人教版七年级数学下册:5.3.2命题、定理、证明教案
人教版七年级数学下册 5-3-2 命题、定理、证明 教案
教学反思5.3平行线的性质5.3.2命题、定理、证明教学目标1. 了解命题的概念以及命题的构成.2. 知道什么是真命题和假命题,并会判断命题的真假.3. 理解什么是定理和证明.4. 初步体会命题在数学中的应用,感受数学语言的严谨性,培养学生的语言表达能力和归纳能力. 教学重难点重点:区分命题的题设和结论.难点:找出题设和结论不明显的命题的题设和结论;举反例判断一个简单命题是假命题.课前准备多媒体课件教学过程导入新课导入模式教师:在我们日常讲话中,经常会遇到这样的语句(多媒体展示),如:(1) 中华人民共和国的首都是北京;(2) 我们班的同学多么聪明;(3) 浪费是可耻的;(4)春天万物更新.在几何里,我们同样会有这样的语句,如:(1) 平行于同一条直线的两条直线平行;(2)对顶角相等.观察一下,它们有什么共同点,在语文学习当中,我们把这样的句子叫做什么语句呢?师生活动先让学生交流,然后学生代表回答.设计意图在教学过程中,将创设的问题情境和语文联系起来,不仅容易激发学生的好奇心,引起学生的学习兴趣,而且渗透了“学科间的整合”,提升了学生的核心素养.教师:像这样的判断句,在数学当中经常遇到,如(多媒体展示):板书(1) 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2) 等式两边都加上同一个数,结果仍是等式;(3) 对顶角相等;(4)如果两条直线不平行,那么同位角不相等.教师提问:你们能说一说这4个语句有什么共同点吗?学生在教师的引导下分析每个语句的特点,并能总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某一件事作出判断的.探究新知探究点一:命题的概念教师:像这些语句一样,判断一件事情的语句,叫做命题.现在同学们判断下列语句是不是命题.(1)两点之间,线段最短.(2)画出两条互相平行的直线.(3)过直线外一点,作已知直线的垂线.(4)a,b两条直线平行吗?(5)玫瑰花是动物.(6)若a2=b2,则a=b.一名学生判断回答,不对的题目,其他同学补充纠正.请同学们再举出“命题”的例子.师生共同判断,给予评价.教师归纳:判断语句是否为命题要紧扣两条:(1)命题必须是一个完整的句子,通常是陈述句,疑问句和命令性语句都不是命题;(2)必须对某一件事件作出肯定或否定的判断.这两条缺一不可.设计意图通过具体的实例,让学生了解命题.探究点二:命题的组成教师:观察黑板上的命题,思考:命题由哪几个部分组成?师生活动学生在明确命题概念的基础上分小组讨论命题的结构,让学生总结出命题的结构.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.教师:你们是怎样寻找题设和结论的.学生代表回答,教师引导得出结论:任何一个命题,都可以写成“如果……那么……”的形式.“如果”后面的是题设,“那么”后面的是结论.请大家指出“对顶角相等”这一命题的题设,结论,并写成“如果……,那么……”的形式.师生活动结合我们学习的这一章内容,找出命题(本章中学到的结论),并指出命题的题设、结论.设计意图充分发挥小组讨论的优势,让学生积极参与到学习过程中,让学生总结出命题的结构.探究点三:真命题与假命题教师:判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否正确.(1)如果两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(3)相等的角是对顶角;(4)任意两个直角都相等.学生独立思考,学生代表回答,其他同学纠正补充,最后总结结果:四个语句都是命题.命题(1)的题设是“两直线相交”,结论是“只有一个交点”;命题(2)的题设是“两条直线被第三条直线所截形成的同旁内角互补”,结论是“这两条直线平行”;命题(3)的题设是“两个角相等”,结论是“它们是对顶角”;命题(4)的题设是“两个角是直角”,结论是“它们相等”.其中(1)(2)(4)是正确命题,(3)是错误命题.教师总结:如果命题的题设成立,那么结论一定成立,像这样的命题称为真命题;如果命题的题设成立时,不能保证结论一定成立,像这样的命题称为假命题.判断一个命题是真命题,必须经过推理证实;判断一个命题是假命题,只需举出一个反例即可.设计意图通过分析语句,练习了找命题的题设和结论,更容易回答出命题的正确与否.探究点四:定理教师:请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果丨a l=lbl,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.师生活动学生代表回答,如果出现错误或不完整,请其他学生修正或补充,教师点评.教师归纳:上述问题中(1)(4)(5)的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.前面学过的一些图形的性质,都是真命题,例如“两条直线平行,同旁内角互补”等.教师追问:经过推理证明得到的真命题叫做定理.同学们能说出我们学过的定理有哪些吗?学生独立思考,然后回答,师生共同补充学过的定理.设计意图学生积极思考教师所提出的问题,练习怎样判断真、假命题.以上面问题中的真命题为切入点引出定理的概念.让学生回顾学过的定理,进一步加深对定理概念的理解.探究点五:证明教师:请同学们判断下列两个命题的真假,并思考如何判断命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.教师:命题1是真命题还是假命题?学生抢答:真命题.教师:你能将命题1所叙述的内容用图形语言表达出来吗?学生画出图1:教师:这个命题的题设和结论分别是什么呢?学生回答:题设:在同一平面内,一条直线垂直于两条平行线中的一条;结论:这条直线也垂直于两条平行线中的另一条.教师:你能结合图形用几何语言表述命题的题设和结论吗?学生回答:在同一平面内,若b〃c,a丄b,则a丄c.教师:请同学们思考如何利用已经学过的定义、定理来证明这个结论呢?已知:在同一平面内,b〃c,a丄b.求证:a丄c.证明:如图1,T a丄b(已知),・•・Z1=90°(垂直的定义).又b〃c(已知),・•・Z1=Z2(两直线平行,同位角相等).・•・—1=90°(等量代换).・•・a丄c(垂直的定义).教师:在很多情况下,一个命题的正确性需要经过一系列推理,才能做出判断,这个推理的过程叫做证明.刚才我们对命题1作出了判断,经过一系列的过程对命题1进行了证明,回顾一下,证明一个命题的正确性要分为几个步骤.学生思考交流,学生代表回答,其他同学补充,教师引导得出结论.要证明一个命题的正确性要分为三步:第一步,分析命题的题设和结论;第二步,根据命题画出图形,结合图形,根据题设写出已知,根据结论写出求证;第三步书写证明过程.教师:对于命题1这个真命题,经过了三步,我们证明了它的正确性,大命题2:相等的角是对顶角.教师:判断这个命题的真假.学生回答:假命题.教师:这个命题的题设和结论分别是什么?学生回答:题设:两个角相等;结论:这两个角互为对顶角.