高电压技术第二章

合集下载

第二章习题和解答_高电压技术

第二章习题和解答_高电压技术

第二章习题和解答_高电压技术第二章气体介质的电气强度一、选择题1)SF6气体具有较高绝缘强度的主要原因之一是______。

A.无色无味性B.不燃性C.无腐蚀性D.电负性2)冲击系数是______放电电压与静态放电电压之比。

A.25%B.50%C.75%D.100%3)在高气压下,气隙的击穿电压和电极表面______有很大关系A.粗糙度B.面积C.电场分布D.形状4)雷电流具有冲击波形的特点:______。

A.缓慢上升,平缓下降B.缓慢上升,快速下降C.迅速上升,平缓下降D.迅速上升,快速下降5)在极不均匀电场中,正极性击穿电压比负极性击穿电压______。

A..小B.大C.相等D.不确定二、填空题6)我国国家标准规定的标准操作冲击波形成______s 。

7)极不均匀电场中,屏障的作用是由于其对______的阻挡作用,造成电场分布的改变。

8)下行的负极性雷通常可分为3个主要阶段:、、。

9)调整电场的方法:______电极曲率半径、改善电极边缘、使电极具有最佳外形三、计算问答题10)保护设备与被保护设备的伏秒特性应如何配合?为什么?11)某1000kV工频试验变压器,套管顶部为球形电极,球心距离四周墙壁均约5m,问球电极直径至少要多大才能保证在标准参考大气条件下,当变压器升压到1000kV额定电压时,球电极不发生电晕放电?12)一些卤族元素化合物(如SF6)具有高电气强度的原因是什么?第二章气体介质的电气强度一、选择题1、D2、B3、A4、C5、A二、填空题6、250/25007、空间电荷8、先导、主放电、余光9、增大三、计算问答题10、保护设备的伏秒特性应始终低于被保护设备的伏秒特性。

这样,当有一过电压作用于两设备时,总是保护设备先击穿,进而限制了过电压幅值,保护了被保护设备11、此球形电极与四周墙壁大致等距离,可按照上述的同心球电极结构来考虑。

变压器的球电极为同心球的内电极,四周墙壁为同心球的外电极。

高电压技术第二章(1)

高电压技术第二章(1)
出气体; 3. 溶解于油中的外来气体; 4. 由电场加速的电子碰撞液体分子,使液体分子解离产生气
体; 5. 电极上尖的或不规则的凸起物上的电晕放电引起液体气化
24
气体电介质
电介质 液体电介质
固体电介质 2
1 电介质的极化、电导和损耗 一.电介质的极化(dielectric polarization)
和介电常数 1. 极化:在外加电场的作用下,电介质中的正、负 电荷沿电场方向作有限位移或转向,形成电矩(偶 极矩)
3
2. 电介质的极化种类
电子式极化
E 0Βιβλιοθήκη E0电击穿:认为在电场作用下,阴极上由于强场发射或热发 射出来的电子产生碰撞电离形成电子崩,最后导致液体击 穿
23
气泡击穿:认为液体分子由电子碰撞而产生气泡,或在电 场作用下因其它原因产生气泡,由气泡内的气体放 电, 产生电和热而引起液体击穿。
液体中气泡产生的原因: 1. 油中易挥发的成分; 2. 阴极的强场发射或热发射的电子电流加热液体介质,分解
每个极性分子都是偶极子,具有一定的电矩,但当不存在 外电场时,这些偶极子因热运动而杂乱无序地排列着,宏观电 矩等于零,整个介质对外并不表现出极性
电极
电介质
U
出现外电场后偶极子沿
E
电场方向转动,作较有
规则的排列, 因而显出
极性,这种极化称为偶
U
极子极化或转向极化。
6
偶极子极化
E 0
E0
7
特点:存在于极性电介质中,极化所需时间较长,
i3
R3
16
3. 电介质在直流电压作用下的吸收现象
i
i i1 i2 i3
|| |
充吸 泄
电收 漏

高电压技术第二章-气体放电

高电压技术第二章-气体放电
当电子与气体分子碰撞时,不但有可能引起碰撞电离产生出 正离子和新电子,而且也可能会发生电子与中性分子相结合形成负 离子的情况(又称为:吸附效应[attachment])。 容易吸附电子形成负离子的 气体称为电负性气体,如氧、氯、 氟、水蒸气和六氟化硫气体等。 负离子的形成并未使气体 中带电粒子的数目改变,但却能 使自由电子数减少,因而对气体 放电的发展起抑制作用。
各种粒子在气体中运动时不断地互相碰撞,任一粒子在1cm的 行程中所遭遇的碰撞次数与气体分子的半径和密度有关。 单位行程中的碰撞次数n的倒数 长度。 即为该粒子的平均自由行程
处于电场中的带电质点,在电场E的作用下,沿电场方向不断得到加速并积 累动能。当具有的动能积累到一定数值后,在与其气体原子或分子发生碰撞时, 可以使后者产生游离。由碰撞而引起的游离称为碰撞游离。 电子在场强为E的电场中移过x距离时获得的动能为:
第二章 气体放电的基本物理过程
一、碰撞电离[ionization by collision] :
4 火花放电[spark discharge ] 定义:放电间隙反复击穿时,在气体间隙中形成贯通两极的断断续续的不稳
定的明亮细线状火花,这种放电形式称为火花放电。
在通常气压下,当在曲率不太大的冷电极间加高电压时,若电源供给的功率不太 大,就会出现火花放电,火花放电时,碰撞电离并不发生在电极间的整个区域内, 只是沿着狭窄曲折的发光通道进行,并伴随爆裂声。由于气体击穿后突然由绝缘 体变为良导体,电流猛增,而电源功率不够,因此电压下降,放电暂时熄灭,待 电压恢复再次放电。所以火花放电具有间隙性。雷电就是自然界中大规模的火花 放电。
第二章 气体放电的基本物理过程
B. 放电[discharge] 定义:放电指的是电气设备绝缘有电流流过的现象,从带电到不带电的过程。

