计算:(-85+13x2)(-85-13x2).分析两个因式中的-85完全相同,而13x2与-13x2互为相反数,因而可运用平方差公式计算.解原式=(-85)2-(13x2)2=7225-169 x2.二、连续运用乘法公式例2 化简:(a-1)(1+a)(1+a2)(-1-a4).分析观察式子的结构特征,若将(-1-a4)变为-(1+a4),可连续运用平方差公式.解原式=-(a2-1)(a2+1)(a4+1)=-(a4-1)(a4+1)=-(a8-1)=1-a8.三、符号变形后连续运用乘法公式例3 化简:(a-2)(-2-a)(4+a2) (16+a4).分析观察式子的结构特征,发现将(-2-a)变为-(a+2)后,连续运用平方差公式既简单又快捷.解原式=-(a+2)(a-2)(a2+4) (a4+16)=-(a2-4)(a2+4)(a4+16)=-(a4+16)(a4-16)=256-a8.四、拆项变形后运用乘法公式例4 化简:(7x-5y+3)(-7x-5y-9).分析若将本题两个因式中的项分别进行拆项变形:前一因式的“3”拆成“-3+6”,后一因式的“-9”拆成“-3-6”,再通过合理分组,即符合平方差公式的特征,从而巧用公式,简捷求解.解原式=(7x-5y-3+6)(-7x-5y-3-6)=[(-5y-3)+(7x+6)][(-5y-3)-(7x+6)]=(-5y-3)2-(7x+6)2=25 y2-49x2+30y-84x-27.五、添项变形运用乘法公式在不改变原式值的前提下,将原式添上一个因式,使得它能运用乘法公式计算.例5 计算:[3(22+1](24+1)(28+1)-216]2018.分析将“3”写成(22-1),如此变形后即可连续运用平方差公式.解原式=[(22-1) (22+1) (24+1) (28+1)-216 ) 2018=[(24-1)(24+1) (28+1)-216] 2018=[(28-1) (28+1)-216]2018=[ (216-1)-216]2018=(-1)2018=1.六、分组结合后逆用乘法公式例6 计算:20202-20192+20182-20172+…+10002-9992+…+1002-992+982-972+…+22-12.七、变形后逆用乘法公式例7 求满足方程5x2-12xy+10y2-6x-4y+13=0的x、y的值.分析观察到,通过配方并逆用完全平方公式将方程左边化成三个完全平方式和的形式,再利用非负数的性质即可.解通过拆项、配方原方程可化为(4x2-12xy+9y2)+(x2-6x+9)+(y2-4y+4)=0,即(2x -3y)2+(x-3)2+(y-2)2=0.八、正逆联用乘法公式根据题设条件和待求式的结构特征,乘法公式既可顺用,又可逆用.例8 已知14(b -c )2=(a -b)(c -a),且a ≠c ,求b c a+的值. 分析 欲求b c a +的值,则需b +c 与a 之间的等量关系,而条件等式正好是a 、b 、c 之间的关系式,因此运用完全平方公式和多项式乘法将原式变形,再逆用完全平方公式即可达到求值目的.九、综合运用乘法公式例9 正数x 、y 、z 满足xy +yz =1022,求x 2+5y 2+4z 2的最小值.十、乘法公式变式的应用乘法公式常见的变形有:a 2+b 2=(a +b)2-2ab ;a 2+b 2=(a -b )2+2ab ;a 2+b 2=()()222a b a b ++-; ()()()22222a b a b a b ++-=+;()()221144ab a b a b =+-- 2222a b a b +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭; ()()224ab a b a b =+--这些变形公式,在解题中有着广泛的应用.在运用公式时,不应拘泥于公式的形式需要深刻理解、灵活运用. 例10 已知a +b =70,c 2=ab -1225,求a 、b 、c 的值.分析 此题运用积化和差公式ab 2222a b a b +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,解题过程极为简捷. 解 ∵ab 2222a b a b +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭从而a =b ,c =0.代入已知式,解得a =b =35,c =0.。

且看如何妙用乘法公式

且看如何妙用乘法公式

且看如何妙用乘法公式
秦佑春;刘伯新
【期刊名称】《数理天地:初中版》
【年(卷),期】2008(000)005
【摘要】乘法公式,初中同学人人皆知,但是未必都会灵活运用.本文告诉你怎样巧妙地应用乘法公式,且看五招:1.直接用例1计算:(3x+2y)(3x-2y).分析将3x和2y 分别看作平方差公式中的a,b,直接套用平方差公式.
【总页数】1页(P11-11)
【作者】秦佑春;刘伯新
【作者单位】山东省邹城市第八中学;山东省邹城大束中学;273500;273511
【正文语种】中文
【中图分类】G634.6
【相关文献】
1.乘法“进位律”一口清的妙用——《简易快速乘法》题型的计算总结
2.基于“整体观”的乘法公式教学与思考--以“完全平方公式”新授课教学为例
3.基于"整体观"的乘法公式教学与思考——以"完全平方公式"新授课教学为例
4.浅谈乘法公式的教学设计与思考
——以完全平方公式为例5.揭示公式形成过程渗透数学核心素养——评《乘法公式》(第1课时)
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式的灵活运用一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2 =x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2) =x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