教师:我们知道假命题是在题设成立的前提下,结论不一定成立,你能否利用图形举例说明当两个角相等时它们不一定是对顶角的关系?学生画图回答:如图2所示,OC是Z AOB的平分线,Z1=Z2,但它们不是对顶角.教师总结:要证明一个命题是假命题,只要举一个反例即可.设计意图通过分析两个命题,让学生学会如何判断命题的真假,怎样来证明命题的真假.通过对命题1正确性的推理,来说明什么是证明.证明一个命题为真命题的步骤又有哪些?渗透了“推理”与“证明”的联系、区别•判断一个命题是假命题,只要举出一个反例就可以了.新知应用例1把命题“同位角相等”改写成“如果……那么……”的形式,并分别指出命题的题设和结论.学生代表回答,其他同学补充纠正,教师引导,得出结论.解:可以写成“如果两个角是同位角,那么这两个角相等”•题设是“两个角是同位角”,结论是“这两个角相等”.设计意图练习命题的改写以及分清命题的题设和结论.例2下列命题哪些是正确的,哪些是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加上同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.师生活动学生独立完成,并回答.解:(1)(4)错误,(2)(3)(5)正确.设计意图练习判断命题的正确与错误.例3完成下面的证明过程:Z1=Z2,Z C=Z D,求证:Z A=Z F.证明:TZ1=Z2(已知),Z2=Z3(),・•・Z1=(等量代换),・•・〃(),・•・Z C=Z4().又•・•Z C=Z D(已知),・•・Z D=Z4(),・•・DF〃AC(),・•・Z A=Z F().学生独立完成,并回答.如果错误,其他同学补充.答案:对顶角相等Z3BDCE同位角相等两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,内错角相等教师:除以上证明方法以外,还有其他的方法吗?请同学们独立思考,再交流相法.设计意图让学生熟悉证明的过程,会填写出一些证明的关键步骤和理由.通过不同方法的引导,拓展学生思维,逐步提高推理能力.课堂练习(见导学案“当堂达标”)参考答案l.A2.C3.若Za=50°,ZB=60°,则Za+ZB>90。
人教版初中数学七年级下册5.3.2《命题、定理、证明(1)》教案
学生语句,获得感性认识.
从生活中常见的语句引入课题,唤起学生的学习兴趣及探索欲望.
二、自主探究 合作交流 建构新知
活动1:观察发现、认识命题
请同学读出下列语句:
(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
(2)两平行线被第三条直线所截,同旁内角互补;
(3)对顶角相等;
5.3.2命题、定理、证明
第一课时 教学设计
教学目标:
1、理解命题的概念及构成、会判断所给命题的真假;
2、会判断命题及其真假的判断,为今后的学习打好基础,发展应用意识。
教学重、难点
教学重点:命题的概念、区分命题的题设和结论;判断命题的真假。
教学难点:区分命题的题设和结论。
教学过程
教学内容与教师活动
学生活动
2、将下列命题改成“如果……,那么……”的形式.
(1)两条直线被第三条直线所截,同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
(3)互为相反数的两个数相加得0;
(4)同旁内角互补;
(5)对顶角相等.
3、下列命题哪些是真命题,哪些是假命题?
(1)两条直线被第三条直线所截,同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
线中的一条,那么也垂直于另一条;
(2)如果两个角互补,那么它们是邻补角;
(3)如果 ,那么a=b;
(4)过直线外一点有且只有一条直线与之平行;
(5)两点确定一条直线.
观察口答
观察猜想
归纳命题的概念.
独立思考
合作交流
归纳命题的结构
思考感悟
仔细判断
仔细判断,
认识定理
为学生提供参与数学活动的时间和空间,培养学生的观察归纳能力.
人教版七年级下册5.3.2命题、定理、证明课程设计
人教版七年级下册5.3.2命题、定理、证明课程设计一、课程目标通过本课程的学习,学生应当能够:1.理解什么是命题和定理,能够举出实例;2.掌握如何证明数学命题的方法;3.开始了解初步的数学证明方法。
二、教学重点1.了解命题和定理的概念;2.分清真命题、假命题与命题的否定;3.学习以归谬法和反证法证明数学命题的方法。
三、教学难点1.学生的数理思维能力差异较大,部分学生可能不能理解数学命题的抽象概念;2.学习证明数学命题比较枯燥,需要调动学生学习的积极性。
四、教学方法本课程的教学方法主要采用讲授、练习和互动交流相结合的方法。
1.讲授:首先通过讲解命题和定理的概念,让学生初步了解数学命题,并举例说明其实际意义。
然后通过讲解如何证明数学命题的方法,引导学生学习证明数学命题的思想和方法;2.练习:通过练习题目,让学生掌握如何判断一个命题的真假,并锻炼学生运用反证法和归谬法证明数学命题的能力;3.互动交流:教师和学生之间的互动交流能够加深学生对于本课程内容的理解和记忆,在学生证明数学命题时,可以通过组内小组讨论、展示等方式,加深学生对于证明方法的理解。
五、教学内容与流程本课程的教学内容分为三部分:命题与定理的概念、如何证明数学命题的方法、实例分析。
5.1 命题与定理的概念命题和定理是数学中常用的概念,命题是一个能够判断真假的陈述句,而定理是一个能够被证明是真实的命题。
教师通过幻灯片、黑板绘图等方式,向学生讲解命题和定理的概念,并举例说明。
5.2 如何证明数学命题的方法本节课的核心内容是教给学生如何证明数学命题的方法,采用反证法和归谬法。
5.2.1 反证法教师通过实例向学生讲解反证法,即假设命题不成立,通过推理得出一定的结论,与前提相矛盾,推翻假设,从而证明命题的真实性。
5.2.2 归谬法教师通过实例向学生讲解归谬法,通过假设命题成立,推理出与已知事实相悖的结论,得出假设命题的不成立,从而证明命题的真实性。
5.3 实例分析通过实例分析,让学生应用所学知识,理解如何证明数学命题。
人教版数学七年级下册《5-3-2命题、定理、证明 》教案
人教版数学七年级下册《5-3-2命题、定理、证明》教案一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的一章内容。
本章主要介绍命题、定理和证明的概念,要求学生理解命题的真假判断,了解定理的定义和证明过程,能够运用证明方法解决一些简单的数学问题。
二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、代数等基础知识,具备一定的逻辑思维能力。
但部分学生对于抽象的概念理解起来可能存在一定的困难,需要通过具体的例题和实践活动来加深理解。
三. 教学目标1.了解命题、定理的概念,理解命题的真假判断,掌握定理的定义和证明过程。
2.培养学生运用证明方法解决数学问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.命题、定理的概念及命题的真假判断。
2.证明方法的应用。