高电压技术课件 第二章 气体放电的物理过程

高电压技术课件 第二章 气体放电的物理过程
有时电子和气体分子碰撞非但没有电离出新电子,反 而是碰撞电子附着分子,形成了负离子
有些气体形成负离子时可释放出能量。这类气体容易 形成负离子,称为电负性气体(如氧、氟、SF6等)
负离子的形成起着阻碍放电的作用
15
5、金属(阴极)的表面电离
阴极发射电子的过程 逸出功 :金属的微观结构 、金属表面状态
41
4、击穿电压、巴申定律
根据自持放电条件推导击穿电压 ,先推导 的计算式
设电子在均匀电场中行经距离x而未发生碰撞,则此时电子 从电场获得的能量为eEx,电子如要能够引起碰撞电离, 必须满足条件
eEx Wi 或 Ex Ui
只有那些自由行程超过xi=Ui/E的电子,才能与分子发生
碰撞电离
若电子的平均自由行程为,自由行程大于xi的概率为
正、负离子间的复合概率要比离子和电子间的复合概 率大得多。通常放电过程中离子间的复合更为重要
一定空间内带电质点由于复合而减少的速度决定于其 浓度
21
§2.2 气体放电机理
气体放电的概述 汤逊放电理论 流注放电理论
22
一、气体放电的概述
(一)气体放电的主要形式
根据气体压强、电源功率、电极形状等因素的不同 ,击穿后气体放电可具有多种不同形式。利用放电 管可以观察放电现象的变化
Ub
f
2
pS T
电子的质量远小于离子,所以电子的热运动速度很高 ,它在热运动中受到的碰撞也较少,因此,电子的扩 散过程比离子的要强得多
20
3、带电质点的复合
正离子和负离子或电子相遇,发生电荷的传递而互相 中和、还原为分子的过程
在带电质点的复合过程中会发生光辐射,这种光辐射 在一定条件下又可能成为导致电离的因素

高电压技术复习总结

高电压技术复习总结

第2章气体放点的基本物理过程(这章比较重要,要记得知识点很多,要认真看)在第二章标题下面有一句话“与固体和液体相比·········”(1.电离是指电子脱离原子的束缚而形成自由电子、正离子的过程.电离是需要能量的,所需能量称为电离能Wi(用电子伏eV表示,也可用电离电位Ui=Wi/e表示)2。

根据外界给予原子或分子的能量形式的不同,电离方式可分为热电离、光电离、碰撞电离(最重要)和分级电离。

3.阴极表面的电子溢出:(1)正离子撞击阴极:正离子位能大于2倍金属表面逸出功。

(2)光电子发射:用能量大于金属逸出功的光照射阴极板。

光子的能量大于金属逸出功. (3)强场发射:阴极表面场强达到106V/cm(高真空中决定性)(4)热电子发射:阴极高温4。

气体中负离子的形成:电子与气体分子或原子碰撞时,也有可能发生电子附着过程而形成负离子,并释放出能量(电子亲合能)。

电子亲合能的大小可用来衡量原子捕获一个电子的难易,越大则越易形成负离子。

负离子的形成使自由电子数减少,因而对放电发展起抑制作用。

SF6气体含F,其分子俘获电子的能力很强,属强电负性气体,因而具有很高的电气强度。

5.带点质点的消失:(1)带电质点的扩散:带电质点从浓度较大的区域向浓度较小的区域的移动,使带电质点浓度变得均匀.电子的热运动速度高、自由行程大,所以其扩散比离子的扩散快得多。

(2)带电质点的复合:带异号电荷的质点相遇,发生电荷的传递和中和而还原为中性质点的过程,称为复合。

带电质点复合时会以光辐射的形式将电离时获得的能量释放出来,这种光辐射在一定条件下能导致间隙中其他中性原子或分子的电离。

6。

气体间隙中电流与外施电压的关系:第一阶段:电流随外施电压的提高而增大,因为带电质点向电极运动的速度加快复合率减小第二阶段:电流饱和,带电质点全部进入电极,电流仅取决于外电离因素的强弱(良好的绝缘状态)第三阶段:电流开始增大,由于电子碰撞电离引起的电子崩第四阶段自持放电:电流急剧上升放电过程进入了一个新的阶段(击穿)外施电压小于U0时的放电是非自持放电.电压到达U0后,电流剧增,间隙中电离过程只靠外施电压已能维持,不再需要外电离因素.自持放电7.电子碰撞电离系数α:代表一个电子沿电力线方向行经1cm时平均发生的碰撞电离次数。

