合理选择车刀几何角度
车刀种类和刀刃角度选取原则
❖ ③ 加工条件
❖ 粗加工时,一般取较小的前角;
❖ 精加工时,宜取较大的前角,以减小工 件变形与表面粗糙度;
❖ 带有冲击性的断续切削比连续切削前角 取得小。
耐热性又称红硬性,是衡量刀具材料性能的主要指标,它综合反映了刀具 材料在高温下仍能保持高硬度、耐磨性、强度、抗氧化、抗粘结和抗扩散的能力 。
❖ (4)良好的工艺性和经济性
2、常用刀具材料
目前,车刀广泛应用硬质合金刀具材料,在某些情况下也应用高速钢刀具材料。
(1)高速钢 高速钢是一种高合金钢,俗称白钢、锋钢、风钢等。其强度、冲击韧度、
车削刀具几何角度
3.刀具角度的正负
❖ 前角γo :
前刀面与切削平面之间的夹角为锐角,前角为正,夹角为钝角,前角为负值。
❖ 后角αo :
后刀面与基面之间的夹角为锐角,后角为正,夹角为钝角,后角为负值。
❖ 刃倾角λs :
刀尖是主切削刃上最高点时刃倾角为正,刀尖位于主切削刃上最低点时刃倾 角为负,主切削刃与基面平行时时刃倾角为零。
同样条件下可以采用较大的前角, 提高了刀具耐用度。
主要用于硬质合金刀具和陶瓷刀具,加 工铸铁等脆性材料。
❖ C、负前角平面型 (右图) ❖ 特点:切削刃强度较好,
但刀刃较钝,切削变形大。
❖ 主要用于硬脆刀具材料。加 工高强度高硬度材料,如淬 火钢。
❖ 图示类型负前角后部加有正 前角,有利于切屑流出。
(a)
(b)
(c)
(d)
图a~d 刃磨外圆车刀的一般步骤
车刀种类和角度选择原则详解
车刀不对准工件中心对角度的影响
五、车刀刃磨
无论硬质合金车刀(焊接)或高速钢 车刀,在使用之前都要根据切削条 件所选择的合理切削角度进行刃磨 ,一把用钝了的车刀,为恢复原有 的几何形状和角度,也必须重新刃 磨。
重 要 性
三分手艺、七分刀 徒弟的手、师傅的刀
1.磨刀步骤(图a~d)
⑴磨前刀面 把前角和刃倾角磨正确。 ⑵磨主后刀面 把主偏角和主后角磨正确。 ⑶磨副后刀面 把副偏角和副后角磨正确。 ⑷磨刀尖圆弧 圆弧半径约0.5~2mm左右。 ⑸研磨刀刃 车刀在砂轮上磨好以后,再用油石加些机油研磨车 刀的前面及后面,使刀刃锐利和光洁。这样可延长车刀的使用寿命。 车刀用钝程度不大时,也可用油石在刀架上修磨。硬质合金车刀可 用碳化硅油石修磨。
前角γo
——在主切削刃选定点的正交平面po内, 前刀面与基面之间的夹角
。
后角αo
——在正交平面po内,主后刀面与切削 平面之间的夹角。
主偏角κr
——主切削刃在基面上的投影与进给方 向的夹角。
刃倾角λs ——在切削平面ps内,主切削刃与 基面pr的夹角。
其他角度:
副前角γoˊ、 副后角αoˊ、 副偏角κrˊ、 刃倾角λsˊ
3.主偏角、副偏角的选择 (1)主偏角的选择 A、主偏角κr的增大或减小对切削加工有利的一 面 在背吃刀量ap与进给量f 不变时,主偏角κr减小 将使切削厚度hD减小,切削宽度bD增加,参加 切削的切削刃长度也相应增加,切削刃单位长度 上的受力减小,散热条件也得到改善。 主偏角κr减小时,刀尖角增大,刀尖强度提高, 刀尖散热体积增大。 所以,主偏角κr减小,能提高刀具耐用度。
(4)良好的工艺性和经济性
浅谈如何选择刀具的几何角度
金属切削刀具是切削加工中的重要工具,也是切削加工中影响生产率、加工质量与成本的最活跃的因素。
刀具角度是确定刀头几何形状与切削性能的重要参数,是各类刀具设计、选择、使用、刃磨的基础。
全面掌握刀具的角度,对提高生产率、保证加工质量、降低生产成本起着决定性的作用。
一、了解刀具的组成刀具可分为夹持部分和切削部分,刀具切削部分(以车刀为例)号称“三面两刃一尖”,即前刀面、主后刀面、副后刀面、主切削刃、副切削刃和刀尖。
前刀面Aγ:切屑流出的表面。
主后刀面Aα:切削时刀具上与工件过渡表面相对的表面。
C、副后刀面A′α:切削时刀具上与工件已加工表面相对的表面。
主切削刃S:前刀面与主后刀面的交线,切削时起主要切削作用。
副切削刃S′:前刀面与副后刀面的交线,切削时起辅助作用。
刀尖:指主切削刃与副切削刃的连接处相当少的一部分切削刃,分为修圆刀尖和倒角刀尖。
二、识别刀具角度的几个辅助平面用于定义和规定刀具角度的各辅助基准坐标平面,只是假定参考,事实上看不见,摸不着。
