第七单元图形的变化第29课时视图与投影(含近9年中考真题)试题

合集下载

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章投影与视图含答案一、单选题(共15题,共计45分)1、下列几何体中,俯视图为矩形的是()A. B. C. D.2、如图由七个相同的小正方体摆成的几何体,则这个几何体的主视图是()A. B. C. D.3、如图是一个几何体的三视图,则此几何体是()A.圆柱B.棱柱C.圆锥D.棱台4、如图是某个几个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱5、如图,是由大小一样的小立方块摆成的立体图形的三视图,则摆成这个立体图形所需的小立方块的个数为()A.3B.4C.5D.66、如图是某几何体的三视图及相关数据,则判断正确的是()A.a>cB.b>cC.4a 2+b 2=c 2D.a 2+b 2=c 27、某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥8、如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.云D.南9、图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示,若骰子初始位置为图②所示的状态,将骰子向右翻滚,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻折后,骰子朝下一面的点数是3点;连续完成2019次翻折后,骰子朝下一面的点数是()A.2B.3C.4D.510、如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的从三个方向看得图形,下列说法正确的是()A.从正面看到的图相同B.从左面看到的图相同C.从上面看到的图相同D.从三个方向看到的图都不相同11、如图是由5个相同的小立方体搭成的一个几何体,从左面看这个几何体,看到的形状图是()A. B. C. D.12、若一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.四棱柱C.五棱柱D.长方体13、如图所示的几何体的左视图是()A. B. C. D.14、给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个15、用6个大小相同的正方体搭成如图所示的几何体,下列说法正确的是()A.主视图的面积最大B.左视图的面积最大C.俯视图的面积最大 D.主视图、俯视图的面积相等二、填空题(共10题,共计30分)16、物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是________ 现象.举例________ 、________ .17、一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=________.18、写出一个主视图、左视图、俯视图都相同的几何体:________.19、某几何体的三视图如图所示,则组成该几何体的小正方体的个数是________.20、当太阳斜照或直照时,一个放在水平地面上的长方形状的箱子在地面上留下的影子是________.21、已知圆锥如图所示放置,.其主视图面积为12,俯视图的周长为6π,则该圆锥的侧面积为________.22、如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是________面(填字母)。

2019年绵阳南山双语学校九年级数学中考复习课件第七章图形及其变化(投影与视图)(54张PPT)

2019年绵阳南山双语学校九年级数学中考复习课件第七章图形及其变化(投影与视图)(54张PPT)
2019年绵阳南山双语学校九年级数学中考复习课件
第七章
图形及其变化
7.1 投影与视图
考 点 精 析
考点一 中心投影与平行投影
1.投影的相关概念
(1)投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子 叫做物体的投影;照射光线叫做投影线,投影所在的平面叫做投影面. (2)中心投影:手电筒、路灯的光线可以看成是从①______ 一点 发出的,像这样的光 线所形成的投影称为中心投影.
21
第 13 页
考点三
立体图形的展开与折叠
1.正方体的表面展开图 第一类(“141”型):中间四个面,上、下各一面.
第 14 页
第二类(“231”型):中间三个面,一、二隔河看.
第三类(“222”型):中间两个面,楼梯天天见.
第四类(“33”型):中间没有面,三、三连一线.
第 15 页
易错提示:(1)正方体的表面展开图中不能出现“ 出现“


(1)对应关系: 长对正:主视图与俯视图等长; 高平齐:主视图与左视图等高; 三视图 宽相等:左视图与俯视图等宽. 的画法 (2)位置要求: 要求 一般地,俯视图要画在主视图的下方,左视图要画在主视图的右边. (3)虚实要求: 虚线 画视图时,看得见的轮廓线通常画成实线,看不见的轮廓线通常画成⑫_____
” 和“
”图形;若
”图形,另两面必须在两侧,可借助此方法来排除错误选项.
(2)正方体的表面展开图,相对的面之间一定相隔一个正方形.
第 16 页
2.常见立体图形的展开图
常见几何体 展开图特点 六个大小相等的正方形 示意图
三组两两全等的矩形
两个圆和一个矩形
第 17 页

2021年江苏省中考数学真题分类汇编:图形的变化(附答案解析)

2021年江苏省中考数学真题分类汇编:图形的变化(附答案解析)

2021年江苏省中考数学真题分类汇编:图形的变化一.选择题(共10小题)1.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.2.(2021•常州)观察如图所示脸谱图案,下列说法正确的是()A.它是轴对称图形,不是中心对称图形B.它是中心对称图形,不是轴对称图形C.它既是轴对称图形,也是中心对称图形D.它既不是轴对称图形,也不是中心对称图形3.(2021•无锡)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.5.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°6.(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.7.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.8.(2021•南通)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥9.(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.410.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.二.填空题(共10小题)11.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=.12.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比.13.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.14.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d =.15.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为海里(结果保留根号).16.(2021•常州)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在△ABC中,分别取AB、AC的中点D、E,连接DE,过点A 作AF⊥DE,垂足为F,将△ABC分割后拼接成矩形BCHG.若DE=3,AF=2,则△ABC 的面积是.17.(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=时,△AEC′是以AE为腰的等腰三角形.18.(2021•宿迁)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD =2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.19.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.20.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.三.解答题(共10小题)21.(2021•盐城)如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A,求的值.22.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)23.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)24.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)25.(2021•徐州)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.(1)求AE的长(结果取整数);(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?参考数据:≈1.41,≈1.73,≈2.45.锐角A13°28°32°三角函数sin A0.220.470.53cos A0.970.880.85tan A0.230.530.6226.(2021•无锡)如图,四边形ABCD内接于⊙O,AC是⊙O的直径,AC与BD交于点E,PB切⊙O于点B.(1)求证:∠PBA=∠OBC;(2)若∠PBA=20°,∠ACD=40°,求证:△OAB∽△CDE.27.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).28.(2021•连云港)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD平行且相距1.2m,即DH=1.2m.(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)29.(2021•苏州)如图,在矩形ABCD中,线段EF、GH分别平行于AD、AB,它们相交于点P,点P1、P2分别在线段PF、PH上,PP1=PG,PP2=PE,连接P1H、P2F,P1H 与P2F相交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b.(1)四边形EBHP的面积四边形GPFD的面积(填“>”、“=”或“<”)(2)求证:△P1FQ∽△P2HQ;(3)设四边形PP1QP2的面积为S1,四边形CFQH的面积为S2,求的值.30.(2021•常州)在平面直角坐标系xOy中,对于A、A′两点,若在y轴上存在点T,使得∠ATA′=90°,且TA=TA′,则称A、A′两点互相关联,把其中一个点叫做另一个点的关联点.已知点M(﹣2,0)、N(﹣1,0),点Q(m,n)在一次函数y=﹣2x+1的图象上.(1)①如图,在点B(2,0)、C(0,﹣1)、D(﹣2,﹣2)中,点M的关联点是(填“B”、“C”或“D”);②若在线段MN上存在点P(1,1)的关联点P′,则点P′的坐标是;(2)若在线段MN上存在点Q的关联点Q′,求实数m的取值范围;(3)分别以点E(4,2)、Q为圆心,1为半径作⊙E、⊙Q.若对⊙E上的任意一点G,在⊙Q上总存在点G′,使得G、G′两点互相关联,请直接写出点Q的坐标.2021年江苏省中考数学真题分类汇编:图形的变化参考答案与试题解析一.选择题(共10小题)1.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,是一列两个矩形.故选:C.【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.2.(2021•常州)观察如图所示脸谱图案,下列说法正确的是()A.它是轴对称图形,不是中心对称图形B.它是中心对称图形,不是轴对称图形C.它既是轴对称图形,也是中心对称图形D.它既不是轴对称图形,也不是中心对称图形【考点】轴对称图形;中心对称图形.【专题】平移、旋转与对称;几何直观.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.据此判断即可.【解答】解:该图是轴对称图形,不是中心对称图形.故选:A.【点评】此题主要考查了中心对称图形和轴对称图形,熟记相关定义是解答本题的关键.3.(2021•无锡)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】轴对称图形;中心对称图形.【专题】平移、旋转与对称;几何直观.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【解答】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2021•盐城)如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.【考点】展开图折叠成几何体;简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据主视图的意义画出相应的图形,再进行判断即可.【解答】解:该组合体的主视图如下:故选:A.【点评】本题考查简单组合体的主视图,理解主视图的意义是正确判断的前提.5.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°【考点】平行线的性质;矩形的性质;翻折变换(折叠问题).【专题】平移、旋转与对称;推理能力.【分析】在矩形ABCD中,AD∥BC,则∠DEF=∠EFG=64°,∠EGB=∠DEG,又由折叠可知,∠GEF=∠DEF,可求出∠DEG的度数,进而得到∠EGB的度数.【解答】解:如图,在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=64°,∠EGB=∠DEG,由折叠可知∠GEF=∠DEF=64°,∴∠DEG=128°,∴∠EGB=∠DEG=128°,故选:A.【点评】本题主要考查平行线的性质,折叠的性质等,掌握折叠前后角度之间的关系是解题的基础.6.(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【考点】正方形的性质;中心投影.【专题】投影与视图;空间观念;几何直观.【分析】根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,则在地面上的投影关于对角线对称,因为灯在纸板上方,所以上方投影比下方投影要长.【解答】解:根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,∴在地面上的投影关于对角线对称,∵灯在纸板上方,∴上方投影比下方投影要长,故选:D.【点评】本题主要考查中心投影的知识,弄清题目中光源和纸板的相对位置是解题的关键.7.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt △A′O′B,则下列四个图形中正确的是()A.B.C.D.【考点】旋转的性质.【专题】平移、旋转与对称;几何直观.【分析】本题主要考查旋转的性质,旋转过程中图形形状和大小都不发生变化,根据旋转性质判断即可.【解答】解:A选项是原图形的对称图形,故A不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,故B正确;C选项旋转后的对应点错误,即形状发生了改变,故C不正确;D选项是按逆时针方向旋转90°,故D不正确;故选:B.【点评】本题主要考查旋转的性质,熟练掌握并应用旋转的性质是解题的关键,重点注意旋转的方向和角度.8.(2021•南通)如图,根据三视图,这个立体图形的名称是()A.三棱柱B.圆柱C.三棱锥D.圆锥【考点】由三视图判断几何体.【专题】投影与视图;空间观念.【分析】从正视图以及左视图都为一个长方形,俯视图三角形来看,可以确定这个几何体为一个三棱柱.【解答】解:根据三视图可以得出立体图形是三棱柱,故选:A.【点评】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析得出是解题关键.9.(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.4【考点】矩形的性质;翻折变换(折叠问题).【专题】矩形菱形正方形;平移、旋转与对称;推理能力.【分析】由折叠的性质可得BM=MD,BN=DN,∠DMN=∠BMN,可证四边形BMDN 是菱形,在Rt△ADM中,利用勾股定理可求BM的长,由菱形的面积公式可求解.【解答】解:如图,连接BD,BN,∵折叠矩形纸片ABCD,使点B落在点D处,∴BM=MD,BN=DN,∠DMN=∠BMN,∵AB∥CD,∴∠BMN=∠DNM,∴∠DMN=∠DNM,∴DM=DN,∴DN=DM=BM=BN,∴四边形BMDN是菱形,∵AD2+AM2=DM2,∴16+AM2=(8﹣AM)2,∴AM=3,∴DM=BM=5,∵AB=8,AD=4,∴BD===4,∵S菱形BMDN=×BD×MN=BM×AD,∴4×MN=2×5×4,∴MN=2,故选:B.【点评】本题考查了翻折变换,矩形的性质,菱形判定和性质,勾股定理,求出BM的长是解题的关键.10.