消弧线圈补偿原理及运行注意事项
消弧线圈自动跟踪补偿技术综述

消弧线圈自动跟踪补偿技术综述引言消弧线圈是电力系统中常见的一种设备,用于保护电力设备和系统免受电弧故障的影响。
然而,由于电力系统中的故障和变化,消弧线圈经常需要进行调整和补偿,以保证其性能和稳定性。
本文将综述消弧线圈自动跟踪补偿技术的研究进展,包括原理、方法和应用。
一、消弧线圈及其工作原理1.1 消弧线圈的定义消弧线圈是一种用于限制和控制电力系统中电弧故障影响范围的设备。
它通过产生磁场来限制电流,并将故障电流引导到地面或其他安全位置。
1.2 消弧线圈的工作原理消弧线圈通过利用磁场的作用来实现对电流的控制。
当电流超过设定值时,消弧线圈会产生一个磁场,使得故障电流被引导到地面或其他安全位置。
这样可以避免故障扩大和对设备和系统的损害。
二、消弧线圈自动跟踪补偿技术的研究进展2.1 自动跟踪技术的概述自动跟踪技术是指利用传感器和控制系统实现对消弧线圈的自动调整和控制。
通过实时监测电力系统状态和故障情况,自动跟踪技术能够及时调整消弧线圈的参数,以保证其工作效果和稳定性。
2.2 消弧线圈自动补偿技术的原理消弧线圈自动补偿技术是指利用反馈控制原理对消弧线圈进行补偿,以达到更好的控制效果。
通过监测电流、电压等参数,并根据预设的补偿算法进行计算和调整,可以实现对消弧线圈的自动补偿。
2.3 消弧线圈自动跟踪补偿技术的方法2.3.1 传感器监测方法传感器监测方法是利用传感器对电流、电压等参数进行实时监测,并将监测结果反馈给控制系统。
通过分析监测数据,控制系统可以实现对消弧线圈的自动调整和补偿。
2.3.2 控制算法方法控制算法方法是指利用数学模型和控制算法对消弧线圈进行自动调整和补偿。
通过建立电力系统的数学模型,并设计合适的控制算法,可以实现对消弧线圈的自动跟踪补偿。
2.4 消弧线圈自动跟踪补偿技术的应用消弧线圈自动跟踪补偿技术在电力系统中具有广泛的应用前景。
它可以提高电力系统的稳定性和可靠性,减少故障对设备和系统的损害。
消弧线圈的工作原理及动态消弧补偿系统的提出

2. 消弧线圈的工作原理及动态消弧补偿系统的提出2.1 消弧线圈的工作原理2.1.1 中性点不接地系统单相接地时的电容电流电力线路导线间及导线与大地之间均存在分布电容,电器设备与大地之间也存在电容。
对于中压配电网,由于线路长度相对于工频波长来讲要短得多,这些分布电容可以用集中参数电容代替。
一般来讲,各相对地电容c b a C C C ≠≠,Φ=︒+︒=U C I I I C B DC 0330cos 30cos ω这个接地电容电流由故障点流回系统,它的大小等于正常时一相对地充电电流的3倍,方向落后于A 相正常时相电压︒90。
由于接地电流和接地相正常时的相电压相差︒90,所以当接地电流过零时,加在弧隙两端的电源电压为最大值,因此故障点的电弧不易熄灭。
当接地电容电流较大时,容易形成间歇性的弧光接地或电弧稳定接地。
间歇性的弧光接地能导致危险的过电压。
稳定性的弧光接地能发展成多相短路。
2.1.2 中性点不接地系统的中性点位移电压为U B .Φ--=U jdK c'.1 (2-1-2) 式中)(13''2.'c b a cb a cb ac C C C Rd C C C aC C a C K r R ++=++++==ω'.,d K c 分别称为中性点不接地电网的不对称度和阻尼率。
正常运行时因导线不对称布置所引起的电网不对称度是不高的,尤其是电缆网络其值更小,表2-1列出了作者对67个煤矿6KV 电缆电网的测定结果,从表中可见,占实测总体85%的电网其自然不对称度小于0.54%,所以中性点电压位移较小。
但是当系统中发生一相导线断线、或两相导线同一处断线、或开关动作不同步都将使故障相的对地电容减小,从而使不对称度有较大的增长,中性点的位移电压可能达到很高的数值。
2.1.3消弧线圈的作用原理中性点加入消弧线圈后,起到三个方面的作用,即大大减小故障点接地电流;减缓电弧熄灭瞬时故障点恢复电压的上升速度;避免由于电磁式电压互感器饱和而引发铁磁谐振。
消弧线圈运行注意事项(二篇)