其中包括:切削平面Ps ——通过切削刃上一点,并与加工表面相切的平面;基面Pr ——过主切削刃选定点,并与该点的切削速度方面垂直的平面;主截面Po ——过主切削刃选定点与基面,主切削平面两两垂直的平面。
三、认识刀具的几何角度1.前角(γo)——刀具前刀面与基面的夹角,在主截面内测量前角的大小决定了刀具的锋利程度,前角越大,刀具越锋利。
前角大,切削层的塑性变形小,刀具和切屑摩擦阻力小,切削力和切削热可降低;但前角过大,会使切削刃和刀头强度降低,散热条件恶化,刀具寿命下降;有时为了增加刀具强度、断屑,常采用较小前角。
2.主后角(αo)——主后刀面与切削平面之间的夹角,简称后角后角的大小决定了刀刃的强度,并配合前角改变切削刃的锋利程度。
增加后角,可以减少刀具的后刀面或副后刀面与工件之间的摩擦,但后角过大,会减弱切削刃强度,并恶化散热条件,使刀具寿命下降。
3.副后角(α'o)——副后刀面与副切削平面的夹角它在副截面上测量产生,其作用与主后面相似(注:副截面是指κ垂直于副切削刃且垂直于基面的平面)。
如何合理的选取车刀的几何角度
如何合理的选取车刀的几何角度
1、前角γ0(在正交面的上测量的前刀面与基面之间的夹角)。
它表示前刀面的倾斜程度。
前角越大,刀刃越锋利,切削时就越省力。
但前角过大会削弱刀头强度,影响刀具的寿命。
前角的选取决定于工件材料、刀具材料和加工性质。
硬质合金车刀γ0通常取-5º~+25º。
2、后角α0。
在正交平面上测量的主后刀面与切削平面之间的夹角。
它表示主后刀面的倾斜程度。
后角的作用主要是减少刀具与加工表面之间的摩擦,后角越大,摩擦越小,但后角过大会削弱切削刃的强度及耐用度。
一般取α0为60~120。
3、主偏角k r。
主切削刃在基面上的投影与进给方向之间的夹角。
主偏角能影响主切削刃和刀头受力情况及散热情况。
加工强度、硬度较高的材料时,应选较小的主偏角,以提高刀具的耐用度。
加工细长工件时,应选较大的主偏角,以减少径向切削力引起工件的变形和振动。
一般取k r为300~900。
4、副偏角k r'。
副切削刃在基面上的投影与进给反方向之间的夹角。
副偏角的作用是减少副切削刃与工件已加工表面之间的摩擦。
副偏角越大,摩擦越小。
但k r过大,又会增大已加工表面的粗糙度。
一般取k r为50~150。
车刀的几何角度:。
怎样选择车刀的几何角度
怎样选择车刀的几何角度合理选择车刀几何角度,有利于改善加工条件,提高被加工工件质量,延长刀具与设备的使用寿命,本文从车刀几何角度对切削力、切削热和刀具耐用度影响等角度,分析车刀几何角度选择的一般原则.车刀几何角度是指车刀切削部分各几何要素之间,或它们与参考平面之间构成的两面角或线、面之间的夹角.它们分别决定着车刀的切削刃和各刀面的空间位置。
根据“一面二角”理论可知,车刀的独立标注角度有六个,它们分别是:确定车刀主切削刃位置的主偏角Kr和刃倾角λs;确定车刀前刀面Ar与后刀面Aa的前角ro和后角ao;确定副切削刃及副后刀面Aa′的副偏角Kr′和副后角ao′.这些几何角度对车削过程影响很大,其中尤其以主偏角Kr、前角ro、后角ao和刃倾角λs 的影响更为突出,科学合理地选择车刀的几何角度,对车削工艺的顺利实施起着决定性作用。
下面就从车刀几何角度对切削力、切削热和刀具的耐用度的影响分析着手,本着使切削轻便、质量稳定,延长刀具使用寿命的宗旨,确定科学的车刀几何角度的一般性原则.一、车刀几何角度对切削力的影响在金属切削时,刀具切入工件,将多余材料从工件上切除会产生强烈的力的作用,这些力统称为切削力。
切削力主要来源于被加工材料在发生弹性和塑性变形时的抗力和刀具与切屑及工件表面之间的摩擦作用。
根据切削力产生的作用效果的不同,可将切削力分解成三个相互垂直方向的分力.它们分别是:主切削力Fz,进给抗力Fx和切深抗力Fy,其中Fz是切削总力Fr沿主运动切向分解而得,是计算车刀强度,设计机床零件,确定机床功率的主要依据;Fx也叫轴向力,它是Fr沿工件轴向的分力,是设计进给机构,计算车刀进给功率所必需的;Fy也叫径向力,它是Fr沿着工件径向的分力,它不消耗机床功率,但是当机床或工艺系统刚度不足时,易引起振动.(一)前角ro对切削力的影响前角ro增大,剪切角Φ随着增大,金属塑性变形减小,变形系数ξ减小,沿前刀面的摩擦力减小,因此切削力减小。
