BP神经网络原理及应用

合集下载

BP神经网络及其应用

BP神经网络及其应用

BP神经网络及其应用摘要:人工神经网络是最近发展起来的十分热门的交叉学科,有着非常广泛的应用前景。

文着重研究了bp神经网络结构、算法原理、介绍了bp网络改进算法,最后将改进的bp算法应用与变压器故障诊断。

关键词: bp神经网络;应用;故障诊断1、神经元模型人工神经网络(artificial neural networks,ann)是对人脑神经系统的近似模拟。

神经网络由许多人工神经元互连组成,能接受并处理信息,网络的信息处理由神经元之间的连接权值来实现。

1943年,mcdulloh和pitts根据生物神经元的结构和功能,建立了人工神经元模型如图1,一个基本的神经元i,它有n个输入,每个输入都通过一个适当的权值w与神经元相连。

是神经元的输入, 是神经元i的阀值; ,分别是神经元i对的权值;是神经元的输出;圆形代表内部求和函数,它将输入求和得到神经元的静输入。

f( )是神经元的激励函数,它决定神经元受到输入时的输出。

激励函数f( )有多种形式,如sigmoid函数、阶跃函数和线性函数等。

2、bp神经网络基本思想将bp网络理论学习算法转化为实际的学习过程,其原理如下:如图4-2所示,令i = { a1,..., an}为输入层故障诊断向量,o={ c1,...,cj}为输出层故障诊断向量,h={b1,,...,bp}为隐含层神经元数,v=vn×p与w=wp×q,为各层之间连接权值,k=(1,2,..., m)为给定的样本数。

先给li层单元与lh层单元之间、lh层单元与lo层单元之间的连接权以及lh层单元阀值θi、lo层单元阀值γi赋[-ε,+ε]区间的随机值份(ε≦1)。

对每个模式对(a k,tk)(k=1,2,...,m)的学习步骤如下:(1)将输入模式ak送到li层,li层单元的激活值ah通过连接权矩阵v送到lh层,产生lh层新的净输入netbi,进而产生lh层单元的输出值bi式中h=1,2,...,n;i=1,2,...,q。

bp网络原理

bp网络原理

bp网络原理BP网络,即反向传播神经网络(Backpropagation Neural Network),是一种基于梯度下降算法的前馈神经网络。

它是一种常用的人工神经网络模型,被广泛应用于模式识别、预测和分类等任务中。

BP网络的基本原理是建立一个多层的神经网络结构,包括输入层、隐藏层和输出层。

每个神经元都与下一层的所有神经元连接,并通过权重连接进行信息传递。

输入信号从输入层经过权重连接传递到隐藏层,再经过隐藏层的激活函数作用后传递到输出层。

BP网络的训练过程主要分为前向传播和反向传播两个阶段。

在前向传播阶段,输入样本经过网络的各层神经元,得到输出结果。

每个神经元将输入信号与权重相乘并累加,然后经过激活函数进行非线性转换,得到该神经元的输出。

在反向传播阶段,通过计算输出层和期望输出之间的误差,按照梯度下降的方法不断调整每个神经元的权重,以最小化误差。

误差通过链式法则从输出层回传到隐藏层和输入层,根据权重的梯度进行更新。

反复迭代上述的前向传播和反向传播过程,直到网络的输出误差满足要求或训练次数达到指定值为止。

BP网络具有较好的非线性拟合能力和学习能力。

它的优点在于能够通过训练样本自动调整权重,从而对输入样本进行分类和预测。

然而,BP网络也存在一些问题,如容易陷入局部最小值、训练速度慢等。

为了克服BP网络的局限性,研究者们提出了一些改进方法,如改进的激活函数、正则化技术、自适应学习率等。

这些方法在提高网络性能和加速训练过程方面起到了积极的作用。

总结起来,BP网络是一种基于梯度下降算法的前馈神经网络,通过前向传播和反向传播的方式不断调整神经元的权重,以实现输入样本的分类和预测。

虽然存在一些问题,但通过改进方法可以提高其性能和训练速度。

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用BP神经网络(Back Propagation Neural Network)是一种基于梯度下降算法的人工神经网络模型,具有较广泛的应用。

它具有模拟人类神经系统的记忆能力和学习能力,可以用来解决函数逼近、分类和模式识别等问题。

本文将介绍BP神经网络的原理及其在MATLAB中的应用。

BP神经网络的原理基于神经元间的权值和偏置进行计算。

一个标准的BP神经网络通常包含三层:输入层、隐藏层和输出层。

输入层负责接收输入信息,其节点数与输入维度相同;隐藏层用于提取输入信息的特征,其节点数可以根据具体问题进行设定;输出层负责输出最终的结果,其节点数根据问题的要求决定。

BP神经网络的训练过程可以分为前向传播和反向传播两个阶段。

前向传播过程中,输入信息逐层传递至输出层,通过对神经元的激活函数进行计算,得到神经网络的输出值。

反向传播过程中,通过最小化损失函数的梯度下降算法,不断调整神经元间的权值和偏置,以减小网络输出与实际输出之间的误差,达到训练网络的目的。

在MATLAB中,可以使用Neural Network Toolbox工具箱来实现BP神经网络。

以下是BP神经网络在MATLAB中的应用示例:首先,需导入BP神经网络所需的样本数据。

可以使用MATLAB中的load函数读取数据文件,并将其分为训练集和测试集:```data = load('dataset.mat');inputs = data(:, 1:end-1);targets = data(:, end);[trainInd, valInd, testInd] = dividerand(size(inputs, 1), 0.6, 0.2, 0.2);trainInputs = inputs(trainInd, :);trainTargets = targets(trainInd, :);valInputs = inputs(valInd, :);valTargets = targets(valInd, :);testInputs = inputs(testInd, :);testTargets = targets(testInd, :);```接下来,可以使用MATLAB的feedforwardnet函数构建BP神经网络模型,并进行网络训练和测试:```hiddenLayerSize = 10;net = feedforwardnet(hiddenLayerSize);net = train(net, trainInputs', trainTargets');outputs = net(testInputs');```最后,可以使用MATLAB提供的performance函数计算网络的性能指标,如均方误差、相关系数等:```performance = perform(net, testTargets', outputs);```通过逐步调整网络模型的参数和拓扑结构,如隐藏层节点数、学习率等,可以进一步优化BP神经网络的性能。

bp人工神经网络的原理及其应用

bp人工神经网络的原理及其应用

廷塑签凰.B P人工神经网络的原理及其应用焦志钦(华南理工大学,广东广州510000)f}商鞫人工神经网络是计算智能和机器学习研究中最活跃的分交之一。

本文对神经网络中的BP算法的原理做了详尽的阐述,并用M a da b 程序对其进行了应用。

表明它具有强大的拟合功能。

房;建闭B P算法;M adab1人工神经网络的发展人工神经网络是一个由多个简单神经元相互关联构成的能够实现某种特定功能的并行分布式处理器。

单个神经元由杈值、偏置值、净输^和传输函数组成。

多输入单神经元模型如图1—1所示。

岛见:●仇图1—1多输入单神经元模型其中P为输入值,w.为连接权值,b为偏置值,f似o√为传输函数。

神经元值n=w p+b,输出值为a=f M。

人工神经网络的第一个应用是感知机网络和联想学习规则。

不幸的是,后来研究表明基本的感知机网络只能解决有限的几类问题。

单层感知机只能解决线性分类问题。

不能解决异或问题,也不能解决非线性问题,因此就有单层感知机发展为多层感知机。

多层神经网络中—个重要的方法是B P算法。

BP网络属于多层前向网络,如图1—2所示:卫咒鼍旬k图卜2卵网络模型2B P算法B P网络计算方法如式(2—1)所示,为简化,将神经元的阈值8视为连接权值来处理,并令xo=go=ho=一1,故式(5-1)可以改写为式(2—2)。

