工程热力学(第五版-)课后习题答案

合集下载

工程热力学 第五版 童钧耕 课后习题答案

工程热力学 第五版 童钧耕 课后习题答案

第一章 基本概念1-1 华氏温标规定在标准大气压(101325 Pa )下纯水的冰点是32F ,汽点是212F (F 是华氏温标温度单位的符号)。

试推导华氏温度与摄氏温度的换算关系。

提示和答案:C F {}0{}32212321000t t ︒︒--=--, F C 9{}{}325t t ︒︒=+。

1-2 英制系统中的兰氏温标(兰氏温标与华氏温标的关系相当于热力学温标与摄氏温标的关系),其温度以符号R 表示。

兰氏温度与华氏温度的关系为{T }°R = {t }°F + 459.67。

已知开尔文温标及朗肯温标在纯水冰点的读数分别是273.15K 和491.67R ;汽点的读数分别是373.15K 和671.67R 。

(1)导出兰氏温度和开尔文温度的关系式;(2)开尔文温标上绝对零度在兰氏温标上是多少度?(3)画出摄氏温标、开尔文温标、华氏温标和兰氏温标之间的对应关系。

提示和答案:RK {}491.67671.67491.67373.15273.15{}273.15T T ︒--=--。

R K {} 1.8{}T T ︒=; R {}0R T ︒=︒;略 1-3 设一新的温标,用符号N 表示温度单位,它的绝对温标用Q 表示温度单位。

规定纯水的冰点和汽点分别是100N 和1000N ,试求:(1)该新温标和摄氏温标的关系;(2)若该温标的绝对温度零度与热力学温标零度相同,则该温标读数为0N 时,其绝对温标读数是多少Q ?提示和答案:(1)N C {}100{}010001001000t t ︒︒--=--;N C {}9{}100t t ︒︒=+(2)Q N C {}{}9{}100T t t ︒︒︒=+=++常数常数,{T } K = 0 K 时, {Q}0Q T ︒=︒ 解得式中常数,代回原式。

;Q N {}{}2358.35T t ︒︒=+, Q {}2358.385N T ︒=︒1-4 直径为1m 的球形刚性容器,抽气后真空度为752.5mmHg ,(1)求容器内绝对压力为多少Pa ;(2)若当地大气压力为0.101MPa ,求容器表面受力多少N? 提示和答案:b v 691.75Pa p p p =-=;600.31510N F A p =∆=⨯。

工程热力学,课后习题答案

工程热力学,课后习题答案

工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv=pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22 (2) 27311+=t T(3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少?解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。

工程热力学,课后习题答案

工程热力学,课后习题答案

工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv=pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22 (2)27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少?解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。

工程热力学课后作业答案第五版全共25页word资料

工程热力学课后作业答案第五版全共25页word资料

2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙ (2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m/3v1=ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO 2压送到容积3m 3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO 2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO 2的质量 压送后储气罐中CO 2的质量 根据题意容积体积不变;R =188.9B p p g +=11 (1) B p p g +=22(2) 27311+=t T(3) 27322+=t T(4)压入的CO 2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m 3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m 3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m 3,充入容积8.5 m 3的储气罐内。

设开始时罐内的温度和压力与外界相同,问在多长时间内空气压缩机才能将气罐的表压力提高到0.7MPa ?设充气过程中气罐内温度不变。

工程热力学(第五版)课后习题答案(全章节)

工程热力学(第五版)课后习题答案(全章节)

工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3 v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m /3 2-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO2的质量 压送后储气罐中CO2的质量 根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T(3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。