车刀的角度
车刀的角度第二章车刀的角度, 车刀的组成, 车刀角度中的三个辅助平面, 车刀的角度作用及其选择一、车刀的组成车刀由刀体和刀柄两部分组成,刀体担负切削任务,因此又叫切削部分。
刀柄的任务是把车刀装夹在刀架上。
如下图2-1:图2-11) 前刀面切屑排出时经过的表面。
2) 后刀面后刀面又分主后刀面和副后刀面。
主后刀面是和工件上过渡表面相对的车刀刀面;副后刀面是和工件上已加工表面相对的车刀刀面。
3) 主切削刃前刀面和主后刀面相交的部位,它负担着主要切削任务。
4) 副切削刃前刀面和副后刀面相交的部位,它负担着车刀次要的切削任务。
5) 刀尖主切削刃和副切削刃相交的部位。
为提高刀尖的强度,常把刀尖部分磨成圆弧型或着直线型,圆弧或直线部分的刀刃叫过渡刃。
6) 修光刀副切削刃前段近刀尖处的一段平直刀刃叫修光刀。
装夹车刀时只有把修光刃与进给方向平行,且修光刃的长度大于进给量时才能起到修光工件表面的作用。
二、车刀角度标注中的三个辅助平面测量车刀角度的辅助平面,为较准确测量车刀的几何角度,假设了三个辅助平面,即切削平面,基面和截面。
如图示2-2:图2-21) 切削平面P过车刀主切削刃上一个选定点,并与工件过渡s表面相切的平面叫切削平面。
2) 基面P过车刀主切削刃上一个选定点,并与该点切削速度r方向垂直的平面叫基面。
3) 截面截面有主截面P和副截面P?之分。
过车刀主切削刃oo上一个选定点,垂直于过该点的切削平面与基面的平面叫主截面。
切削平面,基面和截面互相垂直,构成一个空间直角坐标系。
三、车刀角度及其选择如图2-3,车刀各角度都标出:图2-31、前角的选择1) 前角的作用a. 前角主要影响车刀的锋利程度,切削力的大小与切削变形的大小。
增大前角,则车刀锋利,切削力减小,切削变形小。
b. 影响车刀强度,受力情况和散热条件。
前角增大,车刀楔角减小,使刀头强度减小,散热体积减小,从而散热条件变差,易使切削温度升高。
c. 影响加工表面质量。
讲解车刀的几何角度的体会
讲解车刀的几何角度的体会
车刀的几何角度是指车刀主轴与车刀的刃的平行度的角度,以及刃的距离偏离正中心点的角度。
它是车刀上最重要的几何要素,是决定车刀质量的重要指标,也是制造优秀的车刀的基础。
良好的车刀几何角度是从两个方面出发考虑的:一是刃和工件表面的接触表面应该是单一的,只有一层刀刃贴紧工件表面;二是刃与主轴之间有一定的角度,使得在每次加工工件时,刃与工件表面能够产生足够的接触面积来完成工件切削,尽可能地减少加工过程中刀具耐用度的损失。
如果车刀几何角度设置不当,其最小夹角不应该小于8度,不然就会出现刃和工件表面产生多层的滑动,甚至发生穿孔的情况;而最大夹角则不能超过30度以上,这样就会出现切削精度低和刀具磨损加速的现象了。
正是由于这个原因,几何角的的设置对于刀具的高效利用至关重要。
为了获得佳的车刀几何角度,首先我们需要确定工件的加工尺寸,然后根据不同的材质,以及工件的加工要求,安按照相应的标准调整车刀几何角度,充分考虑刀具性能及工件表面质量的要求。
一般情况下,新到手的磨刀机都是装着车刀的固定角度的,车刀的夹角设置多在10度到12度之间,普遍的情况下10度夹角就可以完成大部分刀具的加工要求,车刀可以实现平面加工、钻孔、铣孔和攻缝等很多复杂的加工任务,使得车刀几何角度变得至关重要。
另外,由于车刀几何角度的不同,会影响加工精度,因此我们在调整几何角度时,必须注意刀具材质、切削条件等因素,以免加工出现质量问题。
总之,车刀几何角度是车刀高效利用的重要指标,正确的设置车刀几何角度,能够提高切削件的切削效果,节省加工成本,减少刀具的损耗,达到质量的最佳匹配,可为车刀制造技术的发展和推广带来实际的效益。
车工15-车刀几何角度的初步选择
课程(科目):车工图1 前刀面平面型正前角平面型b)负前角单面型c)负前角双面型图 2 曲面型图 3 带倒棱型)后角(α0)后角太大,会降低切削刃和刀头的强度;后角太小,会增加后刀面与工件表面的磨擦,选择后角主要诊所以下几个原则:副后角(α′)一般磨成与后角(α0)相等但在等特殊情况下,为了保证刀具的强度,副后角应该取较小的数值。
