人教版九年级数学上册 第21章 《一元二次方程》同步练习

合集下载

九年级数学上册《第二十一章 解一元二次方程》同步练习题附带答案(人教版)

九年级数学上册《第二十一章 解一元二次方程》同步练习题附带答案(人教版)

九年级数学上册《第二十一章解一元二次方程》同步练习题附带答案(人教版)姓名班级学号一、单选题1.当b+c=4时,关于x的一元二次方程3x2+bx−c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.两个实数根2.已知关于x的一元二次方程x2−(2m−1)x+m2=0有实数根,则m的取值范围是()A.m≠0B.m≥14C.m≤14D.m>143.一元二次方程x(x−2)=2x的解是()A.x=2B.x=4C.x1=0,x2=4D.x1=24.一元二次方程x2−4x−5=0配方后,结果正确的是()A.(x−2)2=1B.(x−2)2=9C.(x−4)2=21D.(x−4)2=11 5.对于代数式: x2−2x+2下列说法正确的是()A.有最大值1B.有最小值1C.有最小值2D.无法确定最大最小值6.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x2﹣2x+kb+1=0 的根的情况是( )A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是 07.一个三角形的两边长为3和6,第三边边长是方程(x-2)(x-4)=0的根,则这个三角形的周长为()A.11 B.13 C.11或13 D.11和13 8.已知方程x2−3x+1=0的两个根分别为x1、x2则x1+x2−x1⋅x2的值为()A.7 B.5 C.3 D.29.方程x2=9的解是.10.若把代数式x2+2x−2化成(x+m)2+k的形式,其中m,k为常数,则m+k=.11.若关于x的一元二次方程(a−2)x2−4x−1=0没有实数根,则a的取值范围为.12.若x1、x2是方程x2−2mx+m2−m−1=0的两个实数根,且x1+x2=1-x1⋅ x2,则 m 的值为.x图像上有一个点M,点M的横坐标是方程x2+6x﹣91=0的根,则13.已知正比例函数y=513点M的纵坐标为.三、解答题14.解方程:(1)2x2−2√6x+3=0(2)x2−4x+5=0(3)x(x−2)=3x−615.已知一元二次方程2x2−3x−8=0的两个根分别为m,n,求m2n+mn2的值.16.已知关于x的方程x2+(2m−1)x+m2−1=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)若x1,x2满足x12+x22=x1x2+16,求实数m的值17.已知关于x的一元二次方程x2−5mx+4m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为6,求m的值.18.设x1,x2为关于x的方程x2−2px−p=0的两根,p为实数.(1)求证:2px1+x22+3p≥0.(2)当|x1−x2|≤|2p−3|时,求p的最大值.1.A2.C3.C4.B5.B6.A7.B8.D9.x1=3,x2=−310.-211.a<-212.113.3513或-514.(1)解:2x2−2√6x+3=0x2−√6x+32=0x2−√6x+(√62)2=0(x−√62)2=0x1=x2=√6 2(2)解:方程x2−4x+5=0中的a=1,b=−4,c=5则此方程的根的判别式为Δ=b2−4ac=−4<0故方程无解(3)解:x(x−2)=3x−6x(x−2)=3(x−2)x(x−2)−3(x−2)=0(x−3)(x−2)=0x−2=0或x−3=0x=2或x=315.解:∵一元二次方程2x2−3x−8=0的两个根分别为m,n∴m+n=−−32=32mn=−82=−4∴m2n+mn2=mn(m+n)=−4×32=−6.16.(1)解:∵关于x的方程x2+(2m−1)x+m2−1=0有两个实数根x1和x2.∴△=(2m−1)2−4(m2−1)=−4m+5⩾0∴m⩽54.(2)解:∵x1+x2=1−2m x1⋅x2=m2−1∴(1−2m)2=3(m2−1)+16即m2−4m−12=0解得:m=6或m=−2∵m⩽5 4∴m=−2.17.(1)证明:∵a=1 b=−5m c=4m2∴Δ=b2−4ac=(−5m)2−4×1×4m2=9m2≥0∴该方程总有两个实数根;(2)解:x2−5mx+4m2=0∴(x−m)(x−4m)=0解得:x1=m x2=4m∵m>0∴4m>m∵该方程的两个实数根的差为6∴4m−m=6,解得:m=2.18.(1)证明:∵x1、x2为x2−2px−p=0的两根∴x1+x2=2p,x1x2=−p,Δ=4p2+4p>0∴2px1+x22+3p=2px1+2px2+p+3p=2p(x1+x2)+4p=4p2+4p≥0;(2)解:|x1−x2|=√(x1+x2)2−4x1x2=√4p2+4p≤|2p−3|解得:p≤916时满足题意又当p=910故p的最大值是9.10。

人教版九年级数学上册第二十一章 一元二次方程 同步单元练习题(含答案,教师版)

人教版九年级数学上册第二十一章 一元二次方程 同步单元练习题(含答案,教师版)

人教版九年级数学上册第二十一章 一元二次方程 同步单元练习题一、选择题1.下列方程是一元二次方程的是(C)A .x -1=2 B.3x -1=1 C .x 2+2x -1=0 D .x 2+3y =0 2.解方程(x -1)2-3(x -1)=0的最适当的方法是(D)A .直接开平方法B .配方法C .公式法D .因式分解法3.已知m 是方程x 2-x -1=0的一个根,则代数式m 2-m 的值等于(C)A .-1B .0C .1D .24.下列一元二次方程中,有两个不相等实数根的是(B)A .x 2+9=6xB .x 2-x =1C .x 2+2=2xD .(x -1)2+2=05.扬帆中学有一块长30 m ,宽20 m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为x m ,则可列方程为(D)A .(30-x)(20-x)=34×20×30B .(30-2x)(20-x)=14×20×30 C .30x +2×20x =14×20×30 D .(30-2x)(20-x)=34×20×30 6.若关于x 的一元二次方程x 2+mx +m 2-3m +3=0的两根互为倒数,则m 的值等于(B)A .1B .2C .1或2D .07.我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是(D)A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-3二、填空题8.一元二次方程(x +1)(x +3)=9的一般形式是x 2+4x -6=0,二次项系数为1,一次项系数为4,常数项为-6.9.已知一元二次方程x 2-3x -2=0的两个实数根为x 1,x 2,则(x 1-1)(x 2-1)的值是-4.10.中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2018年人均年收入20000元,到2020年人均年收入达到39 200元.则该地区居民年人均收入平均增长率为40%.(用百分数表示)11.若方程(a -1)xa 2+1+3x =1是关于x 的一元二次方程,则a 的值是-1.12.若方程(k -1)x 2+2x -2=0有两个实数根,则k 的取值范围是k ≥12且k ≠1. 13.已知三角形的两边长分别为4和7,第三边的长是方程x 2-10x +21=0的解,则此三角形的周长是18.14.若(a 2+b 2)2-3(a 2+b 2)-4=0,则代数式a 2+b 2的值为4.15.已知α,β是方程x 2+3x +1=0的两个根,则(1+5α+α2)(1+5β+β2)的值为4.16.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多12步三、解答题17.解下列一元二次方程:(1)(2x +3)2-81=0;解:(2x +3)2=81.x 1=3,x 2=-6.(2)x 2-6x -2=0;解:(x -3)2=11.x 1=3+11,x 2=3-11.(3)x 2+22x -6=0;解:∵a =1,b =22,c =-6,Δ=b 2-4ac =(22)2-4×1×(-6)=32,∴x =-22±322=-22±422=-2±2 2. ∴x 1=2,x 2=-3 2.(4)5x(3x +2)=6x +4.解:(3x +2)(5x -2)=0. x 1=-23,x 2=25. 18.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?解:设AB 的长度为x 米,则BC 的长度为(100-4x)米.根据题意,得(100-4x)x =400.解得x 1=20,x 2=5.当x =20时,100-4x =20;当x =5时,100-4x =80>25,不合题意,应舍去.∴AB =20,BC =20.答:羊圈的边长AB ,BC 分别是20米,20米.19.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)若x 1+x 2=3,求k 的值及方程的根.解:(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴Δ=[-(2k +1)]2-4×1×(k 2+1)>0.整理,得4k -3>0,解得k>34. (2)由根与系数的关系知x 1+x 2=2k +1.又∵x 1+x 2=3,∴2k +1=3.解得k =1,满足k>34, ∴原方程为x 2-3x +2=0.∴x 1=1,x 2=2.20.已知关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若x 1,x 2满足3x 1=|x 2|+2,求m 的值.解:(1)∵关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2,∴Δ=(-6)2-4(m +4)=20-4m ≥0.解得m ≤5.(2)∵关于x 的一元二次方程x 2-6x +m +4=0有两个实数根x 1,x 2,∴x 1+x 2=6①,x 1x 2=m +4②.∵3x 1=|x 2|+2,∴x 1>0.当x2≥0时,有3x1=x2+2③,联立①③,解得x1=2,x2=4.∴8=m+4.∴m=4,满足m≤5;当x2<0时,有3x1=-x2+2④,联立①④,解得x1=-2,x2=8(不合题意,舍去).∴m的值为4.21.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.解:(1)设2018年甲类芯片的产量为x万块,由题意,得x+2x+(x+2x)+400=2 800.解得x=400.答:2018年甲类芯片的产量为400万块.(2)2018年丙类芯片的产量为3x+400=1 600(万块),设丙类芯片的产量每年增加的数量为y万块,则1 600+1 600+y+1 600+2y=14 400.解得y=3 200.∴丙类芯片2020年的产量为1 600+2×3 200=8 000(万块).2018年HW 公司手机产量为2 800÷10%=28 000(万部),则400(1+m%)2+2×400(1+m%-1)2+8 000=28 000×(1+10%).设m%=t ,400(1+t)2+2×400(1+t -1)2+8 000=28 000×(1+10%).整理得3t 2+2t -56=0.解得t =4或t =-143(舍去). ∴t =4.∴m%=4.∴m =400.答:丙类芯片2020年的产量为8 000万块,m =40022.如图,在△ABC 中,∠C =90°,AC =16 cm ,BC =8 cm ,一动点P 从点C 出发沿着CB 边以2 cm/s 的速度运动,另一动点Q 从点A 出发沿着AC 边以4 cm/s 的速度运动,P ,Q 两点同时出发,运动时间为t s.(1)若△PCQ 的面积是△ABC 面积的14,求t 的值; (2)△PCQ 的面积能否与四边形ABPQ 面积相等?若能,求出t 的值;若不能,说明理由.解:(1)根据题意,得S △PCQ =12×2t(16-4t),S △ABC =12×8×16=64. ∵△PCQ 的面积是△ABC 面积的14, ∴12×2t(16-4t)=64×14. 整理,得t 2-4t +4=0,解得t =2.答:当t =2 s 时,△PCQ 的面积为△ABC 面积的14. (2)△PCQ 的面积不能与四边形ABPQ 面积相等.理由如下:当△PCQ 的面积与四边形ABPQ 面积相等时,则S △PCQ =12S △ABC ,即12×2t(16-4t)=64×12, 整理,得t 2-4t +8=0.∵Δ=(-4)2-4×1×8=-16<0,∴此方程没有实数根.∴△PCQ 的面积不能与四边形ABPQ 面积相等.。