工程热力学 第五版 童钧耕 课后习题答案

工程热力学 第五版 童钧耕 课后习题答案

第一章 基本概念1-1 华氏温标规定在标准大气压(101325 Pa )下纯水的冰点是32F ,汽点是212F (F 是华氏温标温度单位的符号)。

试推导华氏温度与摄氏温度的换算关系。

提示和答案:C F {}0{}32212321000t t ︒︒--=--, F C 9{}{}325t t ︒︒=+。

1-2 英制系统中的兰氏温标(兰氏温标与华氏温标的关系相当于热力学温标与摄氏温标的关系),其温度以符号R 表示。

兰氏温度与华氏温度的关系为{T }°R = {t }°F + 459.67。

已知开尔文温标及朗肯温标在纯水冰点的读数分别是273.15K 和491.67R ;汽点的读数分别是373.15K 和671.67R 。

(1)导出兰氏温度和开尔文温度的关系式;(2)开尔文温标上绝对零度在兰氏温标上是多少度?(3)画出摄氏温标、开尔文温标、华氏温标和兰氏温标之间的对应关系。

提示和答案:RK {}491.67671.67491.67373.15273.15{}273.15T T ︒--=--。

R K {} 1.8{}T T ︒=; R {}0R T ︒=︒;略 1-3 设一新的温标,用符号N 表示温度单位,它的绝对温标用Q 表示温度单位。

规定纯水的冰点和汽点分别是100N 和1000N ,试求:(1)该新温标和摄氏温标的关系;(2)若该温标的绝对温度零度与热力学温标零度相同,则该温标读数为0N 时,其绝对温标读数是多少Q ?提示和答案:(1)N C {}100{}010001001000t t ︒︒--=--;N C {}9{}100t t ︒︒=+(2)Q N C {}{}9{}100T t t ︒︒︒=+=++常数常数,{T } K = 0 K 时, {Q}0Q T ︒=︒ 解得式中常数,代回原式。

;Q N {}{}2358.35T t ︒︒=+, Q {}2358.385N T ︒=︒1-4 直径为1m 的球形刚性容器,抽气后真空度为752.5mmHg ,(1)求容器内绝对压力为多少Pa ;(2)若当地大气压力为0.101MPa ,求容器表面受力多少N? 提示和答案:b v 691.75Pa p p p =-=;600.31510N F A p =∆=⨯。

工程热力学,课后习题答案

工程热力学,课后习题答案

工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m/3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv=pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22 (2) 27311+=t T(3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少?解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。

工程热力学(第五版)课后习题答案(全章节)廉乐明-谭羽非等编复习课程

工程热力学(第五版)课后习题答案(全章节)廉乐明-谭羽非等编复习课程

工程热力学(第五版)课后习题答案(全章节)廉乐明-谭羽非等编工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv Mv =p T R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22 (2) 27311+=t T(3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。

《工程热力学》第五版 (廉乐明 谭羽非 著)课后习题答案

《工程热力学》第五版 (廉乐明 谭羽非 著)课后习题答案

C
D
A


分析:由题意知容器上装有假设右侧容器是处于正压工作状态,容器中工质的压力高于大气压力。 表 C 的读数是容器Ⅰ相对于大气压的差值,表 A 的读数是容器Ⅱ相对于大气压的差值,而表 D 的 读数则是容器Ⅰ相对于容器Ⅱ的差值。 解:根据压力测量的概念有:
经推到,得:
pΙ = pgC + pb , pΙΙ = pgA + pb , pgD = pΙ − pΙΙ
v=28×2.3=64.28m3/mol。另也有一法: VM
=
Mv

pVM
=
R0 T
⇒ VM
=
R0T p
= ...
2-3 把CO2压送到容积 3m3的贮气罐里,起始表压力pg1=30kPa,终了表压力pg2=0.3Mpa。温度由 t1=45℃增至t2=70℃。试求被压入的CO2的质量。当地大气压力B=101.325kPa。 解:
试求:(1)天然气在标准状态下的密度;(2)各组成气体在标准状态下的分压力。 解:
6
n
∑ (1) M = riMi = 16.484 i =1
ρ = M = 0.736kg / m3 22.4
各组成气体在标准状态下的分压力如下:
pCH4 = rCH4 ⋅ P = 98.285kPa Pc2H6 = rc2H6 ⋅ P = 0.608kPa PC3H8 = rC3H8 ⋅ P = 0.182kPa PC4H10 = rC4H10 ⋅ P = 0.182kPa PCO2 = rCO2 ⋅ P = 0.203kPa PN2 = rN2 ⋅ P = 1.854kPa
Q
= V0cv' ∆t
=
V0
Mcv 22.4