后角的作用:减少刀具后刀面与工件之间的摩擦,但是后角过大会使切削刃的强度下降,并使散热条件编差,从而降低刀具的使用寿命。
后角的主要作用减少刀具后刀面与工件加工表面之间的摩擦。
由于切削刃钝圆半径和切屑形成过程中的弹性变形和塑性变形的作用,在工件的加工表面上有一个弹性恢复层。
后角越小,后刀面与工件的加工表面的接触面积就越大,就会使摩擦加剧,使刀具磨损加剧,零件的加工表面的质量变差,冷硬程度加大,尤其是在切削深度较小的时候。
但是减小后角,可使刀具的强度提高,散热条件变好。
此外,在磨损量VB相同的条件下,减小后角刀具经重磨后材料消耗率较小。
(2)主偏角(Rr)常用车刀的主偏角有45°、60°、75°、90°等几种选择主偏角首先应考虑工件的形状。
如加工台阶轴之类的工件,车刀主偏角必须等于或大于90°;加工中间切入的工件,一般选用45°~60°的主偏角,一下是主偏角的选择原则:①在工艺系统允许的条件下,应该采用较小的主偏角,以提高刀具的使用寿命。
加工细长轴时应该使用较大的主偏角,目的是为了减小径向力。
②加工硬度较高的材料时,为减轻单位切削刃上的载荷,应该选取较小的主偏角。
③在车削过程中,刀具需要作中间切入时,应该取较大的主偏角。
④竹片名叫的大小还应该与工件的形状位置有关系。
比如手在教工阶台轴时,车刀的主偏角可以选90°.主偏角主要影响切削宽度和切削厚度的比例,并影响刀具的强度。
主偏角减小,使切削宽度增大,刀尖角增大,刀具强度高、散热条件好,所以刀具的耐用度就高,但是吃刀抗力增大,容易(5)过渡刃过渡刃是起到调节主偏角和副偏角作用的一个重要的参数。
车刀的几何角度及选择原则
车刀的几何角度及选择原则newmaker为了决定车刀刃口的锋利程度及其在空间的位置,必须建立一个坐标系,该坐标系由三个基准平面构成。
下面以外圆车刀为例,介绍车刀的几何角度。
如图所示。
基面:过主切削刃选定点的平面,此平面在主切削刃为水平时包含主刀刃并与车刀安装底面即水平面平行,此平面主要作为度量前刀面在空间位置的基准平面。
切削平面:过主切削刃选定点与主切削刃相切,并与基面相垂直的平面。
此平面主要作为度量主后刀面在空间位置的基准面。
主剖面:过主切削刃选定点并同时垂直于基面和主切削平面的平面。
(1)、前角γ0 前刀面与基面的夹角,在主剖面中测量。
前角的大小影响切削刃锋利程度及强度。
增大前角可使刃口锋利,切削力减小,切削温度降低,但过大的前角,会使刃口强度降低,容易造成刃口损坏。
取值范围为:-8°到+15°。
选择前角的一般原则是:前角数值的大小与刀具切削部分材料、被加工材料、工作条件等都有关系。
刀具切削部分材料性脆、强度低时,前角应取小值。
工件材料强度和硬度低时,可选取较大前角。
在重切削和有冲击的工作条件时,前角只能取较小值,有时甚至取负值。
一般是在保证刀具刃口强度的条件下,尽量选用大前角。
如硬质合金车刀加工钢材料时前角值可选5°-15°。
(2)、主后角α0 主后刀面与切削平面间的夹角,在主剖面中测量。
其作用为减小后刀面与工件之间的摩擦。
它也和前角一样影响刃口的强度和锋利程度。
选择原则与前角相似,一般为0到8°。
(3)、主偏角κ r 主切削刃与进给方向间的夹角,在基面中测量。
其作用体现在影响切削刃工作长度、吃刀抗力、刀尖强度和散热条件。
主偏角越小,吃刀抗力越大,切削刃工作长度越长,散热条件越好。
选择原则是:工件粗大刚性好时,可取小值;车细长轴时为了减少径向切削抗力,以免工件弯曲,宜选取较大的值。
常用在15°到90°之间。
(4)、副偏角κ 'r 副切削刃与进给反方向间的夹角,在基面中测量。
车刀切削部分几何参数的选择
教学过程
威海工业技术学校
加工塑性材料和精加工—取大后角( 选择:
0
)
加工脆性材料和粗加工—取小后角( 0 )
后角( 0)只能是正的。
精加工: 0= 80~120 粗加工: 0= 40~80
11
教学过程
3 . 主偏角(kr)
威海工业技术学校
作用: 改善切削条件,提高刀具寿命。
根据加工条件.工件材料性能. 工艺系统刚性 (例.细长轴)工件表面形状来合理选择.