人教版九年级数学上册 第21章《一元二次方程》单元同步练习(有答案)

人教版九年级数学上册  第21章《一元二次方程》单元同步练习(有答案)

九年级数学第21章《一元二次方程》单元同步练习一、选择题:1、若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是()A.﹣10 B. 10 C.﹣16 D.162、已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.33、下列方程有两个相等的实数根的是()A. x2+x+1=0B.4 x2+2x+1=0C. x2+12x+36=0D. x2+x-2=04、若0是关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的一根,则m值为()A.1B.0C.2D.1或25、某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.8 D.66、我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.10% C.12% D.11%7、已知一元二次方程x2-8x+12=0 的两个解恰好是等腰△ABC的底边长和腰长,则△ABC 的周长为()A.14B.10C.11D.14或108、某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15二、填空题:9、若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为.10、若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是.11、某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为 .12、若3是关于x的方程x2+kx-6=0的一个根,则k=________.13、若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b= .14、三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形周长是.三、解答题:15、解一元二次方程:(1)x2﹣5x﹣6=0(因式分解法)(2)2x2﹣4x﹣1=0(公式法)(3)2(x-3)2=x2-9 (4) 4y2=8y+116、在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.8 32 29.6 28 …售价x(元/千克)…22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?17、如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?18、为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?19、某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?20、在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.参考答案一、选择题:1、A2、B3、C4、C5、D6、B7、A8、A二、填空题:9、110、 511、 80(1+x)2=10012、-113、1714、13三、解答题:15、(1)x 1=6,x 2=﹣1; (2)x=2±√62. (3)x 1=3, x 2=9 (4)y=2±√5216、(1) 当天该水果的销售量为33千克.(2) 如果某天销售这种水果获利150元,那么该天水果的售价为25元.17、所围矩形猪舍的长为10m 、宽为8m .18、(1) 年销售量y 与销售单价x 的函数关系式为y=﹣10x+1000.(2) 该设备的销售单价应是50万元/台.19、(1)每天完成200平方米(2)人行道宽为2米20、(1) 原计划今年1至5月,道路硬化的里程数至少是40千米.(2) a=10.。

(人教版数学)初中9年级上册-同步练习-21.1 一元二次方程-九年级数学人教版(上)(解析版)

(人教版数学)初中9年级上册-同步练习-21.1 一元二次方程-九年级数学人教版(上)(解析版)

第二十一章一元二次方程21.1一元二次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程是一元二次方程的是A.x2﹣y=1 B.x2+2x﹣3=0C.x2+1x=3 D.x﹣5y=6【答案】B2.关于x的一元二次方程(m﹣1)x2+2x+m2﹣1=0,常数项为0,则m值等于A.1 B.﹣1C.1或﹣1 D.0【答案】B【解析】由题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1,故选B.3.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是A.1 B.0C.−1 D.2【答案】B【解析】把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选B.4.若px2-3x+p2-p=0是关于x的一元二次方程,则A.p=1 B.p>0C.p≠0 D.p为任意实数【答案】C【解析】∵方程px2-3x+p2-p=0是关于x的一元二次方程,∴二次项系数p≠0.故选C.5.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为A.6、2、5 B.2、﹣6、5C.2、﹣6、﹣5 D.﹣2、6、5【答案】C【解析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣6、﹣5.故选C.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.6.已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是A.1 B.﹣2C.0 D.﹣1【答案】D【名师点睛】本题考查的是一元二次方程的根,即方程的解的定义.解题的关键是要掌握一元二次方程ax2+bx+c=0(a≠0)中几个特殊值的特殊形式:x=1时,a+b+c=0;x=﹣1时,a﹣b+c=0.7.若关于x的一元二次方程ax2﹣b x+4=0的解是x=2,则2020+2a﹣b的值是A.2016 B.2018C.2020 D.2022【答案】B【解析】∵关于x的一元二次方程ax2﹣bx+4=0的解是x=2,∴4a﹣2b+4=0,则2a﹣b=﹣2,∴2020+2a ﹣b=2020+(2a﹣b)=2020+(﹣2)=2018.故选B.【名师点睛】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.二、填空题:请将答案填在题中横线上.8.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为__________.【答案】1【解析】将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.9.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=__________.【答案】-1【解析】∵方程(m−1)x|m|+1−3x+1=0是关于x的一元二次方程,∴|m|=1,m−1≠0,解得:m=−1.故答案为:−1.10.若是方程的一个根,则的值为__________.【答案】2018【解析】由题意可知:2m2-3m-1=0,∴2m2-3m=1,∴原式=3(2m2-3m)+2015=2018,故答案为2018.【名师点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.11.已知关于x的方程(m+2)x²+4mx+1=0是一元二次方程,则m的取值范围是__________.【答案】m≠−2【名师点睛】本题考查了一元二次方程的定义,解题的关键是掌握判断一个方程是否是一元二次方程需注意几个方面:化简后;一个未知数;未知数的最高次数是2;二次项的系数不为0;整式方程. 12.若关于x的方程的常数项为0,则m的值等于__________.±【答案】32【解析】由题意知,方程(m-3)x2 +5x+m2 -18=0的常数项为m2−18,所以m2−18=0,±,解得:m=32±.故答案为:32【点睛】本题考查了方程的一般式,本题常数项为0时方程可为一元一次方程也可为一元二次方程,不论哪一种情况,都符合题意,这是解题的关键所在,也是易错点.13.一元二次方程2x2+4x﹣1=0的一次项系数及常数项之和为__________.【答案】3【解析】由题意,得:4+(﹣1)=3.故答案为3.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.14.已知一个一元二次方程的一个根为3,二次项系数是1,则这个一元二次方程可以是__________.(只需写出一个方程即可)【答案】x 2﹣3x =0【解析】一元二次方程的一个根为3,二次项系数是1,这个一元二次方程可以为x 2-3x =0.故答案为x 2−3x =0.【名师点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.灵活应用整体代入的方法计算.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.已知关于x 的方程(m 2 -1)x 2 -(m +1)x +m =0.(1)m 为何值时,此方程是一元一次方程?(2)m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 【答案】(1)m =1;(2)m ≠±1,二次项系数为m 2-1、一次项系数为-(m +1),常数项为m .16.已知x 是一元二次方程x 2+3x ﹣1=0的实数根,求代数式 2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值. 【答案】13【解析】原式=()()()333322x x x x x x +--÷-- ()()()()321323333x x x x x x x x --=⨯=-+-+. ∵x 2+3x ﹣1=0.∴x 2+3x =1.∴x (x +3)=1.∴原式=()11333x x ==+. 17.已知x =1是关于x 的一元二次方程x 2﹣4mx +m 2=0的根,求代数式()()()2233m m m m --+-的值.【答案】2. 18.已知实数a 是方程的根. (1)计算的值;(2)计算的值.【答案】(1)2015;(2)5.【解析】(1)∵实数a 是方程的根,∴. ∴,即 . ∴; (2).∵,∴..。

人教版九年级数学上册第21章一元二次方程同步训练(含答案)

人教版九年级数学上册第21章一元二次方程同步训练(含答案)