工程热力学(第五版)课后习题答案(全)

工程热力学(第五版)课后习题答案(全)

工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。

工程热力学(第五版)课后习题答案(全)

工程热力学(第五版)课后习题答案(全)

工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。

工程热力学-课后习题答案

工程热力学-课后习题答案
第一种解法:
首先求终态时需要充入的空气质量
kg
压缩机每分钟充入空气量
kg
所需时间
19.83min
第二种解法
将空气充入储气罐中,实际上就是等温情况下把初压为0.1MPa一定量的空气压缩为0.7MPa的空气;或者说0.7MPa、8.5 m3的空气在0.1MPa下占体积为多少的问题。
根据等温状态方程
0.7MPa、8.5 m3的空气在0.1MPa下占体积为
容积体积不变;R=188.9
(1)
(2)
(3)
(4)
压入的CO2的质量
(5)
将(1)、(2)、(3)、(4)代入(5)式得
m=12.02kg
2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少?
解:热力系:左边的空气
系统:整个容器为闭口系统
过程特征:绝热,自由膨胀
根据闭口系统能量方程
绝热
自由膨胀W=0
因此ΔU=0
对空气可以看作理想气体,其内能是温度的单值函数,得
根据理想气体状态方程
=100kPa
3-9一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,为500 kPa,25℃。充气开始时,罐内空气参数为100 kPa,25℃。求充气终了时罐内空气的温度。设充气过程是在绝热条件下进行的。
解:(1)热力系:礼堂中的空气。
闭口系统
根据闭口系统能量方程
因为没有作功故W=0;热量来源于人体散热;内能的增加等于人体散热。
=2.67×105kJ
(1)热力系:礼堂中的空气和人。
闭口系统

工程热力学第五版课后习题答案

工程热力学第五版课后习题答案

工程热力学(第五版)习题答案2-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T(3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =p TR 0=64.27kmol m /32-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。

工程热力学课后作业答案第五版

工程热力学课后作业答案第五版

工程热力学课后答案 2-2.解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v1=ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO 2的质量1111RT v p m =压送后储气罐中CO 2的质量2222RT v p m =根据题意容积体积不变;R =188.9B p p g +=11 (1) B p p g +=22(2) 27311+=t T(3) 27322+=t T(4)压入的CO 2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得m=12.02kg2-5解:同上题10)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6解:热力系:储气罐。

使用理想气体状态方程。

第一种解法:首先求终态时需要充入的空气质量2882875.810722225⨯⨯⨯==RT v p m kg压缩机每分钟充入空气量28828731015⨯⨯⨯==RT pv m kg所需时间==mm t 219.83min 第二种解法将空气充入储气罐中,实际上就是等温情况下把初压为0.1MPa 一定量的空气压缩为0.7MPa 的空气;或者说0.7MPa 、8.5 m 3的空气在0.1MPa 下占体积为多少的问题。

根据等温状态方程constpv =0.7MPa 、8.5 m 3的空气在0.1MPa 下占体积为5.591.05.87.01221=⨯==P V p V m 3压缩机每分钟可以压缩0.1MPa 的空气 3 m 3,则要压缩59.5 m 3的空气需要的时间==35.59τ19.83min 2-8解:热力系:气缸和活塞构成的区间。

工程热力学(第五版)课后习题答案(全章节)

工程热力学(第五版)课后习题答案(全章节)

工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =p T R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9g1(1)g 2 (2) 27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p1.0=,500=t ℃时的摩尔容积Mv 。

解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J • (2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m/3v1=ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO 2压送到容积3m 3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。

试求被压入的CO 2的质量。

当地大气压B =101.325 kPa 。

解:热力系:储气罐。

应用理想气体状态方程。

压送前储气罐中CO 2的质量1111RT v p m =压送后储气罐中CO 2的质量2222RT v p m =根据题意容积体积不变;R =188.9B p p g +=11 (1) B p p g +=22(2) 27311+=t T (3) 27322+=t T(4)压入的CO 2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m 3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m 3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m 3,充入容积8.5 m 3的储气罐内。