19
威海工业技术学校
20
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧
文本举例表并列
1.蔚然而深秀者;2.溪深而鱼肥;3.泉香而酒洌;4.起坐而喧哗者表递进
1.而年又最高;2.得之心而寓之酒也表承接
1.渐闻水声潺潺,而泻出于两峰之间者;2.若夫日出而林霏开,云归而岩穴暝;3.野
芳发而幽香,佳木秀而繁阴;4.水落而石出者;5.临溪而渔;6.太守归而宾客从也;7.人知从太守游而乐表修饰
学说说本文读来有哪些特点,为什么会有这些特点。(1)句法上大量运用骈偶句,并夹有散句,既整齐又富有变化,使文章越发显得音调铿锵,形成一种骈散结合的独特风格。如“野芳发而幽香,佳木秀而繁阴”“朝而往,暮而归,四时之景不同,而乐亦无穷也”。(2)文章多用判断句,层次极其分明,
车刀的几何角度及切削参数
4.刀尖形状的选择 刀尖概念:主切削刃与副切削刃连接的地方 刀尖是刀具强度和散热条件都很差的地方。切 削过程中,刀尖切削温度较高,非常容易磨损, 因此增强刀尖,可以提高刀具耐用度。刀尖对 已加工表面粗糙度有很大影响。
Hale Waihona Puke (a)倒角刃(b)圆弧刃
(c)修光刃
1、工件材料强度或硬度较高时,为加强切 削刃,一般采用较小后角。 2、对于塑性较大材料,已加工表面易产生 加工硬化时,后刀面摩擦对刀具磨损和加 工表面质量影响较大时,一般取较大后角。
在一定切削条件下的基本选择方法
1.前角和前刀面形状的选择 2.后角及形状的选择 3.主偏角、副偏角的选择
:
4.刀尖形状的选择 5.刃倾角的选择
1.前角和前刀面形状的选择
(1)
前角的选择: 在选择刀具前角时首先应保证刀刃锋 利,同时也要兼顾刀刃的强度与耐用 度。 刀具前角的合理选择,主要由刀具材 料和工件材料的种类与性质决定。
B、主偏角κr的增大或减小对切削加工不利的一面 主偏角的减小也会产生不良影响。因为根据切削 力分析可以得知,主偏角κr减小,将使背向力Fp 增大,从而使切削时产生的挠度增大,降低加工 精度。同时背向力的增大将引起振动。 因此主偏角的减小对刀具耐用度和加工精度产生 不利影响。
②、工艺系统刚性较差时 (工件长径比lw/dw = 612) ,或带有冲击性的切削,主偏角κr可以取大 值,一般κr=60o~75o,甚至主偏角κr可以大于 90o,以避免加工时振动。 硬质合金刀具车刀的主偏角多为60o~75o 。 ③、根据工件加工要求选择。 当车阶梯轴时, κr =90o;同一把刀具加工外圆、 端面和倒角时, κr =45o。
车刀角度的选择
车刀角度的选择一,车刀的安装位置对车刀角度的影响。
,车刀装得高于或低于中心时对车刀角度的影响。
1.当刀尖对准工件中心安装时前角与后角不变。
2.当刀尖装得高于工件中心时,前角增大,后角减小。
3.当刀尖装得低于工件中心时,前角减小,后角增大。
车内孔时,刀尖的三种安装位置,除当刀尖对准工件中心安装时车刀前角后角不变,其余两种情况,对车刀前角的影响,均与车外圆时相反。
,车刀装得歪斜对车刀角度的影响,车刀装的偏斜会使车刀的主偏角和副偏角发生变化经。
1.当刀杆装的与工件垂直时,主偏角与副偏角不改变。
2.当刀杆装的向右歪斜时,则主偏角增大,副偏角减小。
3.当刀杆装的向左歪斜时,则主偏角减小,副偏角增大。
车削圆锥时,刀杆装的与工件圆锥母线垂直,否则主偏角也会发生变化,影响加工质量。
螺纹车刀如果装得不正,就会引起螺纹牙型半角误差。
切断刀如果装得不正,就会使切断面凹凸不平,甚至断刀。
精车刀装得不正会影响工件的表面粗糙度。
,进给运动对车刀角度的影响,车削时除工件做旋转运动外,车刀还必须做直线运动,这两个运动合成螺旋运动。
在横向车削时,车刀按一定大小的走刀量进给,刀尖在工件的端面上的运动轨迹是阿基米德螺旋线,刀具愈近工件中心或走刀量愈大时,螺旋线愈倾斜,跟螺旋线始终相切的切削平面位置也随之变化,车刀工作时的实际后角减小,前角增大。
在纵向车削时,由于车刀刀尖在工件上的运动轨迹是一条螺旋线,跟螺旋线相切的切削平面位置也随之倾斜,所以也影响刀具的实际工件角度,因此车刀工件时的实际工件角度:Γ0i=τ0+ττ式中τ——螺旋角f——进给量,mm/rD——工件直径mm.一般车削时,走刀量较小,由于进给运动所引起的τ值可以忽略不计,但当车削大螺距螺纹时或多头螺纹时, τ值较大,在刃磨刀具时应考虑,它对工件角度的影响.二,刀具切削部分的几何参数的选择。
1,前角的选择1.前角的作用。
1,加大前角,刀具锋利,减少切屑变形,降低切削力,和切削热,但前角过大影响刀具的强度。
车刀的主要角度
二、车刀的角度
1、前角:前刀面与基面之间的夹角 2、后角:后刀面与切削平面之间的夹角 3、楔角:前刀面与后刀面之间的夹角 三个角之和为90度
二、车刀的角度
4、主偏角:主切削刃在基面内的投影与进给方向之间 的夹角
5、副偏角:主切削刃在基面内的投影与进给方 向之间的夹角 6、刀尖角:主切削与副切削刃在基面内的投影 之间的夹角
二、车刀几何角度的选择
(3)前角的选择:
