北师大版初中八年级数学上册说课稿

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版初中数学

八年级上册

全册说课稿

第一章勾股定理

1 探索勾股定理说课稿(一)

乐东县联合中学邢增佑

各位评委老师大家好:

今天我说课的课题是《勾股定理》,下面就教材分析、教学方法选择、学法指导、教学程序设计等四个方面,谈谈我对本课题的理解和认识。

一、教材分析

(一)、教材地位作用

这节课是九年制义务教育课程标准实验教科书,北师大版八年级第一章第一节。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了直角三角形三条边之间的数量关系,为以后学习解直角三角形奠定基础,在实际生活中用途很大。

(二)、教学目标(八年级学生对新事物充满好奇,他们喜欢动手,勤于思考,乐于探究,已经具备了一定的探索新知的能力。因此,我制定如下教学目标)

1、知识与技能目标

(1)理解并掌握勾股定理的内容和证明,能够运用勾股定理进行简单计算和运用;

(2)通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

2、过程与方法目标

在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学过程,并体会数形结合和从特殊到一般的数学思想方法。

3、情感态度与价值观目标

(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

(2)利用远程教育资源突出介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。(三)、教学重点及难点(新课程提出教师是学生学习的引导者、合作者、参与者,勾股定理的证明与运用,对于锻炼学生的动手操作能力,培养其逻辑思维意识提供了有利的平台,为学生在今后解决有关线段的问题奠定数学模型。因此,本节课的教学重点是)

【教学重点】勾股定理的证明与运用

【教学难点】用面积法和拼图法等方法证明勾股定理

【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用

数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难

二、教学方法及教学手段的选择

数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对八年级学生的认知结构和心理特征,本节课选择“引导探索法”,由浅到深,由特殊到一般的提出问题,引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序包含“提出问题-实验操作 -归纳验证-解决问题-课堂小结-布置作业”六个环节。

三、学法指导

新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并一同参与到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

四、教学程序设计

教学流程图

(一)创设情境,探索新知

1、去年10月份的一次强台风把小明家门前的一棵8米高的大树从3米处折断了,折断的树枝会不会打到停在大树旁3.5米处的小轿车呢?为什么?

2、2002年国际数学大会在我国北京召开,它是世界上最高水平的数学科学学术会议,被誉于数学的“奥运会”这就是我们的会徽。该图案是由哪些图形拼成的?它有什么含义呢?板书:18.1勾股定理(1)

3、多媒体播放毕达哥拉斯发现了什么?引导学生观察下图思考:

(1)正方形A、B 、C、的面积有什么数量关系?

(2)以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系?

归纳:等腰直角三角形三边之间的特殊关系。

A B

C

【设计说明】这一环节利用农远资源,取材于生活,自然、贴切,为探索勾股定理提供了背景。通过图片展示,以问题激发学生好奇探索,主动学习的欲望,以直观形象的图形观察,引导学生由三个正方形面积之间的关系过渡到等腰直角三角形的三边关系,为下一步的面积计算验证直角三角形三边关系奠定基础。(二)实验操作,获取新知

1、通过刚才的问题我们发现等腰直角三角形的三边具有“两直角边的平方和等于斜边的平方”这一结论,那么一般的直角三角形是否也有这样的特点呢?

2、组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。

3、通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗?

4、对于更一般的情形将如何验证呢?(几何画板动画演示)

【设计说明】为了突破用面积法证明直角三角形三边关系这一难点,本人先让学生自己动手,小组合作,互相交流,共同分享,其间教师巡视引导学生用割补的方法计算以斜边为边长的正方形面积,进而得到直角三角形两直角边的平方和等于斜边的平方。利用几何画板的动态功能,由特殊到一般对直角三角形三边关系进行探索,使直角三角形数与形的关系展示得更为直观,更易被学生接受,更有利于难点的突破,为学生接下来归纳结论打下基础,同时让学生体会到观察、猜想、操作、归纳、验证的数学过程,使学生分析和解决问题的能力得到提高,符合学生的认知规律。

(三)归纳验证,完善新知

1、猜想:命题如果直角三角形的两条直角边分别a和b,斜边为c,那么

2

2c

2

+。

b

a=

2、验证命题

(1)小组合作探究:利用学具拼图,体验我国汉代赵爽的证法。

(2)利用农远资源出示拼图游戏,让学生在拼图游戏中感受勾股定理的形成。

3、介绍古今中外对勾股定理的研究,及“勾,股,弦”的含义,从而进行点题。【设计说明】农远资源的动手操作代替枯燥、单一的讲解,把学习的主动权交给学生。在活动中,让学生体会到成功的喜悦,进一步激发学生的学习热情,加深对新知的理解。通过介绍勾股定理的有关研究历史,感受数学文化,鼓励学生善于观察,大胆猜想,勇于探索数学知识,从而体会到祖国数学历史的悠久,增强民族自豪感。

相关文档
最新文档