92‘i互%蕾一8少j=I,2,…,,17也=,f∑峭一日.J j卢7,22,…,n2(2,1)^=,f2郴一日。

Jj卢7,,…,(2—1)心y,--f凭峭叫i j=1,2,…,n29=7i互w刚∥j=1,2,..’,几7^-f嚷郴一日小』=7,2,…,n2(2—2)M=f f三峭一日,Jj j=l,2,…,n2,=,B P算法是一种有导师的学习算法,这种算法通常是应用最速下降法。

图2—1描述了B P网络的一部分,其中包括工作信号(实线)和误差信号(虚线)两部分。

2002。

10。

1。

0。

’。

年。

bp神经网络的原理

bp神经网络的原理

bp神经网络的原理BP神经网络(也称为反向传播神经网络)是一种基于多层前馈网络的强大机器学习模型。

它可以用于分类、回归和其他许多任务。

BP神经网络的原理基于反向传播算法,通过反向传播误差来调整神经网络的权重和偏差,从而使网络能够学习和适应输入数据。

BP神经网络的基本结构包括输入层、隐藏层和输出层。

每个层都由神经元组成,每个神经元都与上一层的所有神经元连接,并具有一个权重值。

神经元的输入是上一层的输出,通过加权和和激活函数后得到输出。

通过网络中的连接和权重,每层的输出被传递到下一层,最终得到输出层的结果。

BP神经网络的训练包括两个关键步骤:前向传播和反向传播。

前向传播是指通过网络将输入数据从输入层传递到输出层,计算网络的输出结果。

反向传播是基于网络输出结果与真实标签的误差,从输出层向输入层逆向传播误差,并根据误差调整权重和偏差。

在反向传播过程中,通过计算每个神经元的误差梯度,我们可以使用梯度下降算法更新网络中的权重和偏差。

误差梯度是指误差对权重和偏差的偏导数,衡量了误差对于权重和偏差的影响程度。

利用误差梯度,我们可以将误差从输出层反向传播到隐藏层和输入层,同时更新每层的权重和偏差,从而不断优化网络的性能。

通过多次迭代训练,BP神经网络可以逐渐减少误差,并提高对输入数据的泛化能力。

然而,BP神经网络也存在一些问题,如容易陷入局部最优解、过拟合等。

为了克服这些问题,可以采用一些技巧,如正则化、随机初始权重、早停等方法。

总结而言,BP神经网络的原理是通过前向传播和反向传播算法来训练网络,实现对输入数据的学习和预测。

通过调整权重和偏差,网络可以逐渐减少误差,提高准确性。

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例BP(Back Propagation)人工神经网络是一种常见的人工神经网络模型,其基本原理是模拟人脑神经元之间的连接和信息传递过程,通过学习和调整权重,来实现输入和输出之间的映射关系。

BP神经网络模型基本上由三层神经元组成:输入层、隐藏层和输出层。

每个神经元都与下一层的所有神经元连接,并通过带有权重的连接传递信息。

BP神经网络的训练基于误差的反向传播,即首先通过前向传播计算输出值,然后通过计算输出误差来更新连接权重,最后通过反向传播调整隐藏层和输入层的权重。

具体来说,BP神经网络的训练过程包括以下步骤:1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入向量喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到输出值。

3.计算输出误差:将期望输出值与实际输出值进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

5.更新权重:根据反向传播得到的误差梯度,使用梯度下降法或其他优化算法更新连接权重。

6.重复步骤2-5直到达到停止条件,如达到最大迭代次数或误差小于一些阈值。

BP神经网络的训练过程是一个迭代的过程,通过不断调整连接权重,逐渐减小输出误差,使网络能够更好地拟合输入与输出之间的映射关系。

下面以一个简单的实例来说明BP神经网络的应用:假设我们要建立一个三层BP神经网络来预测房价,输入为房屋面积和房间数,输出为价格。

我们训练集中包含一些房屋信息和对应的价格。

1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入的房屋面积和房间数喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到价格的预测值。