2高电压技术第二章

2高电压技术第二章

23
电子雪崩的示意图
d
-
-
-
+
24
电子崩的电荷分布
+ + + + + + + + + + +
+
+
+ + +
+
+ + + + + + +
-
-
-------- +
d
25
汤森德理论分析:
新产生的电子参加电离过程
1
e s
If s=10 Then es=2.2×104
26
汤森德理论分析:
碰撞电离系数
初 始 电 子 崩 的 方 向 流 注 发 展 的 方 向 41
流注理论
形成流注的条件:
初崩头部的电荷达到一定的数量,使电场得到足 够的畸变和加强并造成足够的空间光电离。一般认为 当S=20时便可以满足上述条件。
42
不均匀电场中气隙的放电特性
在大多数的电力工程绝缘结构中,电场都是不均匀的。
研究不均匀电场中气体放电的规律
这些光子在附近的气体中导致光电离,在空间产生 二次电子。它们在正空间电荷所畸变和加强了的电场的 作用下,又形成新的电子崩叫二次崩。
初 始 电 子 崩 的 方 向
流 注 发 展 的 方 向 40
流注理论
二次崩头部的电子跑向初崩的正空间负荷,与之汇 合成为充满正负带电粒子的混合通道。这个电离通道称 为流注。 流注导电性能良好,其端部又有二次崩留下的正电 荷,因此大大加强了前方的电场,促使更多的新电子崩 相继产生并与之汇合,从而使流注向前发展(阳到阴)。 到流注通道把两极接通时将导致间隙的完全击穿。

高电压技术-第二章-xueyd

高电压技术-第二章-xueyd
频率提高时,转向跟不上电场变化,极化率减小
有能量损耗
空间电荷极化
电子式、离子式、偶极子式极化的机理:都是由 带电质点的弹性位移或转向形成 空间电荷极化的机理:由带电质点(电子或正负 离子)的位移形成的。 空间电荷极化的过程:
多数绝缘结构中,电介质往往呈层式结构 电场作用下,带电质点位移时,可能被晶格缺陷捕获, 或在两层介质界面上堆积 形成电荷在介质空间的新分布,从而产生电矩。
夹层介质界面极化
一种典型的空间电荷极化 电荷在夹层界面上的堆积和等值电容增大 电荷的堆积是通过介质电导完成的 完成时间很长,几十秒~几分钟。
只有在低频下才有意义
有能量损耗
介电常数(1)
真空中的介电常数
D 0 8.854 *10 12 ( F / m) E
E为场强矢量,V/m D为电位移矢量,即电通量密度矢量,C/m2
被掩盖的气体放电
液体分子间存在“空穴”
油中易挥发的成分(自身蒸气)+溶于油中外来气体+碰撞分解物空穴(气 穴)
油分解和碰撞电离→离子浓度上升→离子电导电流上升→发热→形成 气泡 气泡电场强度大→气泡电离→电导率↑→电场分布畸变→ 气泡电子崩→崩头场强大→电、热作用下使油隙击穿 本质:油中气泡诱发,液体自身很难直接电离击穿
固体介质的表面电导:取决于表面吸附电杂质(水、污染 物等)的能力和分布状态
对应概念:体积电导 有时,表面电导远大于体积电导:表面的杂质膜电导很大
推论:测量泄漏电流和绝缘电阻时,须排除表面电导影响
介质电导在工程上的意义
多层介质中,需注意其绝缘配合,使电场分布合 理
电压的稳态分布与电导成反比 暂态过程与介电常数有关
介质损耗P不适合作为评价介质品 质好坏的标准。

2.高电压技术第二章讲稿

2.高电压技术第二章讲稿
14
(4). 夹层式极化
夹层式极化:由两层或多层不同材料组成的不均匀电介质, 叫做夹层电介质。由于各层的介电系数和电导系数不同,在电场 作用下, 各层中的电位,最初按介电系数分布 (即按电容分布), 以后逐渐过渡到按电导系数分布(即按电阻分布)。
此时,在各层电介质交界面上的电荷必然移动,以适应电位 的重新分布,最后在交界面上积累起电荷。这种电荷移动和积累, 称为夹层介质界面板化。
7
第一节 电介质的极化
二. 极化基本形式
➢ 电子式极化 ➢ 离子式极化 ➢ 偶极式极化 ➢ 空间电荷极化 ➢ 夹层式极化
8
第一节 电介质的极化
电子式极化 电介质中的带电质点在电场作用下沿电场方向 作有限位移。
9
电子式极化
+-
+
-
E=0
电子式极化
E
特点: 一是极化所需要的时间极短,约10-15S; 即它在各种频
24
3.吸收现象
R1
d1 1S
R2
d2 2S
C1
1 0 S d1
C
2
2 0S d2
1, 1, d1 2, 2, d2
R1 U1 R2 U2
C1
U1
U
C2 C1 C2
C2
U2
U
C1 C1 C2
U1 U
R1 R1 R2
U2
U
R2 R1 R2
25
3.吸收现象
i U
U
t
eT
Rr
r RC
C
R R1 R2
r
R1R 2 R1
R 2 C 1
C
2
2
R 1C
1
R 2C