五. 教学方法1.讲授法:讲解命题、定理的概念,演示证明过程。
2.案例分析法:分析具体例题,引导学生运用证明方法解决问题。
3.小组合作法:分组讨论,共同完成证明任务。
六. 教学准备1.教材、PPT课件。
2.相关例题和练习题。
3.教学工具:黑板、粉笔。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些日常生活中的命题,如“明天会下雨”、“今天是星期天”等,引导学生思考这些命题的真假判断。
2.呈现(10分钟)讲解命题、定理的概念,解释命题的真假判断,通过PPT课件展示定理的定义和证明过程。
3.操练(10分钟)给出几个简单的例题,让学生尝试运用证明方法解决问题。
引导学生思考证明过程中的关键步骤,培养学生的逻辑思维能力。
4.巩固(10分钟)学生分组讨论,共同完成一个证明任务。
教师巡回指导,解答学生疑问。
5.拓展(10分钟)给出一个较复杂的证明题目,让学生独立完成。
鼓励学生运用所学知识,解决问题。
6.小结(5分钟)教师总结本节课的主要内容,强调命题、定理和证明的概念,以及证明方法的应用。
7.家庭作业(5分钟)布置一些有关命题、定理和证明的练习题,要求学生回家后独立完成。
人教七下数学5.3.2命题、定理、证明教案
5.3.2命题、定理、证明(一)三维教学目标1、了解命题的概念。
2、能区分命题的题设和结论。
3、经历判断命题真假的过程,对命题的真假有一个初步的了解。
(二)教学重难点重点:命题的概念和区分命题的题设与结论。
难点:区分命题的题设和结论。
(三)教学过程活动一:情境引入教师与学生们打招呼,说出以下四句话:(1)七(1)的同学们你们好吗?(2)大家今天都能认真听课吗?(3)七(2)班的所有学生都是好学生。
(4)有时间我请大家吃饭。
问题1:下列四句话中,哪一句是对一件事情作出判断的语句?(1)七(2)的同学们你们好吗?()(2)大家今天都能认真听课吗?()(3)七(1)班的所有学生都是好学生。
()(4)有时间我请大家吃饭。
()问题2 下列语句在表述形式上,哪些是对事情作了判断?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行()(2)画一个角等于已知角()(3)对顶角相等;()(4)若a2=b2,则a=b。
()(5)两条平行线被第三条直线所截,同旁内角互补;()(6)若a2=4,求a的值;()活动二、新知探究,合作交流教师点评:象上题中的(1)、(3)、(4)、(5)这样判断一件事情的语句叫做命题。
注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
如:画线段AB=CD。
问题3 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()提问几位学生,从而检查学生们是否真正理解命题的概念。
问题4 你能举出一些命题的例子吗?(教师这时让几名学生发言)问题5 请同学们观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两直线平行,同位角相等;(3)如果两个角的和是90º,那么这两个角互余;教师点评:命题是由题设(或条件)和结论两部分组成。
人教版数学七年级下册教学设计5.3.2《 命题、定理、证明》
人教版数学七年级下册教学设计5.3.2《命题、定理、证明》一. 教材分析本节课的主题是“命题、定理、证明”,这是人教版数学七年级下册的教学内容。
教材通过引入日常生活中的实例,引导学生理解命题、定理和证明的概念,让学生掌握判断一个命题是否为定理的方法。
教材内容丰富,结构清晰,逻辑性强,有利于学生培养数学思维和解决问题的能力。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,他们对数学概念和公式的学习已经有一定的认识。
但学生在学习过程中,可能对抽象的数学概念和定理的证明过程感到难以理解,需要教师通过具体的生活实例和丰富的教学手段,帮助学生理解和掌握。
三. 教学目标1.让学生了解命题、定理和证明的概念,理解定理的判断方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生逻辑思维和数学表达能力。
四. 教学重难点1.重点:理解命题、定理和证明的概念,掌握判断一个命题是否为定理的方法。
2.难点:对抽象的数学概念和定理的证明过程的理解。
五. 教学方法1.采用问题驱动法,引导学生主动探究和理解命题、定理和证明的概念。
2.使用生活中的实例,帮助学生理解和掌握抽象的数学概念。
3.运用小组合作学习,培养学生团队合作和数学表达能力。
4.通过练习和反馈,巩固学生所学知识。
六. 教学准备1.准备相关的生活实例和数学问题,用于引导学生理解和掌握概念。
2.准备PPT,展示教材内容和实例。
3.准备练习题,用于巩固学生所学知识。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,引导学生思考和讨论,引出命题、定理和证明的概念。
例如,讲解“勾股定理”的发现过程,让学生了解定理的定义和证明方法。
2.呈现(10分钟)使用PPT展示教材中的相关内容,让学生对命题、定理和证明有一个清晰的认识。
同时,通过讲解和示范,让学生理解定理的判断方法。
3.操练(10分钟)让学生分组讨论,每组选取一个命题,判断它是定理还是假命题,并说明理由。
人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例
3. 详细讲解证明的方法和步骤,包括直接证明、反证法和归纳法等,让学生掌握证明的基本方法。
4. 通过示例题目,演示如何运用命题、定理和证明的知识解决问题,让学生理解学习的实际意义。
(三)学生小组讨论
1. 将学生分成小组,每组选择一个定理进行证明,并用自己的语言解释证明的每一步。
这些亮点体现了本节课在教学设计、教学方法和教学评价等方面的优秀之处,有助于提高学生的学习兴趣、培养学生的思维能力和团队合作能力,促进学生的全面发展。同时,这些亮点也是我作为特级教师在教学实践中不断探索和尝试的结果,希望能够为其他教师提供一定的借鉴和参考。
4. 总结归纳环节:在课程结束时,引导学生回顾和总结所学内容,帮助学生巩固知识,提高学生的记忆和理解能力。总结归纳环节能够使学生对学习内容有一个清晰的认识,增强学生对知识的系统性和整体性的理解。
5. 作业小结环节:布置与课程内容相关的作业,要求学生运用所学知识解决问题,培养学生的应用能力和实践能力。作业小结环节能够及时巩固所学知识,帮助学生检验自己的学习效果,同时也为教师提供了了解学生学习情况的机会,为下一步的教学提供参考。
3. 设计一些评估题目,检验学生对命题、定理和证明的掌握程度,及时发现和纠正学生的错误。
4. 注重对学生的形成性评价,关注学生的进步和努力,激发学生的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1. 利用生活实例引入命题的概念,例如:“如果今天是星期五,那么学校放假。”引导学生理解命题由题设和结论两部分组成。