(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.【考点】相似三角形的判定与性质;解直角三角形.【专题】三角形;几何直观.【分析】过点C作BD的垂线,交BD的延长线于点E,可得△ABD∽△CED,可得==,由AD=AC,AB=2,可求出CE的长,又∠ABC=150°,∠ABD=90°,则∠CBD=60°,解直角△BCE,可分别求出BE和BD的长,进而可求出△BCD的面积.【解答】解:如图,过点C作BD的垂线,交BD的延长线于点E,则∠E=90°,∵BD⊥AB,CE⊥BD,∴AB∥CE,∠ABD=90°,∴△ABD∽△CED,∴==,∵AD=AC,∴=,∴===,则CE=,∵∠ABC=150°,∠ABD=90°,∴∠CBE=60°,∴BE=CE=,∴BD=BE=,∴S△BCD=•BD•CE=×=.故选:A.【点评】本题主要考查三角形的面积,相似三角形的性质与判定,解直角三角形等,看到面积或特殊角作垂线是常见的解题思路,也是解题关键.二.填空题(共10小题)11.(2021•常州)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA=.【考点】正方形的性质;相似三角形的判定与性质;解直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】连接AF,过点F作FG⊥AB于G,由四边形CDFE是边长为1的正方形可得AD=2,BE=3,根据勾股定理求出AB=5,AF=,BF=,设BG=x,利用勾股定理求出x=3,可得FG=1,即可得sin∠FBA的值.【解答】解:连接AF,过点F作FG⊥AB于G,∵四边形CDFE是边长为1的正方形,∴CD=CE=DF=EF=1,∠C=∠ADF=90°,∵AC=3,BC=4,∴AD=2,BE=3,∴AB==5,AF==,BF==,设BG=x,∵FG2=AF2﹣AG2=BF2﹣BG2,∴5﹣(5﹣x)2=10﹣x2,解得:x=3,∴FG==1,∴sin∠FBA==.故答案为:.【点评】此题综合考查了正方形、锐角三角函数的定义及勾股定理.根据勾股定理求出BG的长是解题的关键.12.(2021•徐州)如图,在△ABC中,点D、E分别在边BA、BC上,且==,△DBE与四边形ADEC的面积的比.【考点】相似三角形的判定与性质.【专题】三角形;图形的相似;推理能力;应用意识.【分析】先由==,设AD=3m,DB=2m,CE=3k,EB=2k,证明=,又∠B=∠B,可证明△DBE~△ABC.进而可得相似比为,面积比==,从而可得S△DBE:S四边形ADEC=4:21.【解答】解:∵==,则设AD=3m,DB=2m,CE=3k,EB=2k,∴=,=,∴=,又∠B=∠B,∴△DBE~△ABC.相似比为,面积比==,设S△DBE=4a,则S△ABC=25a,∴S四边形ADEC=25a﹣4a=21a,∴S△DBE:S四边形ADEC=.故答案为:.【点评】本题考查了相似三角形的判定与性质,证明△DBE~△ABC得出相似比是解题的关键.13.(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.【考点】勾股定理;翻折变换(折叠问题).【专题】平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】由折叠的性质可得AB=FG=2,AE=EF=1,∠BAC=∠EFG=90°,在Rt△EFG中,由勾股定理可求EG=3,由锐角三角函数可求EH,HF的长,在Rt△AHF 中,由勾股定理可求AF.【解答】解:如图,过点F作FH⊥AC于H,∵将四边形ABDE沿直线DE翻折,得到四边形FGDE,∴AB=FG=2,AE=EF=1,∠BAC=∠EFG=90°,∴EG===3,∵sin∠FEG=,∴,∴HF=,∵cos∠FEG=,∴,∴EH=,∴AH=AE+EH=,∴AF===,故答案为:.【点评】本题考查了翻折变换,考查了折叠的性质,勾股定理,锐角三角函数,构造直角三角形是解题的关键.14.(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d=.【考点】线段垂直平分线的性质;旋转的性质.【专题】综合题;推理填空题;平移、旋转与对称;应用意识.【分析】设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,由OA=8,AB=5,BC是OA的垂直平分线,可得OB=5,OC=AC =4,BC=3,cos∠BOC==,sin∠BOC==,证明∠BOC=∠B'C'D=∠C'A'E,从而在Rt△B'C'D中求出C'D=,在Rt△A'C'E中,求出C'E=,得DE=C'D+C'E =,即可得到A'到ON的距离是.【解答】解:设OA的垂直平分线与OA交于C,将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',过A'作A'H⊥ON于H,过C'作C'D⊥ON于D,过A'作A'E⊥DC'于E,如图:∵OA=8,AB=5,BC是OA的垂直平分线,∴OB=5,OC=AC=4,BC=3,cos∠BOC==,sin∠BOC==,∵线段AB绕点O按逆时针方向旋转得到对应线段A′B′,C随之旋转到C',∴B'C'=BC=3,A'C'=AC=4,∠BOC=∠B'OC',∵∠B'C'D=∠B'C'O﹣∠DC'O=90°﹣∠DC'O=∠B'OC',∴cos∠B'C'D=,Rt△B'C'D中,=,即=,∴C'D=,∵AE∥ON,∴∠B'OC'=∠C'A'E,∴sin∠C'AE=sin∠B'OC'=sin∠BOC=,Rt△A'C'E中,=,即=,∴C'E=,∴DE=C'D+C'E=,而A'H⊥ON,C'D⊥ON,A'E⊥DC',∴四边形A'EDH是矩形,∴A'H=DE,即A'到ON的距离是.故答案为:.方法二:过A作AC⊥OB于C,如图:由旋转可知:点A′到射线ON的距离d=AC,∵OB•AC=OA•BD,∴AC==.【点评】本题考查线段的垂直平分线及旋转变换,涉及三角函数及矩形等知识,解题的关键是在Rt△B'C'D中和Rt△A'C'E中,求出求出C'D=,C'E=.15.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为25海里(结果保留根号).【考点】解直角三角形的应用﹣方向角问题.【专题】解直角三角形及其应用;运算能力;推理能力.【分析】过点P作PC⊥AB,在Rt△APC中由锐角三角函数定义求出PC的长,再在Rt △BPC中由锐角三角函数定义求出PB的长即可.【解答】解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,P A=50海里,在Rt△APC中,cos∠APC=,∴PC=P A•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.【点评】本题考查了解直角三角形的应用﹣方向角问题以及锐角三角函数定义;熟练掌握锐角三角函数定义,求出PC的长是解题的关键.16.(2021•常州)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在△ABC中,分别取AB、AC的中点D、E,连接DE,过点A 作AF⊥DE,垂足为F,将△ABC分割后拼接成矩形BCHG.若DE=3,AF=2,则△ABC 的面积是12.【考点】数学常识;三角形的面积;三角形中位线定理;矩形的判定;图形的剪拼.【专题】作图题;应用意识.【分析】根据图形的拼剪,求出BC以及BC边上的高即可解决问题.【解答】解:由题意,BG=CH=AF=2,DG=DF,EF=EH,∴DG+EH=DE=3,∴BC=GH=3+3=6,∴△ABC的边BC上的高为4,∴S△ABC=×6×4=12,故答案为:12.【点评】本题考查图形的拼剪,矩形的性质,全等三角形的判定和性质,三角形的面积等知识,解题的关键是读懂图象信息,属于中考常考题型.17.(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=或时,△AEC′是以AE为腰的等腰三角形.【考点】等腰三角形的判定;勾股定理;矩形的性质;翻折变换(折叠问题).【专题】分类讨论;推理能力.【分析】设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x.当AE=EC′时,由勾股定理得:32+x2=(4﹣x)2;当AE=AC’时,作AH⊥EC’,由∠AEF=90°,EF平方∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即4﹣x=2x,解方程即可.【解答】解:设BE=x,则EC=4﹣x,由翻折得:EC′=EC=4﹣x,当AE=EC′时,AE=4﹣x,∵矩形ABCD,∴∠B=90°,由勾股定理得:32+x2=(4﹣x)2,解得:,当AE=AC′时,如图,作AH⊥EC′∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△ECF,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′时,作AH⊥EC′,∴EC′=2EH,即4﹣x=2x,解得,综上所述:BE=或.故答案为:或.【点评】本题考查了矩形的性质、等腰三角形的性质、勾股定理等知识点,涉及到方程思想和分类讨论思想.当AE=AC′时如何列方程,有一定难度.18.(2021•宿迁)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD =2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.【考点】平行线分线段成比例.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】连接DE.首先证明DE∥AB,推出S△ABE=S△ABD,推出S△AEF=S△BDF,可得S=S△ABD,求出△ABD面积的最大值即可解决问题.△AEF【解答】解:连接DE.∵CD=2BD,CE=2AE,∴==2,∴DE∥AB,∴△CDE∽△CBA,∴==,∴==,∵DE∥AB,∴S△ABE=S△ABD,∴S△AEF=S△BDF,∴S△AEF=S△ABD,∵BD=BC=,∴当AB⊥BD时,△ABD的面积最大,最大值=××4=,∴△AEF的面积的最大值=×=,故答案为:【点评】本题考查相似三角形的判定和性质,平行线的判定和性质等知识,解题的关键是证明DE∥AB,推出S△AEF=S△ABD,属于中考常考题型.19.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.【考点】平行线分线段成比例.【专题】图形的相似;推理能力.【分析】过点E作EG∥DC交AD于G,可得△AGE∽△ADC,所以,得到DC=2GE;再根据△GFE∽△DFB,得==,所以,即=.【解答】解:如图,∵BE是△ABC的中线,∴点E是AC的中点,∴=,过点E作EG∥DC交AD于G,∴∠AGE=∠ADC,∠AEG=∠C,∴△AGE∽△ADC,∴,∴DC=2GE,∵BF=3FE,∴,∵GE∥BD,∴∠GEF=∠FBD,∠EGF=∠BDF,∴△GFE∽△DFB,∴==,∴,∴=,故答案为:.【点评】本题考查了相似三角形的判定与性质,过点E作EG∥DC,构造相似三角形是解题的关键.20.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.【考点】平行四边形的性质;旋转的性质;解直角三角形的应用.【专题】三角形;解直角三角形及其应用;运算能力.【分析】过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.BM=B′M=,由勾股定理可得,AM==,由等面积法可得,BN=,由勾股定理可得,AN===,由题可得,△AMB∽△EGC,△ANB∽△B′GE,则==,==,设CG=a,则EG=a,B′G=3+a,则=,解得a=.最后由勾股定理可得,EC===.【解答】解:法一、如图,过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.由旋转可知,AB=AB′=3,∠ABB′=∠AB′C′,∴∠ABB′=∠AB′B=∠AB′C′,∵BB′=1,AM⊥BB′,∴BM=B′M=,∴AM==,∵S△ABB′==,∴××1=•BN×3,则BN=,∴AN===,∵AB∥DC,∴∠ECG=∠ABC,∵∠AMB=∠EGC=90°,∴△AMB∽△EGC,∴===,设CG=a,则EG=a,∵∠ABB′+∠AB′B+∠BAB′=180°,∠AB′B+∠AB′C′+∠C′B′C=180°,又∵∠ABB′=∠AB′B=∠AB′C′,∴∠BAB′=∠C′B′C,∵∠ANB=∠EGC=90°,∴△ANB∽△B′GE,∴===,∵BC=4,BB′=1,∴B′C=3,B′G=3+a,∴=,解得a=.∴CG=,EG=,∴EC===.故答案为:.法二、如图,连接DD',由旋转可知,∠BAB′=∠DAD′,AB′=AB=3,AD′=AD=4,∴△BAB′∽△DAD′,∴AB:BB′=AD:DD′=3:1,∠AD′D=∠AB′B=∠B,∴DD′=,又∵∠D′=∠AB′C′=∠B,∠B=∠AB′B,∴∠D′=∠B,即点D′,D,C′在同一条直线上,∴DC′=,又∠C′=∠ECB′,∠DEC′=∠B′EC,∴△CEB’∽△C'ED,∴B′E:DE=CE:C′E=B′C:DC′,即B′E:DE=CE:C′E=3:,设CE=x,B'E=y,∴x:(4﹣y)=y:(3﹣x)=3:,∴x=.故答案为:.【点评】本题主要考考查平行四边形的性质,等腰三角形三线合一,相似三角形的性质与判定,解直角三角形的应用等,构造正确的辅助线是解题关键.三.解答题(共10小题)21.(2021•盐城)如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A,求的值.【考点】圆周角定理;点与圆的位置关系;切线的判定与性质;相似三角形的判定与性质.【专题】与圆有关的位置关系;图形的相似;推理能力.【分析】(1)由PC2=P A•PB得,可证得△P AC∽△PCB,根据相似三角形的性质得∠PCA=∠B,根据圆周角定理得∠ACB=90°,则∠CAB+∠B=90°,由OA=OC 得∠CAB=∠OCA,等量代换可得∠PCA+∠OCA=90°,即OC⊥PC,即可得出结论;(2)由AB=3P A可得PB=4P A,OA=OC=1.5P A,根据勾股定理求出PC=2P A,根据相似三角形的性质即可得出的值.【解答】(1)证明:连接OC,∵PC2=P A•PB,∴,∵∠P=∠P,∴△P AC∽△PCB,∴∠PCA=∠B,∵∠ACB=90°,∴∠CAB+∠B=90°,∵OA=OC,∴∠CAB=∠OCA,∴∠PCA+∠OCA=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:∵AB=3P A,∴PB=4P A,OA=OC=1.5P A,PO=2.5P A,∵OC⊥PC,∴PC==2P A,∵△P AC∽△PCB,∴===.【点评】本题考查三角形相似的判定与性质,考查切线的判定,圆周角定理,解题的关键是熟练掌握圆周角定理及相似三角形的判定等知识点的综合运用.22.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)【考点】解直角三角形的应用.【专题】解直角三角形及其应用;应用意识.【分析】过B作BE⊥CD于E,过A作AF⊥BE于F,由已知△BCE是等腰直角三角形,设CE=x,则BE=x,DE=(80﹣x)m,在Rt△BDE中,可得=1.5,解得BE=CE=48m,在Rt△ACD中,解得AC=28m,根据四边形ACEF是矩形,可得AF=CE=48m,EF=AC=28m,BF=20m,即可在Rt△ABF中,求出AB==52(m)【解答】解:过B作BE⊥CD于E,过A作AF⊥BE于F,如图:∵∠BCD=45°,∴△BCE是等腰直角三角形,设CE=x,则BE=x,∵CD=80m,∴DE=(80﹣x)m,Rt△BDE中,∠BDC=56°19',∴tan56°19'=,即=1.5,解得x=48(m),∴BE=CE=48m,Rt△ACD中,∠ADC=19°17′,CD=80m,∴tan19°17'=,即=0.35,解得AC=28m,∵∠ACD=90°,BE⊥CD于E,AF⊥BE,∴四边形ACEF是矩形,∴AF=CE=48m,EF=AC=28m,∴BF=BE﹣EF=20m,Rt△ABF中,AB===52(m),答:A,B两点之间的距离是52m.【点评】本题考查解直角三角形的应用,涉及勾股定理、矩形判定及性质等知识,解题的关键是适当添加辅助线,构造直角三角形.23.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;运算能力;模型思想.【分析】通过作垂线,构造直角三角形,利用直角三角形的边角关系分别求出DE,FG 即可.【解答】解:如图,过点B、C分别作CE⊥DG,BF⊥DG垂足为E、F,延长CB交AG 于点H,由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,在Rt△ABH中,∠α=30°,AB=50m,∴BH=AB=25(m)=FG,在Rt△DCE中,∠DCE=19°30′,CD=180m,∴DE=sin∠DCE•CD≈0.33×180=59.4(m),∴DG=DE+EF+FG=59.4+30+25=114.4≈114(m),答:山顶D的高度约为114m.【点评】本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键..24.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)。