〖解析〗此题可用完全平方公式的变形得解。

解:a 2+b 2=(a+b)2-2ab=4-2=2 (a-b)2=(a+b)2-4ab=4-4=0例5:已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值。

〖解析〗此题若想根据现有条件求出x 、y 、z 的值,比较麻烦,考虑到x 2-z 2是由x+z 和x-z 的积得来的,所以只要求出x-z 的值即可。

解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x 2-z 2=(x+z )(x-z)=14×4=56。

例6:判断(2+1)(22+1)(24+1)……(22048+1)+1的个位数字是几?〖解析〗此题直接计算是不可能计算出一个数字的答案,故有一定的规律可循。

观察到1=(2-1)和上式可构成循环平方差。

解:(2+1)(22+1)(24+1)……(22048+1)+1 =(2-1)(22+1)(24+1)……(22048+1)+1=24096=161024 因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6。

例7.运用公式简便计算(1)1032(2)1982解:(1)1032=(100+3)2 =1002+2⨯100⨯3+32=10000+600+9 =10609 (2)1982=(200-2)2=2002-2⨯200⨯2+22=40000-800+4 =39204例8.计算(1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)解:(1)原式=[(a -3c )+4b ][(a -3c )-4b ]=(a -3c )2-(4b )2=a 2-6ac +9c 2-16b 2(2)原式=[3x +(y -2)][3x -(y -2)]=9x 2-( y 2-4y +4)=9x 2-y 2+4y -4例9.解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。

(2)已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。

(3)已知a (a -1)-(a 2-b )=2,求222a b ab +-的值。

(4)已知13x x -=,求441x x+的值。

分析:在公式(a +b )2=a 2+b 2+2ab 中,如果把a +b ,a 2+b 2和ab 分别看作是一个整体,则公式中有三个未知数,知道了两个就可以求出第三个。

解:(1)∵a 2+b 2=13,ab =6∴(a +b )2=a 2+b 2+2ab =13+2⨯6=25 (a -b )2=a 2+b 2-2ab =13-2⨯6=1 (2)∵(a +b )2=7,(a -b )2=4∴ a 2+2ab +b 2=7 ① a 2-2ab +b 2=4 ② ①+②得 2(a 2+b 2)=11,即22112a b +=①-②得 4ab =3,即34ab =(3)由a (a -1)-(a 2-b )=2 得a -b =-2()22221222a b ab a b ab +∴-=+-()()22112222a b =-=⨯-=(4)由13x x -=,得19x x 2⎛⎫-= ⎪⎝⎭ 即22129x x +-= 22111x x ∴+=221121x x 2⎛⎫∴+= ⎪⎝⎭ 即4412121x x ++= 441119x x +=例10.四个连续自然数的乘积加上1,一定是平方数吗?为什么? 分析:由于1⨯2⨯3⨯4+1=25=522⨯3⨯4⨯5+1=121=1123⨯4⨯5⨯6+1=361=192…… 得猜想:任意四个连续自然数的乘积加上1,都是平方数。

解:设n ,n +1,n +2,n +3是四个连续自然数则n (n +1)(n +2)(n +3)+1 =[n (n +3)][(n +1)(n +2)]+1 =(n 2+3n )2+2(n 2+3n )+1=(n 2+3n )(n 2+3n +2)+1 =(n 2+3n +1)2∵n 是整数,∴ n 2,3n 都是整数 ∴ n 2+3n +1一定是整数∴(n 2+3n +1)是一个平方数 ∴四个连续整数的积与1的和必是一个完全平方数。

例11.计算 (1)(x 2-x +1)2(2)(3m +n -p )2解:(1)(x 2-x +1)2=(x 2)2+(-x )2+12+2⋅ x 2⋅(-x )+2⋅x 2⋅1+2⋅(-x )⋅1=x 4+x 2+1-2x 3+2x 2-2x=x 4-2x 3+3x 2-2x +1(2)(3m +n -p )2=(3m )2+n 2+(-p )2+2⋅3m ⋅n +2⋅3m ⋅(-p )+2⋅n ⋅(-p )=9m 2+n 2+p 2+6mn -6mp -2np 分析:两数和的平方的推广(a +b +c )2=[(a +b )+c ]2=(a +b )2+2(a +b )⋅c +c 2=a 2+2ab +b 2+2ac +2bc +c 2=a 2+b 2+c 2+2ab +2bc +2ac 即(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac几个数的和的平方,等于它们的平方和加上每两个数的积的2倍。

二、乘法公式的用法(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力。

例1. 计算:()()53532222xyxy+- 解:原式()()=-=-53259222244x y x y(二)、连用:连续使用同一公式或连用两个以上公式解题。

例2. 计算:()()()()111124-+++a a a a解:原式()()()=-++111224a a a()()=-+=-111448a a a例3. 计算:()()32513251x y z x y z +-+-+--解:原式()()[]()()[]=-++--+25312531y z x y z x()()=--+=-+---25314925206122222y z x y x z yz x三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。

