小数除法教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小数除法教学设计

一、提出问题。

1、谈话导入:最近我们一直在学习有关小数的计算问题。下面进行几轮计算比赛。

第一轮:看谁算得对。

10×1.3 0.32×100 24+.24 3.2×0.6 15-0.15 1.9×0.02

0.4×0.5 1.25×8 2.5×4 0.24×4 200×0.16 0.6×0.1

第二轮:看谁算得巧。

25×73×4 32×103 76×8+2×76

让学生说说是怎么算的,运用了哪些运算律。

教师小结:在整数乘法中,我们运用乘法的一些运算律,可以使计算简便。

2、提出问题:整数乘法中的运算律,对小数乘法是否适用呢?

学生猜想。

(设计意图:小数乘法和加减法的口算,是进行小数简算的重要基础,所以基本技能的训练也是必不可少的。以竞赛的形式进行练习,可以激发学生的兴趣。看谁算得巧的活动可以帮助学生调动起原有的整数乘法运算律的知识经验,并大胆猜想整数乘法中的运算律,对小数乘法是否适用。)

二、观察验证。

1、教师提出验证要求:同学们的猜想是否成立呢,需要我们举例来验证。

出示几组算式,提出要求:先算一算,下面的○里能填上等号吗?

0.8×1.3○1.3×0.8

(0.9×0.4)×0.5○0.9×(0.5×0.4)

(3.2+2.8)×0.6○3.2×0.6+2.8×0.6

(1)学生计算,汇报结果,发现每组的两个算式结果相等,可以用等号连接。

(2)观察每组的两个算式有什么关系?

学生发现:第一组两个算式中,两个小数相乘,交换两个因数的位置,结果相等,符合乘法交换律。

第二组的两个算式中都是三个小数相乘,左边先把前两个小数相乘,再乘第三个小数,右边先把后两个小数相乘,再和第一个小数相乘,结果相等,符合乘法结合律。

第三组左边是把两个数的和乘一个数,右边是把这两个数分别乘以这个数,再把两个积相加,结果也相等,符合乘法分配律。

(3)乘法的这些运算律是否在小数乘法中普遍适用呢,小组合作,再例举几组有这样关系的算式,通过计算来验证一下。

(4)交流发现:整数乘法的运算律,对小数乘法也同样适用。

(5)揭示课题:今天这节课我们就来研究“乘法运算律的推广和运用”。

(设计意图:让学生充分经历观察、举例、再观察、发现的验证的过程,不但使学生经历形成数学知识的过程,,还能使学生感受到数学结论的科学性和严密性,培养学生严谨的认知态度。)

三、实际运用

1、谈话:乘法的这些运算律在小数乘法中有什么用呢?

2、试一试:下面各题怎样计算比较简便?

0.25×0.73×4 0.32×403

(1)学生尝试计算

(2)交流计算方法,让学生说说运用了什么运算律。

0.25×0.73×4 0.32×403

= 0.25×4×0.73 .乘法交换律结合律= 0.32×(400+3)

= 1×0.73 = 0.32×400+0.32×3.乘法分配律

= 0.73 =128+0.96

= 128.96

(3)教师小结:看到算式,首先要观察数据特点,再根据数据和算式特点,合理运用乘法运算律,使计算简便。

3、练一练:用简便方法计算。

7.6×0.8+0.2×7.6 0.25×36 0.85×199

(1)学生尝试计算。

(2)交流计算方法。让学生说说是怎样运用运算律进行简算的。

3、运用乘法交换律,还可以对小数乘法进行验算

二、教学思路

本节教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的除法转化成除数是整数的除法。

理解除数是小数的除法的计算法则的算理是“商不变的性质”和“小数点位置移动引起小数大小变化的规律”,把除数是小数的除法转化成除数是整数的除法后就用“除数是整数的小数除法”计算法则进行计算。3、试做例题,掌握转化方法

明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下:

①.学生试做例题6例题7,并讲出每个例题小数点移位的方法。

②.学生试做例8

③.引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是小数的除法计算法则。在得出计算法则后,还要注意强调:

(1)小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。

(2)整数除法中,两个数相除的商不会大于被除数,而在小数除法中,当除数小于1时,商反而比被除数大。

(3)要注意小数除法里余数的数值问题。对这一问题可举例说明。如:57.4÷24,要使学生懂得余数是2.2,而不是22。

三、教学重点难点及解决策略

教学重点:会笔算除数是整数的小数除法。

教学难点:商的小数点为什么要与被除数的小数点对齐?个位不够商1,怎么办?

解决策略:通过学生对商的估算,把估算值与精确值对比,知道被除数里有几个除数,商的整数部分就商几,商的整数部分的右下角点上小数点,余数的后面补0继续除;个位不够商1,就要在商的个位上写0,在0的右下角点上小数点继续往下除。

突破重难点的关键点:

理解商的小数点要与被除数的小数点对齐的道理。

教学过程

(一)复习导入

1.要使下列各小数变成整数,必须分别把它们扩大多少倍?小数点怎样移动?

1.2 0.67 0.725 0.003

2.把下面的数分别扩大10倍、100倍、1000倍是多少?

1.342,15,0.5,

2.07。

3.填写下表。

根据上表,说说被除数、除数和商之间有什么变化规律。(被除数和除数同时扩大或缩小相同的倍数,商不变。)

根据商不变的性质填空,并说明理由。

(1)5628÷28=201;(2)56280÷280=();

(3)562800÷()=201;(4)562.8÷2.8=()。

(重点强调(4)的理由。(4)式与(1)式比较,被除数、除数都缩小了10倍,所以商不变,还是201,即562.8÷2.8=5628÷28=201)

(该环节的设计意图是通过学生的讲与练,理解其转化原理是:当除数由小数变成整数时,除数扩大10倍、100倍、1000倍……被除数也应扩大同样的倍数。)

(二)探究算理归纳法则

1.学习例6:

一根钢筋长3.6米,如果把它截成0.4米长的小段。可以截几段?

(1)学生审题列式:3.6÷0.4。

(2)揭示课题:

这个算式与我们以前学习的除法有什么不同?(除数由整数变成了小数。)

今天我们一起来研究“一个数除以小数”。(板书课题:一个数除以小数。)

(3)探究算理。

①思考:我们学习了除数是整数的小数除法,现在除数是小数该怎样计算呢?

相关文档
最新文档