消弧线圈运行注意事项1消弧线圈应采用过补偿运行方式,当消弧线圈容量不足时,允许在一定时间内以欠补偿方式运行,但脱谐度不宜超过10%.2单相接地时,通过故障点的电流不宜超过5A.3系统正常清况下,35KV系统中性点长期位移电压不得超过正常相电压的15%(即3000V),否则,应立即汇报调度。
4消弧线圈的倒闸操作,只有确知网络无接地故障存在时方可进行。
5中性点位移电压超过正常相电压的20%(即4000V)时或通过消弧线圈的电流大于5A时,禁止拉合消弧线圈闸刀。
6消弧线圈动作后,应监视消弧线圈的电流值,不超过使用分接头位置的铭牌电流值,并检查油温、油面温度最高不得超过95℃,温度发出告警时,应及时汇报调度。
7消弧线圈从一台变压器切换到另厂一台变压器时,首先应将消弧线圈与系统隔离,即按先拉后合的顺序操作,不可同时将二台或二台以上的变压器的中性点并联起来经消弧线圈接地。
8调整消弧线圈分接头时,应将消弧线圈与系统隔离,严禁消弧线圈在带电状态下调整分接头。
9运行方式改变时,应同时考虑消弧线圈的调整。
10消弧线圈巡视检查参照变压器设备。
消弧线圈运行注意事项(二)消弧线圈运行是一项重要的工作,在操作过程中需要特别注意一些事项,以确保安全、高效地完成工作任务。
本文将介绍消弧线圈运行的注意事项,并给出相关的具体操作指南。
一、设备检查与准备在使用消弧线圈之前,必须进行设备检查与准备工作。
具体包括以下几个方面:1. 完整性检查:检查消弧线圈是否完好,并且没有损坏或缺陷。
2. 电源检查:确保消弧线圈的电源连接正常,并接地可靠。
3. 仪表检查:检查仪表是否正常工作,如电压表、电流表、频率表等。
4. 保护装置检查:检查保护装置是否正常,确保在故障情况下能及时切断电源。
5. 通风检查:确保消弧线圈所在的空间通风良好,防止过热或引起火灾。
二、安全操作1. 穿戴个人防护装备:在进行消弧线圈运行之前,必须穿戴个人防护装备,包括绝缘手套、绝缘鞋、眼罩、耳罩等。
消弧线圈补偿原理

消弧线圈补偿原理消弧线圈补偿原理是一种电力系统保护装置,用于限制和消除电力系统中出现的电弧故障。
它的工作原理是基于电弧的特性和电流的变化规律。
本文将详细介绍消弧线圈补偿原理的工作原理及其在电力系统中的应用。
我们需要了解什么是电弧故障。
电弧是电流穿过介质时产生的一种放电现象,它具有高温、高能量和强烈的光辉。
在电力系统中,电弧故障是指电气设备中的绝缘系统发生破坏,产生电弧放电现象。
电弧故障会造成电力系统的短路、火灾和设备损坏等严重后果。
消弧线圈补偿原理的工作原理是通过改变电路的电感和电阻来限制电弧故障电流的大小和持续时间,从而使电弧故障得到控制和消除。
具体来说,消弧线圈补偿原理的工作包括三个阶段:检测、补偿和控制。
在检测阶段,消弧线圈补偿原理通过电流和电压传感器来实时监测电力系统中的电流和电压。
一旦检测到电弧故障,系统会立即进入补偿阶段。
在补偿阶段,消弧线圈补偿原理会通过控制电路,改变电路的电感和电阻,从而限制电弧故障电流的大小和持续时间。
电弧故障电流会经过消弧线圈补偿原理的作用,得到有效的限制和消除。
在控制阶段,消弧线圈补偿原理会根据电力系统的实际情况,调整补偿电路的参数,以达到最佳的补偿效果。
这需要通过对电力系统的监测和分析,以及对消弧线圈补偿原理的控制算法进行优化和调整。
消弧线圈补偿原理在电力系统中具有广泛的应用。
它可以用于各种类型的电力设备,如变压器、断路器、隔离开关等。
在电力系统的运行过程中,由于各种原因,电弧故障是不可避免的。
消弧线圈补偿原理可以及时、有效地限制和消除电弧故障,保护电力系统的安全运行。
除了保护电力系统的安全运行外,消弧线圈补偿原理还可以提高电力系统的可靠性和稳定性。
通过限制和消除电弧故障,可以减少电力系统的短路故障和设备损坏,提高电力系统的可用性和可靠性。
另外,消弧线圈补偿原理还可以减少电力系统的停电时间,提高电力系统的供电质量和稳定性。
总结起来,消弧线圈补偿原理是一种重要的电力系统保护装置,它通过改变电路的电感和电阻,限制和消除电弧故障,保护电力系统的安全运行。
消弧线圈原理及 (2)

各种方式的比较:调气隙式
调气隙式属于随动式补偿系统。其消弧线圈属于动芯式结构,通过移动铁芯改变磁路磁阻达 到连续调节电感的目的。然而其调整只能在低电压或无电压情况下进行,其电感调整范围上 下限之比为2.5倍。控制系统的电网正常运行情况下将消弧线圈调整至全补偿附近,将约100 欧电阻串联在消弧线圈上。用来限制串联谐振过电压,使稳态过电压数值在允许范围内(中 性点电位升高小于15%的相电压)。当发生单相接地后,必须在0.2S内将电阻短接实现最佳补 偿,否则电阻有爆炸的危险。该产品的主要缺点主要有四条: 工作噪音大,可靠性差 动芯式消弧线圈由于其结构有上下运动部件,当高电压实施其上后,振动噪音很大,而 且随着使用时间的增长,内部越来越松动,噪音越来越大。串联电阻约3KW,100MΩ。当补 偿电流为50A时,需要250KW容量的电阻才能长期工作,所以在接地后,必须迅速切除电 阻,否则有爆炸的危险。这就影响到整个装置的可靠性。 调节精度差 由于气隙微小的变化都能造成电感较大的变化,电机通过机械部件调气隙的精度远远不 够。用液压调节成本太高 过电压水平高 在电网正常运行时,消弧线圈处于全补偿状态或接近全补偿状态,虽有串联谐振电阻将 稳态谐振过电压限制在允许范围内,但是电网中的各种扰动(大电机投切,非同期合闸,非 全相合闸等),使得其瞬态过电压危害较为严重。 功率方向型单相接地选线装置不能继续使用 安装该产品后,电网中原有的功率方向型单相接地选线装置不能继续使用
∈(0,1/M)式时,阻抗值X>0,成感性,此时X值随C值的增大而增大,随C值的减小而减小。当C值趋近于1/M时,C值的改 变会引起X的剧烈变化,故在这个区间内,电容电流的计算值相对误差会稍大一些。
自动跟踪补偿原理 在图5 的等效回路中,考虑的是零序回路的参数【2】,所以导线的相间电容、改善功率 因数用的电容器组、电网内负载变压器及其有功负荷不起作用。因为它们都是接在相间 的。由于消弧线圈一般工作在谐振位置,故在消弧线圈与地之间串接阻尼电阻,来降低 品质因数。控制器在计算电网电容电流时,忽略消弧线圈的等值损耗电导及对地电容的 泄露电导。调谐时,先测量当前档位时流过消弧线圈的电流i1,然后调节消弧线圈的档位,测 量新的电流i2并计算其相对于的相位差θ。根据两档位的电抗之差和θ的关系,可以计算 出对应档位时的脱谐度。
消弧线圈运行规程