设开始时罐内的温度和压力与外界相同,问在多长时间内空气压缩机才能将气罐的表压力提高到0.7MPa ?设充气过程中气罐内温度不变。

解:热力系:储气罐。

使用理想气体状态方程。

第一种解法:首先求终态时需要充入的空气质量2882875.810722225⨯⨯⨯==RT v p m kg压缩机每分钟充入空气量28828731015⨯⨯⨯==RT pv m kg所需时间==mm t 219.83min 第二种解法将空气充入储气罐中,实际上就是等温情况下把初压为0.1MPa 一定量的空气压缩为0.7MPa 的空气;或者说0.7MPa 、8.5 m 3的空气在0.1MPa 下占体积为多少的问题。

根据等温状态方程const pv =0.7MPa 、8.5 m 3的空气在0.1MPa 下占体积为5.591.05.87.01221=⨯==P V p V m 3 压缩机每分钟可以压缩0.1MPa 的空气3 m 3,则要压缩59.5 m 3的空气需要的时间==35.59τ19.83min2-8 在一直径为400mm 的活塞上置有质量为3000kg 的物体,气缸中空气的温度为18℃,质量为2.12kg 。

加热后其容积增大为原来的两倍。

大气压力B =101kPa ,问:(1)气缸中空气的终温是多少?(2)终态的比容是多少?(3)初态和终态的密度各是多少? 解:热力系:气缸和活塞构成的区间。

使用理想气体状态方程。

(1)空气终态温度==1122T V V T 582K (2)空气的初容积p=3000×9.8/(πr 2)+101000=335.7kPa==pmRT V 110.527 m 3空气的终态比容m V m V v 1222===0.5 m 3/kg 或者==pRT v 220.5 m 3/kg (3)初态密度527.012.211==V m ρ=4 kg /m 3 ==212v ρ 2 kg /m 32-9解:(1)氮气质量3008.29605.0107.136⨯⨯⨯==RT pv m =7.69kg(2)熔化温度8.29669.705.0105.166⨯⨯⨯==mR pv T =361K2-14 如果忽略空气中的稀有气体,则可以认为其质量成分为%2.232=go ,%8.762=N g 。

试求空气的折合分子量、气体常数、容积成分及在标准状态下的比容和密度。

解:折合分子量28768.032232.011+==∑ii Mg M =28.86气体常数86.2883140==M R R =288)/(K kg J • 容积成分2/22Mo M g r o o ==20.9%=2N r1-20.9%=79.1%标准状态下的比容和密度4.2286.284.22==M ρ=1.288 kg /m 3 ρ1=v =0.776 m 3/kg2-15 已知天然气的容积成分%974=CH r ,%6.062=H C r ,%18.083=H C r ,%18.0104=H C r ,%2.02=CO r ,%83.12=N r 。

试求:(1) 天然气在标准状态下的密度; (2) 各组成气体在标准状态下的分压力。

解:(1)密度100/)2883.1442.05818.04418.0306.01697(⨯+⨯+⨯+⨯+⨯+⨯==∑i i M r M=16.4830/736.04.2248.164.22m kg M ===ρ (2)各组成气体在标准状态下分压力 因为:p r p i i ===325.101*%974CH p 98.285kPa同理其他成分分压力分别为:(略)3-1 安静状态下的人对环境的散热量大约为400KJ/h ,假设能容纳2000人的大礼堂的通风系统坏了:(1)在通风系统出现故障后的最初20min 内礼堂中的空气内能增加多少?(2)把礼堂空气和所有的人考虑为一个系统,假设对外界没有传热,系统内能变化多少?如何解释空气温度的升高。