2. 强调定理证明的重要性,以及定理证明在数学中的应用,使学生认识到学习定理证明的意义。
3. 总结学生在小组讨论中的表现,对学生的学习成果进行肯定和鼓励,激发学生的学习动力。
人教版七年级数学下册5.3.2命题、定理、证明教学设计
a.证明:三角形的内角和等于180度。
b.证明:对角线相等的平行四边形是矩形。
c.证明:圆的任意直径垂直于圆的切线。
3.结合生活实际,自行设计一个包含命题、定理和证明的数学问题,并用所学的知识进行解答。要求问题具有一定的挑战性,能够体现学生对几何知识的综合运用。
4.强调证明过程中需要注意的问题,如逻辑严密、步骤清晰等。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个几何问题,要求学生运用所学的定理和证明方法解决问题。
2.学生在小组内展开讨论,共同探讨解决问题的方法,教师巡回指导,给予提示和帮助。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,使学生认识到数学的严密性和逻辑性。
2.增强学生对数学美的感知,激发学生对数学学科的兴趣和热爱。
3.培养学生勇于探索、善于思考的品质,使学生体验到数学探究的乐趣。
4.引导学生将所学知识应用于实际生活,认识到数学在现实生活中的重要性,增强学生的社会责任感。
5.创设轻松愉快的学习氛围,鼓励学生提问、表达,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握命题的概念,能够正确判断命题的真假。
2.熟悉基本的几何定理,并能运用定理解决实际问题。
3.学会运用逻辑推理进行证明,提高学生的逻辑思维能力。
4.能够将所学知识综合运用,解决复杂的几何问题。
(二)教学设想
1.创设情境,引入命题概念
-利用生活实例,如“两点之间线段最短”,引导学生理解命题的概念,并学会判断命题的真假。
人教初中数学七下 5.3.2 命题、定理、证明教案
8.怎样辨别一个命题的真假.
(l)实际生活问题,实践是检验真理的唯一标准.
(2)数学中判定一个命题是真命题,要经过证明.
(3)要判断一个命题是假命题,只需举一个反例即可.
三、巩固知、
相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论.
不同之处:(1)中的结论是正确的,(2)中的结论是错误的.
教师及时指出:同学们发现了命题的两种情况.结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.
4.给出真、假命题定义.
真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题.
(4)如果a>0,b>0,那么a+b>0.
(5)当a>0时,|a|=a.
(6)小于直角的角一定是锐角.
在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题.
(7)a>0,b>0,a+b=0.
(8)2与3的和是4.
有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解.
(1)我是中国人。
(2)你吃饭了吗?
(3)两条平行线被第三条直线所截,同旁内角互补。
(4)两条直线平行,内错角相等。
(5)画一个45°的角。
(6)平角与周角一定不相等。
2.找出哪些是判断某一件事情的句子?
学生答:(1),(3),(4),(6)。
活动2
1.教师给出命题的概念,并举例.
命题:判断一件事情的语句,叫做命题。析(3),(5)为什么不是命题。
人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计
人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计一. 教材分析《人教版数学七年级下册5.3.2-2<命题、定理、证明2>》这一节的内容,主要让学生了解命题、定理和证明的概念,掌握如何阅读和理解数学证明,培养学生的逻辑思维能力。
教材通过具体的例子,引导学生理解命题、定理和证明之间的关系,以及如何应用这些知识解决实际问题。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程和不等式等基础知识,对数学概念和逻辑推理有一定的认识。
但部分学生可能对抽象的数学概念理解起来较为困难,需要通过具体的例子和实际操作来加深理解。
同时,学生可能对证明的过程和方法还不够熟悉,需要通过练习和指导来提高。
三. 教学目标1.了解命题、定理和证明的概念,理解它们之间的关系。
2.学会阅读和理解数学证明,培养逻辑思维能力。
3.能够运用所学知识解决实际问题,提高解决问题的能力。
四. 教学重难点1.重点:命题、定理和证明的概念,以及如何阅读和理解数学证明。
2.难点:如何理解和运用证明的方法,解决实际问题。
五. 教学方法采用问题驱动法、案例分析和小组合作讨论相结合的方法。
通过具体的例子和实际操作,引导学生理解命题、定理和证明的概念,培养学生的逻辑思维能力。
同时,学生进行小组合作讨论,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和例子,用于引导学生理解和运用命题、定理和证明的知识。
2.准备小组合作讨论的问题和任务,引导学生进行实践操作。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引导学生思考如何用数学语言来描述这个问题,以及如何用逻辑推理来解决这个问题。
从而引出命题、定理和证明的概念。
2.呈现(10分钟)呈现相关的案例和例子,引导学生理解命题、定理和证明的概念。
通过讲解和示范,让学生了解如何阅读和理解数学证明。
3.操练(10分钟)学生分组进行练习,运用命题、定理和证明的知识来解决实际问题。
人教版数学七年级下册《5-3-2命题、定理、证明 》教学设计
人教版数学七年级下册《5-3-2命题、定理、证明》教学设计一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的教学内容,主要包括命题、定理和证明的概念及其关系。
本节课的内容是学生学习数学证明的基础,对于培养学生的逻辑思维和论证能力具有重要意义。
二. 学情分析学生在七年级上学期已经学习了基本的数学概念和运算,对于问题的解决有一定的基础。
但是,学生对于抽象的逻辑推理和证明过程可能存在理解上的困难,需要通过具体的事例和实践活动来帮助他们理解和掌握。
三. 教学目标1.了解命题、定理和证明的概念及其关系。
2.能够识别和判断一个数学命题是真还是假。
3.学会使用简单的逻辑推理和归纳推理写出简单的证明过程。
四. 教学重难点1.重点:命题、定理和证明的概念及其关系。
2.难点:证明过程的写法和逻辑推理的运用。
五. 教学方法采用问题驱动的教学方法,通过引导学生观察、思考和推理,激发学生的学习兴趣,培养学生的逻辑思维和论证能力。
同时,结合小组合作和讨论,促进学生之间的交流和合作。
六. 教学准备1.教学PPT:包括命题、定理和证明的概念及其关系的图片和示例。
2.练习题:包括判断命题真假和写证明过程的练习题。