《高电压技术》1-4章知识点总结ltt

《高电压技术》1-4章知识点总结ltt

第一章 电介质的极化电导及损耗1.电介质四种极化的基本含义及比较?答:①电子式极化:在外电场的作用下,介质原子中的电子运动轨道将相对于原子核发生弹性位移。

②离子位移极化:离子式结构化合物,出现外电场后,正负离子将发生方向相反的偏移,使平均偶极距不再为零。

③偶极子极化:极性化合物的每个极性分子都是一个偶极子,在电场作用下,原先排列杂乱的偶极子将沿电场方向转动。

④空间电荷极化:在电场作用下,带电质点在电介质中移动时,可能被晶格缺陷捕获或在两层介质的界面上堆积,造成电荷在介质空间中新的分布,从而产生电矩。

极化种类产生场合 所需时间 能量损耗 产生原因 电子式极化任何电介质 s 1510- 无 束缚电子运动轨道偏移 离子式极化离子式电介质 s 1310- 几乎没有 离子的相对偏移 转向极化 极性电介质 s 2101010--- 有偶极子的定向排列 空间电荷极化 多层介质交界面 s 210-~数分钟 有 自由电荷的移动2.电介质电导与金属电导有什么本质区别?答:金属导电的原因是自由电子移动;电介质通常不导电,是在特定情况下电离、化学分解或热离解出来的带电质点移动导致。

3..电介质中的能量损耗的基本概念,等效电路,向量图答:①电介质中在交变电场作用下,电能转变为其它形式的能,如热能、光能等,统称为介质损耗。

它是导致电介质发生热击穿的根源。

电介质在单位时间内消耗的能量称为电介质损耗功率,简称电介质损耗。

②等效电路:lk R 为泄漏电阻;lk I 为泄漏电流;g C 为介质真空和无损极化所形成的电容;g I 为流过g C 的电流;p C 为无损极化所引起的电容;pR 为无损极化所形成的等效电阻;p I 为流过p p C R -支路的电流,可以分为有功分量prI 和无功分量pc I 。

③向量图:g J 。

为真空和无损极化所引起的电流密度,为纯容性的;lk 。

J 为漏导引起的电流密度,为纯阻性的;p 。

J 为有损极化所引起的电流密度,它由无功部分pc 。

高电压技术-第二章.

高电压技术-第二章.

(1) 过程与自持放电条件
由于阴极材料的表面逸出功比气体分子的电离能 小很多,因而正离子碰撞阴极较易使阴极释放出电 子。此外正负离子复合时,以及分子由激励态跃迁 回正常态时,所产生的光子到达阴极表面都将引起
阴极表面电离,统称为 过程。 为此引入系数。
设外界光电离因素在阴极表面产生了一个自由电
但气体放电都有从电子碰撞电离开始发展到 电子崩的阶段。
1、放电的电子崩阶段 (1)非自持放电和自持放电的不同特点
宇宙射线和放射性物质的射线会使气体发生 微弱的电离而产生少量带电质点;另一方面、负 带电质点又在不断复合,使气体空间存在一定浓 度的带电质点。因此,在气隙的电极间施加电压 时,可检测到微小的电流。
自持放电条件为 γ (eαd −1) =1
(1-21)
γ :一个正离子撞击到阴极表面时产生出来的 二次电子数
α :电子碰撞电离系数 d :两极板距离
此条件物理概念十分清楚,即一个电子在自己进
入阳极后可以由α及γ过程在阴极上又产生一个新的替
身,从而无需外电离因素放电即可继续进行下去。
(2)汤逊放电理论的适用范围
为了分析碰撞电离和电子崩引起的电流,引入: 电子碰撞电离系数 α 。
α: 表示一个电子沿电场方向运动1cm的行程所完
成的碰撞电离次数平均值。
如图1-5为平板电极气 隙,板内电场均匀,设外 界电离因子每秒钟使阴极 表面发射出来的初始电子 数为n0。
由于碰撞电离和电子
崩的结果,在它们到达x处 时,电子数已增加为n,这 n个电子在dx的距离中又会 图1-5 计算间隙中电子数增长的示意图 产生dn个新电子。
1.1.1 带电质点的产生
气体放电是对气体中流通电流的各种形式统称。

高电压技术讲义第二章

高电压技术讲义第二章
由于通过介质的泄漏电流和有损极化使电介 质在交变电场作用下产生介质损耗,介质损耗 的大小用tgδ来表示。
可编辑ppt
32
工程上应用的变压器油中总是含有少量的 杂质,主要是水分和纤维等。水分和纤维的 相对介电常数比油的大,在外加电场作用下 很容易极化,因而在极间形成漏电大的通道, 即杂质小桥,这漏电大的通道发热使局部温 度升高,水分汽化而形成气体通道,气体通 道因碰撞游离而击穿,故变压器油的击穿是 用小桥理论来解释的。
=ε0A/d。
可编辑ppt
2
在两电极间加入厚度与
极间距相同的固体电介
质重新完成试验。发现
极板上的电量增加了Q’,
-+
Q=Q0+Q’ =εA/d 。问Q’
-+
这些电量是如何来的呢?
在电场的作用下,电 介质相对电极两面呈
用相对介电常数来描述
现电性的现象称为极 εγ =Q/Q0=(Q0+Q’)/Q0 化。
2、在交流及冲击电压作用下,多层串联电介
质是中先的缠场强介分电布常与数介小电的常数呢成?反比。
3、利用夹层极化可以判断绝缘受潮的情况。
可编辑ppt
8
常用电介质的介电常数
材料类别
气体介质
(标准大 气压条件
下)
中性 极性
液体介质
弱极性 极性 强极性
固体介质 极性
离子性
名称 空气/氮气
二氧化硫
变压器油/硅有机液 蓖麻油/氯化联苯
28
小结
在电场作用下,电介质中发生的物理现象可用 四个特性参数:介电常数、绝缘电阻率、介质 损耗角正切及绝缘强度来表征。前三个参数是 表征在较弱电场中的性能,绝缘强度是在强电 场中表征电介质性能的参数(电场的强弱是以 能否使电介质发生放电来区分的)。这四个参 数有三个是物理量,而tgδ是一个比值。