第21章《一元二次方程》同步训练2021-2022学年人教版九年级数学上册一、单选题1.关于x 一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为( ) A .1或1- B .1 C .1- D .0 2.关于x 的方程2(2)310m x x +-+=有两个不相等的实数根,则m 的取值范围是( ) A .14m <且2m ≠- B .14m <-且2m ≠- C .14m < D .14m <- 3.()()2222280m n m n ----=,则22m n -的值是( )A .4B .2-C .4或2-D .4-或2 4.由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/米2,通过连续两次降价a 后,售价变为2000元/米2,下列方程中正确的是( )A .()2240012000a -=B .22000(1)2400a -=C .22400(1)2000a +=D .22400(1)2000a -= 5.解方程2||20x x --=的解是( )A .121,2x x =-=B .121,2x x ==-C .121,1x x ==-D .122,2x x ==- 6.下列命题①方程220kx x --=是一元二次方程;②1x =与方程21x =是同解方程;③方程2x x =与方程1x =是同解方程;④由(1)(1)9x x +-=可得13x +=或13x -=,其中正确的命题有( ).A .0个B .1个C .2个D .3个 7.设方程2320x x -+=的两根分别是1x ,2x ,则12x x +的值为( ) A .3 B .32- C .32 D .3-8.若m ,n 满足2530m m +-=,2530n n +-=,且m n ≠,则11m n+的值为( ) A .35 B .53- C .35D .53 9.如图,将边长2cm 的正方形ABCD 沿其对角线AC 剪开,再把ABC 沿着AD 方向平移,得到A B C ''',若两个三角形重叠部分的面积为21cm ,则它移动的距离AA '等于( )A .0.5cmB .1cmC .1.5cmD .2cm 10.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c -+=,那么我们称这个方程为“美丽”方程.已知20(a 0)++=≠ax bx c 是“美丽”方程,且有两个相等的实数根,则下列结论正确的是( )A .a b c ==B .a b =C .b c =D .a c = 11.用求根公式法解得某方程20(a 0)++=≠ax bx c 的两个根互为相反数,则( ) A .0b = B .0c C .240b ac -= D .0b c += 12.某小区规划在一个长为40m ,宽为26m 的矩形场地ABCD 上修建三条同样宽的甬路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪的面积都为2144m (如图),则甬路的宽为( )A .3mB .4mC .2mD .5m二、填空题 13.方程x (x ﹣3)=0的解为_____.14.当x 满足()()133114423x x x x +<-⎧⎪⎨-<-⎪⎩时,方程x 2﹣2x ﹣5=0的根是__. 15.已知1x ,2x 是方程2630x x ++=的两个实数根,则2112x x x x +的值等于________. 16.已知一个直角三角形的两条直角边的长恰好是方程x 2-17x +60=0的两个根,则这个直角三角形的斜边长为________.17.如果关于x 的一元二次方程()20ax b ab =>的两个根分别是11x m =+与224x m =-,那么b a的值为__________. 18.某市前年PM 2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM 2.5的年均浓度比去年也下降10%,那么今年PM 2.5的年均浓度将是____________微克/立方米.三、解答题19.解下列方程:(1)()()2253x x x x -=+; (2)22(2)(23)x x -=+;(3)(2)(3)12x x --=; (4)226(3)x x +=+;(5)2242y y y +=+.20.已知a ,b ,c 为ABC 的三边,且方程()()()()()()0x a x b x b x c x c x a --+--+--=有两个相等的实数根,试判断ABC 的形状.21.已知关于x 的方程()--+=22m m x 2mx 10有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为整数且3m <,a 是方程的一个根,求代数式22212334a a a +--+的值.22.已知1x 、2x 是方程2220x kx k k -+-=的两个实根,是否存在常数k ,使122132x x x x +=成立?若存在,请求出k 的值;若不存在,请说明理由.23.如图,Rt ABC 中,90,8,6C AC BC ∠=︒==,P ,Q 分别在AC 、BC 边上,同时由A 、B 两点出发,分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1米/秒,几秒后PCQ △的面积为Rt ABC 的面积的一半?24.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是2∶1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.设制作这面镜子的总费用是y元,镜子的宽是x 米.(1)求y与x之间的关系式;(2)如果制作这面镜子共花了195元,求这面镜子的长和宽.25.一个小球以5m/s的速度开始向前滚动,并且均匀减速,4s后小球停止滚动.(1)小球的滚动速度平均每秒减少多少?(2)小球滚动5m约用了多少秒(结果保留小数点后一位)?(提示:匀变速直线运动中,每个时间段内的平均速度v(初速度与末速度的算术平均.)数)与路程s,时间t的关系为s vt参考答案1.C2.A3.C4.D5.D6.A7.A8.D9.B10.D11.A12.C13.x 1=0,x 2=3.14.115.1016.1317.418.40.519.解:(1)()()2253x x x x -=+ ()()()()5131055330280x x x x x x x x x --+=---=-=解得:120,4x x ==;(2)22(2)(23)x x -=+223x x -=+或223x x -=--,解得:1215,3x x =-=-;(3)(2)(3)12x x --=()()225612560160x x x x x x -+=--=+-=解得:121,6x x =-=;(4)226(3)x x +=+()()()()()()2223323303230x x x x x x +=++-+=+--= 解得:123,1x x =-=-;(5)2242y y y +=+()()()()22202210y y y y y +-+=+-= 解得:1212,2y y =-=. 20 解:ABC 是等边三角形,理由如下:()()()()()()0x a x b x b x c x c x a --+--+--=,整理,得:()2320x a b c x ab bc ac -+++++= ,∴()()2=243a b c ab bc ac ∆-++-⨯++⎡⎤⎣⎦ 222444444a b c ab ac bc =++---()()()222222a b a c b c =-+-+- , ∵方程有两个相等的实数根,∴()()()222222=0a b a c b c -+-+-∴0,0,0a b a c b c -=-=-= ,∴a b c == ,∴ABC 是等边三角形.21解:(1)∵关于x 的方程(m 2﹣m )x 2﹣2mx +1=0有两个不相等的实数根, ∴222044()0m m m m m ⎧-≠⎨∆=-->⎩,解得,m >0,且m ≠1;∴m 的取值范围是:m >0,且m ≠1;(2)∵m 为整数,m <3,由(1)知,m >0,且m ≠1;∴m =2,∴关于x 的方程(m 2﹣m )x 2﹣2mx +1=0的就是:2x 2﹣4x +1=0;∵a 是方程的一个根,∴2a 2﹣4a +1=0,即2a 2=4a ﹣1; ∴2221411233413344a a a a a a +-+--+=---+=132a a --+=, 即22212334a a a +--+=2. 22.解:不存在.∵1x 、2x 是方程2220x kx k k -+-=的两个实根,∴240b ac -≥,即22(2)4()0k k k ---≥,解得,0k ≥;由题意可知122x x k +=,212x x k k =-, ∵12121212122221122()232x x x x x x x x x x x x x x +=+-=+=, ∴222(2)32)2(k k k k k --=-,解得120,7k k ==-,经检验,27k =-是原方程的解, ∵0k ≥,∴不存在常数k ,使122132x x x x +=成立. 23.解:设经过x 秒后△PCQ 的面积是Rt △ACB 面积的一半,则AP =x ,BQ =x∴CP =8-x ,CQ =6-x ,∵∠C =90° ∴1=242ABC S AC BC ⋅=△,()()118622CPQ S PC CQ x x =⋅=--△, ∵△PCQ 的面积是Rt △ACB 面积的一半,∴()()11862422x x --=⨯ 解得x 1=12(舍去),x 2=2.答:经2秒△PCQ 的面积是Rt △ACB 面积的一半.24.解:(1)y =(2x +2x +x +x )×30+45+2x 2×120=240x 2+180x +45;(2)由题意可列方程为240x 2+180x +45=195,整理得8x 2+6x -5=0,即(2x -1)(4x +5)=0,解得x 1=0.5,x 2=-1.25(舍去)∴x =12,∴2x =1,答:镜子的长和宽分别是1m 和12m .25.解:(1)从滚动到停下平均每秒速度减少值为:速度变化÷小球运动速度变化的时间,即5÷4=54(m/s ), 故小球的滚动速度平均每秒减少54小m/s ;. (2)设小球滚动到5m 用了x s , 即55(5)452x x +-⋅=,解得14x =+,24 1.2x =-.答:小球滚动到5 m 约用了1.2 s .。

人教版九年级数学上第21章《一元二次方程》同步练习题含答案

人教版九年级数学上第21章《一元二次方程》同步练习题含答案

人教版九年级数学上第21章《一元二次方程》同步练习题含答案同步练习一、选择题1.若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≤﹣1且k≠0B.k<﹣1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠02.若一元二次方程9x2-12x-39996=0的两根为a,b,且a<b,则a+3b的值为()A.136 B.268 C.7963D.39233.现定义运算“★”,对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x 的值是()A、-1B、4C、-1或4D、1或-44.一元二次方程x2+2x-c=0中,c>0,该方程的解的情况是()A.没有实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.不能确定5.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解是()A.x1=-6,x2=-1 B.x1=0,x2=5C.x1=-3,x2=5 D.x1=-6,x2=26.对于任意实数a、b,定义f(a,b)=a2+5a-b,如:f(2,3)=22+5×2-3,若f(x,2)=4,则实数x的值是()A.1或-6 B.-1或6 C.-5或1 D.5或-17.用配方法解一元二次方程x2+4x-5=0,此方程可变形为()A.(x-2)2=9 B.(x+2)2=9 C.(x+2)2=1 D.(x-2)2=18.为了让山更绿、水更清,确保到实现全省森林覆盖率达到63%的目标,已知2013年全省森林覆盖率为6005%,设从2013年起全省森林覆盖率的年平均增长率为x,则可列方程()A.60.05(1+2x)=63%B.60.05(1+3x)=63C.60.05(1+x)2=63%D.60.05%(1+x)2=63%二、填空题9.网购悄然盛行,我国2012年网购交易额为1.26万亿人民币,2014年我国网购交易额达到了2.8万亿人民币.如果设2013年、2014年网购交易额的平均增长率为x,则依题意可得关于x的一元二次方程为 .10.已知(x-1)2=ax2+bx+c,则a+b+c的值为 .11.根据图中的程序,当输入一元二次方程x2﹣2x=0的解x时,输出结果y= .12.某公司2012年的利润为160万元,到了2014年的利润达到了250万元.设平均每年利润增长的百分率为x,则可列方程为.13.方程x2﹣x﹣=0的判别式的值等于.14.已知直角三角形两边x 、y 的长满足|x 2-4|+256y y -+=0,则第三边长为 .三、解答题15.(本题10分)已知:关于x 的方程kx 2-(3k-1)x+2(k-1)=0,(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个实数根x 1,x 2,且|x 1-x 2|=2,求k 的值.16.(9分)李明准备进行如下操作实验:把一根长40cm 的铗丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于582cm ,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于482cm .你认为他的说法正确吗?请说明理由.17.已知关于x 的方程24310x x a -+-=有两个实数根.(1)求实数a 的取值范围;(2)若a 为正整数,求方程的根.18.解方程(1)2230x x --=(2)、2(3)4(3)0x x x -+-=19.关于x 的一元二次方程kx 2﹣(2k ﹣2)x+(k ﹣2)=0(k≠0).(1)求证:无论k 取何值时,方程总有两个不相等的实数根.(2)当k 取何整数时方程有整数根.20.先化简,再求值:231(1)221x x x x x x --÷-+++,其中x 满足x 2-x-1=0. 21.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月份的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?22.“大湖名城•创新高地•中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?参考答案1.D2.A .3.C .4.B.5.B.6.A.7.B.8.D.9.1.26(1+x)2=2.8.10.0.11.﹣4或212.160×(1+x)2=250 13.414.22、13或5.15.(1)证明详见解析;(2) 1或13 -.16.(1)12cm和28cm;(2)正确.17.(1)53a≤;(2)1222,22x x=+=-.18.(1) x1=3,x2=-1.(2) x1=3,x2=35.19.20.1.21.(1) 二、三这两个月的月平均增长率为25%;(2) 商品降价5元时,商品获利4250元.22.该班共有35名同学参加了研学旅游活动.。

人教版九年级数学上册:一元二次方程同步练习 (含答案)

人教版九年级数学上册:一元二次方程同步练习 (含答案)