消弧线圈运行规程1.总则1.1中性点装设消弧线圈自动调谐装置的目的运行经验表明,消弧线圈对减小故障点接地残流、抑制间歇性弧光过电压和由于电磁式电压互感器饱和而产生的谐振过电压,降低线路的事故跳闸率,减少人身伤亡和设备损坏都有明显作用。
电力行业标准DL/T620-1997《交流电气装置的过电压保护和绝缘配合》中明确规定:3~10KV架空线路构成的系统和所有35、66KV电网,当单相接地故障电流大于10A时,中性点应装设消弧线圈,3~10KV电缆和架空线路构成的系统,当单相接地故障电流大于10A时,中性点应装设消弧线圈。
1.2XHK-Ⅱ型消弧线圈自动调谐装置的构成一次设备包括:接地变压器、消弧线圈(带有载分接开关)、中性点单相PT、单相隔离开关、内过压保护器(避雷器)和阻尼电阻。
二次设备包括:微机调谐器、自动调谐控制屏(PK屏)、阻尼电阻控制器。
1.3阜北风电场35kV系统采用中性点经消弧线圈接地方式,消弧线圈对系统单相接地电容电流采用过补偿方式。
发生接地故障后,消弧线圈投入中电阻进行选线,选线结束后,给故障线路发出跳闸信号,切除故障线路。
2、正常运行时注意事项2.1在正常情况下,消弧线圈自动调谐装置必须投入运行;2.2正常情况下消弧线圈自动调谐装置应投入自动运行状态;2.3消弧线圈和其它电气设备一样,由调度实行统一管理,操作前必须有当值调度员的命令才能进行操作;2.4禁止将一台消弧线圈同时接在两台接地变压器(或变压器)的中性点上;2.5运行人员应熟知整套设备的功能及操作方法,特别是微机调谐器面板上的键盘操作;3、消弧线圈自动调谐装置投入运行操作步骤:(1)、检查组合柜内设备是否清洁,有无杂物,组合柜门锁是否正常使用(2)、接地变消弧线圈接线是否正确无误,高低压电缆符合电气安全规范(3)、合上PK屏后交、直流电源开关;(4)、合上消弧线圈与中性点之间单相隔离开关;(5)、合上微机调谐器电源开关;4、消弧线圈自动调谐装置退出运行操作步骤:(1)、断开微机调谐器电源开关;(2)、拉开消弧线圈与中性点之间单相隔离开关;(3)、断开PK屏后交、直流电源开关;5、一次设备的投运A.资料交接,由安装调试方将所有资料进行移交(包括设备合格证、出厂试验报告、所有钥匙、说明书、讲义、图纸、调试报告等)B。
消弧线圈工作原理及应用

消弧线圈⼯作原理及应⽤消弧线圈⼯作原理及应⽤⽬录摘要 (2)⼀、引⾔ (3)⼆、消弧线圈作⽤原理与特征 (4)三、消弧线圈⾃动补偿的应⽤ (7)四、消弧线圈接地系统⼩电流接地选线 (8)五、消弧线圈的故障处理⽅法与技术 (11)六、结束语 (13)参考⽂献 (14)谢辞 (15)摘要本⽂通过对配电系统中性点接地⽅式和配电⽹中正常及发⽣故障时电容电流的分析,阐述了中性点经消弧线圈接地⽅式在⽬前配电⽹系统中应⽤的必要性,并从消弧线圈的⼯作原理,使⽤条件,容量选择,注意事项和故障处理等⽅⾯进⾏了探讨,同时也对⽬前国内消弧线圈装置进⾏了简单介绍。
关键词:接地;中性点;消弧线圈;电弧;补偿;⼀、引⾔⽬前,在我国⽬前配电⽹系统中,单相接地故障是出现概率最⼤的⼀种,并且⼤部分是可恢复性的故障,6~35 kV电⼒系统⼤多为⾮有效接地系统,由于⾮有效接地系统的中性点不接地,即使发⽣单相接地故障,但是三相线电压依然处于对称状态,所以仍能保持不间断供电,这是中性点不接地系统电⽹的⼀⼤优点,但当供电线路较长时,单相接地电流容易超过规范规定值,造成接地故障处出现持续电弧,⼀旦不能及时熄灭,可能发展成相间短路;其次,当发⽣间歇性弧光接地时,易产⽣弧光接地过电压,从⽽波及整个电⽹。
为了解决这些问题,选择在系统中性点装设消弧线圈接地已经被证实是⼀项有效的措施,对电⽹的安全运⾏⾄关重要。
⼆、消弧线圈作⽤原理与特征2.1各类中性点接地⽅式及优缺点介绍我国⽬前中性点的运⾏⽅式主要有两种:a)中性点直接接地系统直接接地系统主要⽤在110KV及以上的供电系统和低压380V系统。
直接接地系统发⽣单相接地故障时由于故障电流较⼤会使继电保护马上动做切除电源与故障点回路。
中性点直接接地系统的优点是发⽣单相接地时,其它⾮故障相对地电压不升⾼,因此可节省⼀部分绝缘费⽤,供电⽅式相对安全。
其缺点是发⽣单相接地故障时,故障电流⼀般较⼤,要迅速切除故障回路,影响供电的连续性,从⽽供电可靠性较差。
消弧线圈各种补偿方式的分析及应用