3.计算输出误差:将预测的价格与实际价格进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

BP神经网络模型应用实例

BP神经网络模型应用实例

BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。

在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。

多层感知机神经网络的研究始于50年代,但一直进展不大。

直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。

BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。

对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。

节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。

该算法的学习过程由正向传播和反向传播组成。

在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。

每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。

如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。

社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。

BP神经网络实验报告

BP神经网络实验报告

BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。

本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。

二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。

将数据集进行标准化处理,以提高神经网络的收敛速度和精度。

2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。

本实验采用Xavier初始化方法。

4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。

5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。

使用梯度下降算法对参数进行优化,减小损失函数的值。

6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。

三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。

经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。

通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。

随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。

因此,选择合适的隐藏层结点个数是模型性能优化的关键。

此外,迭代次数对模型性能也有影响。

随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。

因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。

四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。

BP神经网络原理与应用实习论文

BP神经网络原理与应用实习论文

学年论文(本科)学院数学与信息科学学院专业信息与计算科学专业年级10级4班姓名徐玉琳于正平马孝慧李运凤郭双双任培培论文题目BP神经网络原理与应用指导教师冯志敏成绩2013年 9月 24日BP神经网络的原理与应用1.BP神经网络的原理1.1 BP神经网络的结构BP神经网络模型是一个三层网络,它的拓扑结构可被划分为:输入层(InputLayer )、输出层(Outp ut Layer ) ,隐含层(Hide Layer ).其中,输入层与输出层具有更重要的意义,因此也可以为两层网络结构(把隐含层划入输入层,或者把隐含层去掉)每层都有许多简单的能够执行并行运算的神经元组成,这些神经元与生物系统中的那些神经元非常类似,但其并行性并没有生物神经元的并行性高.BP神经网络的特点:1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接.2)BP网络的传递函数必须可微.因此,感知器的传递函数-——二值函数在这里没有用武之地.BP网络一般使用Sigmoid函数或线性函数作为传递函数.3)采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP 网络中,数据从输入层隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值.随着学习的不断进行,最终的误差越来越来小.BP神经网络的学习过程BP神经网络的学习算法实际上就是对误差函数求极小值的算法,它采用的算法是最速下降法,使它对多个样本进行反复的学习训练并通过误差的反向传播来修改连接权系数,它是沿着输出误差函数的负梯度方向对其进行改变的,并且到最后使误差函数收敛于该函数的最小点.1.3 BP网络的学习算法BP网络的学习属于有监督学习,需要一组已知目标输出的学习样本集.训练时先使用随机值作为权值,修改权值有不同的规则.标准的BP神经网络沿着误差性能函数梯度的反向修改权值,原理与LMS算法比较类似,属于最速下降法.拟牛顿算法牛顿法是一种基于二阶泰勒级数的快速优化算法.其基本方法是1(1)()()()x k x k A k g k -+=-式中 ()A k ----误差性能函数在当前权值和阀值下的Hessian 矩阵(二阶导数),即2()()()x x k A k F x ==∇牛顿法通常比较梯度法的收敛速度快,但对于前向型神经网络计算Hessian 矩阵是很复杂的,付出的代价也很大.有一类基于牛顿法的算法不需要二阶导数,此类方法称为拟牛顿法(或正切法),在算法中的Hessian 矩阵用其近似值进行修正,修正值被看成梯度的函数. 1)BFGS 算法在公开发表的研究成果中,你牛顿法应用最为成功得有Boryden,Fletcher,Goldfard 和Shanno 修正算法,合称为BFG 算法. 该算法虽然收敛所需的步长通常较少,但在每次迭代过程所需要的计算量和存储空间比变梯度算法都要大,对近似Hessian 矩阵必须进行存储,其大小为n n ⨯,这里n 网络的链接权和阀值的数量.所以对于规模很大的网络用RPROP 算法或任何一种梯度算法可能好些;而对于规模较小的网络则用BFGS 算法可能更有效. 2)OSS 算法 由于BFGS 算法在每次迭代时比变梯度算法需要更多的存储空间和计算量,所以对于正切近似法减少其存储量和计算量是必要的.OSS 算法试图解决变梯度法和拟牛顿(正切)法之间的矛盾,该算法不必存储全部Hessian 矩阵,它假设每一次迭代时与前一次迭代的Hessian 矩阵具有一致性,这样做的一个有点是,在新的搜索方向进行计算时不必计算矩阵的逆.该算法每次迭代所需要的存储量和计算量介于梯度算法和完全拟牛顿算法之间. 最速下降BP 法最速下降BP 算法的BP 神经网络,设k 为迭代次数,则每一层权值和阀值的修正按下式进行(1)()()x k x k g k α+=-式中()x k —第k 次迭代各层之间的连接权向量或阀值向量;()g k =()()E k x k ∂∂—第k 次迭代的神经网络输出误差对各权值或阀值的梯度向量.负号表示梯度的反方向,即梯度的最速下降方向;α—学习效率,在训练时是一常数.在MATLAB 神经网络工具箱中,,可以通过改变训练参数进行设置;()E K —第k 次迭代的网络输出的总误差性能函数,在MATLAB 神经网络工具箱中BP 网络误差性能函数默认值为均方误差MSE,以二层BP 网络为例,只有一个输入样本时,有2()()E K E e k ⎡⎤=⎣⎦21S≈22221()S i i i t a k =⎡⎤-⎣⎦∑ 222212,1()()()()s ii j i i j a k f w k a k b k =⎧⎫⎪⎪⎡⎤=-⎨⎬⎣⎦⎪⎪⎩⎭∑21221112,,11()(()())()s s i j i j i i i j j f w k f iw k p ib k b k ==⎧⎫⎡⎤⎛⎫⎪⎪=++⎢⎥ ⎪⎨⎬⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭∑∑若有n 个输入样本2()()E K E e k ⎡⎤=⎣⎦21nS ≈22221()S ii i ta k =⎡⎤-⎣⎦∑根据公式和各层的传输函数,可以求出第k 次迭代总误差曲面的梯度()g k =()()E k x k ∂∂,分别代入式子便可以逐次修正其权值和阀值,并是总的误差向减小的方向变化,直到达到所需要的误差性能为止. 1.4 BP 算法的改进BP 算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP 算法存在以下缺点:收敛速度缓慢;容易陷入局部极小值;难以确定隐层数和隐层节点个数.在实际应用中,BP 算法很难胜任,因此出现了很多改进算.利用动量法改进BP 算法标准BP 算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K 步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间.这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性.动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小.自适应调整学习速率标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散.可采用图所示的自适应方法调整学习率.调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止.动量-自适应学习速率调整算法采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间.将以上两种方法结合起来,就得到动量-自适应学习速率调整算法.1. L-M学习规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间L-M(Levenberg-Marquardt)优化方法的权值调整率选为:其中:e —误差向量;J —网络误差对权值导数的雅可比(Jacobian )矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton 法,在这种方法中,μ也是自适应调整的. 1.5 BP 神经网络的设计 网络的层数输入层节点数取决于输入向量的维数.应用神经网络解决实际问题时,首先应从问题中提炼出一个抽象模型,形成输入空间和输出空间.因此,数据的表达方式会影响输入向量的维数大小.例如,如果输入的是64*64的图像,则输入的向量应为图像中所有的像素形成的4096维向量.如果待解决的问题是二元函数拟合,则输入向量应为二维向量.理论上已证明:具有偏差和至少一个S 型隐含层加上一个线性输出层的网络,能够逼近任何有理数.增加层数可以更进一步的降低误差,提高精度,但同时也使网络复杂化,从而增加了网络权值的训练时间.而误差精度的提高实际上也可以通过增加神经元数目来获得,其训练效果也比增加层数更容易观察和调整.所以一般情况下,应优先考虑增加隐含层中的神经元数. 隐含层的神经元数网络训练精度的提高,可以通过采用一个隐含层,而增加神经元数了的方法来获得.这在结构实现上,要比增加隐含层数要简单得多.那么究竟选取多少隐含层节点才合适?这在理论上并没有一个明确的规定.在具体设计时,比较实际的做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量.1)0niMi C k =>∑,k 为样本数,M 为隐含层神经元个数,n 为输入层神经元个数.如i>M,规定C i M =0.2)和n 分别是输出层和输入层的神经元数,a 是[0.10]之间的常量.3)M=2log n ,n 为输入层神经元个数.初始权值的选取由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛及训练时间的长短关系很大.如果初始值太大,使得加权后的输入和n落在了S型激活函数的饱和区,从而导致其导数f (n)非常小,从而使得调节过程几乎停顿下来.所以一般总是希望经过初始加权后的每个神经元的输出值都接近于零,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节.所以,一般取初始权值在(-1,1)之间的随机数.学习速率学习速率决定每一次循环训练中所产生的权值变化量.大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值.所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性.学习速率的选取范围在0.01-0.8之间.1.6BP神经网络局限性需要参数多且参数选择没有有效的方法对于一些复杂问题 ,BP 算法可能要进行几小时甚至更长的时间训练,这主要是由于学习速率太小所造成的.标准BP 网络学习过程缓慢,易出现平台,这与学习参数率l r的选取有很大关系.当l r较时,权值修改量大,学习速率也快,但可能产生振荡;当l r较小时,虽然学习比较平稳,但速度十分缓慢.容易陷入局部最优BP网络易陷入局部最小, 使 BP网络不能以高精度逼近实际系统.目前对于这一问题的解决有加入动量项以及其它一些方法.BP 算法本质上是以误差平方和为目标函数 , 用梯度法求其最小值的算法.于是除非误差平方和函数是正定的, 否则必然产生局部极小点, 当局部极小点产生时 , BP算法所求的就不是解.1.6.3 样本依赖性这主要表现在网络出现的麻痹现象上.在网络的训练过程中,如其权值调的过大,可能使得所有的或大部分神经元的加权值偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导函数非常小,使得对网络权值的调节过程几乎停顿下来.通常为避免这种现象的发生,一是选取较小的初始权值,二是采用较小的学习速率,但又要增加时间训练.初始权敏感对于一些复杂的问题,BP算法可能要进行几个小时甚至更长时间的训练.这主要是由于学习速率太小造成的.可采用变化的学习速率或自适应的学习速率来加以改进.2.BP神经网络应用2.1 手算实现二值逻辑—异或这个例子中,采用手算实现基于BP网络的异或逻辑.训练时采用批量训练的方法,训练算法使用带动量因子的最速下降法.在MATLAB中新建脚本文件main_xor.m,输入代码如下:%脚本%批量训练方式.BP网络实现异或逻辑%%清理clear allclcrand('seed',2)eb = 0.01; %误差容限eta = 0.6; %学习率mc = 0.8; %动量因子maxiter = 1000; %最大迭代次数%% 初始化网络nSampNum = 4;nSampDim = 2;nHidden = 3;nOut = 1;w = 2*(rand(nHidden,nSampDim)-1/2);b = 2*(rand(nHidden,1)-1/2);wex = [w,b];W = 2*(rand(nOut,nHidden)-1/2);B = 2*(rand(nOut,1)-1/2);WEX = [W,B];%%数据SampIn=[0,0,1,1;...0,1,0,1;…1,1,1,1];expected = [0,1,1,0];%%训练iteration = 0;errRec = [];outRec =[];for i = 1:maxiter% 工作信号正向传播hp = wex*SampIn;tau = logsig(hp);tauex = [tau',1*ones(nSampNum,1)]';HM = WEX*tauex;out = logsig(HM);outRec = [outRec,out'];err = expected - out;sse = sumsqr(err);errRec = [errRec,sse];fprintf('第%d 次迭代,误差:%f \n',i,sse);% 判断是否收敛iteration = iteration + 1;if sse <= ebbreak;end% 误差信号反向传播% DELTA 和delta 为局部梯度DELTA = err.*dlogsig(HM,out);delta = W' * DELTA.*dlogsig(hp,tau);dWEX = DELTA*tauex';dwex = delta*SampIn';% 更新权值if i == 1WEX = WEX + eta*dWEX;wex = wex + eta*dwex;elseWEX = WEX + (1-mc)*eta*dWEX + mc*dWEXold;wex = wex + (1-mc)*eta*dwex+mc*dwexold;enddWEXold = dWEX;dwexold = dwex;W = WEX(:,1:nHidden);end%%显示figure(1)grid[nRow,nCol]=size(errRec);semilogy(1:nCol,errRec,'LineWidth',1.5);title('误差曲线');xlabel('迭代次数');x=-0.2:.05:1.2;[xx,yy] = meshgrid(x);for i=1:length(xx)for j=1:length(yy)xi=[xx(i,j),yy(i,j),1];hp = wex*xi';tau = logsig(hp);tauex = [tau',1]';HM = WEX*tauex;out = logsig(HM);z (i,j) =out;endendfigure(2)mesh(x,x,z);figure(3)plot([0,1],[0,1],'*','LineWidth',2);hold onplot([0,1],[1,0],'O','LineWidth',2);[c,h]=contour(x,x,z,0.5,'b');clabel(c,h);legend('0','1','分类面');title('分类面')2.2 误差下降曲线如下图所示:Finger 1010*******400500600700800900100010-210-110误差曲线迭代次数网格上的点在BP 网络映射下的输出如下图:Finger 2异或本质上是一个分类问题,,分类面如图:Finger 3分类面-0.200.20.40.60.81 1.2本文介绍了神经网络的研究背景和现状,分析了目前神经网络研究中存在的问题.然后描述了BP神经网络算法的实现以及BP神经网络的工作原理,给出了BP网络的局限性.本文虽然总结分析了BP神经网络算法的实现,给出了实例分析,但是还有很多的不足.所总结的BP神经网络和目前研究的现状都还不够全面,经过程序调试的图形有可能都还存在很多细节上的问题,而图形曲线所实现效果都还不够好,以及结果分析不够全面、正确、缺乏科学性等,这些都还是需加强提高的.近几年的不断发展,神经网络更是取得了非常广泛的应用,和令人瞩目的发展.在很多方面都发挥了其独特的作用,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等众多方面的应用实例,给人们带来了很多应用上到思考,和解决方法的研究.但是神经网络的研究最近几年还没有达到非常热门的阶段,这还需有很多热爱神经网络和研究神经网络人员的不断研究和创新,在科技高度发达的现在,我们有理由期待,也有理由相信.我想在不久的将来神经网络会应用到更多更广的方面,人们的生活会更加便捷.学年论文成绩评定表。