第二十一章 一元二次方程21.1 一元二次方程知识点1.只含有 个未知数,并且未知数的 方程叫一元二次方程.2.一元二次方程的一般形式是 ,其中二次项为 ,一次项 ,常数项 ,二次项系数 ,一次项系数 .3.使一元二次方程左右两边 叫一元二次方程的解。

一.选择题1.下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3D .xy+1=02.下列方程中,是一元二次方程的是( )A .5x+3=0B .x 2-x (x+1)=0C .4x 2=9D .x 2-x 3+4=03.关于x 的方程013)2(22=--+-x x a a 是一元二次方程,则a 的值是( )A .a=±2B .a=-2C .a=2D .a 为任意实数4.把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A .2,-3B .-2,-3C .2,-3xD .-2,-3x5.若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( )A .1B .2C .1或-1D .06.把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( )A .8B .9C .-2D .-17.(2013•安顺)已知关于x 的方程x 2-kx-6=0的一个根为x=3,则实数k 的值为( )A .1B .-1C .2D .-28.(2013•牡丹江)若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013-a-b 的值是( )A .2018B .2008C .2014D .2012二.填空题9.当m= 时,关于x 的方程5)3(72=---x x m m 是一元二次方程;10.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是 .11.方程5)1)(13(=+-x x 的一次项系数是 .12.(2012•柳州)一元二次方程3x 2+2x-5=0的一次项系数是 .13.关于x 的一元二次方程3x (x-2)=4的一般形式是 .14.(2005•武汉)方程3x 2=5x+2的二次项系数为 ,一次项系数为 .15.(2007•白银)已知x=-1是方程x 2+mx+1=0的一个根,则m= .16.(2010•河北)已知x=1是一元二次方程x 2+mx+n=0的一个根,则m 2+2mn+n 2的值为 .17.(2013•宝山区一模)若关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 值是 .18.已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,一个根为-1,则a+b+c= ,a-b+c= .三.解答题19.若(m+1)x |m|+1+6-2=0是关于x 的一元二次方程,求m 的值.20.(2013•沁阳市一模)关于x 的方程(m 2-8m+19)x 2-2mx-13=0是否一定是一元二次方程?请证明你的结论.21.一元二次方程0)1()1(2=++++c x b x a 化为一般式后为01232=-+x x ,试求0222=-+c b a 的值的算术平方根.21.1 一元二次方程知识点1.一,最高次数是2的整式。

九年级数学上册《第二十一章 一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章 一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章一元二次方程》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列方程中,关于x的一元二次方程是()A.x2+3x﹣5 B.3x3﹣2x+5=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=02.下列一元二次方程中,常数项为0的是()A.B.C.D.23.方程x2﹣2(x+2)(x﹣4)=10化为一般形式为()A.x2﹣4x﹣6=0 B.x2+2x+14=0 C.x2+2x﹣14=0 D.x2﹣2x+14=04.关于x的一元二次方程(m﹣1)x2+2x+m2﹣5m+4=0,常数项为0,则m值等于()A.1 B.4 C.1或4 D.05.一元二次方程3x2﹣x﹣2=0的二次项系数、一次项系数、常数项分别是()A.3,﹣1,﹣2 B.3,1,﹣2 C.3,﹣1,2 D.3,1,26.若x=−1是一元二次方程ax2+bx+c=0的根,则下列式子成立的是()A.a+b+c=0B.a−b+c=0C.a+b−c=0D.−a+b+c=07.关于x的方程(a﹣1)x2﹣x﹣3=0是一元二次方程,则()A.a>1 B.a±0 C.a≠1 D.a=18.如图,某校劳动实践课程试验园地是长为20m,宽为18m的矩形,为方便活动,需要在园地中间开辟一横两纵共三条等宽的小道.如果园地余下的面积为306m2,则小道的宽为多少?设小道的宽为xm,根据题意,可列方程为()A.(20−2x)(18−x)=306B.(20−x)(18−2x)=306C.20×18−2×18x−20x+x2=306D.20×18−2×20x−18x+x2=306二、填空题9.用换元法解(x2﹣1)2﹣2x2﹣1=0,设x2﹣1=y,则原方程变形成y的形式为.10.如果方程ax2+5=(x+2)(x﹣1)是关于x的一元二次方程,则a .11.把一元二次方程3x(x﹣2)=4化为一般形式是.12.已知关于x的方程x2−4x+m=0有一个根为3,则m的值为.13.已知关于x的一元二次方程ax2+bx+c=0(a≠0)有一个根为1,一个根为-1,则a+b+c=,a−b+c=.三、解答题14.已知a是方程x2−2x−4=0的一个实数根,求代数式(a−2)2+(a+1)(a−1)的值.15.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”.如果关于x的一元二次方程x2﹣4x+5m=mx+5与x2+√2x+m﹣1=0互为“友好方程”,求m的值.16.已知x=1是一元二次方程x2+mx+n=0的一个根.(1)求m+n的值;(2)若n=2,求m的值及方程的另一个根.17.已知关于x的方程(m+2)x|m|+2x﹣1=0.(1)当m为何值时是一元一次方程.(2)当m为何值时是一元二次方程.18.已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.19.已知关于x的一元二次方程x2−(m+1)x+m+6=0的其中一个根为3.(1)求m的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.参考答案1.C2.D3.A4.B5.A6.B7.C8.A9.y2﹣2y﹣3=010.≠111.3x2﹣6x﹣4=0.12.313.0;014.解:∵a是方程x2−2x−4=0的一个根∴a2−2a−4=0,即a2−2a=4∴(a−2)2+(a+1)(a−1)=a2−4a+4+a2−1=2(a2−2a)+3=2×4+3=11 .15.解:x2﹣4x+5m=mx+5整理得,x2﹣(4+m)x+5(m﹣1)=0分解因式得,(x﹣5)[x﹣(m﹣1)]=0解得x1=5,x2=m﹣1.当x=5时,25+5√2+m﹣1=0,解得m=﹣24﹣5√2;当x=m﹣1时,(m﹣1)2+√2(m﹣1)+m﹣1=0,解得m=1或m=﹣√2.所以m的值为﹣24﹣5√2或1或﹣√2.16.(1)解:∵x=1是一元二次方程x2+mx+n=0的一个根∴1+m+n=0解得:m+n=-1.(2)解:将n=2,x=1代入方程x2+mx+n=0得:1+m+2=0解得m=-3∴方程为x2-3x+2=0,即(x-2)(x-1)=0解得:x1=1,x2=2故方程的另一个根为x=2.17.(1)解:由题意,得m=0时,2x+1=0是一元一次方程;m+2=0时,(m+2)x|m|+2x﹣1=0.是一元一次方程m=±1时,(m+2)x|m|+2x﹣1=0.是一元一次方程(2)解:由题意,得|m|=2,且m+2≠0解得m=2m=2时,(m+2)x|m|+2x﹣1=0是一元二次方程.18.(1)解:∵△=[2(k﹣1)]2﹣4(k2﹣1)=4k2﹣8k+4﹣4k2+4=﹣8k+8又∵原方程有两个不相等的实数根∴﹣8k+8>0解得k<1即实数k的取值范围是k<1;(2)解:假设0是方程的一个根则代入原方程得02+2(k﹣1)•0+k2﹣1=0解得k=﹣1或k=1(舍去)即当k=﹣1时,0就为原方程的一个根此时原方程变为x2﹣4x=0解得x1=0,x2=4所以它的另一个根是4.19.(1)解:把x=3代入方程可得9-3(m+1)+m+6=0 解得m=6当m=6时,原方程为x2-7x+12=0解得x1=3,x2=4即方程的另一根为4;(2)设此直角三角形的第三边长为a当4是直角边时∴a= √32+42=5;当4是斜边时a= √42−32=√7;故此直角三角形的第三边长为5或√7。

人教版数学九年级上册第二十一章解一元二次方程计算题练习卷[含答案]

人教版数学九年级上册第二十一章解一元二次方程计算题练习卷[含答案]