在6~35kV 的电力系统中,供电电流会随着用户用电量的变化随时发生变化,当单链接电流大小超过限值时,就会产生电弧,进而影响电气设备的正常运行,甚至是损坏电器设备,为了达到降低或消除电弧,在电力供电网络系统中通常需要安装消弧线圈,即在中性点处通过消弧线圈接地,电网在此装置的补偿运行方式下工作可有效降低电弧所带来的损害。
下面对中性点经消弧线圈接地的原理进行简要介绍。
配电网络系统线路中中性点不直接接地,而是通过串联电感线圈后接地。
这种消弧方式其实是一种电流补偿装置,也就是一个维持平衡的过程,我们可以采取不同的补偿方式在电路中得到应用。
一般有三种,即完全补偿、欠补偿和过补偿,具体如下。
1完全补偿完全补偿就是要使电感电流I L 与接地电容电流I C 相等,在这种情况下接地点的电流几乎为零,因此在该种补偿方式下理论上不会产生电弧,也就不会出现弧光过电压状态,也就不存在电弧危害了,所以,从理论上来讲完全补偿方式是一种理想的补偿范式。
但是这种状态是一种理想状态,通常情况下并不能实现,在供电系统正常运行时,电感电流和接地电容的电流总是会出现不相等的情况,电源中性点和地面之间就会形成点位的偏移,形成电压,从而使得中性点消弧线圈和接地电容共同形成一个串联回路(见图1和图2)。
消弧线圈与接地电容构成消弧线圈接地系统W 相金属的串联电路性接地的简化等值电路图1图2应用戴维南定理,图3中的U̇N 等于消弧线圈从中性点断开后,中性点的电压,由式(1)确定:U N =U ̇U Y 1+U ̇V Y 2+U ̇W Y 3Y 1+Y 2+Y 3(1)式(1)中:Y 1=ωc 1;Y 2=ωc 2;Y 3=ωc 3;线路经完全换位后,c 1、c 2、c 3差别很小,U ̇N 数值较小。
在发生全补偿时,消弧线圈的感抗与三相对地电容容抗相等。
在U̇N 的作用下,图3所示的电路构成串联谐振,回路电流为I=U NR(2)中性点电位为U 0=LX L =U N RX L (3)消弧线圈的感抗通常是比较大的,而线圈的电阻此时相对比较小,在U N 不大的情况下中性点处电位U 0仍然会很高,U 0将在串联谐振回路中产生很大的电压落差,从而导致电源中性点对地电压迅速的升高,引起电压过量,这是不允许的,因此在实际中完全补偿方式,不是很适用。
消弧线圈作用及补偿方式

消弧线圈作用及补偿方式消弧线圈是一种用于电力系统中的重要设备,它的作用是消除系统中的电弧现象,并通过提供补偿电流来保护设备和系统。
电弧是指在电力系统中由于电气设备运行过程中产生的低阻抗路径导致的电流突然增大,产生的高温和高能量放电现象。
电弧不仅会对设备造成损坏,还会产生火灾和爆炸等安全隐患。
因此,消弧线圈的作用是非常重要的,它可以及时消除电弧并保护设备的安全运行。
消弧线圈的基本原理是通过产生磁场,将电弧的能量转化为电能,从而达到消除电弧的目的。
当电弧发生时,消弧线圈产生的磁场将电弧能量吸收和存储,然后通过自身感应电动势的作用将电能释放出来。
这样,消弧线圈可以将电弧的能量转化为无害的能量并消除电弧的持续时间。
消弧线圈的效果可以通过以下几个方面来衡量:1.消除电弧时间:消弧线圈能够迅速地将电弧能量吸收并存储起来,然后通过释放能量的方式将电弧消除。
因此,消弧线圈能够显著减少电弧的持续时间,从而降低电弧带来的损害。
2.保护设备和系统:消弧线圈的作用是消除电弧,从而保护设备和系统的安全运行。
它可以有效地防止设备由于电弧导致的损坏,延长设备的寿命。
3.提高系统可靠性:消弧线圈可以快速地消除电弧,避免电弧引起的系统故障,提高系统的可靠性和稳定性。
为了提高消弧线圈的性能和效果,常常需要采取一些补偿措施。
补偿方式主要包括:1.线圈结构的优化:优化消弧线圈的结构设计,例如增加线圈的匝数、改善线圈的互感耦合系数等,可以提高消弧线圈的效果和功率。
2.增加辅助设备:可以增加一些辅助设备来提高消弧线圈的消弧效果。
例如,可以通过设置消弧线圈的外骨架或附加其他消弧装置来增加消弧线圈的消弧能力。
3.控制策略的优化:通过优化控制策略,例如控制电压、电流等参数,可以有效地提高消弧线圈的效果和响应速度。
4.综合应用其他技术:可以综合应用其他技术来提高消弧线圈的效果。
例如,结合电弧检测、电弧引爆机构等技术,可以实现更加精确和自动化的消弧控制。
消弧线圈补偿原理

消弧线圈补偿原理
消弧线圈补偿原理是指在电力系统中,为了消除电力设备产生的电弧现象而采取的一种补偿措施。
电弧是电流在断路器和开关等设备中断开时产生的电流依然存在,并在断口处形成电弧的现象。
这会导致电力系统的电能损耗和设备的过热,甚至对设备造成损坏。
消弧线圈补偿原理的基本思想是通过加入一个特殊的线圈来产生一个与电弧相反的电流,这样两者相互抵消,从而实现消弧的目的。
该线圈与电弧的电流大小和方向成正比,而且它的电感特性能够与电弧的电容特性相匹配,以最大程度地抵消电弧的能量。
消弧线圈补偿的工作原理可以用以下几个步骤简述:
1. 当断路器或开关打开时,电弧产生并开始燃烧。
2. 同时,消弧线圈也开始工作,通过调节线圈中的电流大小和方向来产生一个与电弧相反的电流。
3. 电弧的能量和消弧线圈产生的电流相互抵消,使电弧逐渐消失。
4. 当电弧完全消失后,线圈的工作也停止。
消弧线圈补偿原理的应用可以有效地消除电力设备产生的电弧现象,保护设备的安全运行。
它常用于高压断路器、开关和电容器等设备中,以提高电力系统的可靠性和稳定性。
通过合理设计和调整消弧线圈的参数,可以实现更好的消弧效果,并减少电弧对设备的影响。
消弧线圈的补偿方式