BP神经网络算法

BP神经网络算法
BP神经网络算法
1


一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方

= 1 ෍
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:

j = 2 ෍ ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网

BP网络的原理与应用

BP网络的原理与应用

BP网络的原理与应用1. 简介BP神经网络,即反向传播神经网络(Back Propagation Neural Network),是一种常见的人工神经网络模型,广泛应用于模式识别、分类、预测等领域。

它通过训练数据进行反向传播的方式来调整神经网络的权重和偏置,从而实现对输入数据的学习和预测。

2. 原理BP神经网络由输入层、隐藏层和输出层构成,每层由多个神经元组成。

其中,输入层接收外界输入的数据,隐藏层进行信号的处理和转换,最终输出层给出模型的预测结果。

BP网络的训练过程主要由两个阶段组成:前向传播和反向传播。

2.1 前向传播在前向传播阶段,输入数据经过一次性的计算和传递,从输入层逐层向前,最终记录到输出层的神经元中。

具体步骤如下: 1. 将输入数据传递给输入层神经元,每个神经元计算输入数据与其对应权重和偏置的乘积之和。

2. 将计算结果经过激活函数(如Sigmoid函数)进行处理,得到隐藏层神经元的输出。

3. 重复以上步骤,将隐藏层的输出作为下一层的输入,直到传递到输出层。

2.2 反向传播在反向传播阶段,根据训练数据与实际输出之间的差距,计算输出误差,并根据误差大小调整权重和偏置,以达到提高网络性能的目的。

具体步骤如下: 1. 计算输出层的误差,即实际输出与训练数据的差值。

2. 通过链式法则逐层计算隐藏层的误差,以及权重和偏置的调整值。

3. 更新每个神经元的权重和偏置,通过选择合适的优化算法(如梯度下降法)进行调整。

4. 重复以上步骤,通过多次迭代,不断减小预测误差和损失函数,提高网络的精确度和泛化能力。

3. 应用BP神经网络广泛应用于许多领域,如图像识别、语音识别、文本分类、金融预测等。

下面列举一些常见的应用场景:•图像识别:通过训练大量图像数据,可以实现对不同物体、人脸等的自动识别和分类。

•语音识别:通过训练大量语音数据,可以实现对语音信号的识别和转换,用于语音助手、智能家居等。

•文本分类:通过训练大量文本数据,可以实现对文本内容的分类和情感分析,用于垃圾邮件过滤、情感识别等。

bp 和 ep 标准

bp 和 ep 标准

bp 和 ep 标准《BP和EP标准》一、引言BP(BackPropagation,反向传播)和EP(ErrorPropagation,误差传播)是两种常用的神经网络训练算法,广泛应用于各种机器学习和深度学习应用中。

