有关最难的逻辑思维测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关最难的逻辑思维测试题

有关于最难的逻辑思维题1

问题一:

“你面前有两扇门,其中一扇门内藏着宝藏,但如果你不小心闯入另一扇门,只能痛苦地慢慢死掉……”

这一听就是那种经典的最令人头痛的一类问题,但其实与其他问题相比,这只是个热身。在这两扇门后面,有两个人,这两个人都

知道哪扇门后有宝藏,哪扇门擅闯者死,而这两个人呢,一个人只

说真话,一个人只说假话。

谁说真话谁说假话?那就要看你有没有智慧自己找出来了,游戏规则是,你只能问这两个人每人一个问题。

那么,你问什么问题?问哪个人?根据他们的回答,你又该怎么做?

最佳答案:

随便问其中一个人:“如果我问另一个人,他会跟我说哪扇门后是宝藏?

如果你问的恰好是讲真话的那个人,那他指给你的答案就是那扇通向死亡的门,因为他会诚实地告诉你那个说谎的人会怎么说。

如果你问的是那个只说谎话的,你得到的也是错误的答案,因为另一个人是讲真话的,说谎话的人会告诉你与讲真话的人相反的答案。

所以你只要随便问一个人上述问题,然后选择与他们说的相反的门就行了。

问题二:

“你前面站了5个人,他们中间只有一个人讲真话……”

这个问题比上个问题难就难在,你只知道他们五个中有一个只讲真话,但其余四个,他们有时候讲真话,有时候讲假话,只有一点

可以确定,这四个人将真话和假话有个规律:如果这次讲了真话,

下次就会讲假话,如果这次讲假话,下次就讲真话。你的任务是,

把五个人中那个只讲真话的人找出来。

你可以问两个问题,两个问题可以向同一个人发问,也可以分别问两个人。

你该问什么问题?

小提示:你可以这样安排两个问题承担的任务:首先你可以先问一个问题,不管得到的答案是什么,你都能从中知道下一个问题你

将得到的答案是真是假。

最佳答案:

随便找一个人,首先问:“你是那个只讲真话的吗?”如果答案

是肯定的,你再问这个人:“谁是只讲真话的?”;如果第一个问题

你得到的答案是否定的,你就再问对方“谁不是只讲真话的?”

正如这个问题给出的提示,第一个问题的价值在于,如果你得到的答案是“我是”,那么你问的人要么是那个只讲真话的,要么是

那个这一轮讲假话的“半真话半假话”者,不管是谁,他下一轮一

定会说真话。所以你可以继续问这个人:“谁是只讲真话的?”对方

的答案就是正确答案。

如果对第一个问题你得到的答案是“我不是”,那么回答者不可能是只讲真话的那个人,只能是一个此轮讲真话的“半真话半假话”者。此人下一轮将会说假话,所以你应该问他:“谁不是只讲真话的?”同样他告诉你的,只能是那个只讲真话的。

问题三:

“外星人打算将地球用来种蘑菇,并且已经抓了十个人类……”

外星人用这十个人代表地球60亿人口,将通过外星人的方式来测试这十个人,决定地球是不是有资格加入跨星际委员会,如果没有,就把地球变成一个蘑菇农场。

明天,这十个人将被关在一间漆黑的屋子里前后排成一队,外星人将给每个人戴一顶帽子,帽子为紫色或者绿色,然后外星人会将灯打开,这十个人每个人都无法看见自己头上的帽子是什么颜色,但可以看见排在你前面的每个人头上帽子的颜色。

帽子的颜色是随机的,可能全是紫的,也可能全是绿的,或者是任意的组合。

外星人会从后往前问每一个人:“你头上的帽子是什么颜色?”如果这个人答对了,这个人就安然无事,他所代表的地球上6亿人口也将获救。否则,这个人将被爆头,外星人将把他所代表的6亿人口变成蘑菇的肥料。每个人的答案屋子里所有人都可以听到。

现在,人类的命运在你手上,你可以设计一个方案,使这十个人提前制定一个计划,这个计划必须拯救尽可能多的人。

提示:有个方案可以让你拯救其中至少九个人。

最佳答案:

第十个人计算排在前面的所有人的绿帽子是奇数还是偶数并向前面的人发出一个信号,这样排在前面人就可以再通过排在更前面的所有人的绿帽子的奇偶数是否变化来判断自己帽子的颜色,因为如果绿帽子奇偶发生变化,那自己就是那个导致变化的“绿帽子”,如果没变化,自己就是“紫帽子”。

因为所有的人除了回答外星人的问题不能说话,所以第十个人的“信号”只能包含在自己的答案里,比如如果排在前面的九个人有奇数顶绿帽子,这个人类就告诉外星人自己的帽子是“绿色”,如果是偶数,就猜自己的帽子是“紫色”。这样等于给他前面的人一个暗号,排在他前面的这个人,可以通过计算自己前面的所有人的绿帽子的奇偶变化来判断自己的帽子是绿还是紫。

排在最后的那个人为了大众利益没有选择,根据前面的人的帽子情况告诉外星人自己是“绿帽子”还是“紫帽子”,他的答案有

1/2的几率正确,但他前面的人一定都能答对。

还没懂?比如第十个人看到前面有奇数个绿帽子,他就告诉外星人自己的是绿色,这是他前面的人就知道他的意思是前面九个人中有奇数个绿帽子,这是第九个人再数前面八个人的,如果前面八个人中也有奇数个,那自己就是紫色帽子。第九个人告诉外星人自己是紫色帽子,第八个人就知道绿帽子没有减少还是奇数个,再数数前面七个人绿帽子数的奇偶,就可以判断自己帽子的颜色;反之,如果第九个人告诉外星人自己是绿色帽子,那第八个人就应该知道绿色帽子减少了一个由奇数变成了偶数,再看看前面所有的绿帽子情况作出判断。这样一个接一个,只要每个人都认真听后面的人的答案并在心里计算所剩绿帽子的奇偶变化,前面九个人都能获救。

当然,你也可以计算紫色帽子的奇偶。

问题四:

“100个完美的逻辑学家坐在一个房间里……”

这是一个电视真人秀节目,节目里100个拥有完美无瑕逻辑思维能力的人围成一圈坐在一个房间里。在进入房间前,这100个人被告知,100个人中至少有一个人的额头是蓝色的。你可以看见别人额头的颜色,但无法看到自己的,你需要对自己额头是不是蓝色进行猜测,在房间的灯被关掉时,如果你推测出你的额头是蓝色的,你需要站起来离开房间。

然后房间的灯被再次打开,那些认为自己额头是蓝色的人已经不在屋内。接下来灯会再次被关掉,剩下的人中推测自己额头是蓝色的离开房间,如此重复。

问题来了,假设这100个人的额头都是蓝色的,将会发生什么情况?注意,这100个人都有完美无瑕的逻辑推理能力,他们会根据其他人的额头颜色对自己进行合理的推理和猜测。

相关文档
最新文档