消弧线圈的补偿方式1. 引言消弧线圈是一种用于电力系统中的保护装置,用于限制和消除电流瞬时变化时产生的电弧现象。
在电力系统中,电流瞬时变化可能会引发火灾、短路等危险情况,因此消弧线圈的作用至关重要。
然而,在实际应用中,消弧线圈会对电力系统产生一定程度的影响,需要进行补偿以提高系统的稳定性和效率。
本文将详细介绍消弧线圈的补偿方式,并分析其原理、优缺点以及应用场景。
2. 消弧线圈的原理消弧线圈是一种通过感应耦合原理来限制和消除电流瞬时变化时产生的电弧现象的装置。
它由主线圈和补偿线圈组成。
当电流突然发生变化时,主线圈中会产生感应电动势,从而在补偿线圈中产生与主线圈相反方向的磁场,通过相互作用抵消了主线圈中产生的磁场,从而达到限制和消除电流瞬时变化时产生的电弧现象的目的。
3. 消弧线圈的补偿方式消弧线圈的补偿方式主要包括主动补偿和被动补偿两种。
3.1 主动补偿主动补偿是指通过控制电流源来实现对消弧线圈的补偿。
具体而言,通过在电流源上加装一个反馈回路,根据感应电动势的方向和大小来调整电流源输出的电流,以达到消弧线圈中产生与主线圈相反方向磁场并抵消主线圈中磁场的目的。
主动补偿具有响应速度快、控制精度高等优点,适用于对电流变化要求较高、需要快速响应和精确控制的场景。
然而,主动补偿也存在一些缺点,如成本较高、系统复杂等。
3.2 被动补偿被动补偿是指通过改变消弧线圈结构参数来实现对其补偿。
具体而言,可以通过改变消弧线圈的匝数、截面积等参数来调整其感应电动势和磁场大小,从而达到限制和消除电流瞬时变化时产生的电弧现象的目的。
被动补偿具有结构简单、成本低等优点,适用于对电流变化要求不高、对响应速度和控制精度要求较低的场景。
然而,被动补偿也存在一些缺点,如无法实现快速响应和精确控制等。
4. 消弧线圈补偿方式的应用场景消弧线圈补偿方式的选择应根据具体应用场景来确定。
以下是几种常见的应用场景:4.1 高压输电线路在高压输电线路中,电流突变可能会引发火灾、短路等危险情况。
THT-PXHK偏磁式消弧线圈自动跟踪补偿系统说明书

THT-PXHK偏磁式消弧线圈自动跟踪补偿控制系统使用说明书( 4.01版)保定天威恒通电气有限公司BAODING TIANWEI HENGTONG ELECTRIC. ,LTD引言我国的城市电网及厂矿企业的中压系统,大部分为中性点不接地(即小电流接地)系统。
这种系统在发生单相接地时,电网仍可带故障运行一定时间,这就大大降低了运行成本,提高了供电系统的可靠性。
但当发生单相接地故障时,接地电容电流很大,如果接地电弧发展为间歇性的熄灭与重燃,往往会引起弧光接地过电压,危及电气设备的绝缘,给供用电设备造成了极大的危害。
如果接地电弧不能可靠熄灭,弧光接地过电压可能会引发其他非故障相的绝缘破坏,迅速发展为相间短路,引起线路跳闸,供电中断。
防止这种危害的方法之一就是在中性点和地之间串接一个电抗器,这个电抗器也就是通常所说的消弧线圈。
它能有效的减少接地点电流,从而达到自动熄灭电弧的目的。
保定天威恒通电气有限公司研制生产的偏磁式消弧线圈自动跟踪补偿系统,可准确的实时测量电网对地电容电流,并对电网接地电容电流实施快速自动补偿,可有效地抑制弧光接地过电压危害,是广大中压配电网络优选的接地电器设备。
1、系统概述我公司生产的THT-PXHK(C)偏磁式消弧线圈自动跟踪补偿控制系统主要应用于6kV~66kV中性点不接地电网中,也广泛应用于矿山、煤炭、化工及大中城市中高压配电网络。
当电网发生单相接地时,本系统用来自动跟踪补偿电网中单相接地电容电流,对电网电容电流自动实施最佳补偿,使故障点残流小于5A,可有效抑制弧光过电压,预防由此而引发的相间短路等故障。
本系统可根据用户要求,整定为用户要求的理想状态。
2、型号说明THT——3、系统装置特点3.1偏磁式消弧线圈本体★ 偏磁式消弧线圈本体电感瞬间连续可调,调节速度快。
★偏磁式消弧线圈本体全静态结构,内部无任何机械运动部件,无触点、可靠性高,使用寿命长。
3.2偏磁式消弧线圈控制器★ 新型芯片电路设计,抗干扰性强控制器选用DSP芯片控制,采用大屏幕点阵液晶显示器,显示运行状态和参数,电磁兼容指标达到IV级,稳定可靠。
消弧线圈补偿原理及运行注意事项