高电压技术讲义

高电压技术讲义

高电压技术发展趋势
智能化 智能电网和数字化转型
数据分析 大数据应用和分析
可再生能源 与可再生能源的集成
环保节能 环保与节能技术创新
高电压技术未来展望
随着电力系统的不断发展和社会需求的增加,高电压技术将继续担当重要 角色。未来的高压电网将更加智能化和可靠,支持更多可再生能源的接入, 同时也会注重环保和节能。
THANKS
感谢观看
高电压技术的重要性
能源传输和转换 发挥重要作用
推动科技进步 重要推动作用
提高电力系统效率 关键意义
提高系统稳定性 不可或缺
高电压技术的应用领域
电力输配电系统
01 主要应用领域
电力电子设备
02 广泛应用范围
高压设备
03 技术要求高
高电压技术的基本原理
电场概念
电场强度 电势差 电场线
配电系统结构
开关设备 变压器 电容器
定期维护和保养措施
定期巡检线路 清理杆塔及绝缘子
高电压输电线路技术的未来趋势
智能电网中的应用前景
01 高压输电线路智能化发展方向
城市化发展中的挑战与机遇
02 如何在城市中布设高压输电线路
可再生能源接入的创新方向
03 高压输电线路在可再生能源传输中的角色
总结
高电压输电线路技术的发展不仅涉及传统设备的优化,还需要结合新技术 的应用,以适应未来能源发展的需求。监测与维护工作的重要性不容忽视, 只有及时发现并处理问题,才能保障高压输电线路的稳定运行。
新能源领域应用前景
01 太阳能、风能、核能
智能电网发展机遇
02 智能化、信息化、互联互通
电气设备创新方向
03 节能环保、智能化设计、高效耐用

高电压技术(第二章)

高电压技术(第二章)
工程用变压器油中含有水分和纤维等杂质,由于它们的 r 很大
容易沿电场方向极化定向,排列成杂质小桥:
1. 如果杂质小桥尚未接通电极,则纤维等杂质与油串联,由于
度显著增高并引起电离,于是油分解出气体,气泡扩大,电 离增强,这样发展下去必然会出现由气体小桥引起的击穿。
纤维的 r大以及含水分纤维的电导大,使其端部油中电场强
Emax
利用系数: Eav r0 R = ln Emax R r0 r0
Emin
0
r0
三. 影响液体介质击穿电压的因素
1.电压形式的影响 击穿电压跟电压的作用时间和电压上升 率有关 2. 含水量、含气量 3. 温度
4. 杂质的影响
5. 油量的影响
水分和油温
Ub(kV)
悬浮状水滴在油中是十分有 40 害的,如右图,当含水量为 万 分之几时,它对击穿电压就有明 20 显的影响,这意味着油中已出现 悬浮状水滴;含水量达0.02%时 击穿电压已下降至约15kV,比 0 0.02 0.04 含水量(%) 不含水分时低很多 。含水量继 标准油杯实验 续增大击穿电压下降已不多,因为只有一定数量的水分能悬 浮于水中,多余的会沉淀到油底部。 潮湿的油由0℃开始 上升时,一部分水分从悬浮状态转为 害处较小的溶解状态,使击穿电压上升;超过80 ℃后,水开始 汽化,产生气泡,引起击穿电压下降,从而在60 ℃~80℃间出 现最大值
与周围环境温度无关。
2. 热击穿:由于固体介质内部热不稳定性造成。
电压作用下 介质损耗, 使介质发热 发热大于散 热时,介质温 度不断升高 介质分解、 熔化、碳化 或烧焦
热击穿
特点:
(1)在电压作用下,产生的电导电流和介质极化引起介质损耗, 使介质发热. (2)热击穿电压随环境温度的升高而下降,热击穿电压直接与 散热条件有关

高电压技术____课后答案

高电压技术____课后答案

第二章长线路中的暂态过程1、波阻抗与集中参数电阻有什么不同?答:线路波阻抗Z与数值相等的集中参数电阻相当,但在物理含义上是不同的,电阻要消耗能量,而波阻抗并不消耗能量,它反映了单位时间内导线获得电磁能量的大小。

2、冲击电晕对波过程有什么影响?为什么?答:冲击电晕增大导线有效半径,耦合系数得到增大;冲击电晕增大导线单位长度的对地电容C0,而不影响单位长度导线电感的大小,所以波阻抗减小(自波变,互波不变),波速减小;冲击电晕减小波的陡度、降低波的幅值特性,有利于防雷保护。