教与学新教案九年级数学下册29.1正投影(第2课时)素材(新版)新人教版

教与学新教案九年级数学下册29.1正投影(第2课时)素材(新版)新人教版

投影与视图29.1 投影第2课时正投影素材一新课导入设计情景导入置疑导入归纳导入复习导入类比导入悬念激趣复习导入<1>什么叫投影?投影有哪几种?<2>图29-1-32表示一块三角尺在光线照射下形成的投影,其中哪个是平行投影,哪个是中心投影?图<2><3>的投影线与投影面的位置关系有什么区别?图29-1-32结论:图<1>中的投影线集中于一点,属于中心投影;图<2><3>中的投影线互相平行,属于平行投影;图<2>中,投影线斜着照射到投影面上;图<3>中投影线垂直照射到投影面上,即投影线垂直于投影面.[说明与建议] 说明:通过对投影的概念和类型的回顾,加强新旧知识之间的联系.建议:充分观察三个图形,发现其中的不同点,给出正投影的概念.条件允许的学校,可以让学生自己做试验探究.素材二考情考向分析[命题角度] 常见几何体的正投影与判断1.线段的正投影.位置线段AB平行于投影面线段AB倾斜于投影面线段AB垂直于投影面投影特点正投影是线段A1B1,线段AB=A1B1正投影是线段A2B2,线段AB>A2B2正投影是一个点A3<B3>2.正方形的正投影.位置纸板ABCD平行于投影面纸板ABCD倾斜于投影面纸板ABCD垂直于投影面投影特点正投影是正方形A1B1C1D1,它们的性质、大小一样正投影是四边形A2B2C2D2,它们的性质、大小不一样正投影是线段A3D3<或B3C3>例一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是<B>素材三教材习题答案P88 练习把下列物体与它们的投影用线连接起来:解:如下图:P92 练习如图,投影线的方向如箭头所示,画出圆柱体的正投影.解:P92 习题29.11.小华在不同时间于天安门前拍了几幅照片,下面哪幅照片是在下午拍摄的?<天安门是坐北朝南的建筑>解:第3幅照片是在下午拍摄的.2.请用线把图中各物体与它们的投影连接起来.解:3.如图,右边的正五边形是光线由上到下照射一个正五棱柱<正棱柱的上、下底面都是正多边形,并且侧棱垂直于底面>时的正投影,你能指出这时正五棱柱的各个面的正投影分别是什么吗?解:上、下底面的正投影是同一个正五边形,5个侧面的正投影分别是正五边形的5条边.4.一个圆锥的轴截面平行于投影面,圆锥的正投影是边长为3的等边三角形,求圆锥的体积和表面积.解:设该圆锥的正投影<轴截面的正投影>为正三角形ABC.过A作AD⊥BC于D,则AD=3×sin60°=错误!错误!,BD=错误!,S侧=错误!×π×3×3=错误!π.∴S表=错误!π+错误!π=错误!π,V=错误!×错误!π×错误!错误!=错误!错误!π.5.画出如图摆放的物体<正六棱柱>的正投影:<1>投影线由物体前方照射到后方;<2>投影线由物体左方照射到右方;<3>投影线由物体上方照射到下方.解:素材四图书增值练习[当堂检测]1. 如图,从左面看圆柱,则图中圆柱的投影是〔〕A.圆B.矩形C.梯形D.圆柱2. 太阳光垂直照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是〔〕A.与窗户全等的矩形 B.平行四边形C.比窗户略小的矩形 D.比窗户略大的矩形3. 〔2013达州〕下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是〔〕A.③①④②B.③②①④C.③④①②D.①②①③4. 如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是.5.如图是木杆和旗杆竖立在操场上,其中木杆在阳光下的影子已画出.〔1〕用线段表示这一时刻旗杆在阳光下的影子;〔2〕比较旗杆与木杆影子的长短;〔3〕图中是否出现了相似三角形?〔4〕上面的投影是正投影吗?为什么?参考答案1.B2.A3.C4.15π45.解:〔1〕线段MN即是旗杆在阳光下的影子.〔2〕根据图形可观察出旗杆的影子长.〔3〕有相似三角形,分别由旗杆与其影子和木杆与其影子以与太阳光线构成.〔4〕不是正投影,只有投影线和投影面垂直的投影才是正投影.[能力培优]专题一太阳光下的投影1.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是〔〕A.①②③④B.④①③②C.②③①④D.④③②①2.兴趣小组的同学要测量某棵树的高度.在阳光下,一名同学测得一根长为1米的直立竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.3米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.8米,则树高为多少米?3.某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C的水平距离为8.8m.在阳光下某一时刻测得1米的标杆影长为0.8m,树影落在斜坡上的部分CD=3.2m.已知斜坡CD的坡比i=3求树高AB.〔结果保留整数,参考数据:3 1.7〕专题二灯光下的投影如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.5.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.〔1〕请你在图中画出路灯灯泡所在的位置〔用点P表示〕;〔2〕画出小华此时在路灯下的影子〔用线段EF表示〕.6.如图所示,点P表示广场上的一盏照明灯.〔1〕请你在图中画出小敏在照明灯P照射下的影子〔用线段表示〕;〔2〕若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P 的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离〔结果精确到0.1米〕.〔参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574〕专题三正投影7.如图,投影面上垂直立一线段AB,线段长为2 cm.〔1〕当投影线垂直照射投影面时,线段在地面上的投影是什么图形?请在左图中画出来.〔2〕当投影线与投影面的倾斜角为60°时,线段在投影面上的投影是什么图形?并画出投影示意图.〔3〕上面〔1〕、〔2〕问题中的投影都是正投影吗?为什么?8.在正投影中,正方形倾斜于投影面放置时,它的投影是什么图形?若正方形的面积为10,它的正投影的面积是5,你知道正方形与投影面的倾斜角是多少度吗?专题四规律探究题9.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6m的小明〔AB〕的影子BC的长是3m,而小颖〔EH〕刚好在路灯灯泡的正下方H点,并测得HB=6m.〔1〕请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ;〔2〕求路灯灯泡的垂直高度GH ;〔3〕如果小明沿线段BH 向小颖〔点H 〕走去,当小明走到BH 的中点B 1处时,求其影子B 1C 1的长;当小明继续走剩下路程的13到B 2处时,求其影子B 2C 2的长;当小明继续走剩下路程的14到B 3处时,……,按此规律继续走下去,当小明走剩下路程的11 n 到B n 处时,其影子B n C n 的长为m 〔用含n 的代数式表示〕.[知识要点]1.投影:一个物体放在阳光下或灯光前,就会在地面上或墙壁上留下它的影子,这个影子称为物体的投影.投影要有照射光线和形成影子的地方,这就是投影线和投影面.2.平行投影:由平行光线形成的投影是平行投影.3.中心投影:由同一个点〔点光源〕发出的光线所形成的投影为中心投影.4.正投影的概念:在平行投影中,如果投射线垂直于投影面,那么这种投影称为正投影.几何体在一个平面上的正投影叫做这个几何体的视图.5.<1>当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段AB 与它的投影的大小关 系为AB =A 1B 1;<2>当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段AB 与它的投影的大小关系为AB >A 2B 2;<3>当线段AB 垂直于投影面P 时,它的正投影是一个点.6.<1>当纸板Q 平行于投影面P 时,Q 的正投影与Q 的形状、大小一样;<2>当纸板Q 倾斜于投影面P 时,Q 的正投影与Q 的形状、大小发生变化;<3>当纸板Q 垂直于投影面P 时,Q 的正投影成为一条线段.故当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同. [温馨提示]平行投影与中心投影的区别与联系.2.在平行投影下,一个图形上的点被投影后,对应点的连线互相平行.同一时刻,平行投影的影子方向和大小不随物体位置的变化而变化.3.中心投影的投射光线相交于一点,同一时刻,中心投影的影子方向随物体位置的变化而发生变化.4.正投影是平行投影的一种特例,正投影的特征是每条投影线都垂直于投影面.[方法技巧]1.因为一天之中,太阳东升西落,所以早晨物体的影子朝西,傍晚物体的影子朝东,但因为地处北半球,即使是夏天的正午,也由于太阳直射点的关系,物体的影子略微向北偏移,故一天之中影子方向的变化顺序为:正西→北偏西→正北→北偏东→正东;一天之中影子的长度的变化规律为:长→短→长.2.确定点光源的位置的方法:两个物体影子的顶端与物体的顶端的连线的交点为点光源的位置.区别 联系 光线 物体与投影面平行时的投影 平行投影 平行的投影线 全等 都是物体在光线的照射下,在某个平面内形成的影子〔即都是投影〕 中心投影 从一点出发的投影线放大〔位似变换〕3.分别自两个物体的顶端与其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.参考答案C [解析]太阳由东升起的过程中,物体的影子投向西侧,且由长到短,太阳偏西,物体的影子也转投向东侧,且由短到长.故选C.解:画出示意图如图所示.从图中我们看到小树在一组平行光的照射下,影子分成了三部分AC 、CD 、DG .因为小树和竖直台阶是水平的,所以四边形CDEF 是平行四边形,EF =CD ,因为同一时刻,不同物体的物高与影长之比相等,所以6.01==AC AF DG BE . 即6.018.43.0==AF BE . 解得BE =0.5,AF =8.所以小树的高AB =AF +EF +BE =8+0.3+0.5=8.8<米>.3.解:如图所示,延长BD 与AC 的延长线交于点E ,过点D 作DH ⊥AE 于点H .∵i =tan ∠DCH =CH DH =31=33, ∴∠DCH =30°. ∴DH =12CD =1.6m,CH =3DH ≈2.7 m. 由题意可知10.8DH HE =, ∴HE =0.8DH =1.28m.∴AE =AC +CH +HE ≈8.8+2.7+1.28=12.78<m>.∵8.01=AE AB ,所以168.078.128.0≈==AE AB <m>. ①③④ [解析]当木杆绕点A 按逆时针方向旋转时,如图所示,m>AC ,①成立;①成立,那么②不成立;当旋转到达地面时,有最短影长,等于AB ,③成立;由上可知,影子的长度先增大后减小,④成立.解:如图所示.〔1〕点P 就是所求的点;〔2〕EF 就是小华此时在路灯下的影子.6.解:〔1〕如图,线段AC 是小敏的影子.〔2〕过点Q 作QE ⊥MO 于E ,过点P 作PF ⊥AB 于F ,交EQ 于点D ,则PF ⊥EQ .在Rt △PDQ 中,∠PQD =55°,DQ =EQ -ED =4.5-1.5=3〔米〕.∵tan55°=错误!未找到引用源.,∴PD =3tan55°≈4.3〔米〕.∵DF =QB =1.6米,∴PF =PD +DF ≈4.3+1.6=5.9〔米〕.答:照明灯P 到地面的距离为5.9米.7.解:〔1〕点.〔2〕线段,这条线段BC 的长度为332.〔3〕〔1〕问中的投影是正投影,〔2〕问中的投影不是正投影,是平行投影.只有投影线和投影面垂直的投影才是正投影.8.是一个长方形,当正方形倾斜于投影面放置时,它与投影面平行的一边长等于原来的长度,而与投影面不平行的边长缩小.因为正方形的面积为10,它的正投影的面积是5,所以不平行的一边长的投影等于这边的一半,所以正方形与投影面的倾斜角是60度.9.解:〔1〕如图,点G 即为所求.〔2〕由题意得△∽△ABC GHC ,∴AB BC GH HC =, ∴1.6363GH =+, ∴ 4.8GH =m.〔3〕1111△∽△A B C GHC ,∴11111A B B C GH HC =, 设11B C 的长为x m,则1.64.83x x =+, 解得32x =〔m 〕,即1132B C =m . 同理22221.64.82B C B C =+, 解得221B C =〔m 〕,31n n B C n =+. 素材五 数学素养提升日晷简介日晷,本义是指太阳的影子.现代的"日晷〞指的是人类古代利用日影测得时刻的一种计时仪器,又称"日规〞.其原理就是利用太阳的投影方向来测定并划分时刻,通常由晷针和晷面组成.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久. 在一天中,被太阳照射到的物体投下的影子在不断地改变着:第一是影子的长短在改变.早晨的影子最长,随着时间的推移,影子逐渐变短,一过中午它又重新变长;第二是影子的方向在改变.在北回归线以北的地方,早晨的影子在西方,中午的影子在北方,傍晚的影子在东方.从原理上来说,根据影子的长度或方向都可以计时,但根据影子的方向来计时更方便一些.故通常都是以影子的方位计时.[1]随着时间的推移,晷针上的影子慢慢地由西向东移动.移动着的晷针影子好像是现代钟表的指针,晷面则是钟表的表面,以此来显示时刻.早晨,影子投向盘面西端的卯时附近;当太阳达正南最高位置〔上中天〕时,针影位于正北〔下〕方,指示着当地的午时正时刻.午后,太阳西移,日影东斜,依次指向未、申、酉各个时辰.。

(人教版)九年级数学下第29章《投影与视图》单元训练(含答案)

(人教版)九年级数学下第29章《投影与视图》单元训练(含答案)

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

第29章投影与视图专项训练专训:全章热门考点整合应用名师点金:本章知识是中考的考点之一,在本章中,平行投影与中心投影的性质、三视图与几何体的相互转化,以及侧面展开图、面积、体积等与三视图有关的计算等,是中考命题的热点内容.其热门考点可概括为:3个概念、2个解法、3个画法、2个应用.3个概念概念1:平行投影1.在一个晴朗的上午,赵丽颖拿着一块矩形木板放在阳光下,矩形木板在地面上形成的投影不可能是( )2.如图,王斌同学想测量旗杆的高度,他在某一时刻测得1 m长的竹竿竖直放置时影长2 m.在同一时刻测量旗杆的影长时,因旗杆靠近教学楼,所以影子没有全落在地面上,而是有一部分落在墙上,他测得落在地面上的影长为20 m,落在墙上的影高为2 m,求旗杆的高度.(第2题)概念2:中心投影3.如图,一建筑物A高为BC,光源位于点O处,用一把刻度尺EF(长22 cm)在光源前适当地移动,使其影子长刚好等于BC,这时量得O和刻度尺之间的距离MN为10 cm,O距建筑物的距离MB为20 m,问:建筑物A多高?(刻度尺与建筑物平行)(第3题)概念3:三视图4.如图是一个由多个相同的小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的左视图是( )(第4题)5.如图是由一些棱长都为1 cm的小正方体组合成的简单几何体.(1)该几何体的表面积为________;(2)该几何体的主视图如图中阴影部分所示,请在下面方格纸中分别画出它的左视图和俯视图.(第5题)2个解法解法1:由三视图还原几何体6.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置上小正方体的个数,则这个几何体的左视图是( )(第6题)7.根据下面的三视图说明物体的形状,它共有几层?一共有多少个小正方体?(第7题)8.如图是一个几何体的三视图,它的俯视图为菱形.请写出该几何体的名称,并根据图中所给的数据求出它的侧面积.(第8题)解法2:分解图形法9.某种含盖的玻璃容器(透明)的外形如图,请你画出它的三视图.(第9题)3个画法画法1:画投影10.在一次数学活动课上,李老师带领学生去测教学楼的高度.在阳光下,测得身高1.65 m的黄丽同学BC的影长BA为1.1 m,与此同时,测得教学楼DE的影长DF为12.1 m(1)请你在图中画出此时教学楼DE在阳光下的投影DF;(2)请你根据已测得的数据,求出教学楼DE的高度.(结果精确到0.1 m)(第10题)11.小明和小丽在操场上玩耍,小丽突然高兴地对小明说:“我踩到你的‘脑袋’了.”如图为小明和小丽的位置.(1)请画出此时小丽在阳光下的影子;(2)若知小明身高是1.60米,小明与小丽间的距离为2米,而小丽的影子长为1.75米,求小丽的身高.(第11题)画法2:画投影源12.学习投影后,小明和小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为 1.6 m的小明(AB)的影子BC长是3 m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB =6 m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(第12题)(2)求路灯灯泡的垂直高度GH;(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求他的影子B1C1的长;当小明继续走剩下路程的13到B2处时,求他的影子B2C2的长;当小明继续走剩下路程的14到B3处时…按此规律继续走下去,当小明走剩下路程的到Bn 处时,他的影子BnCn的长为多少?(直接用含n的代数式表示)画法3:画三视图13.一种机器上有一个转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.(第13题)2个应用应用1:测高的应用14.如图,晚上,小亮走到大街上,他发现:当他站在大街两边的两盏路灯(AB和CD)之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子(HE)长为3米,左边的影子(HF)长为1.5米,又知自己身高(GH)1.80米,两盏路灯的高相同,两盏路灯之间的距离(BD)为12米,求路灯的高.(第14题)应用2:测距离的应用15.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B.(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸)(1)小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;(2)小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD.(第15题)答案专训1.A点拨:太阳光线是平行光线,由于摆放的位置不同,矩形木板在地面上形成的投影可能是B,C或D.故选A.(第2题)2.解:如图,过点C作CE⊥AB,垂足为点E,则EC=BD=20 m,BE=CD=2 m.设AB=x m,则AE=(x-2) m.由题意,知AEEC=12,即x-220=12.解得x=12.故旗杆的高度为12 m.点拨:本题旗杆的影子不都在地面上,故不能盲目地根据物体的高度与影长成正比例来列方程.本题也可以过影子上的点D作DE∥CA来构造平行四边形解决问题,或延长AC,BD交于一点,通过相似三角形的性质求解.3.解:由题意,知EF∥BC,∴△OEF∽△OBC,∴EFBC=MNMB,即0.22BC=0.120.解得BC=44 m.∴建筑物A的高为44 m.4.D5.解:(1)26 cm2(2)如图所示.(第5题)6.A点拨:从俯视图可以想象出几何体的各部分小正方体的个数,进而可得出左视图中从左至右小正方形的个数依次为1,3,2,故选A.对于由多个小正方体堆成的几何体的左视图的问题,要想象出左视图中每列小正方形的个数.(第7题)7.思路导引:由俯视图确定该物体在水平面上的形状,再由主视图、左视图确定空间形状.解:该物体的形状如图,它共有3层,一共有9个小正方体.方法总结:根据物体的三视图想象物体形状的方法:一般是由俯视图确定物体在水平面内的形状,然后再根据主视图和左视图补全它在空间里的形状,从而确定物体的形状.8.思路导引:由主视图与左视图判断此几何体为柱体.又由俯视图可知此几何体为四棱柱.解:该几何体是直四棱柱.由三种视图知,棱柱底面菱形的对角线的长分别为4 cm,3 cm.∴菱形的边长为52cm,∴棱柱的侧面积为52×8×4=80(cm2).9.思路导引:由这种容器抽象出来的几何体其实就是一个圆锥和一个与圆锥有相同底面的半球的组合体.解:这种容器的三视图如图.(第9题)点拨:画复杂图形的三视图时,可把复杂的组合几何体分解成单一的常见几何体进行研究,并作出视图.10.解:(1)略.(2)∵AC ∥FE ,∴△ABC ∽△FDE.∴AB FD =BC DE .∴1.112.1=1.65DE .∴DE =18.15 m ≈18.2 m .故教学楼DE 的高度约为18.2 m .11.解:(1)略.(2)设小丽身高x 米,利用三角形相似列方程:1.602=x1.75,解得x =1.4.即小丽的身高为1.4米. 12.解:(1)如图所示.(第12题)(2)由题意得:△ABC ∽△GHC , ∴AB GH =BC HC ,∴1.6GH =36+3,∴GH =4.8(m ). (3)△A 1B 1C 1∽△GHC 1,∴A 1B 1GH =B 1C 1HC 1,设B 1C 1长为x m ,则1.64.8=xx +3,解得x =32,即B 1C 1=32.同理1.64.8=B 2C 2B 2C 2+2,解得B 2C 2=1 m .B n C n =3n +1m . 13.略.14.解:设路灯的高为x 米,∵GH ⊥BD ,AB ⊥BD ,∴GH ∥AB ,∴△EGH ∽△EAB ,∴GH x =EH EB ①,同理△FGH ∽△FCD ,∴GH x =FH FD ②,∴EH EB =FH FD =EH +FH EB +FD,∴3EB = 4.512+4.5,解得EB =11米,代入①得1.8x =311,解得x =6.6.∴路灯高为6.6米.15.解:由题意得,∠BAD =∠BCE ,∵∠ABD =∠CBE =90°,∴△BAD ∽△BCE ,∴BD BE =AB CB ,即BD 9.6=1.71.2,解得BD =13.6米,∴河宽BD 是13.6米.教学反思撰写基本格式和主要内容一、题目:课题+教学反思二、正文包括以下四方面的主要内容:(一)教学设计反思针对教学设计中的某一个环节或者这几个环节进行反思。