选择原则:在刀具强度允许的条件下,尽量选较大的前角, 具体选择时根据工件的材料、刀具材料、加工性质等因素 选择。 ①加工脆性材料或硬度较高的材料时应选较小的前角, 反之,选较大的前角 ②高速钢车刀的前角一般应大于硬质合金车刀的前角。 ③精加工时选择较大的前角,反之选较小的前角。
三个角之和为180度
7、刃倾角:主切削刃与基面之间的夹角
二、车刀几何角度的选择
1、前角的选择: (1)前角的作用:
①影响车刀的锋利程序、切削力的大小与切削变形的大小。 ②影响车刀强度、受力情况和散热条件。
③影响加工表面质量。前角增大,刃口锋利,摩擦力小, 提高表面质量。 (2)前角正负的规定:我们要磨成正前角,刀尖高一点
2、后角的选择:
(1)后角的作用: ①减小后刀面与过渡表面之间的摩擦。 ②增大后角可使车刀刃口锋利。 (2)后角的正负的规定: 我们要磨成正后角,刀尖朝外面倾斜 (3)后角的选择: ①粗车时:选择较小的前角。
②精车时:选择较大的前角。
2、后角的选择:
③断续切削时或切削力较大时选取较大的前角。
3、主偏角与副偏角的选择:
(1)主偏角的作用:影响车刀的散热条件、断效果。
(2)主偏角的选择 ①刚性较差时选较大的主偏角。硬度高的工件选较小的 主偏角 ②刚性较差时选较大的主偏角。
刀具几何参数的合理选择
主偏角选择的具体原则 如下:
1.根据加工工艺系统刚性选择 粗加工、半精加工和工艺系统刚性不足时,为减小背 向力,减小振动,提高刀具耐用度,应选用较大主偏角, 一般主偏角为60 o~75 o。 2.根据加工材料选择 在加工高强度、高硬度材料时,为减轻单位长度切削 刃上的负荷,改善刀尖的散热条件,提高刀具强度和寿命, 应选取较小主偏角。 3.根据加工表面形状要求选择 在车阶梯轴时,选择主偏角=90o~92o;需要用一把刀 车外圆、车端面和倒角时,应选择主偏角=45o的车刀。
金属切削加工
刀具几何参数的合理选择
刀具的几何参数主要包括:刀具角度、前面与后面型式、 切削刃与刃口形状等。
刀具合理几何参数——是指在保证加工质量的前提下, 能够获得最高的刀具寿命,从而达到提高生产效率、降低生 产成本的刀具几何参数。
1.1前角和前面型式的选择
1.前角的选择 增大前角,切削刃锋利,切削变形减小、切削力减小、 切削温度降低、刀具磨损减小、加工表面质量提高。但若前 角过大,刀具刚度和强度降低,散热条件变差,切削温度高, 刀具易磨损或破损,刀具寿命低。总结正、反两方面的影响, 前角应有一个最佳值。 选择前角的原则:“固中求锐”。 (1)按工件材料选—— 切塑性材料时,应选较大前角; 切脆性材料,宜选较小前角。材料强度和硬度越高,前角越 小,有时甚至取负值。 (2)按刀具材料选——高速钢刀具材料的抗弯强度、抗 冲击韧性高,可选取较大的前角;硬质合金材料的抗弯强度 较低、脆性大,故前角应小些;陶瓷刀具材料的强度和韧性 更低、脆性更大,故前角应更小些。
2.前面型式的选择
(1)正前角平面型(图4.19a)——特点是结构简单、 制造容易、刀刃锋利,但刀尖强度较低、散热能力较差。
(2)正前角带倒棱型(图4.19b)——提高刀具刃口强 度、改善散热条件、增强刀具耐用度。
第十章 刀具合理几何参数的选择
第一节 前角及前刀面形状的选择
三、带卷屑槽的前刀面形状及其参数的选择
2、直线形卷屑槽 直线形卷屑槽的槽底角,对切屑的卷曲变形由直接 的影响。 一般取槽底角等于 110°~130° 3、全圆弧形卷屑槽 可获得较大的前角,而不至于使切削刃部分强度影 响很大。 4、卷屑槽长度Wn对切屑变形影响很大影响: Wn小,易断屑,太小,切屑飞溅; Wn大, 不易断屑。 一般取Wn=(7~10)f
后刀面
刀面
第二节 后角的选择
减小后角、设臵消振棱,可提高工艺系统刚性、提 高加工表面粗糙度的主要原因: a :增加了后刀面与已加工表面之间的接触面积, 可以产生同振动位移方向相反的摩擦阻力; b:对已加工表面起一定的烫压作用。
(3)对尺寸精度要求较高的刀具,宜采用较小的 后角。原因:NB一定时,较小的后角可使刀具 耐用度提高(如前图10-8所示),切削尺寸稳定。 车削钢和铸铁时,后角一般取4°~ 6°;切断刀副后 角一般取1°~ 2°。见图10-10所示。
第二节 后角的选择
后角数值合理与否直接影响已加工表面 的质量、刀具使用寿命和生产率。 后角的功用 ①影响后刀面与加工表面之间的摩擦
② 影响加工工件的精度 ③影响刀具耐用度和刃口的强度
第二节 后角的选择
一、增大后角,可提高刀具耐用度的原因
1、增大后角,可减小弹性恢复层与后到面的接触 长度,因而减小后刀面的摩擦与磨损; 2、后角增大,楔角减小,刀刃钝圆半径减小,可 减小工件表面的弹性恢复; 3、在磨损标准VB一定的情况下,后角的增大,可 使刀具磨去较大体积的刀具材料,因而增加了刀 具寿命。 后角太大时,由于楔角的减小,将消弱切削刃 的强度。 如下图所示
下,能够获得最高刀具耐用度,达到提高效率或
降低生产成本的几何参数。
刀具几何角度的选择课件
4)工件σb、HB大: 刃倾角λS < 0(保护刀尖)
巩固 实践操作:当用硬质合金车刀车削如图所示的 关卡 灰铸铁工件时,应选择怎样的刃倾角?