本篇文章将介绍BP和EP标准的基本原理、实现方法和应用场景。

二、BP标准BP算法是一种通过反向传播误差来优化神经网络权重的算法。

在训练过程中,神经网络会根据输入数据输出相应的预测值,并与实际值进行比较,计算误差。

通过不断调整神经元之间的权重,减少误差,提高预测精度。

1.算法原理BP算法的核心是通过反向传播误差来更新神经网络的权重。

具体来说,在神经网络训练过程中,通过前向传播得到预测值和实际值,计算误差。

然后根据误差调整权重,再通过反向传播计算新的误差,不断迭代优化神经网络的性能。

2.实现方法实现BP算法需要以下步骤:(1)初始化权重和偏置;(2)前向传播:根据输入数据计算输出;(3)计算误差:将实际值与预测值进行比较,计算误差;(4)反向传播:根据误差调整权重和偏置;(5)重复步骤(2)-(4),直到达到预设的迭代次数或网络性能达到预期水平。

3.应用场景BP算法广泛应用于各种神经网络模型,如多层感知器、卷积神经网络和循环神经网络等。

在图像识别、自然语言处理、语音识别等领域,BP算法都取得了很好的效果。

三、EP标准EP算法是一种基于误差传播理论的优化算法,用于调整神经网络的权重和偏置。

该算法通过分析误差在神经网络中的传播过程,找到误差较大的区域,并针对性地调整权重和偏置,以提高神经网络的性能。

1.算法原理EP算法通过分析误差在神经网络中的传播过程,找到误差较大的区域,并利用这些信息调整权重和偏置。

具体来说,在神经网络训练过程中,计算输入数据的预测值和实际值之间的误差,并通过分析误差在神经网络中的传播过程,找到误差较大的区域,进而调整权重和偏置。

2.实现方法实现EP算法需要以下步骤:(1)初始化权重和偏置;(2)定义误差函数:将实际值与预测值进行比较,计算误差;(3)定义传播矩阵:根据神经网络的拓扑结构,定义误差在神经网络中的传播矩阵;(4)误差传播:根据误差函数和传播矩阵,计算误差在每个神经元上的大小;(5)反向传播误差:根据误差大小调整权重和偏置;(6)重复步骤(4)-(6),直到达到预设的迭代次数或网络性能达到预期水平。

BP神经网络的简要介绍及应用

BP神经网络的简要介绍及应用

BP神经网络的简要介绍及应用BP神经网络(Backpropagation Neural Network,简称BP网络)是一种基于误差反向传播算法进行训练的多层前馈神经网络模型。

它由输入层、隐藏层和输出层组成,每层都由多个神经元(节点)组成,并且每个神经元都与下一层的神经元相连。

BP网络的训练过程可以分为两个阶段:前向传播和反向传播。

前向传播时,输入数据从输入层向隐藏层和输出层依次传递,每个神经元计算其输入信号的加权和,再通过一个激活函数得到输出值。

反向传播时,根据输出结果与期望结果的误差,通过链式法则将误差逐层反向传播至隐藏层和输入层,并通过调整权值和偏置来减小误差,以提高网络的性能。

BP网络的应用非常广泛,以下是一些典型的应用领域:1.模式识别:BP网络可以用于手写字符识别、人脸识别、语音识别等模式识别任务。

通过训练网络,将输入样本与正确的输出进行匹配,从而实现对未知样本的识别。

2.数据挖掘:BP网络可以用于分类、聚类和回归分析等数据挖掘任务。

例如,可以用于对大量的文本数据进行情感分类、对客户数据进行聚类分析等。

3.金融领域:BP网络可以用于预测股票价格、外汇汇率等金融市场的变动趋势。

通过训练网络,提取出对市场变动有影响的因素,从而预测未来的市场走势。

4.医学诊断:BP网络可以用于医学图像分析、疾病预测和诊断等医学领域的任务。

例如,可以通过训练网络,从医学图像中提取特征,帮助医生进行疾病的诊断。

5.机器人控制:BP网络可以用于机器人的自主导航、路径规划等控制任务。

通过训练网络,机器人可以通过感知环境的数据,进行决策和规划,从而实现特定任务的执行。

总之,BP神经网络是一种强大的人工神经网络模型,具有较强的非线性建模能力和适应能力。

它在模式识别、数据挖掘、金融预测、医学诊断和机器人控制等领域有广泛的应用,为解决复杂问题提供了一种有效的方法。

然而,BP网络也存在一些问题,如容易陷入局部最优解、训练时间较长等,因此在实际应用中需要结合具体问题选择适当的神经网络模型和训练算法。

BP神经网络原理及应用

BP神经网络原理及应用

BP神经网络原理及应用BP神经网络,即反向传播神经网络(Backpropagation Neural Network),是一种基于梯度下降算法的多层前馈神经网络,常用于分类与回归等问题的解决。