解:(1)热力系:礼堂中的空气。

闭口系统根据闭口系统能量方程WU Q +∆=因为没有作功故W=0;热量来源于人体散热;内能的增加等于人体散热。

60/204002000⨯⨯=Q =2.67×105kJ(1)热力系:礼堂中的空气和人。

闭口系统根据闭口系统能量方程WU Q +∆=因为没有作功故W=0;对整个礼堂的空气和人来说没有外来热量, 所以内能的增加为0。

空气温度的升高是人体的散热量由空气吸收,导致的空气内能增加。

3-5,有一闭口系统,从状态1经a 变化到状态2,如图,又从状态2经b 回到状态1;再从状态1经过c 变化到状态2。

在这个过程中,热量和功的某些值已知,如表,试确定未知量。

过程 热量Q (kJ ) 膨胀功W (kJ ) 1-a-2 10 x1 2-b-1 -7 -4 1-c-2x22解:闭口系统。

使用闭口系统能量方程(1)对1-a-2和2-b-1组成一个闭口循环,有⎰⎰=W Q δδ即10+(-7)=x1+(-4) x1=7 kJ(2)对1-c-2和2-b-1也组成一个闭口循环 x2+(-7)=2+(-4) x2=5 kJ(3)对过程2-b-1,根据WU Q+∆==---=-=∆)4(7W Q U -3 kJ3-6 一闭口系统经历了一个由四个过程组成的循环,试填充表中所缺数据。

过程Q (kJ )W (kJ )ΔE (kJ )解:同上题3-7 解:热力系:1.5kg 质量气体 闭口系统,状态方程:b av p +=)]85115.1()85225.1[(5.1---=∆v p v p U =90kJ由状态方程得 1000=a*0.2+b 200=a*1.2+b 解上两式得: a=-800 b=1160 则功量为2.12.0221]1160)800(21[5.15.1v v pdv W --==⎰=900kJ过程中传热量WU Q +∆==990 kJ3-8 容积由隔板分成两部分,左边盛有压力为600kPa ,温度为27℃的空气,右边为真空,容积为左边5倍。

将隔板抽出后,空气迅速膨胀充满整个容器。

试求容器内最终压力和温度。

设膨胀是在绝热下进行的。

解:热力系:左边的空气 系统:整个容器为闭口系统 过程特征:绝热,自由膨胀 根据闭口系统能量方程WU Q +∆=绝热0=Q自由膨胀W =0 因此ΔU=0对空气可以看作理想气体,其内能是温度的单值函数,得K T T T T mc v 300120)12(==⇒=-根据理想气体状态方程161211222p V V p V RT p ====100kPa3-9 一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,为500 kPa ,25℃。

充气开始时,罐内空气参数为100 kPa ,25℃。

求充气终了时罐内空气的温度。

设充气过程是在绝热条件下进行的。

解:开口系统 特征:绝热充气过程 工质:空气(理想气体)根据开口系统能量方程,忽略动能和未能,同时没有轴功,没有热量传递。

dE h m h m +-=00220没有流出工质m2=0 dE=dU=(mu)cv2-(mu)cv1终态工质为流入的工质和原有工质和m0= m cv2-m cv1 m cv2 u cv2- m cv1u cv1=m0h0(1)h0=c p T0 u cv2=c v T2 u cv1=c v T1m cv1=11RT Vp m cv2 =22RT V p代入上式(1)整理得21)10(1212p p T kT T T kT T -+==398.3K3-10供暖用风机连同加热器,把温度为01=t ℃的冷空气加热到温度为2502=t ℃,然后送入建筑物的风道内,送风量为0.56kg/s ,风机轴上的输入功率为1kW ,设整个装置与外界绝热。

试计算:(1)风机出口处空气温度;(2)空气在加热器中的吸热量;(3)若加热器中有阻力,空气通过它时产生不可逆的摩擦扰动并带来压力降,以上计算结果是否正确? 解:开口稳态稳流系统(1)风机入口为0℃则出口为=⨯⨯==∆⇒=∆310006.156.01000Cp m Q T Q T Cp m && 1.78℃ 78.112=∆+=t t t ℃空气在加热器中的吸热量)78.1250(006.156.0-⨯⨯=∆=T Cp m Q &=138.84kW(3)若加热有阻力,结果1仍正确;但在加热器中的吸热量减少。

加热器中)111(22212v P u v P u h h Q +-+=-=,p2减小故吸热减小。

3-11一只0.06m 3的罐,与温度为27℃、压力为7MPa 的压缩空气干管相连接,当阀门打开,空气流进罐内,压力达到5MPa 时,把阀门关闭。

相关文档
最新文档