3.小组合作的学习材料:包括相关的数学故事和案例。
七. 教学过程1.导入(5分钟)通过一个有趣的数学故事引入命题、定理和证明的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解命题、定理和证明的概念及其关系,通过示例让学生理解命题是陈述性语句,定理是经过证明的命题,证明是用来证实命题真假的过程。
3.操练(10分钟)让学生独立完成一些判断命题真假的练习题,并简要说明判断的依据。
通过小组讨论和分享,让学生理解不同的人可能会有不同的判断方法,但正确的判断应该基于逻辑推理和证明过程。
4.巩固(10分钟)让学生分组合作完成一些写证明过程的练习题。
在学生完成练习后,让各小组展示他们的证明过程,并解释他们的推理思路。
人教版七年级数学(下)—教案:5.3.2命题、定理、证明优秀教学案例
4.针对学生的学习情况,调整教学策略,为下一节课的教学做好准备。
五、案例亮点
1.情境创设:本节课通过生活实例和多媒体展示,有效地激发了学生的学习兴趣,使他们能够主动参与到课堂学习中。情境创设不仅增强了学生对数学知识的理解,还提高了他们的学习积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发他们学习数学的内在动力。
2.培养学生的自信心和自尊心,让他们感受到自己在数学学习中的进步和成就。
3.引导学生认识到数学的严谨性和逻辑性,培养他们的思维品质和道德素养。
4.通过对命题、定理和证明的学习,使学生感受到数学的美丽和力量,提高他们对数学价值观的认识。
2.问题导向:教师在教学中提出了具有挑战性和引导性的问题,引导学生进行深入思考和探索。问题导向的教学策略使得学生在解决问题的过程中,能够不断提高自己的数学思维水平和解决问题的能力。
3.小组合作:教师组织学生进行小组讨论和合作,培养了他们的团队协作能力和沟通能力。小组合作使得每个学生都能在课堂上发挥自己的特长,提高了他们的自主学习能力和合作意识。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,培养他们的自我评价和自我调节能力。
2.组织学生进行互评和小组评价,让他们学会倾听他人的意见,提高他们的批判性思维。
3.教师对学生的学习成果进行肯定和鼓励,增强他们的自信心和自尊心。
4.结合学生的学习情况,调整教学策略,为下一节课的教学做好准备。
四、教学内容与过程
(二)问题导向
1.提出具有挑战性和引导性的问题,激发学生的思维活力,培养他们的解决问题的能力。
2.引导学生通过讨论和思考,逐步解决问题,让他们体验到解决问题的过程和成就感。
人教版七年级数学下册教案 5-3-2 命题、定理、证明
5.3.2 命题、定理、证明一、教学目标【知识与技能】1.理解命题,定理及证明的概念,会区分命题的题设和结论.2.会判断真假命题,知道证明的意义及必要性,了解反例的作用.3.理解证明要步步有据,培养学生养成科学严谨的学习态度. 【过程与方法】经历判断命题真假的过程,对命题的真假有一个初步的了解. 【情感态度与价值观】初步培养学生不同几何语言相互转化的能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】命题的概念和区分命题的题设与结论.【教学难点】区分命题的题设和结论.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)让学生阅读课件中的两个例子,讨论句子含义。
(二)探索新知1.出示课件4-5,探究命题的概念教师出示问题:完成下列问题:请同学读出下列语句:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.这些句子有何特点?学生答:都对事情做出了判定.教师问:这样的句子叫做命题.什么叫做命题?学生答:像这样判断一件事情的语句,叫做命题.总结点拨:(出示课件5)教师强调:1.只要对一件事情作出了判断,不管正确与否,都是命题.如:相等的角是对顶角.2.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.考点1:命题的识别判断下列四个语句中,哪个是命题,哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两条直线平行,同位角相等;(4)相等的两个角,一定是对顶角.(出示课件6)师生共同讨论解答如下:解:(3)(4)是命题,(1)(2)不是命题.理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.总结点拨:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.出示课件7,学生自主练习后口答,教师订正.2.出示课件8-10,命题的构成教师问:观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如果一个数的平方等于9,那么这个数是3.学生答:都是“如果……那么……”的形式.教师问:命题一般都可以写成“如果……那么……”的形式.1.“如果”后接的部分是题设,2.“那么”后接的部分是结论.如命题:熊猫没有翅膀.改写为:“如果……那么……”的形式.学生答:如果这个动物是熊猫,那么它就没有翅膀.师生一起总结:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.总结点拨:(出示课件10)命题的组成:题设——已知事项命题结论——由已知事项推出的事项两直线平行,同位角相等题设(条件)考点2:命题表述形式的变换分别把下列命题写成“如果……那么……”的形式.(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等. (出示课件11)学生独立思考后,师生共同分析解答.教师依次展示学生解答过程:学生1解:(1)如果有两个定点,那么过这两点有且只有一条直线;学生2解:(2)如果两个角分别是两个等角的补角,那么这两个角相等;学生3解:(3)如果两个角是内错角,那么这两个角相等.总结点拨:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.出示课件12,学生自主练习后口答,教师订正.3.出示课件13,探究真假命题的概念.教师问:有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立. 如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立吗?学生答:如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立.教师问:上面的命题:条件也成立,结论也成立.这样的命题是正确命题. 如命题:“如果一个数能被4整除,那么它也能被2整除”是一个正确的命题吗?学生答:是一个正确的命题.教师问:有些命题题设成立时,结论不一定成立.这样的命题是错误的命题.如命题:“如果两个角互补,那么它们是邻补角”就是一个怎样的命题呢?学生答:“如果两个角互补,那么它们是邻补角”就是一个错误的命题.