BP神经网络通过反向传播算法,将误差从输出层往回传播,更新网络权值,直至达到误差最小化的目标,从而实现对输入模式的分类和预测。

BP神经网络的结构包括输入层、隐藏层和输出层。

输入层接收外部输入的特征向量,隐藏层负责将输入特征映射到合适的高维空间,输出层负责输出网络的预测结果。

每个神经元与其前后的神经元相连,每个连接都有一个权值,用于调整输入信号的重要性。

BP神经网络利用激活函数(如sigmoid函数)对神经元的输出进行非线性变换,增加网络的非线性表达能力。

1.前向传播:将输入信号传递给网络,逐层计算每个神经元的输出,直至得到网络的输出结果。

2.计算误差:将网络输出与期望输出比较,计算误差。

常用的误差函数包括平方误差和交叉熵误差等。

3.反向传播:根据误差,逆向计算每个神经元的误差贡献,从输出层往回传播到隐藏层和输入层。

根据误差贡献,调整网络的权值和阈值。

4.更新权值和阈值:根据调整规则(如梯度下降法),根据误差贡献的梯度方向,更新网络的权值和阈值。

1.模式识别与分类:BP神经网络可以通过训练学习不同模式的特征,从而实现模式的自动分类与识别。

例如,人脸识别、文本分类等。

2.预测与回归:BP神经网络可以通过历史数据的训练,学习到输入与输出之间的映射关系,从而实现对未知数据的预测与回归分析。

例如,股票价格预测、天气预测等。

3.控制系统:BP神经网络可以用于建模和控制非线性系统,实现自适应、自学习的控制策略。

例如,机器人控制、工业过程优化等。

4.信号处理与图像处理:BP神经网络可以通过学习复杂的非线性映射关系,实现信号的去噪、压缩和图像的识别、处理等。

例如,语音识别、图像分割等。

5.数据挖掘与决策支持:BP神经网络可以根据历史数据学习到数据之间的相关关系,从而帮助决策者进行数据挖掘和决策支持。

BP神经网络基本原理与应用PPT

BP神经网络基本原理与应用PPT

BP神经网络的学习
• 网络结构 – 输入层有n个神经元,隐含层有q个神经元, 输出层有m个神经元
BP神经网络的学习
– 输入层与中间层的连接权值: wih
– 隐含层与输出层的连接权值: – 隐含层各神经元的阈值: bh
who
– 输出层各神经元的阈值: bo
– 样本数据个数: k 1,2, m
– 激活函数:
(二)误差梯度下降法
求函数J(a)极小值的问题,可以选择任意初始点a0,从a0出发沿着负 梯度方向走,可使得J(a)下降最快。 s(0):点a0的搜索方向。
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
直观解释
当误差对权值的 偏导数大于零时,权 值调整量为负,实际 输出大于期望输出, 权值向减少方向调整, 使得实际输出与期望 输出的差减少。当误 差对权值的偏导数小 于零时,权值调整量 为正,实际输出少于 期望输出,权值向增 大方向调整,使得实 际输出与期望输出的 差减少。
❖ 众多神经元之间组合形成神经网络,例如下图 的含有中间层(隐层)的网络
人工神经网络(ANN)
c
k l
c
k j
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
式中: —学习率 最终形式为:
BP神经网络的学习
(三) BP算法调整,隐藏层的权值调整
隐层各神经元的权值调整公式为:

bp神经网络3篇

bp神经网络3篇

bp神经网络第一篇:BP神经网络的基本原理BP神经网络是一种最为经典的人工神经网络之一,它在模拟神经元之间的信息传输和处理过程上有很高的效率,可以被应用于多种领域,如图像处理、模式识别、预测分析等。

BP神经网络的核心思想是通过将神经元之间的权值调整来达到优化网络结构的目的,从而提高网络的准确率和泛化能力。

BP神经网络包含三个基本部分:输入层、隐层和输出层。

其中,输入层用于接收原始数据,隐层是神经元之间信号处理的地方,而输出层则用于输出最终的结果。

与其他的神经网络不同,BP神经网络使用了反向传播算法来调整神经元之间的权值。

这个算法是一种基于梯度下降的优化方法,通过最小化目标函数来优化权值,从而获得最小的误差。

具体来说,反向传播算法分为两个步骤:前向传播和反向传播。

前向传播是指从输入层开始,将数据经过神经元的传递和处理,一直到输出层,在这个过程中会计算每一层的输出值。

这一步完成后,就会得到预测值和实际值之间的误差。

接着,反向传播将会计算每个神经元的误差,并将误差通过链式法则向后传播,以更新每个神经元的权值。

这一步也被称为误差反向传播,它通过计算每个神经元对误差的贡献来更新神经元之间的权值。

总的来说,BP神经网络的优点在于其具有灵活性和较高的准确率。

但同时也存在着过拟合和运算时间过长等问题,因此在实际应用中需要根据实际情况加以取舍。

第二篇:BP神经网络的应用BP神经网络作为一种人工智能算法,其应用范围非常广泛。

以下是BP神经网络在不同领域的应用案例。

1. 图像处理BP神经网络在图像处理方面的应用主要有两个方面:图像分类和图像增强。

在图像分类方面,BP神经网络可以通过对不同特征之间的关系进行学习,从而对图像进行分类。

在图像增强方面,BP神经网络可以根据图像的特征进行修复和增强,从而提高图像的质量。

2. 股票预测BP神经网络可以通过对历史数据的学习来预测未来股市趋势和股票价格变化,对投资者提供参考依据。

3. 语音识别BP神经网络可以对人声进行测量和分析,从而识别出人说的话,实现语音识别的功能。

机器学习-BP(back propagation)神经网络介绍

机器学习-BP(back propagation)神经网络介绍

BP神经网络BP神经网络,也称为反向传播神经网络(Backpropagation Neural Network),是一种常见的人工神经网络类型,用于机器学习和深度学习任务。

它是一种监督学习算法,用于解决分类和回归问题。

以下是BP神经网络的基本概念和工作原理:神经元(Neurons):BP神经网络由多个神经元组成,通常分为三层:输入层、隐藏层和输出层。

输入层接收外部数据,隐藏层用于中间计算,输出层产生网络的最终输出。

权重(Weights):每个连接两个神经元的边都有一个权重,表示连接的强度。

这些权重是网络的参数,需要通过训练来调整,以便网络能够正确地进行预测。

激活函数(Activation Function):每个神经元都有一个激活函数,用于计算神经元的输出。

常见的激活函数包括Sigmoid、ReLU(Rectified Linear Unit)和tanh(双曲正切)等。

前向传播(Forward Propagation):在训练过程中,输入数据从输入层传递到输出层的过程称为前向传播。

数据经过一系列线性和非线性变换,最终产生网络的预测输出。

反向传播(Backpropagation):反向传播是BP神经网络的核心。

它用于计算网络预测的误差,并根据误差调整网络中的权重。

这个过程分为以下几个步骤:1.计算预测输出与实际标签之间的误差。

2.将误差反向传播回隐藏层和输入层,计算它们的误差贡献。

3.根据误差贡献来更新权重,通常使用梯度下降法或其变种来进行权重更新。

训练(Training):训练是通过多次迭代前向传播和反向传播来完成的过程。

目标是通过调整权重来减小网络的误差,使其能够正确地进行预测。

超参数(Hyperparameters):BP神经网络中有一些需要人工设置的参数,如学习率、隐藏层的数量和神经元数量等。

这些参数的选择对网络的性能和训练速度具有重要影响。

BP神经网络在各种应用中都得到了广泛的使用,包括图像分类、语音识别、自然语言处理等领域。

bp网络的基本原理

bp网络的基本原理

bp网络的基本原理bp网络是一种常用的人工神经网络模型,用于模拟和解决复杂问题。

它是一种前馈型神经网络,通过前向传播和反向传播的过程来实现信息的传递和参数的更新。

在bp网络中,首先需要定义输入层、隐藏层和输出层的神经元。

输入层接收外部输入的数据,隐藏层用于处理和提取数据的特征,输出层用于输出最终的结果。

每个神经元都有一个对应的权重和偏置,用于调节输入信号的强弱和偏移。

前向传播是bp网络中的第一步,它从输入层开始,将输入的数据通过每个神经元的加权和激活函数的运算,逐层传递到输出层。

加权和的计算公式为:S = Σ(w * x) + b其中,w是权重,x是输入,b是偏置。

激活函数则负责将加权和的结果转换为神经元的输出。

常用的激活函数有sigmoid 函数、ReLU函数等。

反向传播是bp网络的第二步,它通过比较输出层的输出与实际值之间的误差,反向计算每个神经元的误差,并根据误差调整权重和偏置。

反向传播的目标是不断减小误差,使神经网络的输出与实际值更加接近。

具体的反向传播算法是通过梯度下降法实现的,它通过计算每个神经元的误差梯度,按照梯度的方向更新权重和偏置。

误差梯度表示误差对权重和偏置的变化率,通过链式法则可以计算得到。

在更新权重和偏置时,一般使用学习率来调节更新的步长,避免权重和偏置的变化过大。

通过多次迭代的前向传播和反向传播过程,bp网络不断优化和调整参数,最终使得输出与实际值的误差达到最小。

这样的训练过程可以使bp网络逐渐学习到输入数据之间的关联性和规律性,从而达到对问题进行分类、回归等任务的目的。

总结起来,bp网络的基本原理是通过前向传播将输入的数据逐层传递并计算每个神经元的输出,然后通过反向传播根据实际输出与目标输出之间的误差来调整权重和偏置,最终达到训练和优化神经网络的目标。