人教版数学九年级上册第二十一章解一元二次方程计算题练习卷一、计算题1.解下列方程:x2−4x=0(1);(x−6)(x+1)=−12(2) .2.解方程:(1)(x+2)2﹣9=0;(2)x2﹣2x﹣3=0.3.解方程:(1)x2-2x-3=0;(2)x (x-2)-x+2=0.4.解方程:(x+3)2−25=0x(x+2)=2x+45.解方程:.(x+3)(x−3)=x−36.解方程:.7.解方程:(1)x2=4x;(2)x(x﹣2)=3x﹣6.(1)4x(2x+1)=3(2x+1);(2)﹣3x2+4x+4=0.9.解下列方程:(1)x2−2x−8=0(2)(x−1)2=(x−1)10.用适当方法解下列一元二次方程:(1)x2﹣6x=1;(2)x2﹣4=3(x﹣2).11.解方程:x(x﹣3)=x﹣312.解方程:(x+3)2﹣2x(x+3)=0.13.解方程:x(2x﹣5)=2x﹣5.14.解下列关于x的方程.6x(x−1)=x−1(1);3x2−2x=x2+x+1(2).(1)x2−2x+1=0(2)2x2−7x+3=016.解方程:(x−2)2=3(x−2)(1);3x2−4x−1=0(2).17.解方程:(1)(x﹣4)(5x+7)=0;(2)x2﹣4x﹣6=0.18.解方程:(1)x2﹣3x=0;(2)2x(3x﹣2)=2﹣3x.答案解析部分1.【答案】(1)解:x2−4x=0x(x−4)=0解得x1=0,x2=4(2)解:(x−6)(x+1)=−12x2−5x−6=−12x2−5x+6=0即(x−2)(x−3)=0解得x1=3,x2=22.【答案】(1)解:(x+2)2﹣9=0(x+2)2=9x+2=±3x1=−5,x2=1所以 .(2)解:x2﹣2x﹣3=0(x+1)(x-3)=0x-3=0或x+1=0x1=−1,x2=3所以 .3.【答案】(1)解:x2-2x-3=0x2-2x+1=3+1(x-1)2=4x-1=±2∴x1=3,x2=-1;(2)解:x (x-2)-(x-2)=0(x-2)(x-1)=0x-2=0或x-1=0∴x1=2,x2=1.4.【答案】解:(x+3)2=25,∴x+3=±5,解得:x1=2,x2=-8.5.【答案】解:x(x+2)=2x+4,x(x+2)-2(x+2)=0,(x+2)(x-2)=0,x+2=0或x-2=0,∴x1=-2,x2=2.6.【答案】解:,(x+3)(x−3)−(x−3)=0.(x−3)[(x+3)−1]=0即.(x−3)(x+2)=0∴或,x−3=0x+2=0∴或.x1=3x2=−27.【答案】(1)解:∵x2=4x,∴x2-4x=0,则x(x-4)=0,∴x=0或x-4=0,解得x1=0,x2=4;(2)解:∵x(x-2)=3x-6,∴x(x-2)-3(x-2)=0,则(x-2)(x-3)=0,∴x-2=0或x-3=0,解得x1=2,x2=3.8.【答案】(1)解:4x(2x+1)=3(2x+1)(4x−3)(2x+1)=0x1=34,x2=−12(2)解:−3x2+4x+4=0a=−3,b=4,c=4,Δ=42+3×4×4=64∴x=−b±b2−4ac2a=−4±8−6∴x1=−23,x2=29.【答案】(1)解:x2−2x−8=0(x−4)(x +2)=0解得: , .x 1=−2x 2=4(2)解: (x−1)2=(x−1)(x−1−1)(x−1)=0(x−2)(x−1)=0解得: , .x 1=1x 2=210.【答案】(1)解:两边同加.得,32x 2−6x +32=1+32即,(x−3)2=10两边开平方,得,x−3=±10即,或,x−3=10x−3=−10∴,x 1=10+3x 2=−10+3(2)解:,(x +2)(x−2)=3(x−2)∴,(x +2)(x−2)−3(x−2)=0∴,(x−2)(x−1)=0∴,或,x−2=0x−1=0解得x 1=2,x 2=111.【答案】解:x (x-3)=x-3x (x-3)-(x-3)=0,(x-3)(x-1)=0,解得:x 1=3,x 2=1.12.【答案】解:(x+3)2﹣2x (x+3)=0(x +3)(x +3−2x)=0(x +3)(3−x)=0解得x 1=3,x 2=−313.【答案】解:(2x -5)(x -1)=0x 1=,x 2=15214.【答案】(1)解:移项,得6x (x−1)−(x−1)=0由此可得(6x−1)(x−1)=06x−1=0,x−1=0解得,.x 1=16x 2=1(2)解:移项,得2x 2−3x−1=0,,a =2b =−3c =−1Δ=b 2−4ac =(−3)2−4×2×(−1)=17>0∴x =−(−3)±172×2=3±174∴x 1=3+174,x 2=3−17415.【答案】(1)解:,x 2−2x +1=0即(x-1)2=0,∴x 1=x 2=1(2)解:,2x 2−7x +3=0因式分解得:(2x-1)(x-3)=0,∴2x-1=0或x-3=0,∴x 1=,x 2=31216.【答案】(1)解:原方程可化为(x−2)(x−5)=0即或,x−2=0x−5=0∴,x 1=2x 2=5(2)解:∵,,,a =3b =−4c =−1∴,Δ=b 2−4ac =28>0∴,x =4±282×3=2±73∴,x 1=2+73x 2=2−7317.【答案】(1)解:,(x−4)(5x +7)=0或,x−4=05x +7=0或,x =4x =−75即x 1=4,x 2=−75(2)解:,x 2−4x−6=0,x 2−4x =6,x 2−4x +4=6+4,(x−2)2=10,x−2=±10,x =2±10即x 1=2+10,x 2=2−1018.【答案】(1)解:x 2﹣3x =0,x (x﹣3)=0,∴x =0或x﹣3=0,∴x 1=0,x 2=3;(2)解:2x (3x﹣2)=2﹣3x , 2x (3x﹣2)+(3x﹣2)=0,则(3x﹣2)(2x+1)=0,∴3x﹣2=0或2x+1=0,解得x 1=,x 2=﹣.2312。

人教版九年级数学上册第21章一元二次方程实际问题与一元二次方程同步训练题含答案

人教版九年级数学上册第21章一元二次方程实际问题与一元二次方程同步训练题含答案

人教版九年级数学上册第21章一元二次方程实际问题与一元二次方程同步训练题含答案同步训练题1. 小明家前年的日常开支为3.26万元,去年提高了x%,假设往年的提高率与去年相反,那么估量往年的日常开支为( )A .3.26(1+2x)万元B .3.26(1+2x%)万元C .3.26(1+x)2万元D .3.26(1+x%)2万元2. 某果园2021年水果产量为100吨,2021年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,那么依据题意可列方程为( )A .144(1-x)2=100B .100(1-x)2=144C .144(1+x)2=100D .100(1+x)2=1443. 某中学九年级(1)班在七年级时植树400棵,方案到往年毕业时,使植树总数到达1324棵,该班植树平均每年的增长率是( )A .10%B .100%C .20%D .231%4. 在某次聚会上,每两人都握了一次手,一切人共握手10次.设有x 人参与这次聚会,那么列出方程正确的选项是( )A .x(x -10)=10 B.x x -12=10 C .x(x +1)=10 D .x x +12=105. 一个多边形共有14条对角线,那么这个多边形的边数是( )A .6B .7C .8D .96. 要组织一次篮球联赛,赛制为单循环方式(每两队之间都赛一场),方案布置21场竞赛,那么参赛球队有( )A .5个B .6个C .7个D .8个7. 某校九年级毕业时,每个同窗都将自己的相片向全班其他同窗各送一张纪念,全班共送了2550张相片.假设全班有x名同窗,依据题意列方程为 .8. 某商品经过延续两次降价,销售单价由原来的125元降到80元,那么平均每次降价的百分率为 .9. 某种植物的主干长出a个支干,每个支干又长出异样数目的小分支,那么主干、支干和小分支的总数为 .10. 有一人患了流感,经过两轮后共有225人患上此病,求每轮传染中平均一人传染了几人?设每轮传染中平均一人传染了x人,那么可列方程11. 机械厂七月份消费零件50万个,第三季度消费零件196万个,设该厂八、九月份平均每月的增长率为x,那么x满足的方程是12. 有一人应用手机群发短信,取得信息的人也按他的发送人数群发该条短信,经过两轮短信的发送,共有90人手机上取得同一条信息,那么每轮发送短信一团体向团体发送短信.13. 某种电脑病毒传达速度十分快,假设一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识剖析,每轮感染中平均一台电脑会感染几台电脑?假定病毒得不到有效控制,三轮感染后,被感染的电脑会不会超越700台?14. 某商场往年2月份的营业额为400万元,3月份的营业额比2月份添加10%,5月份的营业额到达633.6万元,求3月份到5月份营业额的月平均增长率.15. 随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)树立稳步推进,拥有的养老床位数不时添加.该市的养老床位数从2021年底的2万个增长到2021年底的2.88万个.求该市这两年(从2021年底到2021年底)拥有的养老床位数的平均年增长率.16. 某电冰箱厂往年每个月的产量都比上个月增长了异样的百分数,该厂往年4月份的电冰箱产量为5万台,6月份比5月份多消费了12021台,求该厂往年产量的月增长率.17. 某农场去年种植了10亩地的南瓜,亩产量为2000kg,依据市场需求,往年该农场扩展了种植面积,并且全部种植了高产的新种类南瓜,南瓜种植面积的增长率是亩产量的增长率的2倍,往年南瓜的总产量为60000kg,求南瓜亩产量的增长率.18. 看以下一组数据:直线l 上有2个点,共有1条构成的线段.直线l 上有3个点,共有3条构成的线段.直线l 上有4个点,共有6条构成的线段.(1)直线l 上有n 个点(n 为正整数,n≥2),共有12n(n -1)条构成的线段; (2)假定直线l 上有n 个点构成的线段的条数为36条,那么直线l 上有多少个点? 参考答案:1---6 DDABB C7. x(x -1)=25508. 20%9. 1+a +a 210. 1+x +x(1+x)=225或(1+x)2=22511. 50+50(1+x)+50(1+x)2=19612. 913. 解:设一台电脑每轮感染给x 台电脑,由题意得:(1+x)2=81,解得x 1=8,x 2=-10(不合题意,舍去)故每轮感染中平均一台电脑会感染8台电脑.∵(1+x)3=(1+8)3=729>700,∴假定病毒得不到有效控制,三轮感染后,被感染的电脑会超越700台.14. 设3月份到5月份营业额的月平均增长率为x ,由题意,得:400×(1+10%)(1+x)2=633.6.解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:3月份到5月份营业额的月平均增长率为20%.15. 解:设该市这两年(从2021年底到2021年底)拥有的养老床位数的平均年增长率为x ,由题意可列出方程2(1+x)2=2.88,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.16. 解:设该厂往年产量的月增长率为x ,依据题意,得:5(1+x)2-5(1+x)=1.2,整理得:25x 2+25x -6=0,解得:x 1=15=20%,x 2=-65(不合题意,舍去) 答:该厂往年产量的月增长率为20%.17. 解:设南瓜亩产量的增长率为x ,那么种植面积的增长率为2x ,依题意,得 10(1+2x)·2021(1+x)=60000解这个方程,得x 1=0.5,x 2=-2(不合题意,舍去) 答:南瓜亩产量的增长率为50%.18. 解:依题意有12n(n -1)=36即n 2-n -72=0解得n 1=9,n 2=-8(舍去)答:直线l 上有9个点.。

人教版初中数学九年级上册第二十一章《配方法解一元二次方程》 同步练习题(解析版)

人教版初中数学九年级上册第二十一章《配方法解一元二次方程》  同步练习题(解析版)