教师问:正确的命题叫真命题,错误的命题叫假命题.则命题“内错角相等,两直线平行”是真命题还是假命题?学生答:是真命题.教师问:怎样确定定一个命题真假呢?师生一起解答:确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法.考点3:真假命题的识别下列命题哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.学生独立思考后,师生共同解答.解:真命题有(2)、(3)、(5);假命题有(1)、(4).总结点拨:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.出示课件15,学生自主练习后口答,教师订正.4.出示课件16-19,探究证明和反证法(举反例)教师出示问题:一天早上,张老汉来到公安局里告状说:王五刚刚在他地里偷了一袋子苹果.公安局长立即派干警将王五传唤到公安局审讯:公安局长问张老汉:“你怎知是王五偷了你的苹果?”“因为早上我发现王五从苹果园那边过来,把一袋东西背回家,还发现我果园的苹果被人偷了,我知道王五家没有苹果树.所以我家苹果肯定是王五偷的.”张老汉想证明什么?他是怎么证明的?学生答:张老汉想证明偷了他的苹果,王五从他家的苹果园那边经过,把一袋东西背回家.教师问:根据张老汉的证明,你能断定苹果是王五偷的吗?你觉得有疑点吗?学生答:根据张老汉的证明,不能断定苹果是王五偷的,有疑点:因为只是经过,张老汉的推断太牵强.总结点拨:(出示课件16)这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.教师出示问题:公安局长一时拿不定主意,就问旁边的梁副局长:“梁局长,你怎么看?”梁局长会如何回答呢?学生答:梁局长说“这事要证明是王五干的,还得弄清那袋子里装的是不是刚摘的苹果,还要看看地里的脚印是不是王五的才行.如果袋子里装的是刚摘的苹果,且地里的脚印是王五的,那就一定是他偷的.”总结点拨:(出示课件17)从结论出发,逆着寻找所需要的条件的思考过程,叫分析.在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么证明就很容易了.总结点拨:(出示课件18)证明的概念在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.教师强调:证明的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.教师问:如何判定一个命题是假命题呢?学生答:举一个反例即可.教师问:例如,要判定命题“相等的角是对顶角”是假命题如何证明?师生一起解答:可以举出如下反例:如图,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.总结点拨:(出示课件19)确定一个命题是假命题的方法:只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.考点4:利用证明推理解决问题如图,∠1=∠2,试说明直线AB,CD平行.(出示课件20)师生共同分析:要证明AB,CD平行,就需要同位角相等的条件,图中∠1与∠3就是同位角.我们只要找到:能说明它们相等的条件就行了.从图中,我们可以发现:∠2与∠3是对顶角,所以∠3=∠2.这样我们就找到了∠1与∠3相等的确切条件了.学生独立思考后,师生共同解答.证明:∵∠2与∠3是对顶角,∴∠3=∠2.又∵∠1=∠2,∴∠1=∠3.∴AB∥CD.出示课件21,学生自主练习,教师给出答案。
人教版七年级数学下册5.3.2命题、定理、证明优秀教学案例
5.引导学生树立正确的价值观,认识到学习数学不仅是为了考试,更是为了提升自己的综合素质,为未来的发展打下坚实基础。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握命题、定理、证明的知识,我将采用生活化的情景创设方法。通过引入学生熟悉的生活实例,如地图上的最短路径、圆桌上的饼等,让学生感受到数学与现实生活的紧密联系。同时,结合课本中的例题,设计具有趣味性和挑战性的问题,激发学生的学习兴趣和探究欲望。
3.反馈:针对学生的表现,及时给予反馈,鼓励优点,指出不足,并提出改进建议。让学生在反思和评价中不断成长,提高他们的自我认知和自我调节能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中的一些现象,如:为什么两点之间的直线距离最短?为什么圆形的轮子可以平稳滚动?通过这些现象,引发学生对命题、定理、证明的兴趣。
3.各小组代表汇报讨论成果,其他小组给予评价和反馈。
(四)总结归纳
1.教师引导学生总结本节课所学的知识点,如命题、定理、证明方法等。
2.帮助学生梳理知识体系,明确各个知识点之间的联系。
3.强调本节课的重点和难点,提醒学生注意掌握。
(五)作业小结
1.布置作业:结合本节课内容,设计不同难度的习题,让学生巩固所学知识。
2.提问学生:“在生活中,你们还遇到过哪些类似的问题?”让学生意识到数学知识与生活的紧密联系。
3.引导学生回顾已学的相关知识点,为新课的学习做好铺垫。
(二)讲授新知
1.讲解命题的概念,举例说明命题的表述方法,让学生理解命题的内涵和外延。
2.介绍基本的几何定理,如线段的性质、角的性质等,并结合课本中的例题,让学生理解定理的含义和应用。
人教版七年级数学下册第五章5.3.2命题、定理、证明(教案)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《命题、定理、证明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断真假的陈述?”比如,判断广告中的产品宣传是否真实。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索命题的奥秘。
在学生小组讨论环节,大家对于定理在实际生活中的应用提出了很多有趣的观点。但同时我也注意到,部分学生在讨论过程中较为沉默,可能是因为他们对主题不他们积极参与讨论,提高自信心。
首先,关于命题的真假判断,大多数学生能够理解并掌握基本的判断方法,但在遇到一些复杂命题时,仍然会出现判断失误的情况。这说明在今后的教学中,我需要多设计一些具有挑战性的题目,帮助学生提高判断能力。
其次,定理的应用是学生们普遍感到困惑的地方。在讲解定理时,我应该更加注重引导学生理解定理的适用条件,以及如何在实际问题中灵活运用定理。通过案例分析,让学生明白定理并不是孤立的知识点,而是可以解决实际问题的有力工具。
1.教学重点
(1)理解命题的概念:命题是描述性语句,可以判断其真假。本节课重点是让学生掌握命题的基本要素,如何判断一个命题的真假,以及如何书写正确的命题。
举例:判断下列命题的真假:“一个三角形的三个内角和为180度。”
(2)掌握定理的定义:定理是经过证明的命题。重点在于让学生理解定理在几何证明中的重要性,并学会运用定理进行问题的解决。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句。它是数学逻辑推理的基础,是建立定理和进行证明的前提。