而采用分裂导线冲击电晕将减弱。

3、行波传到线路开路的末端时,末端电压如何变化?为什么?答:行波传到线路开路的末端时,即电压波为正的全反射,电流发生负的全反射,使末端的电压升高为入射电压的2倍。

从能量的角度解释,由于末端开路时,末端电流为零,入射波的全部能量转变为电场能量的缘故。

4、行波传到线路末端对地接有匹配电阻时,末端电压如何变化?为什么?答:线路末端接电阻R,且R=Z1时,反射电压为零,折射电压等于入射电压。

表明波到线路末端不发生反射,行波传到末端时全部能量都消耗在电阻R上了,这种情况称为阻抗匹配。

在进行高压测量时,在电缆末端接一匹配电阻,其值等于电缆波阻抗,就可以消除波传到电缆末端时的折、反射情况,从而正确的测量到来波的波形和幅值。

5、使用彼德逊法则的先决条件是什么?答:(1)波沿分布参数的线路射入;(2)波在该节点只有一次折、反射过程。

6、为什么一般采用并联电容、而不是串联电感的方法来降低来波陡度?答:都可以减少过电压波的波前陡度和降低极短过电压波的幅值,但是由于波刚传到电感时发生的正反射会使电感首端电压抬高,危及电感首端绝缘,所以一般采用并联电容、而不是串联电感的方法来降低来波陡度。

但有时也会利用串联电感来改善接前面的避雷器放电特性。

7、波产生损耗的因素:导线电阻引起损耗;导线对地电导引起损耗;大地电阻损耗;导线发生电晕引起损耗。

高电压技术第二章

高电压技术第二章
第二章 气体电介质的击穿特性
第二章 气体 电介质的击穿特性
要求
熟悉在不同电场中,不同电压性质下气 体间隙的击穿特性,能正确运用各种提 高气体间隙击穿电压的方法
第二章 气体电介质的击穿特性
知识点
• 气体中带电质点的产生与消失形式 • 汤逊理论、巴申定律、流注理论 • 极不均匀电场中的电晕放电和极性效应 • 冲击电压下间隙的放电时延和伏秒特性 • 提高气体间隙击穿电压的方法 • 绝缘子沿面放电的特点以及提高沿面闪络 电压的方法
第二章 气体电介质的击穿特性
管形母线
四分裂 导线
(a)
(b)
2-12线路中的防晕措施
(a)220kV管形母线;(b)500kV线路的四分裂导线
第二章 气体电介质的击穿特性
三、极不均匀电场中的极性效应
对于电极形状不对称的极不均匀电场间隙,如棒-板间 隙,棒的极性不同时,间隙的起晕电压和击穿电压各不 相同,这种现象称为极性效应。极性效应是不对称的极 不均匀电场所具有的特性之一。
带电质点的复合
带正、负电荷的质点相遇,发生电荷的传递、中和而还原成中 性质点的过程,称为复合。强烈的游离区通常强烈的复合区, 同时伴随着强烈的光辐射,这个区的光亮度也就大。
第二章 气体电介质的击穿特性
§ 2.2 均匀电场 中气体的击穿过程
内容
• 汤逊理论与巴申定律 • 流注理论
第二章 气体电介质的击穿特性
源 热游离
的 因气体分子热状态引起的游离称为热游离。实质
不 是碰撞游离和光游离,只是直接的能量来源不同。 同 表面游离
放在气体中的金属电极表面游离出自由电子的现
象称为表面游离
第二章 气体电介质的击穿特性
金属表面游离所需能量获得途径

高电压技术 二章

高电压技术 二章
△U=△τ(△ u/△τ)
击穿完成时间间隙上 的电压应为: U0+△U
u
△U
△U △U→0
U0 t
击穿电压和电压陡度的关系
1 伏秒特性:工程上用气隙出现的电压最大 值和放电时间的关系来表示气隙在冲击电 压下的击穿特性 2伏-秒特性曲线的得出: 保持一定的波形而逐级升高电压 a)峰值大的电压波加于间隙时,击穿常发生 在波前,取击穿时的电压值和实际作用时 间相交的那个点;
u0 t
2影响平均统计时延的因素: 1)电极材料; 2)外施电压; 3)短波光照射; 4)电场情况 3影响放电发展时间的主要因素: 1)间隙长短;2)电场均匀度;3)外施电压
短间隙且电场比较均匀: tf 较小
在很不均匀电场且长间隙中: tf 将占大部分。
外施电压越高,则放电发展越快, tf 也就越小

稍不均匀电场中的击穿电压
1. 不能形成稳定的电晕放电 2. 电场不对称时,极性效应不很明显 3. 直流、工频下的击穿电压(幅值)以及 50%冲击击穿电压都相同,击穿电压的 分散性也不大 4. 击穿电压和电场均匀程度关系极大, 电场越均匀,同样间隙距离下的击穿电 压就越高
球—球间隙,球—板间隙,同轴圆柱间隙
当d>D/4,大地对电场的畸变 作用使间隙电场分布不对称, Ub有极性效应
电场最强的电极为负极性时的 击穿电压略低于正极性时的 数值 同一间隙距离下,球电极直径 越大,由于电场均匀程度增 加,击穿电压也越高
3、极不均匀电场中 (1)直流电压下(有极性效应) 同样间隙距离下不同间隙类型的击穿电压比较: 负棒—正板 > 棒—棒 > 正棒—负板 (2)工频电压下(有极性效应,击穿电压峰值稍 低于直流击穿电压) 棒—板间隙的击穿总是在棒极性为正、电压达峰值 时发生。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.带电质点电场作用下流入电极并中 和电量