【初中教育】最新中考数学第一部分考点研究复习第七章图形的变化第29课时尺规作图视图与投影练习含解析

【初中教育】最新中考数学第一部分考点研究复习第七章图形的变化第29课时尺规作图视图与投影练习含解析

——教学资料参考参考范本——【初中教育】最新中考数学第一部分考点研究复习第七章图形的变化第29课时尺规作图视图与投影练习含解析______年______月______日____________________部门第29课时尺规作图、视图与投影基础过关1。

(20xx安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是( )2。

(20xx扬州模拟)下列四个几何体中,主视图与其他三个不同的是( )3。

(20xx金华)从一个边长为3 cm的大立方体挖去一个边长为1 cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )4。

(20xx河南)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )5.(20xx鄂州)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )6。

(20xx菏泽)如图所示,该几何体的俯视图是( )7。

(20xx宜昌)将一根圆柱形的空心钢管任意放置,它的主视图不可能是( )8。

(20xx雅安)将下图的左图绕AB边旋转一周,所得几何体的俯视图为( )9。

(20xx荆门)由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是( )A。

主视图的面积最小B。

左视图的面积最小C。

俯视图的面积最小D。

三个视图的面积相等10。

(20xx河北)图①和图②中所有的正方形都全等,将图①的正方形放在图②中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A。

① B。

② C。

③ D。

④11。

(20xx丽水)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )12.(20xx百色)某几何体的三视图如图所示,则组成该几何体的小正方体的个数是________.13。

(20xx青岛)用圆规,直尺作图,不写作法,但要保留作图痕迹.已知:线段a及∠ACB。

求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.14。

【5套打包】宁波市初三九年级数学下(人教版)《第29章 投影与视图》单元测试题及答案

【5套打包】宁波市初三九年级数学下(人教版)《第29章 投影与视图》单元测试题及答案

人教版九年级数学下册_第29章_投影与视图_单元检测试卷【有答案】一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 ) 1.下列投影一定不会改变 的形状和大小的是( ) A.中心投影 B.平行投影C.正投影D.当 平行投影面时的平行投影 2.某物体的三视图是如图所示的三个图形,那么该物体形状是( )A.圆锥B.圆柱C.三棱锥D.三棱柱 3.如图,是由相同的小正方体组成的立体图形,它的左视图是( )A.B.C.D.4.如图所示,灯在距地面 米的 处,现有一木棒 米长,当 处木棒绕其与地面的固定端点顺时针旋转到地面,其影子的变化规律是( )A.先变长,后变短B.先变短,后变长C.不变D.先变长,再不变,后变短5.某同学画出了如图所示的几何体的三种视图,其中正确的是( )A.①②B.①③C.②③D.②6.如图所示的几何体,如果从正面观察它,得到的平面图形是( )A.B.C.D.7.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离( ) A.始终不变 B.越来越远 C.时近时远 D.越来越近 8.如图的主视图是( )A.B.C.D.9.如图是几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有( )A. 个B. 个C. 个D. 个 10.由 个大小相同的小正方体组成的几何体,如下图所示.其俯视图是( )A.B.C.D.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.如图,组成这个几何体的小正方体的块数为 ,则 的所有可能值为________.12.如图,在一间黑屋子里用一盏白炽灯按如图所示的方式照球、圆柱和圆锥,它们在地面上的阴影形状分别是________,________,________.(文字回答即可)13.身高相同的小明和小丽站在灯光下的不同位置,已知小明的投影比小丽的投影长,我们可以判定小明离灯光较________.14.如图,三角尺在灯泡的照射下在墙上形成影子,现测得,,则这个三角尺的面积与它在墙上所形成影子图形的面积之比是________.15.三棱柱的三视图如图所示,在中,,,,则的长为________.16.如图中,现将绕旋转一周,所得几何体的主视图是图中的________.17.桌上放着一个圆锥和一个正方体,请说出下面三幅图形分别是从哪个方向看到的________.18.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.19.如图所示,在房子的屋檐处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在________.20.如图是六个棱长为的立方块组成的一个几何体,其俯视图的面积是________.三、解答题(共6 小题,每小题10 分,共60 分)21.一个几何体由几个大小相同的小立方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请你画出从正面、左面看到的这个几何体的形状图.22.如图所示是由几个小正方块所组成的几何体俯视图,小正方形中的数字表示在该位置小正方块的个数,请你画出这个几何体的正视图和左视图.23.有一个正方体,在它的各个面上分别标上数字、、、、、.小明、小刚、小红三人从不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的数字对面各是什么数字?24.如图是由几个小立方体所搭几何的俯视图,小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体的主视图、左视图.25.某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成角,房屋向南的窗户高米,现要在窗子外面的上方安装一个水平遮阳蓬(如图所示).当遮阳蓬的宽度在什么范围时,太阳光线能射入室内?当遮阳蓬的宽度在什么范围时,太阳光线不能射入室内?26.李航想利用太阳光测量楼高.他带着皮尺来人教版九年级数学下册第二十九章投影与视图单元测试卷一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1. 如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A. B.C.D.2. 如图的立体图形的左视图可能是().B .C.D.3.如图是由5个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.4. 如图的几何体的三视图是().B.C.D.5.下列立体图形中,俯视图是正方形的是()A.B.C.D.6.如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.7.如图是由四个相同的小正方体组成的立体图形,它的俯视图为().B.C.D.8.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥9.如图所示的支架是由两个长方形构成的组合体,则它的主视图是().B .C.D .10.、如图是某一几何体的三视图,则该几何体是( )11.如图是由4个大小相同的正方体搭成的几何体,其俯视图是( ).B .C .D .12.如图几何体的俯视图是( ).B .C .D .13.如图的罐头的俯视图大致是( ).B .C .D .14.如图是某个几何体的三视图,则该几何体的形状是( )15.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()B.C.D.16、左下图是由3个完全相同的小正方体组成的立体图形,它的主视图是()17.一个几何体的三视图如图所示,那么这个几何体是【】DCBA18. 如图,所给三视图的几何体是()(第1题图)19. 下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是().正方体B.圆柱(第2题图)C.圆锥D.球20. 一个几何体的三视图如图所示,则该几何体可能是().B.C.D.21.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()22.甲是某零件的直观图,则它的主视图为().B.C.D.23.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.24.一个圆锥的三视图如图所示,则此圆锥的底面积为()A.30πcm2B.25πcm2C.50πcm2D.100πcm2第Ⅱ卷(非选择题共60分)二、填空题:本大题共7小题,其中16-22题每小题5分,共35分.只要求填写最后结果.1.写出一个在三视图中俯视图与主视图完全相同的几何体.2.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是..3. 如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18cm3.(第1题图)4.三棱柱的三视图如图所示,EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.5.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为__▲__cm2.(结果可保留根号)6如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为______cm2参考答案:数学试题第Ⅰ卷(选择题共60分)一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1. 如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A. B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2. 如图的立体图形的左视图可能是().B.C.D.3. 如图是由5个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:从正面看,第一层是两个正方形,第二层左边是一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.如图的几何体的三视图是().B.C.D.5.下列立体图形中,俯视图是正方形的是()A.B.C.D.考点:简单几何体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解;A、的俯视图是正方形,故A正确;B、D的俯视图是圆,故A、D错误;C、的俯视图是三角形,故C错误;故选:A.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.考点:简单组合体的三视图分析:根据从左面看得到的图形是左视图,可得答案.解答:解;从左面看下面一个正方形,上面一个正方形,故选:A.点评:本题考查了简单组合体的三视图,从左面看得到的图形是左视图.7.如图是由四个相同的小正方体组成的立体图形,它的俯视图为().B.C.D.8.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.9.如图所示的支架是由两个长方形构成的组合体,则它的主视图是().B.C.D.解答:解:从几何体的正面看可得此几何体的主视图是,故选:D .10.如图是某一几何体的三视图,则该几何体是( )11.如图是由4个大小相同的正方体搭成的几何体,其俯视图是( ).B .C .D .12. 如图几何体的俯视图是( ).B .C .D .13.如图的罐头的俯视图大致是( ).B .C .D .14.如图是某个几何体的三视图,则该几何体的形状是()15.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()B.C.D.人教版九年级数学下册第29章投影与视图单元评估检测试题(有答案)一、单选题(共10题;共30分)1.(2016•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A. B. C. D.2.如图是某几何题的三视图,下列判断正确的是()A. 几何体是圆柱体,高为2B. 几何体是圆锥体,高为2C. 几何体是圆柱体,半径为2D. 几何体是圆锥体,半径为23.如图,这是一个机械模具,则它的主视图是()A. B. C.D.4.如图,下列水平放置的几何体中,左视图不是长方形的是()A. B. C.D.5.如图,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的长刚好是自己的身高,已知小颖的身高为1.5米,那么路灯A的高度AB为()A. 3米B. 4.5米C. 6米 D. 8米6.下列几何体是由4个相同的小正方体搭成的,其中左视图和主视图不相同的是()A. B. C.D.7.下列几何体中,正视图、左视图、俯视图完全相同的是()A. 圆柱B. 圆锥C. 棱锥D. 球8.(2016•惠安县二模)下列四个图形中,是三棱锥的表面展开图的是()A. B. C. D.9.如图,是一个用若干个相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是()A. 2B. 3C. 4D. 510.一个几何体的三视图如图所示,则该几何体外接球的表面积为()A. 4π/3B. 8π/3C. 16π/3D. π/3二、填空题(共10题;共30分)11.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B内的数为________.12.将如图所示的平面展开图折叠成正方体,则a对面的数字是________.13.如图两个图形分别是某个几何体的俯视图和主视图,则该几何体是________.14.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是________.15.在市委、市政府的领导下,全市人民齐心协力,努力将我市创建为“全国文明城市”,为此学生小红特制了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字所对的面上标的字应是________ .16.将图所示的Rt ABC绕AB旋转一周所得的几何体的主视图是图中的________(只填序号).17.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则从上面看到的该几何体的形状图的面积是________ .18.如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有________ 个.19.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为________ cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共8题;共60分)21.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.22.连一连:请在第二行图形中找到与第一行几何体相对应的表面展开图,并分别用连接线连起来.23.如图,这是一个由大小相等的正方体堆成的几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请你画出它的主视图和左视图.24.如图所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积.25.如图是由相同的5个小正方体组成的几何体,请画出它的三种视图,若每个小正方体的棱长为a,试求出该几何体的表面积.26.如图,是由几个相同的小立方块搭成的几何体从正面、左面看到的图形,问这个几何体有几个小立方块?27.张师傅根据某几何体零件,按1:1的比例画出准确的三视图(都是长方形)如图,已知EF=4cm,FG=12cm,AD=10cm.(1)说出这个几何体的名称;(2)求这个几何体的表面积S;(3)求这个几何体的体积V.28.如图,图1为一个长方体,AB=AD=16,AE=6,图2为左图的表面展开图,请根据要求回答问题:(1)面“学”的对面是面什么?(2)图1中,M、N为所在棱的中点,试在图2中画出点M、N的位置;并求出图2中ABN 的面积.答案解析部分一、单选题1.【答案】A2.【答案】A3.【答案】C4.【答案】B5.【答案】B6.【答案】B7.【答案】D8.【答案】A9.【答案】C10.【答案】C二、填空题11.【答案】212.【答案】-113.【答案】圆柱14.【答案】515.【答案】城16.【答案】②17.【答案】318.【答案】519.【答案】2.520.【答案】54三、解答题21.【答案】22.【答案】解:如图所示:23.【答案】24.【答案】解:(1)这个立体图形是直三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.25.【答案】解:该几何体的三种视图如图所示;,或表表26.【答案】解:搭这样的几何体最少需要4+1=5个小正方体,最多需要6+1=7个小正方体,故可能有5或6或7个小正方体.27.【答案】解:(1)由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为长方形可得这个几何体是长方体;(2)由图可知,长方体的长为12cm,宽为4cm,高为10cm,则这个长方体的表面积S=2(12×4+12×10+4×10)=416(cm2);(3)这个几何体的体积V=12×4×10=480(cm3).28.【答案】解:(1)正方体的表面展开图,相对的面之间一定相隔一个正方形,“学”与“国”是相对面,“叶”与“际”是相对面,“枫”与“校”是相对面,答:面“学”的对面是面国。

江苏省中考数学第一部分考点研究复习第七章图形的变化第29课时尺规作图视图与投影真题精选含解析

江苏省中考数学第一部分考点研究复习第七章图形的变化第29课时尺规作图视图与投影真题精选含解析

——教学资料参考参考范本——江苏省中考数学第一部分考点研究复习第七章图形的变化第2 9课时尺规作图视图与投影真题精选含解析______年______月______日____________________部门第29课时尺规作图、视图与投影江苏近4年中考真题精选命题点1 尺规作图(20xx年5次,20xx年2次,20xx年无锡25题,20xx年4次)1. (20xx南通7题3分)如图,用尺规作出∠OBF=∠AOB,作图痕迹是( )MNA. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆2. (20xx镇江23(1)题4分)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹).3. (20xx盐城23题10分)如图,已知△ABC中,∠ABC=90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母).①作线段AC的垂直平分线l,交AC于点O;②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;③连接DA、DC.(2)判断四边形ABCD的形状,并说明理由.4. (20xx盐城24题10分)实践操作如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)(1)作∠BAC的平分线,交BC于点O;(2)以O为圆心,OC为半径作圆.综合运用在你所作的图中,(1)AB与⊙O的位置关系是________;(直接写出答案)(2)若AC=5,BC=12,求⊙O的半径.命题点2 (20xx年7次,20xx年7次,20xx年6次,20xx年8次)类型一常见几何体的三视图5. (20xx徐州2题3分)下列四个几何体中,主视图为圆的是( )6. (20xx扬州5题3分)如图所示的物体的左视图为( )7. (20xx扬州4题3分)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是( )8. (20xx泰州4题3分)如图所示的几何体,它的左视图与俯视图都正确的是( )类型二小立方块组合体的三视图9. (20xx镇江14题2分)由若干个相同的小正方体搭成的一个几何体如图所示,它的俯视图为( )10. (20xx盐城13题3分)如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为________.类型三还原几何体及其相关计算11. (20xx南通13题3分)某几何体的三视图如图所示,则这个几何体的名称是________.12. (20xx无锡17题2分)如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是________.命题点3 立体图形的展开与折叠(20xx年2次,20xx年2次,20xx 年1次)13. (20xx泰州4题3分)一个几何体的表面展开图如图所示,则这个几何体是( )A. 四棱锥B. 四棱柱C. 三棱锥D. 三棱柱14. (20xx连云港4题3分)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A. 丽B. 连C. 云D. 港15. (20xx徐州4题3分)下列图形中,不可以作为一个正方体的展开图的是( )1. D 【解析】要作∠OBF=∠AOB,由题图可知,①以点O为圆心,任意长为半径画弧,交射线OA、OB于点C、D;②以点B为圆心,OC长为半径画,交射线BO于点E;③以点E为圆心,CD长为半径画弧,交于点F,连接BF即可得出∠OBF,则∠OBF=∠AOB.2. 【思维教练】先画互相垂直的两条直线,再把四个圆心角平分,即得正八形.解:如解图,正八边形ABCDEFGH即为所求.………………………(4分)【作法提示】分别以A、E为圆心,任意长为半径画弧,两弧交于G点,连接GO并延长交⊙O于点C,再以点A、G为圆心,大于AG为半径画弧,两弧交于点H,连接OH并延长交⊙O于点D,同理作出FB,连接AB、BC、CD、DE、EF、FG、GH、HA,则八边形ABCDEFGH即为所求作的正八边形.3. 解:(1)所作图形如解图所示:……………………………………………………………………….(5分) (2)四边形ABCD是矩形.…………………………………………(6分)理由如下:∵直线l垂直平分AC,∴OA=OC,又∵OD=OB,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴平行四边形ABCD是矩形.………………………………………………(10分)4. 解:实践操作(1)(2),作图如解图所示;……………………………………………… (5分)综合运用:(1)相切.………………………………………………(7分)【解法提示】如解图,过点O作OD⊥AB于点D,∵AO是∠BAC的平分线,∴DO=CO,∵OC为⊙O的半径,∴点O到AB的距离为⊙O的半径,∴AB与⊙O的位置关系是相切.(2)∵AC=5,BC=12,∴AD=AC=5,在Rt△ABC中,AB==13,∴DB=AB-AD=13-5=8. ………………………………………………(8分)设半径为x,则OC=OD=x,BO=12-x,在Rt△ODB中,有OD2+DB2=OB2,∴x2+82=(12-x)2, 解得:x=.∴⊙O的半径为.………………………………………(10分)5. B 【解析】从正面去看一个几何体,得到的视图为主视图,正方体的主视图为正方形,球的主视图为圆,圆柱的主视图为矩形,圆锥的主视图为三角形.6. A 【解析】从左边看得到的视图是左视图,左视图中由于上面的正方体靠左,故选A.7. A 【解析】由题图知,该几何体的三视图如解图所示,观察各选项知,B选项为该几何体的俯视图,C选项为该几何体的左视图,D选项为该几何体的主视图.故选A.第7题解图8. D 【解析】从正面看得到的图形是主视图,从左面看得到的图形是左视图,从上面看得到的图形是俯视图.由几何体知其左视图和俯视图均为矩形.9. A 【解析】俯视图即为从上面看得到的图形.通过观察可知一共有3行,3列,第一行有3个正方形,第2行有3个正方形,第3行有1个正方形,且位于第1列.故选A.10. 5 【解析】图中的几何体从正面看,它有3列,最左边一列有3个小正方形,中间一列和右边一列各有1个小正方形,故它的主视图一共有5个小正方形,∴主视图的面积为5.11. 圆柱【解析】∵主视图和左视图都是矩形,初步判断这个几何体可能是棱柱,又∵俯视图是圆,可以准确判断它是一个圆柱.12. 72 【解析】根据三视图可知,该几何体为长方体,由主视图和左视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3,∴它的表面积是:2×3×2+2×6×2+3×6×2=72.13. A 【解析】由展开图可知,这个几何体的底面是一个正方形,侧面有四个面,所以这个几何体是四棱锥.14. D 【解析】如果以“连”为底,则“的”和“云”分别为左侧面和右侧面,“丽”为上面,“美”和“港”则相对为后侧面和前面,故选D.15. C 【解析】根据正方体的展开图类型:可得A、B、D项均可折叠为正方体,C不能.。