例4. 计算:()()57857822a b c a b c +---+解:原式()()[]()()[]=+-+-++---+578578578578a b c a b c a b c a b c()=-=-101416140160a b c ab ac四、变用: 题目变形后运用公式解题。

例5. 计算:()()x y z x y z +-++26解:原式()[]()[]=++-+++x y z z x y z z 2424()()=++-=+-+++x y z z x y z xy xz yz241224422222五、活用: 把公式本身适当变形后再用于解题。

这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()()12223244222222222222....a b ab a b a b ab a b a b a b a ba b a b ab+-=+-+=+++-=++--=灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。

例6. 已知a b ab -==45,,求a b 22+的值。

解:()a b a b ab 2222242526+=-+=+⨯=例7. 计算:()()a b c d b c d a ++-+++-22解:原式()()[]()()[]=++-++--b c a d b c a d 22()()[]=++-=++++-2222244222222b c a d a b c d bc ad例8. 已知实数x 、y 、z 满足xy z xy y +==+-592,,那么x y z ++=23( )解:由两个完全平方公式得:()()[]ab a b a b =+--1422从而 ()[]zx y y 2221459=--+- ()()()=--+-=-+-=--+=--25414529696932222y y y y y y y ()∴∴,∴∴z y z y x x y z 22300322322308+-====++=+⨯+=三、学习乘法公式应注意的问题(一)、注意掌握公式的特征,认清公式中的“两数”. 例1 计算(-2x 2-5)(2x 2-5)分析:本题两个因式中“-5”相同,“2x 2”符号相反,因而“-5”是公式(a +b )(a -b )=a 2-b 2中的a ,而“2x 2”则是公式中的b .解:原式=(-5-2x 2)(-5+2x 2)=(-5)2-(2x 2)2=25-4x 4.例2 计算(-a 2+4b )2分析:运用公式(a +b )2=a 2+2ab +b 2时,“-a 2”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为(4b -a 2)2时,则“4b ”是公式中的a ,而“a 2”就是公式中的b .(解略)(二)、注意为使用公式创造条件 例3 计算(2x +y -z +5)(2x -y +z +5).分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x ”、“5”两项同号,“y ”、“z ”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式. 解:原式=〔(2x +5)+(y -z )〕〔(2x +5)-(y -z )〕 =(2x +5)2-(y -z )2=4x 2+20x +25-y +2yz -z 2.例4 计算(a -1)2(a 2+a +1)2(a 6+a 3+1)2分析:若先用完全平方公式展开,运算十分繁冗,但注意逆用幂的运算法则,则可利用乘法公式,使运算简便. 解:原式=[(a -1)(a 2+a +1)(a 6+a 3+1)]2=[(a 3-1)(a 6+a 3+1)]2=(a 9-1)2=a 18-2a 9+1例5 计算(2+1)(22+1)(24+1)(28+1).分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简. 解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1(三)、注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例6 计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+2·2x·y+2·2x(-3)+2·y(-3)=4x2+y2+9+4xy-12x-6y.(四)、注意公式的变换,灵活运用变形公式例7 (1)已知x+y=10,x3+y3=100,求x2+y2的值;(2)已知:x+2y=7,xy=6,求(x-2y)2的值.分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x2+y2=(x+y)2-2xy,x3+y3=(x+y)3-3xy(x+y),(x+y)2-(x-y)2=4xy,问题则十分简单.解:(1)∵x3+y3=(x+y)3-3xy(x+y),将已知条件代入得100=103-3xy·10,∴xy=30 故x2+y2=(x+y)2-2xy=102-2×30=40.(2)(x-2y)2=(x+2y)2-8xy=72-8×6=1.例8 计算(a+b+c)2+(a+b-c)2+(a-b+c)+(b-a+c)2.分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出(a+b)2+(a-b)2=2(a2+b2),因而问题容易解决.解:原式=[(a+b)+c]2+[(a+b)-c]2+[c+(a-b)]2+[c-(a-b)]2=2[(a+b)2+c2]+2[c2+(a-b)2]=2[(a+b)2+(a-b)2]+4c2=4a2+4b2+4c2(五)、注意乘法公式的逆运用例9 计算(a-2b+3c)2-(a+2b-3c)2.分析:若按完全平方公式展开,再相减,运算繁杂,但逆用平方差公式,则能使运算简便得多.解:原式=[(a-2b+3c)+(a+2b-3c)][(a-2b+3c)-(a+2b-3c)]=2a(-4b+6c)=-8ab+12ac.例10 计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便.解:原式=(2a+3b)2+2(2a+3b)(4a-5b)+(4a-5b)2=[(2a+3b)+(4a-5b)]2=(6a-2b)2=36a2-24ab+4b2.四、怎样熟练运用公式:(一)、明确公式的结构特征这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.(二)、理解字母的广泛含义乘法公式中的字母a 、b 可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的围正确运用公式.如计算(x +2y -3z )2,若视x +2y 为公式中的a ,3z 为b ,则就可用(a -b )2=a 2-2ab +b 2来解了。

相关文档
最新文档