消弧线圈补偿原理及运行注意事项一、消弧线圈补偿原理(1) 单相接地的一般过程间歇性电弧接地——稳定性电弧接地——金属性接地(2)弧光接地过电压及电弧电流发生单相间歇性弧光接地(弧光接地)时,由于电弧多次不断的熄灭和重燃,导致系统对地电容上的电荷多次不断的积累和重新再分配,在非故障相的电感—电容回路上引起高频振荡过电压。
对于架空线路,过电压幅值一般可达3.1~3.5倍相电压,对于电缆线路,非故障相的过电压可达4~71倍。
弧光接地时流过故障点的电弧电流为高频电流和工频电流的和,在弧光接地或电弧重燃的瞬间,已充电的相对地电容将要向故障点放电,相当于RLC 放电过程,其高频振荡电流为:t e CL U i t ωδsin -=其中:U 为相电压,δ=R/2L ,ωo =1/,≈ωo (在输电线路中) 过渡过程结束后,流过故障点的电弧电流只剩下稳态的工频电容电流。
(3)弧光接地的危害A 、 加剧了电缆等固体绝缘的积累性破坏,威胁设备安全;B 、 导致烧PT 或保险熔断;C 、 导致避雷器爆炸;D 、 燃弧点温度高达5000K 以上,会烧伤导线,甚至导致断线事故;E 、 电弧不能很快熄灭,在风吹、电动力、热气流等因素的影响下,将会发展成为相间弧光短路事故;F 、 电弧燃烧时会直接破坏电缆相间绝缘,导致相间短路事故的发生;G 、 跨步电压高,危及人身安全;H 、 高频电流对通讯产生干扰。
(4)工频接地电流与电弧间的关系A 、在接地的电容电流的允许值是小于30A 。
而20-63KV 的系统承受过电压的能力较差,所以,它的接地的电容电流的允许值是小于10A 。
B 、相同大小(小于10A )的容性残流和感性残流均可起到消弧作用,所以当消弧线圈容量不足时,可采用前补偿调谐。
C 、补偿度(IcI k L)过大,系统残流超过可能超过10A ,可维持电弧燃烧,所以补偿度不宜过大。
3、消弧线圈补偿原理消弧线圈利用流经故障点的电感电流和电容电流相位差为180°,补偿电容电流减小流经故障点电流,降低故障相接地电弧两端的恢复电压速度,来达到消弧的目的。
消弧线圈的作用及补偿方式

消弧线圈的作用及补偿方式
消弧线圈的作用是提供感性电流,补偿电网中的电容电流,从而降低电弧放电的可能性,提高电网的供电可靠性。
在中性点不接地的电网中,当发生单相接地故障时,故障点会流过电容电流。
如果电容电流过大,就会在故障点产生电弧,引起弧光过电压,从而损坏设备或导致停电事故。
为了减小电容电流,就需要在电网中接入消弧线圈。
消弧线圈是一个感性元件,它可以产生感性电流,与电容电流相互抵消,从而减小故障点的电流。
消弧线圈的补偿方式有三种:完全补偿、欠补偿和过补偿。
完全补偿是指消弧线圈产生的感性电流与电容电流完全相等,此时故障点的电流为零,电弧无法维持。
欠补偿是指消弧线圈产生的感性电流小于电容电流,此时故障点的电流为容性电流减去感性电流,仍然存在一定的电弧放电风险。
过补偿是指消弧线圈产生的感性电流大于电容电流,此时故障点的电流为感性电流减去电容电流,电流方向与电容电流相反,可以有效地抑制电弧的产生。
在实际应用中,一般采用过补偿方式,因为过补偿可以提供更大的感性电流,从而更好地抑制电弧的产生。
同时,过补偿还可以避免在系统运行方式变化时出现欠补偿的情况。
消弧线圈的工作原理及补偿方式