九年级上册第二十一章?配方法解一元二次方程?同步练习题一、选择题〔每题只有一个正确答案〕1.用配方法解方程x2−4x−2=0变形后为()A.(x−2)2=6B.(x−4)2=6C.(x−2)2=2D.(x+2)2=62.将方程x2+8x+9=0左边变成完全平方式后,方程是〔〕A.(x+4)2=7B.(x+4)2=25C.(x+4)2=−9D.(x+4)2=−7 3.假设方程x2﹣8x+m=0可以通过配方写成〔x﹣n﹣2=6的形式,那么x2+8x+m=5可以配成〔〕A.﹣x﹣n+5﹣2=1B.﹣x+n﹣2=1C.﹣x﹣n+5﹣2=11D.﹣x+n﹣2=11 4.对二次三项式x2-10x+36,小聪同学认为:无论x取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错B.小聪错,小颖对C.他们两人都对D.他们两人都错5.假如一元二次方程x2-ax+6=0经配方后,得〔x+3﹣2=3,那么a的值为〔〕A.3 B.-3 C.6 D.-6二、填空题6.方程x2﹣2x﹣2﹣0的解是____________.7.总结配方法解一元二次方程的步骤是:(1)化二次项系数为__________;(2)移项,使方程左边只有__________项;(3)在方程两边都加上__________平方;(4)用直接开平方法求出方程的根.8.〔1〕x2+6x+9=(x+____)2,〔2〕x2-_______+p24=(x−p2)2.9.把一元二次方程3x2-2x-3=0化成3(x+m)2=n的形式是____________;假设多项式x2-ax+2a-3是一个完全平方式,那么a=_________.10.x²-3x+____=(x-___)².三、解答题11.解方程:x2−2x=4﹣12.用配方法解方程:2x2−3x+1=0﹣13.用配方法说明:不管x取何值,代数式2x2+5x-1的值总比代数式x2+7x-4的值大,并求出两代数式的差最小时x的值.14.关于x的一元二次方程kx2+2x﹣1=0有实数根,第 1 页〔1〕求k的取值范围;〔2〕当k=2时,请用配方法解此方程.15.大家知道在用配方法解一般形式的一元二次方程时,都要先把二次项系数化为1,再进展配方.现请你先阅读如下方程〔1〕的解答过程,并按照此方法解方程〔2〕.方程〔1〕2x2−2√2x−3=0.解:2x2−2√2x−3=0,(√2x)2−2√2x+1=3+1,(√2x−1)2=4,√2x−1=±2,x1=−√22,x2=3√22.方程〔2〕3x2−2√6x=2.参考答案1.A【解析】【分析】在此题中,把常数项-2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【详解】把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2,方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4,配方得〔x-2〕2=6.应选:A【点睛】配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2.A【解析】【详解】﹣x2+8x+9=0﹣﹣x2+8x=−9﹣﹣x2+8x+16=−9+16﹣﹣(x+4)2=7.应选A.【点睛】配方法的一般步骤:〔1〕将常数项移到等号右边;〔2〕将二次项系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.3.D【解析】分析:方程x2﹣8x+m=0可以配方成〔x﹣n〕2=6的形式,把x2﹣8x+m=0配方即可第 1 页得到一个关于m的方程,求得m的值,再利用配方法即可确定x2+8x+m=5配方后的形式.详解:∵x2﹣8x+m=0,∴x2﹣8x=﹣m,∴x2﹣8x+16=﹣m+16,∴〔x﹣4〕2=﹣m+16,依题意有:n=4,﹣m+16=6,∴n=4,m=10,∴x2+8x+m=5是x2+8x+5=0,∴x2+8x+16=﹣5+16,∴〔x+4〕2=11,即〔x+n〕2=11.应选D.点睛:考察理解一元二次方程﹣配方法,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.D【解析】【分析】通过配方写成完全平方的形式,用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.再说明他的说法错误.【详解】当x2-10x+36=11时;x2-10x+25=0﹣﹣x-5﹣2=0﹣x1=x2=5﹣所以他们两人的说法都是错误的,应选D.【点睛】此题考察了配方法解一元二次方程,纯熟掌握配方法的一般步骤是解题的关键.配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1﹣﹣3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.D【解析】【分析】可把〔x+3〕2=3按完全平方式展开,比照即可知a的值.【详解】根据题意,〔x+3〕2=3可变为:x2+6x+6=0,和一元二次方程x2-ax+6=0比拟知a=-6.应选:D【点睛】此题考核知识点:此题考察了配方法解一元二次方程,是根底题.6.x1﹣1﹣√3﹣x2﹣1﹣√3【解析】分析: 首先把常数-2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.详解:x2-2x-2=0,移项得:x2-2x=2,配方得:x2-2x+1=2+1,〔x-1〕2=3,两边直接开平方得:x-1=±√3,那么x1=√3+1,x2=-√3+1.故答案为:x1=1+√3,x2=1-√3.点睛: 此题主要考察了配方法解一元二次方程,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 7.1二次项及一次一次项系数一半的【解析】分析:根据配方法的步骤解方程即可.详解:总结配方法解一元二次方程的步骤是:(1)化二次项系数为1;(2)移项,使方程左边只有二次项及一次项;(3)在方程两边都加上一次项系数一半的平方;(4)用直接开平方法求出方程的根.点睛:此题考察了配方法,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.第 3 页8.3 px【解析】【详解】根据完全平方公式得,x 2+6x +9=(x +3)2﹣x 2-px +p 24=(x −p 2)2. 故答案为3﹣px .9.3(x −13)2=103﹣2或6.【解析】【分析】首先把一元二次方程3x 2-2x -3=0提出3,然后再配方即可;【详解】根据题意,一元二次方程3x 2-2x -3=0化成,括号里面配方得,,即; ∵多项式x 2-ax+2a -3是一个完全平方式,,∴解得a=2或6.故答案为﹣(1). 3(x −13)2=103﹣ (2). 2或6.【点睛】此题考察了配方法解一元二次方程,解题的关键是纯熟掌握用配方法解一元二次方程的步骤.10. 94, 32 【解析】分析:根据配方法可以解答此题.详解:∵x 2﹣3x +94=〔x ﹣32〕2, 故答案为:94,32.点睛:此题考察了配方法的应用,解题的关键是纯熟掌握配方法.11.x 1=1+√5,x 2=1−√5.【解析】【分析】第 5 页两边都加1,运用配方法解方程.【详解】解:x 2−2x +1=5,(x −1)2=5,x −1=±√5,所以x 1=1+√5,x 2=1−√5.【点睛】此题考核知识点:解一元二次方程. 解题关键点:掌握配方法.12.x 1=12,x 2=1.【解析】【分析】利用配方法得到〔x ﹣34〕2=116,然后利用直接开平方法解方程即可.【详解】x 2﹣32x =﹣12, x 2﹣32x +916=﹣12+916, 〔x ﹣34〕2=116x ﹣34=±14, 所以x 1=12,x 2=1. 【点睛】此题考察理解一元二次方程﹣配方法:将一元二次方程配成〔x +m 〕2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.13.详见解析.【解析】【分析】用求差法比拟代数式2x 2+5x-1的值总与代数式x 2+7x-4的大小,即2x 2+5x-1-〔x 2+7x-4〕=2x 2+5x-1-x 2-7x+4=x 2-2x+3=〔x-1〕2+2;当x=1时,两代数式的差最小为2.【详解】解:2x 2+5x-1-〔x 2+7x-4〕=2x 2+5x-1-x 2-7x+4=x 2-2x+3=〔x-1〕2+2,∵〔x-1〕2≥0,∴〔x-1〕2+2>0,即2x 2+5x-1-〔x 2+7x-4〕>0,∴不管x 取任何值,代数式2x 2+5y-1的值总比代数式x 2+7x-4的值大,当x=1时,两代数式的差最小为2.【点睛】此题考核知识点:配方.解题关键点:用求差法和配方法比拟代数式的大小.14.〔1〕k ≥﹣1且k ≠0;〔2〕x 1=√3−12,x 2=−√3−12. 【解析】试题分析:﹣1〕当k =0时,是一元一次方程,有解;当k ≠0时,方程是一元二次方程,因为方程有实数根,所以先根据根的判别式﹣≥0,求出k 的取值范围;﹣2〕当k =2时,把k 值代入方程,用配方法解方程即可.解:〔1〕∵一元二次方程kx 2+2x ﹣1=0有实数根,∴22+4k ≥0,k ≠0,解得,k ≥﹣1且k ≠0;〔2〕当k=2时,原方程变形为2x 2+2x ﹣1=0,2〔x 2+x 〕=1,2〔x 2+x +〕=1+,2〔x +〕2=,〔x +〕2=x +=±, x 1=,x 2=. 15.x 1=√6+2√33 ,x 1=√6−2√33. 【解析】【分析】参照范例的步骤和方法进展分析解答即可.【详解】原方程可化为:(√3x)2−2×√3×√2x +(√2)2=2+(√2)2,﹣ (√3x −√2)2=4,∴ √3x−√2=±2,∴x1=√6+2√33,x2=√6−2√33.【点睛】读懂范例中的解题方法和步骤是解答此题的关键.第 7 页。

九年级数学上册《第二十一章 一元二次方程》同步练习附带答案-人教版

九年级数学上册《第二十一章 一元二次方程》同步练习附带答案-人教版

九年级数学上册《第二十一章一元二次方程》同步练习附带答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.方程x2﹣2x﹣1=0的一次项系数和常数项分别是()A.﹣2,﹣1 B.2,﹣1 C.2,1 D.﹣2x,﹣12.把一元二次方程(x+2)(x﹣3)=4化成一般形式,得()A.x2+x﹣10=0 B.x2﹣x﹣6=4 C.x2﹣x﹣10=0 D.x2﹣x﹣6=03.若m是一元二次方程x2-4x-1=0的一个根,则代数式4m-m²的值为( )A.1 B.-1 C.2 D.-224.已知m,n是方程x2-2x-1=0的两根,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于()A.-5 B.5 C.-9 D.95.一元二次方程x2−5x+k=0的一根为2,则另一根为()A.-3 B.3 C.1 D.-16.有下列关于x的方程:①ax2+bx+c=0,②3x(x﹣4)=0,③x2+y﹣3=0,④1x2 +x=2,⑤x3+x2=0,⑥12x2﹣5x+7=0.其中是一元二次方程的有()A.2 B.3 C.4 D.57.已知(a﹣3)x2﹣4x﹣6=0是关于x的一元二次方程,则a的取值范围是()A.a=3 B.a≠3 C.a≥3 D.a<38.若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x ﹣1)=1必有一根为()A.B.2020 C.2019 D.2018二、填空题9.将方程8x=3x2-1化为一般形式为。