【初三数学】邵阳市九年级数学下(人教版)《第29章 投影与视图》单元检测试题及答案

【初三数学】邵阳市九年级数学下(人教版)《第29章 投影与视图》单元检测试题及答案

【优选整合】人教版初中数学九年级下册 29章小结与复习练习一、填空题1.平行投影是由光线形成的,太阳光线可以看成 .2.俯视图为圆的几何体是 ____ , ________ .3.手电筒、路灯、台灯的光线形成的投影称为 .4. 下图右边是一个三棱柱,它的正投影是下图中的 ____ (填序号).①②③④5.如图是两棵小树在同一时刻的影子,请问它们的影子是在 ____ 光线下形成的.(填“太阳”或“灯光”)(第5题) (第6题)6. 如图中是一球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球影子会________________(填“逐渐变大”或“逐渐变小”)7.将一个三角板放在太阳光下,它所形成的投影是____________,也可能是_____________.三角形,一条线段;8.如图,粗线表示嵌在玻璃正方体内的一根铁丝,右边是该正方体的主视图、左视图、俯视图.中的两个,请在两个视图中写上相应的名称.(第8题)二、选择题(每小题只有一个正确答案)9.下列图形中,是圆柱体侧面的是()(1) (2)A.B.C.D. 10.由几个小立方体搭成的一个几何体如图1所示,它的主视图见图2,那么它的俯视图为( )11.在一个晴朗的天气里,小华在向正北方向走路时,发现自己的身影向左偏,你知道小华当时所处的时间是( ).(A )上午 (B )中午 (C )下午 (D )无法确定12.小华拿一个矩形木框在阳光下玩,矩形木框在地面上喜欢那形成的投影不可能...是( )A B C D13.如图所示,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为 1.2m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为( )A 、0.36πm 2B 、0.81m 2C 、2πm 2D 、3.24πm 2三、解答题:14.有两根木棒AB 、CD 在同一平面上直立着,其中AB 这根木棒在太阳光下的影子BE 如图所示,请你在图中画出这时木棒CD 的影子.15.画出如图立体图形的三视图π10cm12cm 2m(1) (2)16.在一个宁静的夜晚,月光明媚,小芳和身高为1.65m 的李红两位同学在人民广场上玩.小芳测得李红的影长为1m ,并立即测得小树影长为1.5m ,请你估算小树的高约为多少?17.(1)根据物体的三视图描述物体的形状;(2)要给物体的表面全部涂上防腐材料,根据图上数据计算需要涂上防腐材料的面积.(精确到1c m 2)参考答案一,1.平行,平行光线; 2.圆,球或圆锥; 3.中心投影; 4.②;5.灯光;6.逐渐人教版九年级数学下册《第二十九章投影与视图》单元测试题(解析版)一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③2.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化3.如图,正六棱柱的主视图是()A.B.C.D.4.三个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.某几何体的三视图如图,则该几何体是()A.长方体B.圆柱C.球D.正三棱柱6.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D7.如图所示的几何体从上面看得到的图形是()A.B.C.D.8.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.9.从正面和左面看到长方体的图形如图所示(单位:cm),则从其上面看到图形的面积是()cm2A.4B.6C.8D.1210.如图,是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.64πm2B.2.56πm2C.1.44πm2D.5.76πm2二.填空题(共8小题)11.如图,迎宾公园的喷水池边上有半圆形的石头(半径为1.12m)作为装饰,其中一块石头正前方5.88m处有一彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为0.56πm.如果同一时刻,一直立0.6m的杆子的影长为1.8m,则灯柱的高m.12.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子.(长,短)13.正放的圆柱形水杯的正视图为,俯视图为.14.从正面看、从上面看、从左面看都是正方形的几何体是.15.为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为米.16.如图,在A时测得旗杆的影长是4米,B时测得的影长是9米,两次的日照光线恰好垂直,则旗杆的高度是米.17.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要个小立方体.18.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为m.三.解答题(共7小题)19.如图是一个立体图形的三视图,根据图中数据,求该几何体的表面积.20.如图是由小立方块所搭几何体从上面看到的形状,正方形中的数字表示该位置小立方块的个数,请画出它的主视图和左视图.21.如图,在Rt△ABC中,∠C=90°,投影线方向如图所示,点C在斜边AB上的正投影为点D,(1)试写出边AC、BC在AB上的投影;(2)试探究线段AC、AB和AD之间的关系;(3)线段BC、AB和BD之间也有类似的关系吗?请直接写出结论.22.如图是由一些小正方体搭成的几何体从上面看的图形(俯视图),数字表示该位置小正方体的个数,请画出这个几何体从正面看的图形(主视图)、从左面看的图形(左视图).23.根据要求完成下列题目:(1)图中有块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在图方格中所画的图一致,若这样的几何体最少要m个小正方体,最多要n个小正方体,则m+n的值为.24.如图,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米)(1)标出王琳站在P处在路灯B下的影子;(2)计算王琳站在Q处在路灯A下的影长;(3)计算路灯A的高度.25.用小立方体搭一个几何体,从正面看和上面看的形状图如图所示,从上面看的小正方形中字母表示在该位置小立方块的个数.试回答下列问题:(1)a=.b=.c=;(2)这个几何体至少需个小立方块,最多需个小立方块;(3)当d=e=1,f=2时,画出这个几何体从左面看的形状图.2019年春人教版九年级数学下册《第二十九章投影与视图》单元测试题参考答案与试题解析一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.【点评】本题考查平行投影,解题的关键是熟练知道太阳光是平行光线,本题属于基础题型.2.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化【分析】连接路灯和旗杆的顶端并延长交平面于一点,这点到旗杆的底端的距离是就是旗杆的影长,画出相应图形,比较即可.【解答】解:由图易得AB<CD,那么离路灯越近,它的影子越短,故选:B.【点评】此题主要考查了中心投影,用到的知识点为:影长是点光源与物高的连线形成的在地面的阴影部分的长度.3.如图,正六棱柱的主视图是()A.B.C.D.【分析】直接依据主视图即从几何体的正面观察,进而得出答案.【解答】解:正六棱柱主视图的是:故选:D.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题的关键.4.三个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】根据俯视图的定义和空间想象,得出图形即可.【解答】解:俯视图从左到右分别是,1,个正方形,如图所示:.【点评】此题考查了简单组合体的俯视图,关键是对几何体的三种视图的空间想象能力.5.某几何体的三视图如图,则该几何体是()A.长方体B.圆柱C.球D.正三棱柱【分析】首先判断该几何体为柱体,然后根据其左视图为圆得到该几何体为圆柱.【解答】解:根据主视图和俯视图为长方形可得此几何体为柱体,左视图为圆可得此几何体为圆柱,故选:B.【点评】主要考查了由三视图判断几何体及几何体的展开图的知识,重点训练空间想象能力.6.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,【点评】此题主要考查了三视图,关键是掌握主视图和俯视图所看的位置.7.如图所示的几何体从上面看得到的图形是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个矩形,中间为圆,如图所示:故选:B.【点评】本题考查了简单组合体的三视图,注意从上边看得到的图形是俯视图.8.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.【分析】俯视图是从上面看,注意所有的看到的棱都应表现在主视图中.【解答】解:如图所示:它的俯视图是:.故选:C.【点评】此题主要考查了三视图的知识,关键是掌握三视图的几种看法.9.从正面和左面看到长方体的图形如图所示(单位:cm),则从其上面看到图形的面积是()cm2A.4B.6C.8D.12【分析】先根据从左面、从正面看到的形状图的相关数据可得,从上面看到的形状图是长为4宽为3的长方形,再根据长方形的面积公式计算即可.【解答】解:根据从左面、从正面看到的形状图的相关数据可得:从上面看到的形状图是长为4宽为3的长方形,则从上面看到的形状图的面积是4×3=12;故选:D.【点评】此题考查了由三视图判断几何体,关键是根据从左面、从正面看到的形状图的相关数据得出从上面看到的形状图是长为4宽为3的长方形.10.如图,是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.64πm2B.2.56πm2C.1.44πm2D.5.76πm2【分析】设C,D分别是桌面和其地面影子的圆心,依题意可以得到△OBC∽△OAD,然后由它们的对应边成比例可以求出地面影子的半径,这样可以求出阴影部分的面积.【解答】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴△OBC∽△OAD∴=,而OD=3,CD=1,∴OC=OD﹣CD=3﹣1=2,BC=×1.6=0.8,∴=,∴AD=1.2,∴S⊙D=π×1.22=1.44πm2,即地面上阴影部分的面积为1.44πm2.故选:C.【点评】本题主要考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例求出地面影子的半径,就可以求出阴影部分的面积.二.填空题(共8小题)11.如图,迎宾公园的喷水池边上有半圆形的石头(半径为1.12m)作为装饰,其中一块石头正前方5.88m处有一彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为0.56πm.如果同一时刻,一直立0.6m的杆子的影长为1.8m,则灯柱的高m.【分析】如图,OC=OD=1.12m,BD=5.88m,CD的弧长为0.56πm,先利用弧长公式计算出∠DOC=90°,则OC⊥OD,作CE⊥AB于E,则CE=OB=OD+BD=7m,BE=OC=1.12m,接着利用相似比得到=,解得AE=,然后计算AE+BE即可.【解答】解:如图,OC=OD=1.12m,BD=5.88m,CD的弧长为0.56πm,设∠COD=n°,则=0.65π,解得n=90,即∠DOC=90°,∴OC⊥OD,作CE⊥AB于E,则CE=OB=OD+BD=1.12m+5.88m=7m,BE=OC=1.12m,∵同一时刻,一直立0.6m的杆子的影长为1.8m,∴=,∴AE=,∴AB=AE+BE=+1.12=(m),即灯柱的高为m.故答案为.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.也考查了弧长公式.12.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.(长,短)【分析】根据太阳照射的角度从春天开始会逐渐开始直射,则影子会不断变短.【解答】解:∵春天来了天气一天比一天暖和,∴太阳开始逐渐会接近直射,∴在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.故答案为:短.【点评】此题主要考查了平行投影的性质,得出太阳照射角度不同得出是解题关键.13.正放的圆柱形水杯的正视图为长方形,俯视图为圆.【分析】依据圆柱体的三视图进行判断即可.【解答】解:正放的圆柱形水杯的正视图为长方形,俯视图为圆,故答案为:长方形,圆.【点评】本题主要考查了简单几何体的三视图,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.14.从正面看、从上面看、从左面看都是正方形的几何体是正方体.【分析】正方体从三个方向看到的形状图都是正方形,即三视图都是正方形.【解答】解:一个几何体从三个方向看到的形状图都是正方形,即三视图均为正方形,这样的几何体是正方体.故答案为:正方体.【点评】本题考查由三视图确定几何体的形状,关键是根据对几何体的认识解答.15.为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为40米.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:∵=,∴水塔的高度=×水塔的影长=×30=40(m).故答案为:40米.【点评】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.16.如图,在A时测得旗杆的影长是4米,B时测得的影长是9米,两次的日照光线恰好垂直,则旗杆的高度是6米.【分析】如图,∠CPD=90°,QC=4m,QD=9m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.【解答】解:如图,∠CPD=90°,QC=4m,QD=9m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴=,即=,∴PQ=6,即旗杆的高度为6m.故答案为6.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.17.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要8个小立方体.【分析】由主视图求出这个几何体共有3层,再求出第二层、第三层最少的个数,由俯视图可得第一层正方体的个数,相加即可.【解答】解:由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层只有1个,故组成这个几何体的小正方体的个数最少为:5+2+1=8(个).故答案为:8.【点评】本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”.18.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为7.5m.【分析】根据木杆旋转时影子的长度变化确定木杆AB的长,然后利用相似三角形的性质求得EF的高度即可.【解答】解:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴=,∵AE=5m,∴=,解得:EF=7.5m.故答案为:7.5.【点评】本题考查了中心投影和相似三角形的判定及性质的知识,解题的关键是根据影子的变化确定木杆的长度.三.解答题(共7小题)19.如图是一个立体图形的三视图,根据图中数据,求该几何体的表面积.【分析】根据三视图得出这个立体图形是圆柱体,底面圆的直径为2,高为3,再根据表面积=侧面积+底面圆的面积×2列式计算可得.【解答】解:根据三视图可以判断出这个立体图形是圆柱体,底面圆的直径为2,高为3,其表面为侧面积+底面圆的面积×2.即:S=2π×3+2×π×()2=8π.【点评】此题主要考查了圆柱的有关计算以及由三视图判断几何体,同时也体现了对空间想象能力方面的考查,难度不大.20.如图是由小立方块所搭几何体从上面看到的形状,正方形中的数字表示该位置小立方块的个数,请画出它的主视图和左视图.【分析】主视图有3列,每列小正方形数目分别为3,1,4;左视图有3列,每列小正方形数目分别为2,4,2;依此画出图形即可求解.【解答】解:如图所示:【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图.21.如图,在Rt△ABC中,∠C=90°,投影线方向如图所示,点C在斜边AB上的正投影为点D,(1)试写出边AC、BC在AB上的投影;(2)试探究线段AC、AB和AD之间的关系;(3)线段BC、AB和BD之间也有类似的关系吗?请直接写出结论.【分析】(1)根据投影的定义求解;(2)通过证明△ADC∽△ACB可得AC2=AD•AB;(3)通过证明△BCD∽△BAC即可得到BC2=BD•AB.【解答】解:(1)边AC、BC在AB上的投影分别为AD、BD;(2)∵点C在斜边AB上的正投影为点D,∴CD⊥AB,∴∠ADC=90°,而∠DAC=∠CAB,∴△ADC∽△ACB,∴AC:AB=AD:AC,∴AC2=AD•AB;(3)与(2)一样可证△BCD∽△BAC,则BC:AB=BD:BC,∴BC2=BD•AB.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影;平行投影中物体与投影面平行时的投影是全等的;判断投影是平行投影的方法是看光线是否是平行的.如果光线是平行的,所得到的投影就是平行投影.22.如图是由一些小正方体搭成的几何体从上面看的图形(俯视图),数字表示该位置小正方体的个数,请画出这个几何体从正面看的图形(主视图)、从左面看的图形(左视图).【分析】由俯视图中的数字可知,主视图有3列,每列小正方形数目分别为2,4,1.左视图有2列,每列小正方形数目分别为4,3.【解答】解:这个几何体从正面看的图形(主视图)、从左面看的图形(左视图)如图所示:【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.23.根据要求完成下列题目:(1)图中有7块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在图方格中所画的图一致,若这样的几何体最少要m个小正方体,最多要n个小正方体,则m+n的值为16.【分析】(1)依据图形中的几何体,即可得到小正方体的个数;(2)依据几何体的摆放位置,即可得到它的主视图、左视图和俯视图;(3)依据左视图和俯视图可得,这样的几何体最少要小正方体的个数为3+1+1+1=6,最多要小正方体的个数为3+3+3+1=10,进而得到m+n的值.【解答】解:(1)由图可得,图中有7块小正方体;故答案为:7;(2)如图所示:(3)由左视图和俯视图可得,这样的几何体最少要小正方体的个数为3+1+1+1=6,最多要小正方体的个数为3+3+3+1=10,∴m+n=6+10=16.故答案为:16.【点评】此题主要考查了三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看所得到的图形;俯视图决定底层立方块的个数,利用主视图或左视图得到其余层数里最少的立方块个数和最多的立方块个数.24.如图,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米)(1)标出王琳站在P处在路灯B下的影子;(2)计算王琳站在Q处在路灯A下的影长;(3)计算路灯A的高度.【分析】(1)影长为光线与物高相交得到的阴影部分;(2)易得Rt△CEP∽Rt△CBD,利用对应边成比例可得QD长;(3)易得Rt△DFQ∽Rt△DAC,利用对应边成比例可得AC长,也就是路灯A的高度.【解答】解:(1)线段CP为王琳在路灯B下的影长;(2)由题意得Rt△CEP∽Rt△CBD,∴,∴,解得:QD=1.5米;(3)∵Rt△DFQ∽Rt△DAC,∴,∴,解得:AC=12米.答:路灯A的高度为12米.【点评】用到的知识点为:两角对应相等,两三角形相似;两三角形相似,对应边成比例.25.用小立方体搭一个几何体,从正面看和上面看的形状图如图所示,从上面看的小正方形中字母表示在该位置小立方块的个数.试回答下列问题:(1)a=3.b=1.c=1;(2)这个几何体至少需9个小立方块,最多需11个小立方块;(3)当d=e=1,f=2时,画出这个几何体从左面看的形状图.【分析】(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,那么a=3,b=1,c=1;(2)第一列小立方体的个数最多为2+2+2,最少为2+1+1,那么加上其他两列小立方体的个数即可;(3)左视图有3列,每列小正方形数目分别为3,1,2.【解答】解:(1)a=3,b=1,c=1,故答案为:3、1、1;(2)这个几何体最少由4+2+3=9个小立方块搭成;这个几何体最多由6+2+3=11个小立方块搭成,故答案为:9、11;(3)左视图如下:【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.新人教版九年级数学下册《第29章投影与视图》单元测试卷(解析版)一.选择题(共10小题,满分30分,每小题3分)1.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m 2.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化3.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.42314.下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.5.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是()A.与窗户全等的矩形B.平行四边形C.比窗户略小的矩形D.比窗户略大的矩形6.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近7.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()。