专题二:消弧线圈的工作原理、补偿方式、构造及运行接线一. 消弧线圈的工作原理63kV 及以下电力系统是中性点不接地系统。
电力系统各相导线存在分布电容。
在电力系统正常运行状态下,系统中性点的对地电压基本为零,而各相导线的对地电压也基本等于相电压。
各相导线在对地相电压的作用下,通过对地电容流过电容电流。
由于三相电力系统是对称的,所以各相导线对地的电容电流也是对称的。
当电力系统发生单相对地短路时,则故障相的对地电压降为零,非故障相的对地电压由相电压升至线电压,而中性点的对地电位升至相电压,如图1b )电压电流相量图所示,在这种情况下,故障相的对地电容被短路,非故障相的对地电容电流经过故障相的对地短路点流向非故障相导线中,如图1a )所示;接地点的合成电容电流)(3 3A CU I I AC C ω==,式中: BC AC I I 、——非故障相的对地电容电流;ω——电源角频率(Hz );C ——导线对地电容(F );U ——相电压(V );流过接地点的电流将产生间歇性电弧。
在间歇性电弧的作用下,电力系统将产生过电压,可能危及绝缘薄弱的环节,造成事故扩大;为了使对地间歇性电弧很快熄灭,而且不在重燃,必须使接地点流过电感电流,来补偿电容电流。
消弧线圈即用于此目的的一种电抗器。
在中性点不接地的电力变压器中,通过接地变压器引出一个人为中性点,在中性点与地之间接入一个消弧线圈;在电力系统正常运行状态下,系统中性点的对地电压基本为零,所以消弧线圈中无电流通过;当电力系统中发生单相对地短路时,系统中性点的电压升至相电压,消弧线圈中流过的电流为:(A ),式中:L L o L X U X U I //==O U ——中性点对地电压(V );——消弧线圈的电抗(Ω);L X 适当地选择消弧线圈的电抗,使得流过接地点的电感电流恰等于电容电流,这样接地点的电流将会熄灭;为了避免串联谐振现象的发生而引起的过电压,通常采用过补偿,即将流过消弧线圈的电感电流稍大于流过接地点的电容电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消弧线圈补偿原理及运行注意事项一、消弧线圈补偿原理(1) 单相接地的一般过程间歇性电弧接地——稳定性电弧接地——金属性接地(2)弧光接地过电压及电弧电流发生单相间歇性弧光接地(弧光接地)时,由于电弧多次不断的熄灭和重燃,导致系统对地电容上的电荷多次不断的积累和重新再分配,在非故障相的电感—电容回路上引起高频振荡过电压。
对于架空线路,过电压幅值一般可达3.1~3.5倍相电压,对于电缆线路,非故障相的过电压可达4~71倍。
弧光接地时流过故障点的电弧电流为高频电流和工频电流的和,在弧光接地或电弧重燃的瞬间,已充电的相对地电容将要向故障点放电,相当于RLC 放电过程,其高频振荡电流为:t e CL U i t ωδsin -=其中:U 为相电压,δ=R/2L ,ωo =1/,≈ωo (在输电线路中) 过渡过程结束后,流过故障点的电弧电流只剩下稳态的工频电容电流。
(3)弧光接地的危害A 、 加剧了电缆等固体绝缘的积累性破坏,威胁设备安全;B 、 导致烧PT 或保险熔断;C 、 导致避雷器爆炸;D 、 燃弧点温度高达5000K 以上,会烧伤导线,甚至导致断线事故;E 、 电弧不能很快熄灭,在风吹、电动力、热气流等因素的影响下,将会发展成为相间弧光短路事故;F 、 电弧燃烧时会直接破坏电缆相间绝缘,导致相间短路事故的发生;G 、 跨步电压高,危及人身安全;H 、 高频电流对通讯产生干扰。
(4)工频接地电流与电弧间的关系A 、在接地的电容电流的允许值是小于30A 。
而20-63KV 的系统承受过电压的能力较差,所以,它的接地的电容电流的允许值是小于10A 。
B 、相同大小(小于10A )的容性残流和感性残流均可起到消弧作用,所以当消弧线圈容量不足时,可采用前补偿调谐。
C 、补偿度(IcI k L)过大,系统残流超过可能超过10A ,可维持电弧燃烧,所以补偿度不宜过大。
3、消弧线圈补偿原理消弧线圈利用流经故障点的电感电流和电容电流相位差为180°,补偿电容电流减小流经故障点电流,降低故障相接地电弧两端的恢复电压速度,来达到消弧的目的。
(1)消弧线圈补偿原理消弧线圈补偿原理图如图所示,在正常情况下,三相电压是基本平衡的。
由于各种原因,系统发生单相(例如A相)接地故障,破坏了原有的对称平衡,系统将产生接地电容电流IC ,消弧圈在当时系统中性点相电压的作用下,将产生电感电流IL 它们各自的流动方向如图1所示。
从向量图中,可以看出,IL 与IC 相差180°,所以是起相互抵消的作用。
U C ’U B ’ I CC ’I CB ’单相接地向量图当系统未发生单相接地时,根据电工原理可以知道,在对称情况下,各相对地电压相等,在这些电压作用下,各相对地电容产生的电容电流ICA =ICB =ICC =ICO ,分别越前于UA 、UB 、UC 电压的90°。
当发生单相接地故障时(例如A相金属性接地)相当于在故障相上,加一个与UA 大小相同,但方向相反的相电压—Uφ,则故障相对地电压UA =0,而中性点对地电压升高到相电压,其他两相对地电压升高倍,即U′B =U′C =U φ,在U′B 、U′C 电压的作用下,所产生的电容电流Ι′CB 、Ι′CC 分别越前于U′B 、U′C 电压的90°,其相量和IC 即为流过A 相故障点的电容电流。
它的大小是正常时一相对地电容电流的3倍,方向滞后于A 相正常时电压90°。
A 、单相接地后,故障相对地电压为零,中性点电压升高为相电压,健全相相电压升高倍,而电源电动势及线电压对称,且10~35KV 负荷为对称性负荷,仍为对称系统,所以中性点不接地及经消弧线圈接地系统发生单相接地故障时,可带故障运行,保证用户的持续供电。
B 、故障点的电容电流大小是正常时一相对地电容电流的3倍,方向滞后于故障相正常时电压90°。
(2)不同接地系统单相接地线路电流情况A 、经小电阻接地系统,发生单相接地故障时,故障线路的零序电流比非故障线路零序电流大得多,而且两者零序电流相差180°,根据这一原理(零序电流原理、零序功率原理),可以采用电流元件快速区分出接地故障线路。