2.案例分析:接下来,我们来看一个具体的案例。通过分析“一个三角形的三个内角和为180度”这个命题,了解它在几何证明中的应用。
人教版七年级数学下册5.3.2《命题、定理、证明》教学设计
人教版七年级数学下册5.3.2《命题、定理、证明》教学设计一. 教材分析《命题、定理、证明》是人教版七年级数学下册第五章第三节的内容,主要介绍了命题、定理和证明的概念。
这部分内容是学生学习几何证明的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
本节课的内容主要包括命题的定义、分类及定理的概念,以及证明的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于基本的几何概念和性质有一定的了解。
但是,学生在证明方面的知识和能力还有待提高,因此,在教学过程中需要注重引导学生理解和掌握证明的方法和技巧。
三. 教学目标1.理解命题、定理和证明的概念,能够区分它们之间的联系和区别。
2.学会用几何语言表达命题和定理。
3.掌握证明的方法和技巧,能够运用所学的知识解决一些简单的几何问题。
四. 教学重难点1.重点:命题、定理和证明的概念及它们之间的联系和区别。
2.难点:证明的方法和技巧,以及如何运用所学的知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作探究的方式掌握命题、定理和证明的概念。
2.利用几何图形和实例,帮助学生直观地理解命题、定理和证明的联系和区别。
3.通过练习和案例分析,培养学生的证明能力和解决实际问题的能力。
六. 教学准备1.准备相关的几何图形和实例,用于讲解和展示。
2.准备一些练习题和案例,用于巩固和拓展所学知识。
七. 教学过程1.导入(5分钟)利用一个简单的几何问题引入命题、定理和证明的概念,激发学生的兴趣。
2.呈现(10分钟)讲解命题、定理和证明的定义及它们之间的联系和区别。
通过几何图形和实例,让学生直观地理解这些概念。
3.操练(10分钟)让学生分组讨论,分析一些给定的几何问题,尝试运用所学的命题、定理和证明方法解决问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固对命题、定理和证明的理解。
人教版七年级下册5.3.2命题、定理、证明教学设计
人教版七年级下册5.3.2命题、定理、证明教学设计一、教学目标1.理解命题、定理、证明的定义与本质;2.掌握命题、定理、证明的基本方法;3.培养学生正确的逻辑思维方式;4.提高学生的实际问题解决能力。
二、教学重点和难点1.命题、定理、证明的区别;2.掌握证明的基本方法和要素;3.发现并利用生活中的具体例子。
三、教学过程1.导入环节1.老师与学生对话,引导学生探讨“世界上有哪些真理?”;2.引出知识点——命题、定理、证明。
2.讲授环节(1)命题1.定义:能够判断真假的陈述句;2.给出多个例子,使学生彻底领悟命题的概念。
(2)定理1.定义:在一定条件下成立的命题;2.给出具体定理的例子,并与学生一起探讨它的证明方法。
(3)证明1.定义:利用已知的命题或定理,通过演绎推理来证明给定命题的正确性;2.讲解证明的基本方法和注意事项:–观察分析,找出已知条件、所求结论以及中间步骤;–运用基本运算法则和逻辑法则进行推理;–从已知条件出发,按照逻辑关系,步步深入推理,直至得到所求结论;–在证明中,要小心使用某些特殊的词句,比如“一定”、“必然”、“当且仅当”等。
3.实践环节1.老师出一些具体的例子,让学生按照证明的方法,证明其正确性;2.或者让学生先猜测一些规律,再通过证明来验证其是否成立。
4.总结环节1.结合今天的学习内容,带领学生发现:命题、定理、证明有哪些联系和区别;2.老师总结本节课的内容,帮助学生理顺知识脉络;3.常见错题集讲解,总结容易犯的错误。
四、教学评估1.课堂上通过观察和听取学生的解答来了解他们掌握的程度;2.布置课后作业,检验学生学习效果;3.半个月后,再对此知识点进行检测,检查学习效果是否稳定。
5.3.2命题定理证明教案人教版数学七年级下册
三、真假命题的概念(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)如果两个角互补,那么它们是邻补角;(3)两条平行线被第三条直线所截,同旁内角互补;(4)对顶角相等;(5)如果一个数能被2整除,那它也能被4整除;(6)等式两边加同一个数,结果仍是等式.正确的:(1)(3)(4)(6)错误的:(2)(5)真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:命题中题设成立时,不能保证结论一定成立,这样的命题叫做假命题.思考:如何判断此命题为假命题?如果两个角互补,那么它们是邻补角举反例如图:AB∥CD∥A+∥C=180°,因此∥A与∥C互补,但不是邻补角。
判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.思考:如何判断此命题为假命题?相等的角是对顶角如图,OC是∥AOB的平分线,∥1=∥2,但它们不是对顶角。
四、定理、证明我们学过的一些图形的性质,都是真命题。
其中有些命题是基本事实。
如“两点确定一条直线”“经过直线外一点有且只有一条直线与这条直线平行”等.它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据. 如“对顶角相等”“内错角相等,两直线平行”等在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.注意:证明的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,也可以是学过的定义、基本事实、定理等。
活动意图说明:教师活动4:例1:如图,已知b∥c,a⊥b. 求证a⊥c.证明:∥a∥b(已知)∥∥1=90°(垂直的定义)又b∥c(已知)∥∥1=∥2(两直线平行,内错角相等)∥∥2=∥1=90°(等量代换)∥a∥c(垂直的定义)活动意图说明:2.下列语句中,不是命题的是(D)A.如果a>b,那么b<aB.同位角相等C.垂线对最短D.反向延长射线OA3.把命题“相等的角是对顶角”写成“如果...那么...”的形式是__如果两个角相等,那么这两个角是对顶角_。
人教版数学七年级下册教案5.3.2《 命题、定理、证明》
人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。
通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。
本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。
但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。
三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。
2.学会用逻辑推理的方法证明几何命题。