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章投影与视图含答案一、单选题(共15题,共计45分)1、一个几何体的三视图如图所示,则这个几何体是()A. B. C. D.2、如图是一个几何体的展开图,这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱3、如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图不变,左视图不变B.左视图改变,俯视图改变C.主视图改变,俯视图改变D.俯视图不变,左视图改变4、如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A. B. C. D.5、下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C. D.6、下面几何体的俯视图是()A. B.C. D.7、下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图()A. B. C. D.8、某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体().A.6个B.5个C.4个D.3个9、如图所示,6个大小相同的正方体搭成的几何体,其俯视图是( )A. B. C. D.10、如图,白纸上放有一个表面涂满染料的小正方体.在不脱离白纸的情况下,转动正方体,使其各面染料都能印在白纸上,且各面仅能接触白纸一次,则在白纸上可以形成的图形为()A.①②③B.①②C.①③D.②④11、如图所示物体的俯视图是()A. B. C. D.12、如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么这个立体图形不可能是()A. B. C. D.13、如图的几何体是由四个大小相同的正方体组成的,它的俯视图是()A. B. C. D.14、如图中物体的左视图是()A. B. C. D.15、由5个相同的立方体搭成的几何体如图所示,则它的左视图是()A. B. C. D.二、填空题(共10题,共计30分)16、三棱柱的三视图如图所示,在△EFG中,FG=18cm,EG=14cm,∠EGF=30°,则AB的长为________ cm.17、已知有一个立体图形由四个相同的小立方体组成。

浙江省中考数学复习第一部分考点研究第七单元图形的变化第29课时视图与投影试题(2021年整理)

浙江省中考数学复习第一部分考点研究第七单元图形的变化第29课时视图与投影试题(2021年整理)

浙江省2018年中考数学复习第一部分考点研究第七单元图形的变化第29课时视图与投影试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学复习第一部分考点研究第七单元图形的变化第29课时视图与投影试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学复习第一部分考点研究第七单元图形的变化第29课时视图与投影试题的全部内容。

第七单元图形的变化第29课时视图与投影(建议答题时间:30分钟)1。

(2017娄底)下列几何体中,主视图是中心对称图形的是()2。

(2017淄博)如图是一个圆柱体,则它的主视图是( )3. (2017济宁)下列几何体中,主视图、俯视图、左视图都相同的是()4。

(浙教九下第69页第1题改编)下图是一个正六棱柱的茶叶盒,其俯视图为()5. (2017烟台)如图所示的工件,其俯视图是( )6。

(2017哈尔滨)五个大小相同的正方体搭成的几何体如图所示,其主视图是( )7. (2017连云港)由6个大小相同的正方体搭成的几何体如图所示,比较它的主视图、左视图和俯视图的面积,则( )第7题图A。

三个视图的面积一样大B。

主视图的面积最小C。

左视图的面积最小D。

俯视图的面积最小8。

如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是( )9. (2017永州)湖南省第二次文物普查时,省考古研究所在冷水滩钱家州征集到一个宋代“青釉瓜棱形瓷执壶"(如下图所示),该壶为盛酒器,瓷质,侈口,喇叭形长颈,长立把,则该“青釉瓜棱形瓷执壶”的主视图是()10. (2017攀枝花)如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是( )A。

【初三数学】沈阳市九年级数学下(人教版)《第29章 投影与视图》单元小结及答案

【初三数学】沈阳市九年级数学下(人教版)《第29章 投影与视图》单元小结及答案

人教版九年级数学下册复习_第29章_投影与视图_单元测试卷(有答案)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 小亮在上午时、时、时、时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午时B.上午时C.上午时D.上午时2. 晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长B.变短C.先变长后变短D.先变短后变长3. 人离窗子越远,向外眺望时此人的盲区是()A.变大B.变小C.不变D.无法确定4. 下列投影中属于中心投影的是()A.阳光下跑动的运动员的影子B.阳光下木杆的影子C.阳光下汽车的影子D.路灯下行人的影子5. 为了看到柜顶上的物品,我们常常向后退几步或踮起脚,这其中的道理是()A.增大柜顶的盲区B.减小柜顶的盲区C.增高视点D.缩短视线6. 下列事例中,属于减少盲区的有()①站在阳台上看地面,向前走几步;②将眼前的纸片靠近眼睛;③将胡同的出口修成梯形状;④前方有看不见的地方,用望远镜看.A.个B.个C.个D.个7. 如图,模块①由个棱长为的小正方体构成,模块②-⑥均由个棱长为的小正方体构成.现在从模块②-⑥中选出三个模块放到模块①上,与模块①组成一个棱长为的大正方体.下列四个方案中,符合上述要求的是()A.模块②,④,⑤B.模块③,④,⑥C.模块②,⑤,⑥D.模块③,⑤,⑥8. 如图是由棱长为的正方体搭成的积木三视图,则图中棱长为的正方体的个数是()A.个B.个C.个D.个9. 在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱共有()A.箱B.箱C.箱D.箱10. 某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,是由小立方块搭成几何体的俯视图,上面的数字表示,该位置小立方块的个数画出主视图:________,左视图:________.12. 如图,迎宾公园的喷水池边上有半圆形的石头(半径为)作为装饰,其中一块石头正前方处有一彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为.如果同一时刻,一直立的杆子的影长为,则灯柱的高________.13. 如图所示,这是一个由小立方块塔成的几何体的俯视图,图中的数字表示在该位置的小立方块的个数,请你画出它的主视图和左视图.主视图________ 左视图________.14. 观察下列几何体,主视图、左视图和俯视图都是矩形的是________.15. 太阳光线可以看成________,像这样的光线所形成的投影称为________.16. 太阳光所形成的投影是________投影,皮影戏中的皮影是由________投影得到的.17. 如图,小军、小珠之间的距离为,他们在同一盏路灯下的影长分别为,,已知小军、小珠的身高分别为,,则路灯的高为________.18. 轮船及汽车的驾驶室设在前面是为了让驾驶员的盲区足够________.19. 身高相同的小明和小丽站在灯光下的不同位置,已知小明的投影比小丽的投影长,我们可以判定小明离灯光较________.20. 如图,是一个长方体的三视图(单位:),这个长方形的体积是________.三、解答题(本题共计7 小题,共计60分,)21. (6分)下面几何体的三种视图有无错误?如果有,请改正.22. (9分)画出如图所示的几何体的主视图、左视图、俯视图:23. (9分)如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.24. (9分)一个物体的主视图和俯视图如图所示,请根据你对这个物体的想象,画出它的一个左视图.25. (9分)如图,是由几个小立方块所搭几何体的从上面看的图形,图中数字表示所在位置小立方块的个数,请画出这个几何体的从正面看和从左面看的图形.26. (9分)如图,已知一个几何体的三视图和有关的尺寸如图所示,请写出该几何体的形状,并根据图中所给的数据求出表面积.27.(9分) 在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体的三视图.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有________个正方体只有一个面是黄色,有________个正方体只有两个面是黄色,有________个正方体只有三个面是黄色.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?参考答案与试题解析人教版九年级数学下册复习第29章投影与视图单元测试卷一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】D【考点】平行投影【解析】根据太阳光线与地平面的夹角的大小变化来判断向日葵影子的长度的大小.【解答】解:在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午时,向日葵的影子最长.故选.2.【答案】D【考点】中心投影【解析】由题意易得,小华离光源是由远到近再到远的过程,根据中心投影的特点,即可得到身影的变化特点.【解答】解:因为小华出去散步,在经过一盏路灯这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选.3.【答案】A【考点】视点、视角和盲区【解析】根据视角与盲区的关系来判断.【解答】解:如图:为窗子,,过的直线,通过想象我们可以知道,不管在哪个区域,离窗子越远,视角就会越小,盲区就会变大.4.【答案】D【考点】中心投影【解析】根据中心投影的性质,找到是灯光的光源即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有选项得到的投影为中心投影.故选:.5.【答案】B【考点】视点、视角和盲区【解析】根据实际生活为了看到柜顶上的物品,我们常常向后退几步或踮起脚,实际就是减小盲区,即可得出答案.【解答】解:∵为了看到柜顶上的物品,我们常常向后退几步或踮起脚,∴这其中的道理是:减小柜顶的盲区.故选:.6.【答案】B【考点】视点、视角和盲区【解析】视线到达不了的区域为盲区,仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小,由此可判断出答案.【解答】解:①站在阳台上看地面,向前走几步,视野扩大,减小了盲区,故正确;②将眼前的纸片靠近眼睛,眼睛的视野变小,增大了盲区,故错误;③将胡同的出口修成梯形状,视野扩大,减小了盲区,故正确;④前方有看不见的地方,用望远镜看,视野范围没变化,盲区没有减小,故错误.综上可得①③正确.故选.7.【答案】C【考点】简单组合体的三视图观察模块①可知,模块②补模块①上面的左边,模块③补模块①上面的右上角,模块⑥补模块①上面的右下角能够成为一个棱长为的大正方体.【解答】解:由图形可知模块②补模块①上面的左边,模块③补模块①上面的右上角,模块⑥补模块①上面的右下角,使得模块①成为一个棱长为的大正方体.故能够完成任务的为模块②,⑤,⑥.故选.8.【答案】C【考点】由三视图判断几何体【解析】易得这个几何体共有层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有个正方体,第二层有个正方体,那么共有个正方体组成.故选.9.【答案】B【考点】由三视图判断几何体【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题意知,第二行正方体的个数从左往右依次为:,,;第一行第一列有个正方体,共有个正方体.故选.10.【答案】B【考点】作图-三视图【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:.二、填空题(本题共计10 小题,每题3 分,共计30分)11.【答案】,【考点】作图-三视图由三视图判断几何体【解析】由已知条件可知,主视图有列,每列小正方数形数目分别为,,;左视图有列,每列小正方形数目分别为,.据此可画出图形.【解答】解:如图所示:12.【答案】【考点】中心投影【解析】如图,,,的弧长为,先利用弧长公式计算出,则,作于,则,,接着利用相似比得到,解得,然后计算即可.【解答】解:如图,,,的弧长为,设,则,解得,即,∴,作于,则,,∵同一时刻,一直立的杆子的影长为,∴,∴,∴,即灯柱的高为.故答案为.13.【答案】,【考点】作图-三视图由三视图判断几何体【解析】利用俯视图结合小立方块的个数分别得出主视图与左视图.【解答】解:如图所示:.14.【答案】【考点】简单几何体的三视图【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:、主视图为矩形,俯视图为圆,错误;、主视图为矩形,三视图为矩形,正确;、主视图为等腰梯形,俯视图为圆环,错误;、主视图为三角形,俯视图为有对角线的矩形,错误.故答案为.15.【答案】平行光线,平行投影【考点】平行投影【解析】根据平行投影的定义填空即可.【解答】解:平行光线;平行投影.16.【答案】平行,中心【考点】平行投影中心投影【解析】太阳光是平行光线所以在地面上的投影是平行投影,皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【解答】解:太阳光是平行光线所以在地面上的投影是平行投影,皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.故答案为:平行,中心.17.【答案】【考点】中心投影【解析】根据,得到,,根据相似三角形的性质可知,,即可得到结论.【解答】解:如图,∵,∴,,∴,,即,,解得:,答:路灯的高为.18.【答案】小【考点】视点、视角和盲区【解析】“轮船及汽车的驾驶室设在前面”是为了增加驾驶员的视角,减少盲区,从而更有利于驾驶;在高处俯瞰时,视角会增大,而盲区相应减小,故“站得高,看得远”也是为了增大视角,减少盲区.【解答】解:“轮船及汽车的驾驶室设在前面”这与“站得高,看得远”从数学原理上来说是为了增大视角,减小盲区,故答案为:小.19.【答案】远【考点】中心投影【解析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.【解答】解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.所以小明离灯光较远.20.【答案】【考点】由三视图判断几何体【解析】人教版九年级下册数学第29章投影与视图单元检测一、选择题1.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B. C.D.2.下列图形是正方体表面积展开图的是()A. B. C.D.3.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4B. 5C. 6D. 74.如图所示几何体的左视图是()A.B.C.D.5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.下列水平放置的几何体中,俯视图是矩形的是()A. 圆柱B. 长方体C. 三棱柱D. 圆锥7.下列四个几何体中,左视图为圆的是()A. B. C.D.8.下列立体图形中,俯视图是正方形的是()A. B. C.D.9.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A. 1B. 2C. 3D. 410.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C.D.二、填空题11.直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .12.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是________13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________m2.(结果保留π)15.皮影戏中的皮影是由投影得到的________ .16.三棱柱的三视图如图所示,EFG中,EF=10cm,EG=16cm,∠EGF=30°,则AB的长为________cm .17.某长方体包装盒的展开图如图所示,如果长方体盒子的长比宽多4cm,则这个包装盒的体积是________ cm3.18.如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y的值为________.三、解答题19.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).20.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)21.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.22.观察:下图中的几何体是由若干个完全相同的小正方体搭成的.(1)画出几何体的主视图,左视图,俯视图;(2)能移走一个小正方体使它的三个视图都不变吗?23.如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?24. 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题1.A2.D3.B4.B5.A6.B7. D8.B9.C 10.A二、填空题11.;(3.75,0)12.5 13.48π 14.600π 15.中心投影16.8 17.90 18. 11三、解答题19.解:答案如下:20.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:21.解:22.(1)(2)去掉粉红色的立方体,三视图不变23.解:(1)如图所示:(2)(2×2)×(6×2+6×2+5×2+4)=4×38=152(平方厘米).故该几何体的表面积是152平方厘米.24.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.人教版九年级数学下册第29章投影与视图单元评估检测试题(有答案)一、单选题(共10题;共30分)1.(2016•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A. B. C. D.2.如图是某几何题的三视图,下列判断正确的是()A. 几何体是圆柱体,高为2B. 几何体是圆锥体,高为2C. 几何体是圆柱体,半径为2D. 几何体是圆锥体,半径为23.如图,这是一个机械模具,则它的主视图是()A. B. C.D.4.如图,下列水平放置的几何体中,左视图不是长方形的是()A. B. C.D.5.如图,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的长刚好是自己的身高,已知小颖的身高为1.5米,那么路灯A的高度AB为()A. 3米B. 4.5米C. 6米 D. 8米6.下列几何体是由4个相同的小正方体搭成的,其中左视图和主视图不相同的是()A. B. C.D.7.下列几何体中,正视图、左视图、俯视图完全相同的是()A. 圆柱B. 圆锥C. 棱锥D. 球8.(2016•惠安县二模)下列四个图形中,是三棱锥的表面展开图的是()A. B. C. D.9.如图,是一个用若干个相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是()A. 2B. 3C. 4D. 510.一个几何体的三视图如图所示,则该几何体外接球的表面积为()A. 4π/3B. 8π/3C. 16π/3D. π/3二、填空题(共10题;共30分)11.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B内的数为________.12.将如图所示的平面展开图折叠成正方体,则a对面的数字是________.13.如图两个图形分别是某个几何体的俯视图和主视图,则该几何体是________.14.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是________.15.在市委、市政府的领导下,全市人民齐心协力,努力将我市创建为“全国文明城市”,为此学生小红特制了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字所对的面上标的字应是________ .16.将图所示的Rt ABC绕AB旋转一周所得的几何体的主视图是图中的________(只填序号).17.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则从上面看到的该几何体的形状图的面积是________ .18.如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有________ 个.19.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为________ cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共8题;共60分)21.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.22.连一连:请在第二行图形中找到与第一行几何体相对应的表面展开图,并分别用连接线连起来.23.如图,这是一个由大小相等的正方体堆成的几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请你画出它的主视图和左视图.24.如图所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积.25.如图是由相同的5个小正方体组成的几何体,请画出它的三种视图,若每个小正方体的棱长为a,试求出该几何体的表面积.26.如图,是由几个相同的小立方块搭成的几何体从正面、左面看到的图形,问这个几何体有几个小立方块?27.张师傅根据某几何体零件,按1:1的比例画出准确的三视图(都是长方形)如图,已知EF=4cm,FG=12cm,AD=10cm.(1)说出这个几何体的名称;(2)求这个几何体的表面积S;(3)求这个几何体的体积V.28.如图,图1为一个长方体,AB=AD=16,AE=6,图2为左图的表面展开图,请根据要求回答问题:(1)面“学”的对面是面什么?(2)图1中,M、N为所在棱的中点,试在图2中画出点M、N的位置;并求出图2中ABN 的面积.答案解析部分一、单选题1.【答案】A2.【答案】A3.【答案】C4.【答案】B5.【答案】B6.【答案】B7.【答案】D8.【答案】A9.【答案】C10.【答案】C二、填空题11.【答案】212.【答案】-113.【答案】圆柱14.【答案】515.【答案】城16.【答案】②17.【答案】318.【答案】519.【答案】2.520.【答案】54三、解答题21.【答案】22.【答案】解:如图所示:23.【答案】24.【答案】解:(1)这个立体图形是直三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.25.【答案】解:该几何体的三种视图如图所示;,或表表26.【答案】解:搭这样的几何体最少需要4+1=5个小正方体,最多需要6+1=7个小正方体,故可能有5或6或7个小正方体.27.【答案】解:(1)由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为长方形可得这个几何体是长方体;(2)由图可知,长方体的长为12cm,宽为4cm,高为10cm,则这个长方体的表面积S=2(12×4+12×10+4×10)=416(cm2);(3)这个几何体的体积V=12×4×10=480(cm3).28.【答案】解:(1)正方体的表面展开图,相对的面之间一定相隔一个正方形,“学”与“国”是相对面,“叶”与“际”是相对面,“枫”与“校”是相对面,答:面“学”的对面是面国。