10.已知方程(m+1)x|m−1|+2x−3=0.当时,为一元二次方程.11.已知实数m满足m2﹣3m+1=0,则代数式m2+ 19m2+2的值等于.12.方程3x2−5x−2=0有一根为 a,则6a2-10a=13.已知等腰三角形的底边长为9,腰是方程x2−10x+24=0的一个根,这个三角形的周长是.三、解答题14.试证:不论k取何实数,关于x的方程(k2-6k+12)x2=3-(k2-9)x必是一元二次方程.15.若(m+1)x|m|+1+6x﹣2=0是关于x的一元二次方程,求m的值.16.(1)已知x1=-1,x2=4是方程x2+mx+n=0的根,求这个方程;的值.(2)已知x=-1是一元二次方程ax2+bx-10=0的一个根,且a≠-b,求a2−b22a+2b17.已知关于x的一元二次方程(x-3)(x-4)=a²(1)求证:对于任意实数a,方程总有两个不相等的实数根;(2)若方程有一个根是1,求a的值及方程的另一个根.18.已知关于x的一元二次方程m2x2+(1−2m)x+1=0有两个不相等的实数根.(1)求实数m的取值范围;(2)若原方程的两个实数根分别为x1,x2且满足|x1|+|x2|=2x1x2−15,求m的值.参考答案 1.A 2.C 3.B 4.C 5.B 6.A 7.B 8.B9.3x 2-8x-1=0 10.m=3 11.9 12.6 13.2114.解:∵k 2-6k+12=(k-3)2+3>0且未知数的最高次数是2;是整式方程;含有一个未知数∴不论k 取何实数,关于x 的方程(k +12)x 2=3-(k)x 必是一元二次方程 15.解:由题意,得 |m|+1=2,且m+1≠0 解得m=116.(1)解:将x 1=-1,x 2=4分别代入方程x 2+mx+n=0 得 {1−m −n =016−4m +n =0 ,解得 {m =−3n =−4∴这个方程为x 2-3x-4=0(2)解:∵x=-1是一元二次方程ax 2+bx-10=0的一个根 ∴a-b-10=0,∴a-b=10 ∵a ≠-b ,∴a+b ≠0 ∴a 2−b 22a+2b=(a+b)(a−b)2(a+b)=a−b 2= 102 =517.(1)解:∵(x-3)(x-4)=a 2 ∴x 2−7x +12−a 2=0 .∴Δ=4a 2+1>0.∴对于任意实数a,方程总有两个不相等的实数根.(2)解:∵ ( x − 3 ) ( x − 4 ) = a 2 .∴ x 2− 7 x + 12 − a 2 = 0 .又∵x=1.∴1-7+12-a2=0.∴a2=6.∴a=±√6,∴x2-7x+6=0∴ ( x − 1 ) ( x −6 ) =0∴x1=1,x2=6.∴方程的另一个根为x=6.18.(1)解:因为方程m2x2+(1−2m)x+1=0有两个不相等的实数根∴Δ=(1−2m)2−4m2>0,解得m<14;又因为是一元二次方程,所以m2≠0,∴m≠0.∴m的取值范围是m<14且m≠0.(2)解:∵x1,x2为原方程的两个实数根∵m<14且m≠0∴x1+x2=2m−1m2<0x1x2=1m2>0∴x1<0x2<0.∵|x1|+|x2|=2x1x2−15∴−2m−1m2=2m2−15∴15m2−2m−1=0,解得m1=13∵m<14且m≠0,∴m1=13不合题意,舍去。

九年级数学上册《第二十一章 解一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章 解一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章解一元二次方程》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.关于x的方程x2+2x+m=0的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.由m的取值决定2.方程x2+5x=0的适当解法是()A.直接开平方法B.配方法C.因式分解法D.公式法3.已知x=1是一元二次方程mx2–2=0的一个解,则m的值是().A.√2B.2 C.±√2D.1或24.方程2x(x+1)=3(x+1)的根为( )A.x=32B.x=−1C.x1=−1,x2=23D.x1=−15.若关于x的方程kx2+(k+2)x+ k4=0有实数根,则实数k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0C.k>﹣1且k≠0 D.k≤﹣16.已知x1,x2是一元二次方程x2+4x﹣3=0的两个实数根,则x1+x2﹣x1x2的值是()A.6 B.0 C.7 D.-17.已知方程x2-5x+2=0的两个解分别为x1、x2,则x1+x2-x1•x2的值为()A.-7 B.-3 C.7 D.38.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+ b2a )2=b2−4ac4a2B.(x+ b2a)2= 4ac−b24a2C.(x﹣b2a )2= b2−4ac4a2D.(x﹣b2a)2= 4ac−b24a2二、填空题9.方程3x2+6x=0的解是.10.代数式−x2−2x的最大值为.11.若m﹣n2=0,则m+2n的最小值是.12.已知关于x的一元二次方程x2−kx+36=0有两个相等的实数根,则k的值为.13.等腰三角形的两边恰为方程x2-7x+10= 0的根,则此等腰三角形的周长为三、解答题14.解方程:(1)4x2−1=0(2)3x(x−2)=(x−2)(3)x2−3x+2=0(4)(x+3)2=5+2x15.已知:a是不等式5(a−2)+8<6(a−1)+7的最小整数解,请用配方法解关于x的方程x2+2ax+ a+1=0 .16.小红认为:当b2﹣4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的求根公式是b±√b2−4ac2a.请你举出反例说明小红的结论是错误的.17.设一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=-ba ,x1·x2=ca.根据该材料填空:已知x1、x2是方程x2+6x+3=0的两实数根,则x2x1+x1x2的值是多少?18.观察下表,确定一元二次方程x2﹣2x﹣2=0的一个近似根.x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 x2﹣2x﹣2 ﹣1.79 ﹣1.56 ﹣1.31 ﹣1.04 ﹣0.75 ﹣0.44 ﹣0.11 0.2419.已知关于x的一元二次方程mx2-(m+2)x+2=0(m≠0)(1)求证:方程一定有两个实数根;(2)若此方程的两根为不相等的整数,求整数m的值.参考答案1.D2.C3.B4.D5.A6.D7.D8.A9.x1=0,x2=﹣210.111.-112.±1213.1214.1014.(1)解:4x2−1=0分解因式得:(2x+1)(2x−1)=0即:2x+1=0或2x−1=0∴x1=−12,x2=12;(2)解:3x(x−2)=(x−2)移项,分解因式得:(3x−1)(x−2)=0即:3x−1=0或x−2=0∴x1=13,x2=2;(3)解:x2−3x+2=0分解因式得:(x−1)(x−2)=0即:x−1=0或x−2=0∴x1=1,=2;(4)解:(x+3)2=5+2x化简得:x2+4x+4=0分解因式得:(x+2)2=0∴x1=x2=−2 .15.解:∵5(a−2)+8<6(a−1)+7;∴5a−10+8<6a−6+7;∴−a<3;∴a>−3;∵a是不等式5(a−2)+8<6(a−1)+7的最小整数解∴a=−2;∴关于x的方程x2−4x−1=0;∴x2−4x+4=5;∴(x−2)2=5;∴x−2=±√5;∴x1=2+√5,x2=2−√5 .16.解:如方程x2+5x+6=0(x+2)(x+3)=0∴x1=﹣2,x2=﹣3小红认为:当b2﹣4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的求根公式是b±√b2−4ac2a.则x=5±√52−4×1×62×1=5±12x=2和x=3这与上面的因式分解法求得的方程的解不一致故小红的结论是错误的.17.x2x1+x1x2的值是1018.解:y=x2﹣2x﹣2由二次函数的增减性,得x=2.7时,y=﹣0.11,x=2.8时,y=0.24x2﹣2x﹣2=0时,x≈2.73.19.(1)证明:∵一元二次方程mx2-(m+2)x+2=0(m≠0)∴Δ=[-(m+2)] 2-4×2m=m2+4m+4-8m=(m-2)2∵m≠0∴Δ=(m-2)2≥0∴方程一定有两个实数根;(2)解:由求根公式得,x1=1,x2= 2m∵方程的两根为不相等的整数,且m为整数是整数,而m≠0∴2m∴m=±1,±2,而当m=2时,x1=x2=1,(舍去)∴整数m为1,-1,-2故答案为:1,-1,-2。

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)