3.培养学生的空间想象能力和思维能力。
四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。
2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。
六. 教学准备1.教学PPT课件。
2.相关例题及练习题。
3.几何画图工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。
通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。
2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。
让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。
3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。
教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。
4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。
教师及时批改、讲解,巩固学生所学知识。
5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。
人教初中数学七下 5.3.2 命题、定理、证明教案 【经典数学教学PPT课件】
5.3.2 命题、定理、证明教学目标1.知识目标:掌握命题的概念,并能分清命题的组成部分.经历判断命题真假的过程,对命题的真假有一个初步的了解。
2.能力目标:初步培养不同几何语言相互转化的能力。
3.情感目标:教学重点命题的概念和区分命题的题设与结论教学难点区分命题的题设和结论教学方法自主学习,合作探究教学器材多媒体课前预习设计1、阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些句子都是对某一件事情作出“是”或“不是”的判断教学过程一.旧知设疑、情景引入(时间:3 分钟)二次备课1、预习疑难:。
2、填空:①平行线的3个判定方法的共同点是。
②平行线的判定和性质的区别是。
二.新课教学(时间:25分钟)教师导知活动1 学生探知活动1 二次备课定义:的语句,叫做命题练习:下列语句,哪些是命题?哪些不是?(1)过直线AB外一点P,作AB的平行线.(2)过直线AB外一点P,可以作一条直线与AB平行吗?(3)经过直线AB外一点P, 可以作一条直线与AB平行.请你再举出一些例子。
教师导知活动2 学生探知活动2 二次备课命题的构成:1、许多命题都由和两部分组成.是已知事项, 是由已知事项推出的事项.2、命题常写成"如果……那么……"的形式,这时,"如果"后接的部分.....是 , 1、指出下列命题的题设和结论:(1)如果两个数互为相反数,这两个数的商为-1;(2)两直线平行,同旁内角互补;(3)同旁内角互补,两直线平行;(4)等式两边乘同一个数,结果仍是等式;(5)绝对值相等的两个数相等.(6)如果AB⊥CD,垂足是O,那么∠AOC=90°"那么"后接的的部分......是 . (三)命题的分类真命题:。
(定理:的真命题。
)假命题:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.雷锋同志是伟大的共产主义战士!
命题是由题设和结论两部分组成的.一般都写成“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论.
例“两直线平行,同旁内角互补”改写如下:如果两直线平行,那么同旁内角互补.
将下列各题改写成“如果……那么……”的形式,并指出下列各命题的题设和结论.
教学方法
讲练结合
教学手段
电子白板
课型
新课
教学环节
教学内容
教师活动
学生活动
活动1
认识命题及其构成
活动2
例题解析
活动3
跟踪训练
活动4
命题的改写
活动5
跟踪训练
活动6
真假命题及定理
活动7
跟踪训练
活动8
课堂小结
看下列句子有什么特点:
1.两直线平行,同位角相等.
2.对顶角相等.
3.3>2.
4.1+1=2.
5.今天是三八妇女节.
教学反思
1.同旁内角互补,两直线平行;
2.两条平行线被第三条直线所截,同旁内角互补;
3.邻补角是互补的角;
4.平行于同一直线的两直线平行;
5.等角的补角相等.
观看幻灯片理解真假命题.
如果题设成立时,结论一定成立的命题称为真命题;题设成立时,不能保证结论一定成立的命题称为假命题.
经过推理证实的真命题叫做定理.
哪些是真命题,哪些是假命题?
(1)内错角相等.
(2)邻补角一定互补.
(3)垂线段是点到直线的距离.
(4)两个锐角的和是锐角.
(5)互补的角是邻补角.
(6)两点之间线段最短.
(7)如果一个数能被2整除,那么它也能被4整除.
1.命题:判断一件事情的语句叫命题.
(1)正确的命题称为真命题,错误的命题称为假命题.
6.白马不是马.
7.猪有四条腿.
例下列语句是命题的是( )
A.你去哪里?
B.画一个圆
C.今天食堂的菜太好吃了!
D.相等的角是内错角
下列语句在表述形式上,哪些角.
3.两直线平行,同位角相等.
4.a、b两条直线平行吗?
5.若a+c=b+c,则a=b.
公理与定理都是真命题.
例平行线的判定定理、平行线的性质定理、平行公理都是真命题.
解:(2)、(6)是真命题,其余是假命题.
学生练习
板书设计
5.3.2命题、定理、证明
命题是由题设和结论两部分组成.题设是已知事项(已知条件),结论是由已知事项推出的事项(结论).
如果题设成立时,结论一定成立的命题称为真命题;题设成立时,不能保证结论一定成立的命题称为假命题.
命题是由题设和结论两部分组成.题设是已知事项(已知条件),结论是由已知事项推出的事项(结论).
疑问句、祈使句、感叹句不是命题
命题:判断一件事情的语句,要么肯定,要么否定,从语法上来讲它应该是一个陈述句,不能是祈使句、疑问句和感叹句.
1.有些命题题设和结论不明显,要经过分析才能找得出.例:猫有四条腿,即如果这个动物是猫,那么它就有四条腿.2.添加“如果”、“那么”后,1)命题的意思不能改变,2)句子要完整,语句要通顺.这样可以使命题的题设和结论更明朗,易于分辨.这就相当于语文中的句子扩写.
(2)命题的结构:命题由题设和结论两部分构成,常可写成“如果……,那么……”的形式.
2.定理:经过推理论证为正确的命题叫定理.也可作为继续推理的依据.
3.判断一个命题是假命题,只要举出一个例子,说明该命题不成立就可以了,这种方法称为举反例.
这些句子都有一个共同点,它们都是判断一件事情的语句,叫做命题.
宝坻区中小学课堂教学教案
授课教师:授课时间:
课题
5.3.2命题、定理、证明
课
时
教
学
目
标
1.认识命题与定理的概念,会区分命题的题设与结论,能准确判断命题的真假,能认识到数学证明的必要性,能有条理地表达说理.
2.体会到定理化的数学发展意义.
教学重点
掌握命题、定理的概念,了解证明的意义
教学难点
分清命题的组成,说出一个命题的逆命题;掌握推理的方法和步骤。