【初三数学】南京市九年级数学下(人教版)《第29章 投影与视图》单元小结(含答案解析)

【初三数学】南京市九年级数学下(人教版)《第29章 投影与视图》单元小结(含答案解析)

人教版九年级下册数学《第29章投影与视图》单元测试卷(解析版)一.选择题(共10小题)1.如图,下列图形从正面看是三角形的是()A.B.C.D.2.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③3.如图,下面几何体,从左边看到的平面图形是()A.B.C.D.4.如图,是由若干个大小相同的正方体搭成的几何体的俯视图,其中小正方形中的数字表示该位置上的正方体的个数,则这个几何体的左视图是()A.B.C.D.5.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A.4B.5C.6D.76.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②8.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.9.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.10.木棒长为1.2m,则它的正投影的长一定()A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m二.填空题(共5小题)11.请写出一个三视图都相同的几何体:.12.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是.13.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要个小立方块.14.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.15.如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为.三.解答题(共4小题)16.如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的上数,请你画出它从正面和从左面看得到的平面图形.17.已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.18.(1)由大小相同的小立方块搭成的几何体如下图,请在下图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.19.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)2019年人教版九年级下册数学《第29章投影与视图》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,下列图形从正面看是三角形的是()A.B.C.D.【分析】分别写出各选项中几何体的从正面看到的图形,进一步选择答案即可.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握简单几何体的特征.2.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.如图,下面几何体,从左边看到的平面图形是()A.B.C.D.【分析】根据由已知条件可知,左视图有2列,每列小正方形数目分别为3,1,据此即可判断.【解答】解:已知条件可知,左视图有2列,每列小正方形数目分别为3,1.故选:C.【点评】本题主要考查了画实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.4.如图,是由若干个大小相同的正方体搭成的几何体的俯视图,其中小正方形中的数字表示该位置上的正方体的个数,则这个几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.由图示可得左视图有3列,每列小正方形数目分别为3,2,1.【解答】解:从左面看易得第一层有3个正方形,第二层最左边有2个正方形,第三层左边有1个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A.4B.5C.6D.7【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.【解答】解:几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故选:B.【点评】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.6.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.8.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.9.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选:A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.10.木棒长为1.2m,则它的正投影的长一定()A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m【分析】投影线垂直于投影底幕面时,称正投影,根据木棒的不同位置可得不同的线段长度.【解答】解:正投影的长度与木棒的摆放角度有关系,但无论怎样摆都不会超过1.2 m.故选:D.【点评】考查正投影的定义,注意同一物体的所处的位置不同得到正投影也不同.二.填空题(共5小题)11.请写出一个三视图都相同的几何体:球(或正方体).【分析】三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.【解答】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为:球(或正方体).【点评】考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.12.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,同时考查了面积的计算.13.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要14个小立方块.【分析】从主视图上弄清物体的上下和左右形状,从左视图上弄清楚物体的上下和前后形状,综合分析,即可得出答案.【解答】解:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.14.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体略.【分析】由左视图可以知道,左边应该为三个小立方体,且在正前方,添加即可.【解答】解:【点评】此题主要考查三视图的画图、学生的观察能力和空间想象能力.15.如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为8m.【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得=;即DC2=ED•FD,代入数据可得答案.【解答】解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=64,DC=8;故答案为:8m.【点评】本题考查了平行投影,通过投影的知识结合三角形的相似,求解高的大小;是平行投影性质在实际生活中的应用.三.解答题(共4小题)16.如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的上数,请你画出它从正面和从左面看得到的平面图形.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3,左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【解答】解:【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.17.已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为直三棱柱;(2)应该会出现三个长方形,两个三角形;(3)侧面积为3个长方形,它的长和宽分别为10厘米,4厘米,计算出一个长方形的面积,乘3即可.【解答】解:(1)直三棱柱;(2)如图所示:;(3)3×10×4=120cm2.【点评】用到的知识点为:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.18.(1)由大小相同的小立方块搭成的几何体如下图,请在下图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要5个小立方块,最多要7个小立方块.【分析】(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少个数和最多个数相加即可.【解答】解:(1)作图如下:;(2)解:由俯视图易得最底层有4个小立方块,第二层最少有1个小立方块,所以最少有5个小立方块;第二层最多有3个小立方块,所以最多有7个小立方块.故答案是:5;7.【点评】考查了作图﹣三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.19.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)【分析】(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函数即可求得AB的长;(2)在△AB1C1中,已知AB1的长,即AB的长,∠B1AC1=45°,∠B1C1A=30°.过B1作AC1的垂线,在直角△AB1N中根据三角函数求得AN,BN;再在直角△B1NC1中,根据三角函数求得NC1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.【解答】解:(1)AB=AC tan30°=12×=4(米).答:树高约为4米.(2)如图(2),B1N=AN=AB1sin45°=4×=2(米).NC1=NB1tan60°=2×=6(米).AC1=AN+NC1=2+6.当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB 的⊙A相切时影长最大)AC2=2AB2=;【点评】此题考查了平行投影;通过作高线转化为直角三角形的问题,期末复习:人教版九年级数学下册第29章投影与视图单元检测试卷(解析版)一、单选题(共10题;共30分)1.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A. 1.5B. 2C. 2.5D. 32.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A. B. C.D.3.如图,下列几何体是由4个相同的小正方体组合而成的,从左面看得到的平面图形是下列选项中的()A. B. C.D.4.已知某几何体的一个视图(如图),则此几何体是()A. 正三棱柱B. 三棱锥C. 圆锥D. 圆柱5.(2017•镇江)如图是由6个大小相同的小正方体组成的几何体,它的主视图是()A. B. C.D.6.如图是由几个相同的小立方块搭成的几何体的三视图,则这个几何体的小立方块的个数是()A. 4个B. 5个C. 6个D. 7个7.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A. 4个B. 5个C. 6个D. 7个8.如图所示,是一个空心正方体,它的左视图是()A. B. C.D.9.由n个大小相同的小正方形搭成的几何体的主视图和左视图如图所示,则n的最大值为()A. 11B. 12C. 13D. 1410.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A. B. C.D.二、填空题(共10题;共30分)11.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是________.12.圆锥的底面半径为5,侧面积为60π,则其侧面展开图的圆心角等于________.13.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有 ________种拼接方法.14.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为________ cm2.15.在市委、市政府的领导下,全市人民齐心协力,努力将我市创建为“全国文明城市”,为此学生小红特制了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字所对的面上标的字应是________ .16.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.17.侧面可以展开成一长方形的几何体有________;圆锥的侧面展开后是一个________;各个面都是长方形的几何体是________;18.主视图、俯视图和左视图都是正方形的几何体是________19.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是________.20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共8题;共60分)21.如图为7个正方体堆成的一个立体图形,分别画出从正面、左面、上面看这个几何体所看到的图形.22.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.23.画出如图所示图形从正面、从左面和从上面看到的形状图.24.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出x ﹣y的值.25.如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?26.如图是某种几何体的三视图,(1)这个几何体是什么;(2)若从正面看时,长方形的宽为10m,高为20m,试求此几何体的表面积是多少m2?(结果用π表示).27.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图).28.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的侧面积.答案解析部分一、单选题1.【答案】D【考点】几何体的展开图【解析】【解答】半径为6的半圆的弧长是6π,根据圆锥的底面周长等于侧面展开图的扇形弧长,得到圆锥的底面周长是π,根据弧长公式有2πr=6π,解得:r=3,即这个圆锥的底面半径是3.故答案为:D.【分析】半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.2.【答案】D【考点】简单组合体的三视图【解析】【解答】从左边看第一层是三个小正方形,第二层左边一个小正方形,故答案为:D.【分析】其左视图应该是3列小正方形,左边第一列是3个,第二,第三两列分解是一个。

(最新)部编人教版数学九年级下册《第29章 投影与视图》综合测试题》(含答案解析)

(最新)部编人教版数学九年级下册《第29章 投影与视图》综合测试题》(含答案解析)