明辨是非:判断如图所示的铰刀和丝 锥刃倾角的正负。
刃倾角λs数值的选用表
λs值
0~ 5°
5° ~ 10°
0~ 5°
- 5° ~ - 10° ~ - 10° ~ - 10° - 15° - 45°
教学目标
1、掌握合理选择刀具几何角度的原则; 2、能够根据具体加工情况合理选择刀 具几何角度; 3、增强生产效益观念。
• 教学重点:合理选择刀具前角、主偏 角、刃倾角的原则。
• 教学难点:合理选择刀具前角、刃倾 角的原则。
一、合理选择前角
①工件材料:强度硬度大前角小刀坚固散热好;塑 性材料前角大刀锋利变形小;脆性材料 前角小刀坚固散热好
中碳钢 10~15° 15~20°
合金钢 10~15° 15~20°
淬火钢
-15~ - 5°
奥氏体不 15~20° 20~25° 锈钢
铜及铜合 金
铝及铝合 金
钛合金
σb≤1.177 GPa
5~10° 10~15° 35~40° 30~35° 10°~15°
巩固 关卡 实践操作:当用硬质合金车刀精车低碳
Kr大于 90°
明辨是非:盲孔车刀对主 偏角不作要求。
刃倾角的作用
四、合理选择刃倾角:
刃倾角的选择:
根据加工性质和
加工条件选择!
1)加工性质:
粗加工刃倾角λS = 0~-5o(保护刀尖)
精加工λS = 0~5o (使Fp小些)
2)断续切削: 刃倾角λS < 0(保护刀尖)
3)系统刚性差: 刃倾角λS > 0(使FP小些)
刀具几何角度的选择刀具切削部分的几何角度
刀具几何角度的选择刀具切削部分的几何角度刀具几何角度的选择刀具切削部分的几何角度,对于不锈钢切削加工的生产率、刀具耐用度、被加工表面粗糙度、切削力以及加工硬化等方面都有很大的影响,合理选择和改进刀具几何参数是保证加工质量、提高效率、降低成本的有效途径。
(1)车刀前角γ0的选择前角的大小决定刀刃的锋利与强度。
增大前角可以减小切屑的变形,从而减小切削力和切削功率,降低切削温度,提高刀具耐用度。
但是增大前角会使楔角减小,降低刀刃强度,造成崩刃,使刀具耐用度下降。
车削不锈钢时,在不降低刀具强度的条件下,应把前角适当取大一些。
在刀具前角大时其塑性变形小,切削力和切削热降低,减轻加工硬化趋势,提高刀具耐用度,一般刀具前角宜取12°~20°。
(2)车刀后角α0的选择在切削过程中,后角可以减小后刀面与切削表面的摩擦。
若后角过大,则楔角减小,使散热条件恶化,刀具刃口强度下降,降低刀具耐用度;若后角过小,摩擦严重,则会使刃口变钝,增大切削力,增高切削温度,加剧刀具磨损。
在一般情况下,后角变化不大,但必须有一个合理的数值,以利于提高刀具的耐用度。
车削不锈钢时,由于不锈钢的弹性和塑性都比普通碳素钢大,所以刀具后角过小会使切断表面与车刀后角的接触面积增大,摩擦产生的高温区集中于车刀后角,加快车刀磨损,降低被加工表面光洁度,所以车削不锈钢时的车刀后角要比车削普通碳钢时稍大一些,但后角过大又会降低刀刃强度,直接影响车刀的耐用度,因此,一般情况下车刀后角宜取6°~10°。
(3)车刀主偏角Kr的选择当切削深度ap和进给量f不变时,减小主偏角Kr可使散热条件得到改善,减少刀具损坏,使刀具切入、切出平稳。
但主偏角减小又会使径向力增大,在切削时容易引起振动。
车削不锈钢的硬化倾向性强,易产生振动,振动又会使加工硬化严重。
因此,主偏角一般宜取45°~90°。
具体角度应根据机床、零件、刀具系统的刚性和切削用量来选择。
车刀的主要几何角度及选择
车刀的重要几何角度及选择1)前角(γ0 )选择的原则前角的大小重要解决刀头的坚固性与锋利性的冲突。
因此首先要依据加工材料的硬度来选择前角。
加工材料的硬度高,前角取小值,反之取大值。
其次要依据加工性质来考虑前角的大小,粗加工时前角要取小值,精加工时前角应取大值。
前角一般在—5°~25°选取。
通常,制作车刀时并没有预先制出前角(γ0),而是靠在车刀上刃磨出排屑槽来获得前角的。