九年级数学上册《第二十一章 一元二次方程》同步练习题附带答案(人教版)姓名 班级 学号一、选择题:1.下列方程是关于 x 的一元二次方程的是( )A .20ax bx c ++=B .2112x x +=C .2221x x x +=-D .()23(1)21x x +=+2.要使方程(a-3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则( )A .a ≠0B .a ≠3C .a ≠3且b ≠-1D .a ≠3且b ≠-1且c ≠03.一元二次方程22(1)(1)1x a x x x -+=--化成一般式后,二次项系数为1,一次项系数为﹣1,则a 的值为( )A .﹣1B .1C .﹣2D .24.“读万卷书,行万里路.”某校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A .()21001121x +=B .()21001%121x +=C .()10012121x +=D .()()210010*********x x ++++=5.若 1x =- 是关于x 的一元二次方程 ()2200ax bx a ++=≠ 的一个根,则202122a b -+= ( )A .2025B .2023C .2019D .20176.方程230x +=的二次项系数与一次项系数及常数项之积为( )A .3B .CD .9- 7.若0x 是方程()2200ax x c a ++=≠的一个根,设2M ac =-,20(1)N ax =+则下列关于M与N 的关系正确的为( )A .M N =B .1M N =+C .3M N +=D .2M N = 8.若关于x 的方程()200ax bx c a ++=≠满足0a b c -+=,称此方程为“月亮”方程.已知方程()221999100a x ax a -+=≠是“月亮”方程,则22199919991a a a a +++的值为( ) A .-1B .2C .1D .-2 二、填空题: 9.将方程 22143x x x -+=- 化为一般形式为 .10.已知关于x 的方程(a ﹣1)x 2﹣2x+1=0是一元二次方程,则a 的取值范围是11.若关于x 的一元二次方程()221210m x x m -++-=的常数项为0,则m 的值是 . 12.某市从2020年开始大力发展旅游产业.据统计,该市2020年旅游收入约为2亿元.预计2022年旅游收入约达2.88亿元,设该市旅游收入的年平均增长率为x ,根据题意列出方程为 .13.若关于 x 的一元二次方程 ()2100mx nx m +-=≠ 的一个解是 1x = ,则 m n + 的值是 .三、解答题:14.若(m+1)x |m|+1+6x ﹣2=0是关于x 的一元二次方程,求m 的值.15.学完一元二次方程后,在一次数学课上,同学们说出了一个方程的特点:①它的一般形式为ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)②它的二次项系数为5③常数项是二次项系数的倒数的相反数你能写出一个符合条件的方程吗?16.把方程(3x+2)(x ﹣3)=2x ﹣6,化成一般形式,并写出它的二次项系数,一次项系数和常数项.17.一元二次方程化为一般式后为 ,试求 a 2+b 2-c 2的值的算术平方根.18.完成下列问题:(1)已知x ,y 为实数,且 2y = ,求 23x y - 的值.(2)已知 m 是方程 2202110x x -+= 的一个根,求代数式 2120202m m m-++ 的值.参考答案:1.D 2.B 3.B 4.A 5.A 6.D 7.B 8.D9.230x x +-=10.a ≠111.-112.()221 2.88x +=13.114.解:由题意,得|m|+1=2,且m+1≠0解得m=115.解:由①知这是一元二次方程,由②③可确定 a c 、 ,而 b 的值不唯一确定,可为任意数,熟悉一元二次方程的定义及特征是解答本题的关键.这个方程是5x 2-2x - 15=0. 16.解:(3x+2)(x ﹣3)=2x ﹣63x 2﹣9x=0所以它的二次项系数是3,一次项系数是﹣9,常数项是017.解:a (x+1)2+b (x+1)+c=0化作一元二次方程的一般形式为ax 2+(2a+b)x+a+b+c=0又一般形式为3x 2+2x-1=0∴a=3,2a+b=2,a+b+c=-1解得,a=3,b=-4,c=0∴a 2+b 2-c 2=25,则其算术平方根是5.18.(1)解:由题意得, 5050x x --,∴52x y ==-,∴2310616x y -=+=(2)解:∵m 是方程 2202110x x -+= 的一个根∴2202110m m -+=∴220211m m =-211202022021120202m m m m m m -++=--++21111202112022m m m m +=++=+=+=。

人教版九年级上册数学第二十一章 一元二次方程单元练习题附答案教师版

人教版九年级上册数学第二十一章 一元二次方程单元练习题附答案教师版

人教版九年级上册数学第二十一章一元二次方程单元练习题附答案一、单选题1.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是().A.a<2 B.a>2C.a<2且a≠1D.a<-2【答案】C2.若α、β是方程x2+2x﹣2007=0的两个实数根,则α2+3α+β的值()A.2007B.2005C.﹣2007D.4010【答案】B3.一元二次方程x2-kx-1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【答案】A4.用配方法解方程时,原方程应变形为()A.B.C.D.【答案】C5.方程-x2+3x=1用公式法求解,先确定a,b,c的值,正确的是()A.a=-1,b=3,c=-1B.a=-1,b=3,c=1C.a=-1,b=-3,c=-1D.a=1,b=-3,c=-1【答案】A6.下列方程中,有两个不相等实数根的是().A.x2-4x+4=0B.x2+3x-1=0C.x2+x+1=0D.x2-2x+3=0【答案】B7.关于x的一元二次方程kx2-2x-1=0有实数根,则k的取值范围是()A.k>-1或k≠0B.k≥-1C.k≤-1或k≠0D.k≥-1且k≠0【答案】D8.参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为()A.12x(x−1)=10B.x(x−1)=10C.12x(x+1)=10D.2x(x−1)=10【答案】A9.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32−x)(20−x)=32×20−570B.32x+2×20x=32×20−570C.32x+2×20x−2x2=570D.(32−2x)(20−x)=570【答案】D10.直角三角形两条直角边的和为7,面积是6,则斜边长是()A.√37B.5C.√38D.7【答案】B二、填空题11.已知(x2+y2+1)(x2+y2+2)=6,则x2+y2的值为。

人教版初中数学九年级上册同步测试 第21章 一元二次方程(共17页)

人教版初中数学九年级上册同步测试 第21章 一元二次方程(共17页)

第二十一章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m+-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+x x A .1个B .2个C .3个D .4个 8.在方程:3x 2-5x =0,,5312+=+x x7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0,3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13..25)1(412=+x14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx ,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关 20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ). A .5±B .±1C .±2D .2±21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2. 2.x x 232-+_________=(x -_________)2. 3.+-px x 2_________=(x -_________)2.4.x abx -2+_________=(x -_________)2. 5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______. 二、选择题 7.用配方法解方程01322=--x x 应该先变形为( ). A .98)31(2=-xB .98)31(2-=-x C .910)31(2=-xD .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8 C .x 1=10,x 2=-8 D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=xB .252±=x C .251±=x D .231±=x 10.方程mx 2-4x +1=0(m <0)的根是( ).A .41 B .m m-±42 C .mm-±422D .mm m -±42 三、解答题(用配方法解一元二次方程)11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0.14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2.25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±- B .ac b 42-C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1 C .23≤m 且m ≠1 D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=b D .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2).12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43 三、用因式分解法解下列关于x 的方程23..2152x x =- 24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2 C .x =4 D .x 1=x 2=46.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x7.072=-x x 的根是( ). A .77=x B .77,021==x x C .x 1=0,72=xD .7=x8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0)四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______.21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________. 二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确 23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .b ax a b x 2,221==B .b ax a b x ==21,C .0,2221=+=x abb a xD .以上都不正确三、解下列方程24.(x +1)2+(x +2)2=(x +3)2. 25.(y -5)(y +3)+(y -2)(y +4)=26.26..02322=+-x x 27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx yx +-的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aac b b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x + ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
九年级数学第21章《一元二次方程》同步练习
一、选择题
1.若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≤﹣1且k≠0 B.k<﹣1且k≠0
C.k≥﹣1且k≠0
D.k>﹣1且k≠0
2.若一元二次方程9x2-12x-39996=0的两根为a,b,且a<b,则a+3b的值为()
A.136 B.268 C.796
3
D.
392
3
3.现定义运算“★”,对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x ★2=6,则实数x的值是()
A、-1
B、4
C、-1或4
D、1或-4
4.一元二次方程x2+2x-c=0中,c>0,该方程的解的情况是()
A.没有实数根 B.有两个不相等的实数根
C.有两个相等的实数根 D.不能确定
5.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=-3,x2=2,则方程m (x+h-3)2+k=0的解是()
A.x1=-6,x2=-1 B.x1=0,x2=5
C.x1=-3,x2=5 D.x1=-6,x2=2
6.对于任意实数a、b,定义f(a,b)=a2+5a-b,如:f(2,3)=22+5×2-3,若f(x,2)=4,则实数x的值是()
A.1或-6 B.-1或6 C.-5或1 D.5或-1
7.用配方法解一元二次方程x2+4x-5=0,此方程可变形为()
A.(x-2)2=9 B.(x+2)2=9 C.(x+2)2=1 D.(x-2)2=1
8.为了让山更绿、水更清,确保到实现全省森林覆盖率达到63%的目标,已知2013年全省森林覆盖率为6005%,设从2013年起全省森林覆盖率的年平均增长率为x,则可列方程()A.60.05(1+2x)=63% B.60.05(1+3x)=63
C.60.05(1+x)2=63%
D.60.05%(1+x)2=63%
二、填空题
9.网购悄然盛行,我国2012年网购交易额为1.26万亿人民币,2014年我国网购交易额达到了2.8万亿人民币.如果设2013年、2014年网购交易额的平均增长率为x,则依题意可得关于x的一元二次方程为 .
10.已知(x-1)2=ax2+bx+c,则a+b+c的值为 .
11.根据图中的程序,当输入一元二次方程x 2
﹣2x=0的解x 时,输出结果y= .
12.某公司2012年的利润为160万元,到了2014年的利润达到了250万元.设平均每年利润增长的百分率为x ,则可列方程为 .
13.方程x 2﹣x ﹣=0的判别式的值等于 .
14.已知直角三角形两边x 、y 的长满足|x 2256y y -+,
则第三边长为 . 三、解答题
15.(本题10分)已知:关于x 的方程kx 2-(3k-1)x+2(k-1)=0,
(1)求证:无论k 为何实数,方程总有实数根;
(2)若此方程有两个实数根x 1,x 2,且|x 1-x 2|=2,求k 的值.
16.(9分)李明准备进行如下操作实验:把一根长40cm 的铗丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于582cm ,李明应该怎么剪这根铁丝?
(2)李明认为这两个正方形的面积之和不可能等于482cm .你认为他的说法正确吗?请说明理由.
17.已知关于x 的方程24310x x a -+-=有两个实数根.
(1)求实数a 的取值范围;
(2)若a 为正整数,求方程的根.
18.解方程(1)2230x x --=(2)、2(3)4(3)0x x x -+-=
19.关于x 的一元二次方程kx 2﹣(2k ﹣2)x+(k ﹣2)=0(k ≠0).
(1)求证:无论k 取何值时,方程总有两个不相等的实数根.
(2)当k 取何整数时方程有整数根.
20.先化简,再求值:231(1)221
x x x x x x --÷-+++,其中x 满足x 2-x-1=0. 21.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月份的销售量达到400件.设二、三这两个月月平均增长率不变.
(1)求二、三这两个月的月平均增长率;
(2)从四月份起,商场采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?
22.“大湖名城•创新高地•中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多
少名同学参加了研学游活动?
参考答案
1.D
2.A .
3.C .
4.B .
5.B .
6.A .
7.B.
8.D .
9.1.26(1+x )2=2.8.
10.0.
11.﹣4或2
12.160×(1+x )2=250
13.4
14..
15.(1)证明详见解析;(2) 1或13
-. 16.(1)12cm 和28cm ;(2)正确.
17.(1)53a ≤;(2)1222x x ==
18.(1) x 1=3,x 2=-1.(2) x 1=3,x 2=35
. 19.
20.1.
21.(1) 二、三这两个月的月平均增长率为25%;(2) 商品降价5元时,商品获利4250元.
22.该班共有35名同学参加了研学旅游活动.。

相关文档
最新文档