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例

w14
0.2+(0.9) (-0.0087)(1)=0.192
w15
-0.3+(0.9) (-0.0065)(1)=-0.306
w24
0.4+(0.9) (-0.0087)(0)=0.4
w25
0.1+(0.9) (-0.0065)(0)=0.1
w34
-0.5+(0.9) (-0.0087)(1)=-0.508
8.1人工神经网络旳基本概念
人工神经网络在本质上是由许多小旳非线性函数构成 旳大旳非线性函数,反应旳是输入变量到输出变量间旳复 杂映射关系。先给出单个人工神经网络旳一般模型描述:
8.1人工神经网络旳基本概念
先来看一种单一输入旳神经元模型 输入变量:x1 连接权重:w1 激活函数:f (·)
x1 w1
w1x1 f (·)
8.1人工神经网络旳基本概念
8.1人工神经网络旳基本概念
单极sigmoid函数
8.1人工神经网络旳基本概念
双曲函数
8.1人工神经网络旳基本概念
增长激活阈值后旳神经元模型 输入变量:x1 连接权重:w1 激活函数:f (·)
x1 w1
w1x1-θ f (·)
-1
小练习:请你算一算,当初始输入、权重和激活阈值为如下数值时,该神 经元旳净输入和输出分别是多少?
2.反向传播 反向传播时,把误差信号按原来正向传播旳通路反向
传回,并对每个隐层旳各个神经元旳权系数进行修改,以 望误差信号趋向最小。
8.2 误差反向传播(BP)神经网 络
8.2 误差反向传播(BP)神经网 络
x1 x2
x3
单元 j 6
1 w14
Err4=

BP人工神经网络的基本原理、模型与实例

BP人工神经网络的基本原理、模型与实例
BP人工神经网络由输入层、隐藏层和输出层组成,每一层都包含多个神经元,通过调整连接权重实现信息传 递和处理。
BP人工神经网络的实例
BP人工神经网络可以应用于多个领域,如图像识别、语音处理、预测分析等,为解决复杂问题提供了有效的神经网络的输入是具体问题的相关数据,比如图像数据、声音数据等。 输出是经过神经网络计算后得出的结果。
神经元和连接权重
神经元是BP人工神经网络的基本单元,通过调整连接权重来不断优化神经网 络的表现和学习能力。
前向传播和反向传播
前向传播是指输入数据从输入层经过隐藏层到达输出层的过程。反向传播是指根据误差计算,通过调整连接权 重来优化神经网络的过程。
训练和优化算法
BP人工神经网络的训练过程是通过不断调整连接权重使得神经网络的输出结 果接近于期望结果的过程。优化算法如梯度下降算法等可以加速训练的过程。
BP人工神经网络的基本 原理、模型与实例
人工神经网络(Artificial Neural Network)以人类大脑神经网络的的运作方式 为模型,用于模拟智能行为和解决复杂问题。
BP人工神经网络的基本原理
BP人工神经网络通过多层神经元和连接权重的组合,实现输入数据到输出结 果的计算和转换过程。
BP人工神经网络的模型
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP神经网络原理及应用1 人工神经网络简介1.1生物神经元模型神经系统的基本构造是神经元(神经细胞),它是处理人体各部分之间相互信息传递的基本单元。

据神经生物学家研究的结果表明,人的大脑一般有1011个神经元。

每个神经元都由一个细胞体,一个连接其他神经元的轴突1010和一些向外伸出的其它较短分支——树突组成。

轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。

其末端的许多神经末梢使得兴奋可以同时送给多个神经元。

树突的功能是接受来自其它神经元的兴奋。

神经元细胞体将接受到的所有信号进行简单地处理后由轴突输出。

神经元的树突与另外的神经元的神经末梢相连的部分称为突触。

1.2人工神经元模型神经网络是由许多相互连接的处理单元组成。

这些处理单元通常线性排列成组,称为层。

每一个处理单元有许多输入量,而对每一个输入量都相应有一个相关联的权重。

处理单元将输入量经过加权求和,并通过传递函数的作用得到输出量,再传给下一层的神经元。

目前人们提出的神经元模型已有很多,其中提出最早且影响最大的是1943年心理学家McCulloch和数学家Pitts在分析总结神经元基本特性的基础上首先提出的M-P 模型,它是大多数神经网络模型的基础。

)()(1∑=-=ni j i ji j x w f t Y θ (1.1)式(1.1)中,j 为神经元单元的偏置(阈值),ji w 为连接权系数(对于激发状态,ji w 取正值,对于抑制状态,ji w 取负值),n 为输入信号数目,j Y 为神经元输出,t 为时间,f()为输出变换函数,有时叫做激发或激励函数,往往采用0和1二值函数或S形函数。

1.3人工神经网络的基本特性人工神经网络由神经元模型构成;这种由许多神经元组成的信息处理网络具有并行分布结构。

每个神经元具有单一输出,并且能够与其它神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数。

严格地说,人工神经网络是一种具有下列特性的有向图:(1)对于每个节点存在一个状态变量xi ;(2)从节点i 至节点j ,存在一个连接权系数wji ; (3)对于每个节点,存在一个阈值j ;(4)对于每个节点,定义一个变换函数(,,),j i ji j f x w i j θ≠,对于最一般的情况,此函数取()j ji i j if w x θ-∑形式。