B 、中性点经小电阻接地系统是利用零序电流及零序功率原理进行快速选线的,当该系统中运行消弧线圈时,因消弧线圈改变了系统电容电流的分布,造成了选线正确率的下降,所以当这两个不同接地系统间进行负荷调整前,必须先停用调整线路的消弧线圈。
4、消弧线圈引起的中性点位移电压ÙCÙB ÙAO中性点位移电压原理图根据 “地”接点O 的节电电压方程:0)()()(321=++++++∙∙∙∙∙∙∙O L O C O B O A U Y U U Y U U Y U U Y可得:jdU jd U G G Lj C C C j C C C j U U bdA CL AO --=--=++-++++-=∙∙∙∙ννρωωααω31)()(3213221 3%15220ebdU dU U ≤+=ν式中:ρ——称为电网的不对称度,其值与导线的排列形式,是否有地线及是否换位等因素 有关。
通常架空线的不对称度ρ值为0.5%~1.5%,个别情况可达2.5%及以上,电缆线路的ρ值约为0.2%~0.5%。
若电网三相对地电容相等,则ρ=0,V N =0。
ν——为补偿电网的脱谐度。
k ——为补偿电网的补偿度。
d ——为补偿电网的阻尼率。
正常架空线路的阻尼率d 约为3%~5%,线路污染受潮,d 可增至1. 0%;电缆线路d 约为2%~4%,绝缘老化时,可增至10%。
bd U ——为电网的不对称电压,是中性点不接地电网(无消弧线圈) 因三相对地电容不等而引起的中性点位移电压。
中性点位移电压相量图A 因中性点不接地电网三相对地电容不等,产生不对称电压;B 接于B 相的备用电缆增加了电网不对称程度,加大了不对称电压(线路特别是电缆线路临时由运行线路充电时,应分别接入三相);C 系统运行方式或消弧线圈变化时,造成中性点电压发生变化,可能引起假接地;D 消弧线圈中的阻尼绕组可有效减小中性点位移电压;E 经小电阻接地系统中性点位移电压很小;F 通过调节消弧线圈分头,可调整系统三相电压平衡;G 因消弧线圈的补偿电流是已知的,所以利用不同补偿电流时的,中性点电压位移可计算系统总的电容电流,以及脱偕度,自动补偿消弧线圈就是利用这一原理进行自动补偿的。
5、消弧线圈的补偿方式(1)全补偿方式:补偿后电感电流等于网络电容电流,接地点残流为0,即I CΣ = I L。
从消除故障点的电弧,避免出现弧光过电压的角度来看,此种补偿方式是最理想的,但在全补偿时,ωL=1/3ωCΣ,正是电感L和三相对地电容3CΣ对50Hz交流串联谐振的条件,在正常情况下,如果线路的三相对地电容不完全相等,则电源中性点对地之间就产生电压偏移,该偏移电压在串联谐振回路中产生很大的电压降落,从而使电源中性点对地电压严重升高。
因此,在实际应用中不能采用该种补偿方式。
(2)欠补偿方式:补偿后电感电流小于网络电容电流,接地点残流为容性,即I CΣ> I L。
在该种补偿方式下,当系统的运行方式发生改变时,如某个元件或某条输电线路被切除,在系统电容电流减小的情况下,很可能出现I CΣ和 I L电流相等的情况,发生串联谐振过电压。
因此,该种补偿方式一般也很少被采用。
(3)过补偿方式:补偿后电感电流大于网络电容电流,接地点残流为感性,即ICΣ<IL 。
采用该种补偿方式,可以有效避免系统发生串联谐振过电压的问题,在实际运行中获得了广泛的应用。
考虑到系统的安全运行及中性点的对地电压,经消弧线圈接地系统,选取过补偿方式较好。
6、消弧线圈装置(自动补偿)一次设备接线如图 (无中性点)。
成套装置由Z型接地变压器(系统中有中性点时不用)、有载调节式消弧线圈、限压阻尼电阻箱、微机测量控制器组成。
(1) 曲折型接线的接地变压器A、正常运行时长期处于空载运行状态,其零序阻抗、空载损耗很小B、引出理想的人工中性点连接消弧线圈;C、正常运行时长期处于空载运行状态,其零序阻抗、空载损耗很小(2) 有载调节式消弧线圈带有载分接开关的调匝式消弧线圈,正常不接地的情况下几乎处在空载状态下进行,使用寿命较长,利用每个分接头工作时确定的电感量可计算电网电容电流和脱谐度。
(3) 限压阻尼电阻箱A、正常运行时,限制中性点位移电压B、在发生单相接地时,为避免阻尼电阻降低消弧线圈的补偿能力,将电阻短接,同时也避免了电阻的过热。
短接阻尼电阻采用中性点电压和电流两套独立启动短接回路。
一套是根据中性点电压值来控制交流接触器KM1,若该值超过设定值,则电压继电器动作,控制交流接触器闭合接点短接阻尼电阻。
另一套是由直流接触器KM2、中间继电器、过流继电器组成,当系统接地流过消弧线圈的电流超过设定值时,电流继电器动作,通过中间继电器使直流接触器闭合短接阻尼电阻。
双套措施互补,保证了电阻可靠短接。
若配有接地选线装置,阻尼电阻在接地0.5 s后被短接。
(4) 微机控制器采用在线实时测量法,可快速、准确、直观、完整地显示电网的有关参数,根据设定值自动或手动调整消弧线圈分头,使其随时运行在最佳工作状态。
二、消弧线圈运行中的注意事项1、电压互感器开口三角电压电磁式电压互感器接线图中性点位移电压相量图目前国内均采用电磁式电压互感器开口三角绕组构成的绝缘监测装置来监视系统的绝缘状况,如图,电压互感器通常采用两个二次绕组,其中主二次绕组额定相电压为100/ 31/2V ,辅助(开口三角)二次绕组额定相电压为100/3V 。
电压互感器变比:3100/3100/3U开口三角电压:o U o U c U o U U o U U U b a x a ∙∙∙∙∙∙∙∙-=-+-+-=3)()()(11开口三角电压反映3倍中性点电压(零序电压)。
通常,绝缘监测装置的电压整定值为15~30V (即中性点位移电压为额定相电压的15%~30%)。
若开口三角电压大于该整定值,则使绝缘监测装置发出接地信号。
(规程规定:无接地时中性点位移电压,长期运行不超过额定相电压的15%)2、故障判断由于绝缘监测装置是根据开口三角电压反应3倍中性点电压(零序电压)的原理工作的,而实际电网中除单相接地外,还有多种原因,如铁磁谐振、PT 断线、线路断线等都会使开口三角绕组两端出现零序电压,并可能导致绝缘监测装置动作。
由于此时系统并没有真正接地,而装置却发出了接地信号,这种接地称为“假接地”,只有准确、快速的判断故障,才可能及时、准确的处理故障。
B、单相接地时,整个小电流接地系统都将发生相同的电压变化;C、线路断线时,其两侧电压有较大区别,线路电流也有明显变化;D、铁磁谐振时,其电压变化特征特别突出。