带电质点产生以后,在外电场作用下将作 定向运动,形成电流: 带电质点在一定的电场强度下运动达到某 种稳定状态,保持平均速度,即上述的带 电质点的驱引速度
电子迁移率比离子迁移率大两个数量级


2、带电质点的扩散
带电质点的扩散是由于热运动造成,带电质点 的扩散规律和气体的扩散规律相似 气体中带电质点的扩散和气体状态有关,气体 压力越高或者温度越低,扩散过程也就越弱 电子的质量远小于离子,所以电子的热运动速 度很高,它在热运动中受到的碰撞也较少,因 此,电子的扩散过程比离子的要强得多

刷状放电
电极间距较大、电场极不均匀情况下,如电压 继续升高,从电晕电极伸展出许多较明亮的细 线状光束,称为刷状放电 电压再升高,根据电源功率而转入火花放电或 电弧放电,最后整个间隙被击穿 电场稍不均匀则可能不出现刷状放电,而由电 晕放电直接转入击穿

2、汤森德气体放电理论
������ 汤森德(Townsend)放电理论 ������ 流注(Streamer)放电理论 这两种理论互相补充,可以说明广阔的δ⋅S (δ为气体的相对密度,以标准大气条件下 的大气密度为基准;S为气隙距离)范围内 气体放电的现象

4、负离子的形成
有时电子和气体分子碰撞非但没有电离出新电 子,反而是碰撞电子附着分子,形成了负离子 形成负离子时可释放出能量 有些气体容易形成负离子,称为电负性气体 (如氧、氟、氯等),SF6在工业上有典型应用 负离子的形成起着阻碍放电的作用

5、金属(阴极)的表面电离



金属阴极表面发射电子 逸出功:与金属的微观结构、表面状态有 关 金属的逸出功一般比气体的电离能小得多, 在气体放电中起重要作用 金属表面电离所需能量获得的方式 正离子碰撞阴极(二次发射)

质点的平均自由行程
气体中电子和离子的自由行程是它们和气体分 子发生碰撞时的行程 电子的平均自由行程要比分子和离子的自由行 程大得多 气体分子密度越大,其中质点的平均自由行程 越小。对于同一种气体,其分子密度和该气体 的密度成正比,空气中电子λe=10-5 cm λ ∝ T/p

质点的平均自子碰撞阴极时把能量(主要是势能) 传递给金属中的电子,使其逸出金属 正离子必须碰撞出一个以上电子时才能产 生自由电子 正离子与电子复合时发出的势能起作用 逸出的电子有一个和正离子结合成为原子, 其余的成为自由电子
第一节 气体中带电质点的产生和消失
������ 气体中带电质点的消失 (一)带电质点电场作用下流入电极并中和 电量 (二)带电质点的扩散 (三)带电质点的复合
电介质的极化
一. 二. 三.
四.
电子位移极化 离子位移极化 转向极化 空间电荷计划
电介质的极化特点




电子位移极化 时间短 ,不引起能量损耗 ,在所有的电介质内都存在 与温度无关 离子位移极化 时间较短,有极微量的能量损耗,在离子结合成的介质 内,温度升高极化率增大 转向极化 时间较长,伴有能量损耗,在极性电介质,受温度影响 空间电荷极化 时间缓慢,伴随能量损耗,带电质点(电子或正、负离 子)的在层式结构的电介质中移动形成

1、气体放电的主要形式

根据气体压力、电源功率、电极形状等因 素的不同,击穿后气体放电可具有多种不 同形式。利用放电管可以观察放电现象的 变化
������ ������ ������ ������ 辉光放电 电弧放电 火花放电 电晕放电 刷状放电
辉光放电
当气体压力不大,电源功率很小(放电回路中 串入很大阻抗)时,外施电压增到一定值后, 回路中电流突增至明显数值,管内阴极和阳极 间整个空间忽然出现发光现象 特点是放电电流密度较小,放电区域通常占据 了整个电极间的空间。霓虹管中的放电就是辉 光放电的例子,管中所充气体不同,发光颜色 也不同

火花放电
在较高气压(例如大气压力)下,击穿后总是 形成收细的发光放电通道,而不再扩散于间隙 中的整个空间。当外回路中阻抗很大,限制了 放电电流时,电极间出现贯通两极的断续的明 亮细火花 火花放电的特征是具有收细的通道形式,并且 放电过程不稳定

电弧放电


减小外回路中的阻抗,则电流增大,电流 增大到一定值后,放电通道收细,且越来 越明亮,管端电压则更加降低,说明通道 的电导越来越大 电弧通道和电极的温度都很高,电流密度 极大,电路具有短路的特征

3、带电质点的复合
正离子和负离子或电子相遇,发生电荷的传递 而互相中和、还原为分子的过程 在带电质点的复合过程中会发生光辐射,这种 光辐射在一定条件下又成为导致电离的因素 参与复合的质点的相对速度愈大,复合概率愈 小。通常放电过程中离子间的复合更为重要 带电质点浓度越大,复合速度越大,强烈的电 离区也是强烈的复合区