第二十九章投影与视图一、选择题1.如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A.主视图改变,俯视图改变B.左视图改变,俯视图改变C.俯视图不变,左视图改变D.主视图不变,左视图不变2.如图是某零件的三视图,根据图中数据,该零件的体积为( )A.40πB.50πC.90πD.130π3.一根电线杆的接线柱部分AB在阳光下的投影CD的长为1.2,太阳光线与地面的夹角∠ACD=60°,则AB的长为( )A. 12B. 0.6C.D.4.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.5.如图所示是一天中不同时刻直立的灯杆在阳光下形成的影长,规定各图向右为正东方向,将各图按时间顺序排列正确的是( )A.②④①③B.③①④②C.②④③①D.①③②④6.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是( )A.①②B.①③C.②③D.③7.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是14,则排球的直径是( )A. 7 cmB. 14 cmC. 21 cmD. 21cm8.下列几何体中,其主视图为三角形的是( )A.B.C.D.9.如图所示,该几何体的左视图是( )A.B.C.D.10.如下图,直角梯形ABCD中,将直角梯形ABCD绕边AD旋转一周,从上面看所得几何体的平面图形是( )A.B.C.D.二、填空题11.如图,是小明在一天中四个时刻看到的一棵树的影子的俯视图,请你将它们按时间的先后顺序进行排列________.12.图中三视图对应的正三棱柱是___________.13.为了测量操场中旗杆的高度,小明学习了“太阳光与影子”,设计了如图所示的测量方案,根据图中标示的数据可知旗杆的高度为________.14.如图,是一个野营的帐篷,它可以看成是一个________;按此图中的放置方式,那么这个几何体的主视图是什么图形?________.15.电影院的座位排列时,后一排总比前一排高,并且每一横排呈圆弧形,这是为了____________.16.如图是一个包装盒的三视图,则这个包装盒的体积是________.17.如图,请写出图1,图2,图3是从哪个方向可到的:图1________;图2________;图3________.18.如图,正三棱柱的俯视图是________.19.如图,小丽站在30米高的楼顶远眺前方的广场,15米处有一个高为5米的障碍物,那么离楼房________的范围内小丽看不见.20.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要________个小立方块.最终搭成的长方体的表面积是________.三、解答题21.如图是某比赛场馆的平面图,根据距离比赛场地的远近和视角的不同,将观赛场地划分成A、B、C三个不同的票价区.其中与场地边缘MN的视角大于或等于45°,并且距场地边缘MN的距离不超过30 m 的区域划分为A票区,B票区如图所示,剩下的为C票区.(π取3)(1)请你利用尺规作图,在观赛场地中,作出A票区所在的区域(只要作出图形,保留作图痕迹,不要求写作法);(2)如果每个座位所占的平均面积是0.8平方米,请估算A票区有多少个座位.22.我们坐公共汽车下车后,不要从车前车后猛跑,为什么?23.如图,两棵树的高度分别为AB=6 m,CD=8 m,两树的根部间的距离AC=4 m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6 m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?24.操场上有三根测杆AB,MN和XY,MN=XY,其中测杆AB在太阳光下某一时刻的影子为BC(如图中粗线).(1)画出测杆MN在同一时刻的影子NP(用粗线表示),并简述画法;(2)若在同一时刻测杆XY的影子的顶端恰好落在点B处,画出测杆XY所在的位置(用实线表示),并简述画法.25.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)26.如图:公路旁有两个高度相等的路灯AB、CD.数学老师杨柳上午上学时发现路灯B在太阳光下的影子恰好落到里程碑E处,他自己的影子恰好落在路灯CD的底部C处.晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在里程碑E处.(1)在图中画出杨老师的位置(用线段FG表示),并画出光线,标明(太阳光、灯光);(2)若上午上学时候高1米的木棒的影子为2米,杨老师身高为1.5米,他离里程碑E恰5米,求路灯高.27.看教室黑板上的同一幅画,是离黑板近,视角大;还是离黑板远,视角大呢?是离黑板近看得清还是远看得清呢?由此你可以得出一个什么样的结论?28.如图所示,分别是两棵树及其影子的情形(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形.(2)请画出图中表示小丽影长的线段.(3)阳光下小丽影子长为1.20 m树的影子长为2.40 m,小丽身高1.88 m,求树高.答案分析1.【答案】D【分析】将正方体①移走前的主视图为第一层有一个正方形,第二层有四个正方形,没有改变.将正方体①移走前的左视图为第一层有一个正方形,第二层有两个正方形,没有发生改变.将正方体①移走前的俯视图为第一层有四个正方形,第二层有两个正方形,发生改变.故选D.2.【答案】B【分析】易得此几何体为空心圆柱,圆柱的体积=底面积×高,把相关数值代入即可求解.观察三视图发现该几何体为空心圆柱,其内圆半径为2,外圆半径为3,高为10,所以其体积为10×(π×32-π×22)=50π,故选B.3.【答案】C【分析】作BE∥CD,则有平行四边形CDBE.∴BE=CD=1.2,∠AEB=∠ACD=60°.∵tan 60°=AB∶BE,∴AB=tan 60°×BE=×1.2=.故选C.4.【答案】D【分析】从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选D.5.【答案】B【分析】太阳从东方升起最后从西面落下,木杆的影子开始时应该在西面,随着时间的变化影子逐渐的向北偏西,南偏西,正东方向的顺序移动,故它们按时间先后顺序进行排列为③①④②,故选B.6.【答案】D【分析】从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选D.7.【答案】C【分析】如图,点A与点B为太阳光线与球的切点,则AB为排球的直径,CD=AB,CE=14cm,在Rt△CDE中,sin E=,所以CD=14·sin 60°=14×=21,即排球的直径为21 cm故选C.8.【答案】D【分析】A.圆柱的主视图为矩形,∴A不符合题意;B.正方体的主视图为正方形,∴B不符合题意;C.球体的主视图为圆形,∴C不符合题意;D.圆锥的主视图为三角形,∴D符合题意.故选D.9.【答案】D【分析】在三视图中,实际存在而被遮挡的线用虚线表示,故选D.10.【答案】D【分析】易得这个几何体为圆台,从上面看可得到两个同心圆.故选D.11.【答案】④②①③【分析】西为④,西北为②,东北为①,东为③,故其按时间的先后顺序为④②①③.12.【答案】正三棱柱【分析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定正三棱柱.13.【答案】6 m【分析】设旗杆高度为x m,由题意得出=,解得x=6,故旗杆的高度为6 m.故答案为6 m.14.【答案】三棱柱三角形【分析】按照给出的照片,野营的帐篷,它可以看成是一个三棱柱,如图摆放三棱柱的主视图是三角形.15.【答案】为了增加视野,后面的观众看清屏幕,保证同一排上的人看屏幕的视角相等【分析】电影院的座位排列时,后一排总比前一排高是为了增加视野,后面的观众看清屏幕,每一横排呈圆弧形是利用圆周角相等,保证同一排上的人看屏幕的视角相等.故答案为了增加视野,后面的观众看清屏幕,保证同一排上的人看屏幕的视角相等.16.【答案】2 000π【分析】综合三视图,可以得出这个几何体应该是个圆柱体,且底面半径为10,高为20.因此它的体积应该是π×10×10×20=2 000π.故答案为2 000π.17.【答案】左面上面前面【分析】从左面看是一个三角形、一个长方形,从上面看是一个圆形、一个长方形;从正面看是一个三角形、一个圆形,故答案为左面,上面,前面.18.【答案】正三角形【分析】从正三棱柱的上面看:可以得到一个正三角形,故答案为正三角形.19.【答案】大于15米小于18米.【分析】由题意,得盲区为BD,设BD=x,则BC=x+15,∴=,解得x=3,∴在大于15米小于18米的范围内小丽看不见.故答案为大于15米小于18米20.【答案】26 56【分析】由俯视图,易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,其小正方块分布情况如下:那么共有7+2+1=10个几何体组成.若搭成一个大长方体,共需3×4×3=36个小立方体,所以还需36-10=26个小立方体,最终搭成的长方体的表面积是3×4×2+3×3×2+3×4×2=56,故答案为26,56.21.【答案】解(1)如图,以线段MN、EF与、所围成的区域就是所作的A票区.(2)连接OM、ON、OE、OF,设MN的中垂线与MN、EF分别相交于点G 和H.由题意,得∠MON=90°.∵OG⊥MN,OH⊥EF,OG=OH=15,∴∠EOF=∠MON=90°.∴r==15.∴SA=(S扇形FOM+S扇形EON)+(S△OMN+S△EOF)=πr2+r2≈1 125(米2).∴1125÷0.8≈1 406.∴A票区约有1 406个座位.【分析】(1)以M、N为圆心,30为半径交于O点如图以线段MN、EF 与、所围成的区域就是所作的A票区.(2)求座位就是求三角形EOF,MON和扇形FOM和EON的面积和.那么先求出扇形的半径即可.22.【答案】解因为汽车司机的视线在车前车后有看不见的地方,即盲区.汽车前进或倒退时,在车前或车后走很容易出危险.【分析】根据汽车司机的视线在车前车后有看不见的地方,很容易出危险,得出坐公共汽车下车后,不要从车前车后猛跑.23.【答案】解设FG=x米.那么FH=x+GH=x+AC=x+4(米),∵AB=6 m,CD=8 m,小强的眼睛与地面的距离为1.6 m,∴BG=4.4 m,DH=6.4 m,∵BA⊥PC,CD⊥PC,∴AB∥CD,∴FG∶FH=BG∶DH,即FG·DH=FH·BG,∴x×6.4=(x+4)×4.4,解得x=8.8(米),因此小于8.8米时就看不到树CD的树顶D.【分析】根据盲区的定义结合图片,我们可看出在FG之间时,是看不到树CD的树顶D的.因此求出FG就是本题的关键.已知了AC的长,BG、DH的长,那么可根据平行线分线段成比例来得出关于FG、FH、BG、DH的比例关系式,用FG表示出FG后即可求出FG的长.24.【答案】解(1)连接AC,过点M作MP∥AC交NC与P,则NP为MN的影子;(2)过B作BX∥AC,且BX=MP,过X作XY⊥NC交NC与Y,则XY即为所求.【分析】(1)过物体顶点作光线的平行线得到物体的平行投影;(2)根据平行投影中物体与投影面平行时的投影是全等的可找到XY 的位置.25.【答案】解(1)AB=AC tan 30°=12×=4(米).答:树高约为4米.(2)如图(2),B 1N=AN=AB1sin 45°=4×=2(米).NC 1=NB1tan 60°=2×=6(米).AC 1=AN+NC1=2+6.当树与地面成60°角时,影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB的⊙A相切时影长最大)AC 2=2AB2=8.【分析】(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函数即可求得AB的长;(2)在△AB1C1中,已知AB1的长,即AB的长,∠B1AC1=45°,∠B1C1A =30°.过B1作AC1的垂线,在直角△AB1N中根据三角函数求得AN,BN;再在直角△B1NC1中,根据三角函数求得NC1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.26.【答案】解(1)如图:(2)∵上午上学时候高1米的木棒的影子为2米,杨老师身高为1.5米,∴杨老师的影长CF为3米,∵GF⊥AC,DC⊥AC,∴GF∥CD,∴△EGF∽△EDC,∴=,∴=,解得CD=2.4.答:路灯高为2.4米.【分析】(1)作出太阳光线BE,过点C作BE的平行线,与DE的交点即为杨老师的头顶所在;(2)易得杨老师的影长,利用△EGF∽△EDC可得路灯CD的长度.27.【答案】解根据视角的定义可得:离黑板近视角大,离黑板近看得清.结论:视角大,看得清.【分析】人眼到视平面的距离视固定的(视距),视平面左右两个边缘到人眼的连线得到的角度就是视角.28.【答案】解(1)如图所示:甲图反映了阳光下的情形,乙图反映了路灯下的情形;(2)如图所示,AB,CD是小丽影长的线段;(3)∵阳光下小丽影子长为1.20 m,树的影子长为2.40 m,小丽身高1.88 m,设树高为x m,∴=,解得x=3.76,答:树的高度为3.76 m.【分析】(1)利用太阳光线是平行光线与路灯的光线是从一个点发出进而得出答案;(2)结合光线的照射不同得出小丽影长的线段;(3)利用同一时刻太阳照射影长与实际长度比值相等进而得出答案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分考点研究
第七单元图形的变化
第29课时视图与投影
浙江近9年中考真题精选(2009〜2017)),)
命题点1)三视图的判断
常见几何体的三视图(杭州2016.3,台州2考,绍兴2012.4)
1. (2013台州2题4分)有一篮球如图放置,其主视图为()
2. (20 16杭州3题3分)下列选项中,如图所示的圆柱的三视图画法正确的是
主视图点视图
O二
O
條视图俯现图
A H
主视图点视图
O O O

俯视團
C I)
3. (2017 丽水3题3分)
第3题图
如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A. 俯视图与主视图相同
主视方向
类型一
第丨题图A R C I)
第2题图
B.
左视图与主视图相同
C. 左视图与俯视图相同
D. 三个视图都相同
4. (2015台州2题4分)下列四个几何体中,左视图为圆的是()
类型二常见几何体组合体的三视图
(台州2017.2,温州2考)
5. (2017台州2题4分)如图所示的工件是由两个长方体构成的组合体,则它的主视
图是()
7. (2017宁波5题4分)如图所示的几何体的俯视图为()
8. (2016金华4题3分)从一个边长为3 cm的大立方体挖去一个边长为 1 cm的小正方体,得到的几何体如图所示,则该几何体的左视图正确的是()
9. (2016 衢州3题3分)如图是两个小正方体和一个圆锥体组成的立体图形,其俯视
图是()
6. (2015温州2题4分)将一个长方体内部挖去一个圆柱(如图所示),它的主视图是
W 1^
第7题图 A B (: I)
A B C D
第亍罐图C
主视方働 A B C
T)
第舀題图
第K题图
类型三 小立方块组合体的三视图(台州3考,绍兴4考)
10. (2017 绍兴3题4分)如图的几何体由五个相同的小正方体搭成,它的主视图是
11. (2016台州2题4分)如图所示几何体的俯视图是 (

rrfl rrfi B 书
第I 1题图 A B
C I )
__________ ',命题点 2) 三视图的还原及其相关计算 (杭州2考)
12. (2010杭州5题3分)若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是 正方形和正三角形,则左视图是
( )
A.矩形
B.正方形
C.菱形
D.正三角形
13. (2014杭州2题3分)已知某几何体的三视图如图所示 (单位:cm ),则该几何体的
侧面积等于(
)
2
A. 12 n cm 2
C. 24 n cm
cm
B. 15 n cm
第9题图
A
B CD
主视方I 筍 第10题图
2
第13题图
14.
(2013杭州
8题3分)如图是某几何体的三视图,则该几何体的体积是
h—12 —*11
1
主/见團左稅图
第14题图
A. 18 3
B. 54 3
C. 108 3
D. 216 3
命题点3)图形的展开与折叠(杭州2012.15,温州2013.3,绍兴2016.4)
15. (2016绍兴4题4分)如图是一个正方体,则它的表面展开图可以是
16. (2013宁波9题4分)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠, 可以围成一个封闭的长方体包装盒的是()
17. (2012杭州15题4分)已知一个底面为菱形的直棱柱,高为10 cm,体积为150 cm?, 则这个棱柱的下底面积为_________ cm2;若该棱柱侧面展开图的面积为200 cm2,记底面菱形的顶点依次为A B、C、D, AE是BC边上的高,则CE的长为___________ cm.
答案
1. B
2. A
3. B
4. D
5. A
6. A
7. D【解析】该几何体为正六棱柱中间挖去一个圆柱,所以俯视图是正三角形中间有一个圆,故选 D.
8. C 【解析】左视图是从物体左面看所得到的图形•从左面看可得:右上角有一个边长为1 cm 的小正方形,由于从左面看不到挖掉的小正方体,所以用虚线画小正方形,
第15總图A
9. C 【解析】找 到从上面看所得到的图形即可,注意所有的看得到的棱都应表现在 俯视图中•从上面看,圆锥看见的是圆和点,两个正方体看见的是两个正方形•故选
C. 10. A
【解析】从正面看,下层是三个小正方形,上层只有最左侧有正方形,故
A
项符合.
11. D
【解析】俯视图是从上往下看得到的图形,按照这个方法得出俯视图一行三
列,故答案为D.
12. A
【解析】三棱柱的左视图的高一定是棱长,而宽等于俯视图正三角形的高,
这个高一定小于棱长,故左视图为矩形.
13. B
【解析】本题考查三视图的还原及其相关计算.根据该几何体的三视图可判
断该几何体为一个圆锥. 由俯视图和主视图可知其底面半径为 3,高为4,进而利用勾股定 理可求的母线长I =,『+ h 2= ,32 + 42= 5.由圆锥侧面积计算公式 S = n rl 得,S = 3X 5X
2
n = 15 n cm .
14. C
【解析】由这个几何体的三视图可知,这是一个正六棱柱,则该几何体的体
积等于底面积X 高,其中,底面是一个边长为
6的正六边形,6个边长为6的正六边形的
15. B
16. C 【解析】A 、剪去阴影部分 后,组成无盖的正方体,故此选项不合题意;
B 、
剪去阴影部分后,无法组成长方体,故此选项不合题意; C 剪去阴影部分后,能组成封闭
的长方体,故此选项符合题意; D 、剪去阴影部分后,无法组 成长方体,故此选项不合 题
意,故选C.
面积为:
6X g x 6 X 3 ,3 = 54 .3,高是 2,
V = 54 ,3X 2 = 108 , 3.
17. 15;1或9【解析】由题意可知,V= Sh,代入可得底面积为15 cm2,而200 cm?
为总的侧面积,则每一条底边所在的侧面积为50 cm2,因为高为10 cm,所以菱形底边长
为5 cm,而底面积为15 cm2,所以高AE= 3 cm.(1)如解图①,E在菱形内部EC= BO BE
BP寸AB二AE2=寸25二9 = 4,所以EO 1;(2)如解图②,E在菱形外部EC= BO BE EC =9.。

相关文档
最新文档