1.4 人工神经网络的主要学习算法神经网络主要通过两种学习算法进行训练,即指导式(有师)学习算法和非指导式(无师)学习算法。

此外,还存在第三种学习算法,即强化学习算法;可把它看做有师学习的一种特例。

(1)有师学习 有师学习算法能够根据期望的和实际的网络输出(对应于给定输入)间的差来调整神经元间连接的强度或权。

因此,有师学习需要有个老师或导师来提供期望或目标输出信号。

有师学习算法的例子包括 规则、广义规则或反向传播算法以及LVQ 算法等。

(2)无师学习 无师学习算法不需要知道期望输出。

在训练过程中,只要向神经网络提供输入模式,神经网络就能够自动地适应连接权,以便按相似特征把输入模式分组聚集。

无师学习算法的例子包括Kohonen 算法和Carpenter-Grossberg 自适应共振理论(ART )等。

(3)强化学习 如前所述,强化学习是有师学习的特例。

它不需要老师给出目标输出。

强化学习算法采用一个“评论员”来评价与给定输入相对应的神。

2 BP 神经网络原理 2.1 基本BP 算法公式推导基本BP 算法包括两个方面:信号的前向传播和误差的反向传播。

即计算实际输出时按从输入到输出的方向进行,而权值和阈值的修正从输出到输入的方向进行。

图2-1 BP 网络结构Fig.2-1 Structure of BP network图中:jx 表示输入层第j 个节点的输入,j =1,…,M ;ijw 表示隐含层第i 个节点到输入层第j 个节点之间的权值;iθ表示隐含层第i 个节点的阈值;()x φ表示隐含层的激励函数;kiw 表示输出层第k 个节点到隐含层第i 个节点之间的权值,i =1,…,q ;ka 表示输出层第k 个节点的阈值,k =1,…,L ; ()x ψ表示输出层的激励函数;ko 表示输出层第k 个节点的输出。

(1)信号的前向传播过程 隐含层第i 个节点的输入net i :1Mi ij j ij net w x θ==+∑ (3-1)隐含层第i 个节点的输出y i :1()()Mi i ij j i j y net w x φφθ===+∑ (3-2)输出层第k 个节点的输入net k :111()qqMk ki i k ki ij j i ki i j net w y a w w x a φθ====+=++∑∑∑ (3-3)输出层第k 个节点的输出o k :111()()()qq M k k ki i k ki ij j i k i i j o net w y a w w x a ψψψφθ===⎛⎫==+=++ ⎪⎝⎭∑∑∑ (3-4)(2)误差的反向传播过程误差的反向传播,即首先由输出层开始逐层计算各层神经元的输出误差,然后根据误差梯度下降法来调节各层的权值和阈值,使修改后的网络的最终输出能接近期望值。

对于每一个样本p 的二次型误差准则函数为E p :211()2Lp k k k E T o ==-∑ (3-5)系统对P 个训练样本的总误差准则函数为:2111()2P Lp p k k p k E T o ===-∑∑ (3-6)根据误差梯度下降法依次修正输出层权值的修正量Δw ki ,输出层阈值的修正量Δa k ,隐含层权值的修正量Δw ij ,隐含层阈值的修正量iθ∆。

kiki w E w ∂∂-=∆η;k k E a a η∂∆=-∂;ij ij E w w η∂∆=-∂;i i Eθηθ∂∆=-∂ (3-7) 输出层权值调整公式:kikk k k ki k k ki ki w net net o o E w net net E w E w ∂∂∂∂∂∂-=∂∂∂∂-=∂∂-=∆ηηη(3-8)输出层阈值调整公式:k k kk k k k k k k net o net E E E a a net a o net a ηηη∂∂∂∂∂∂∆=-=-=-∂∂∂∂∂∂ (3-9)隐含层权值调整公式:i i iij ij i ij i i ijnet y net E E E w w net w y net w ηηη∂∂∂∂∂∂∆=-=-=-∂∂∂∂∂∂ (3-10)隐含层阈值调整公式:i i ii i i i i i i net y net E E E net y net θηηηθθθ∂∂∂∂∂∂∆=-=-=-∂∂∂∂∂∂ (3-11)又因为:11()P Lp p k k p k k ET o o ==∂=--∂∑∑ (3-12)ikiky w net =∂∂,1k k net a ∂=∂,i j ij net x w ∂=∂,1ii net θ∂=∂ (3-13)11()'()P Lp p k k k ki p k i ET o net w y ψ==∂=--⋅⋅∂∑∑ (3-14))(i iinet net y φ'=∂∂ (3-15)'()kk ko net net ψ∂=∂ (3-16)所以最后得到以下公式:()11()'PLp p ki k k k ip k w T o net y ηψ==∆=-⋅⋅∑∑ (3-17)()11()'PL p p k k k k p k a T o net ηψ==∆=-⋅∑∑ (3-18)()11()'()PLp p ij k k k ki i jp k w T o net w net x ηψφ=='∆=-⋅⋅⋅⋅∑∑ (3-19)()11()'()PLp p i k k k ki i p k T o net w net θηψφ=='∆=-⋅⋅⋅∑∑ (3-20)图2-2 BP算法程序流程图Fig.2-2 The flowchart of the BP algorithm program2.2 基本BP算法的缺陷BP算法因其简单、易行、计算量小、并行性强等优点,目前是神经网络训练采用最多也是最成熟的训练算法之一。

其算法的实质是求解误差函数的最小值问题,由于它采用非线性规划中的最速下降方法,按误差函数的负梯度方向修改权值,因而通常存在以下问题:(1)学习效率低,收敛速度慢(2)易陷入局部极小状态2.3 BP 算法的改进2.3.1附加动量法附加动量法使网络在修正其权值时,不仅考虑误差在梯度上的作用,而且考虑在误差曲面上变化趋势的影响。

在没有附加动量的作用下,网络可能陷入浅的局部极小值,利用附加动量的作用有可能滑过这些极小值。

该方法是在反向传播法的基础上在每一个权值(或阈值)的变化上加上一项正比于前次权值(或阈值)变化量的值,并根据反向传播法来产生新的权值(或阈值)变化。

带有附加动量因子的权值和阈值调节公式为:)()1()1(k w mc p mc k w ij j i ij ∆+-=+∆ηδ)()1()1(k b mc mc k b i i i ∆+-=+∆ηδ其中k 为训练次数,mc 为动量因子,一般取0.95左右。

附加动量法的实质是将最后一次权值(或阈值)变化的影响,通过一个动量因子来传递。

当动量因子取值为零时,权值(或阈值)的变化仅是根据梯度下降法产生;当动量因子取值为1时,新的权值(或阈值)变化则是设置为最后一次权值(或阈值)的变化,而依梯度法产生的变化部分则被忽略掉了。

以此方式,当增加了动量项后,促使权值的调节向着误差曲面底部的平均方向变化,当网络权值进入误差曲面底部的平坦区时, δi 将变得很小,于是)()1(k w k w ij ij ∆=+∆,从而防止了0=∆ij w 的出现,有助于使网络从误差曲面的局部极小值中跳出。

根据附加动量法的设计原则,当修正的权值在误差中导致太大的增长结果时,新的权值应被取消而不被采用,并使动量作用停止下来,以使网络不进入较大误差曲面;当新的误差变化率对其旧值超过一个事先设定的最大误差变化率时,也得取消所计算的权值变化。

其最大误差变化率可以是任何大于或等于1的值。

典型的取值取1.04。

所以,在进行附加动量法的训练程序设计时,必须加进条件判断以正确使用其权值修正公式。

训练程序设计中采用动量法的判断条件为:⎪⎩⎪⎨⎧=mc mc 95.00其它)1()(04.1*)1()(-<->k E k E k E k E , E (k )为第k 步误差平方和。

2.3.2自适应学习速率对于一个特定的问题,要选择适当的学习速率不是一件容易的事情。

相关文档
最新文档