电子迁移率比离子迁移率大两个数量级
2、带电质点的扩散
带电质点的扩散是由于热运动造成,带电质点 的扩散规律和气体的扩散规律相似 气体中带电质点的扩散和气体状态有关,气体 压力越高或者温度越低,扩散过程也就越弱 电子的质量远小于离子,所以电子的热运动速 度很高,它在热运动中受到的碰撞也较少,因 此,电子的扩散过程比离子的要强得多
2、光电离


光辐射引起的气体分子的电离过程称为光 电离 自然界、人为照射、气体放电过程。 光子能量满足下面条件,将引起光电离, 分解成电子(光电子)和正离子
光辐射能够引起光电离的临界波长(即最 大波长):

2、光电离
铯蒸汽的电离电位最小(3.88V),产生直 接光电离的波长应小于318 nm(紫外) 对所有气体来说,在可见光(400∼750nm) 的作用下,一般是不能发生直接光电离的 分级电离(先激励,再电离) 光电离在气体放电中起重要作用 反激励、复合释放具有一定能量的光子(具有 较大的初始速度)

自持放电
非自持放电和自持放电
由非持放电转入自持放电的电场强称为临界场 强( Ecr ),相应的电压称为临界电压( Ucr ) 如电场比较均匀,则间隙将被击穿,此后根据 气压、外回路阻抗等条件形成辉光放电、火花 放电或电弧放电,而间隙的击穿电压Ub也就 是形成自持放电的临界电压Ucr 如电场极不均匀,则当放电由非自持转入自持 时,在大曲率电极表面电场集中的区域发生电 晕放电,这时临界电压是间隙的电晕起始电 压,而击穿电压可能比起始电压高很多


在外界因素作用下,其一个或几个电子脱 离原子核的束缚而形成自由电子和正离子 电离过程所需要的能量称为电离能Wi (ev), 也可用电离电位Ui(v) 分级电离 通过亚稳激励态
质点的平均自由行程
自由行程 一个质点在与气体分子相邻两次碰撞之间自由地通过的行 程 平均自由行程(λ) 自由行程具有统计性,λ 定义为质点自由行程的平均值

第二节 气体放电机理



气体放电的主要形式 非自持放电和自持放电 汤森德气体放电理论 流注放电理论
第二节气体放电机理
1、气体放电的主要形式


外电离因数:宇宙线、地面上的放射性辐射、 太阳光中的紫外线等 1cm3 气体介质中每秒产生一对离子,达到平 衡状态,离子浓度约为500~1000对/cm3
第二章 气体放电的物理过程
气体放电
研究在电场作用下,气体间隙中带电粒子 的形成和运动过程 气隙中带电粒子是如何形成的 气隙中的导电通道是如何形成的 气隙中导电通道形成后是如何维持持续放 电的
主要内容



������ ������ ������ ������ ������
气体中带电质点的产生和消失 气体放电机理 电晕放电 不均匀电场中气体击穿的发展过程 雷电放电
名词解释



������ ������ ������ ������ ������
激励 电离 电子平均自由行程 复合 电子崩
原子激励
原子能级以电子伏为单位 1eV=1V×1. 6×10-19C=1.6×10-19J 原子激励 原子在外界因素作用下,其电子跃迁到能量较高的 状态,所需能量称为激励能We ,原子处于激励态 激励状态恢复到正常状态时,辐射出相应能量的光 子,光子(光辐射)的频率υ ,h 普朗克常数
非自持放电



外施电压小于U0 时,间 隙电流远小于微安级,此 阶段气体绝缘性能完好 电流要依靠外电离因素来 维持。如果取消外电离因 素,那么电流也将消失 U0 以前的放电形式称为
非自持放电
自持放电
当电压达到U0后,气体 中发生了强烈的电离,电 产生电子崩,电流剧增 气体中电离过程只靠电场 作用可自行维持,不再需 要外电离因素了 U0 以后的放电形式称为
We= υ h
原子激励
原子处于激励态的平均寿命只有10-7~10-8 秒 ������ 激励电位:Ue = We / e 几种气体和金属蒸汽的第一激励电位 N:6.3 V,N2 :6.1 V O:9.1V,,O2:没有 原子具有亚稳激励态,其寿命长10-4~10-2 秒

原子电离

3、热电离

因气体热状态引起的电离过程称为热电离


分子的热运动所固有的动能不足以产生碰撞 电离20oC时,气体分子平均动能约0.038eV。 热电离起始温度为103K 在一定热状态下物质会发出辐射,热辐射光 子能量大,会引起光电离
3、热电离
热电离实质上是热状态下碰撞电离和光电离的 综合 例如:发生电弧放电时,气体温度可达数千 度,气体分子动能就足以导致发生明显的碰撞 电离,高温下高能热辐射光子也能造成气体的 电离
光电效应 金属表面受到短波光的照射。同样的光辐射引 起的电极表面电离要比引起空间光电离强烈得多 强场放射(冷放射) 当阴极附近所加外电场足够强时,可使阴极发射 出电子。场强在106V/cm左右,一般气体击穿 场强远低于此值此情况会出现在高气压间隙和高 真空间隙放电中 热电子放射 当阴极被加热到很高温度时,其中的电子获得 巨大动能,逸出金属表面 对于某些电弧放电的过程有重要的意义
相关文档
最新文档