排屑槽也叫断屑槽,它的作用是折断切屑,不产生缠绕;掌控切屑的流出方向,保持已加工表面的精度;降低切削抗力,延长刀具寿命。
2)后角(α0 )选择的原则首先考虑加工性质。
精加工时,后角取大值,粗加工时,后角取小值。
其次考虑加工材料的硬度,加工材料硬度高,主后角取小值,以加强刀头的坚固性;反之,后角应取小值。
后角不能为零度或负值,一般在6°~12°选取。
3)主偏角(Kr )的选用原则首先考虑车床、夹具和刀具构成的车削工艺系统的刚性,如系统刚性好,主偏角应取小值,这样有利于提高车刀使用寿命、改善散热条件及表面粗造度。
其次要考虑加工工件的几何形状,当加工台阶时,主偏角应取90°,加工中心切入的工件,主偏角一般取60 °。
主偏角一般在30°~90°,*常用的是45°、75 °、90 °。
4)副偏角(Kr)的选择原则首先考虑车刀、工件和夹具有充足的刚性,才能减小副偏角;反之,应取大值;其次,考虑加工性质,精加工时,副偏角可取10°~15°,粗加工时,副偏角可取5°左右。
5)刃倾角(λS)的选择原则重要看加工性质,粗加工时,工件对车刀冲击大,取λS≤ 0°,精加工时,工件对车刀冲击力小,取λS≥ 0°;通常取λS=0°。
刃倾角一般在—10°~5°选取。
硬质合金车刀几何角度选择原则
硬质合金车刀几何角度选择原则(1)前角的选择增大前角,可减小切削变形,从而减小切削力、切削热,降低切削功率的消耗,还可以抑制积屑瘤和鳞刺的产生,提高加工质量。
但增大前角,会使楔角减小、切削刃与刀头强度降低,容易造成崩刃,还会使刀头的散热面积和容热体积减小,使切削区局部温度上升,易造成刀具的磨损,刀具耐用度下降。
选择合理的前角时,在刀具强度允许的情况下,应尽可能取较大的值,具体选择原则如下:1)加工塑性材料时,为减小切削变形,降低切削力和和切削温度,应选较大的前角,加工脆性材料时,为增加刃口强度,应取较小的前角。
工件的强度低,硬度低,应选较大的前角,反之,应取较小的前角。
用硬质合金刀具切削特硬材料或高强度钢时,应取负前角。
2)刀具材料的抗弯强度和冲击韧性较高时,应取较大的前角。
如高速钢刀具的前角比硬质合金刀具的前角要大;陶瓷刀具的韧性差,其前角应更小。
3)粗加工、断续切削时,为提高切削刃的强度,应选用较小的前角。
精加工时,为使刀具锋利,提高表面加工质量,应选用较大的前角。
当机床的功率不足或工艺系统的刚度较低时,应取较大的前角。
对于成形刀具和在数控机床、自动线上不宜频繁更换的刀具,为了保证工作的稳定性和刀具耐用度,应选较小的前角或零度前角。
(2)后角的选择增大后角,可减小刀具后刀面与已加工表面间的摩擦,减小磨损,还可使切削刃钝圆半径减小,提高刃口锋利程度,改善表面加工质量。
但后角过大,将削弱切削刃的强度,减小散热体积使散热条件恶化,降低刀具耐用度。
实验证明,合理的后角主要取决于切削厚度。
其选择原则如下:1)工件的强度、硬度较高时,为增加切削刃的强度,应选较小后角。
工件材料的塑性、韧性较大时,为减小刀具后刀面的摩擦,可取较大的后角。
加工脆性材料时,切削力集中在刃口附近,应取较小的后角。
2)粗加工或断续切削时,为了强化切削刃,应选较小的后角。
精加工或连续切削时,刀具的磨损主要发生在刀具后刀面,应选用较大的后角。
车刀几何角度的标注和选择教学
1、车刀=刀柄+刀体 2、刀体=前刀面+主后刀面+副后刀面+主切
削刃+副切削刃+刀尖 前刀面:车刀上切屑流经的表面 主后刀面:车刀上与工件过渡表面相对的表面 副后刀面:车道上与工件已加工表面相对的表面 主切削刃:前刀面与主后刀面相交的部位 副切削刃:前刀面与副后刀面相交的部位 刀尖:主切削刃与副切削刃连接处的那一小部分 切削刃
车刀几何角度的标注
•车刀几何角度的标注 1、在截面内测量的角度有:
前角:前刀面与基面之间的夹角。 后角:后刀面与切削平面之间的夹角。 楔角:在主截面内前刀面与后刀面之间的夹角。 2、在基面内测量的角度有: 主偏角:主切削刃在基面上的投影与进给运动方向之间的夹角。 副偏角:副切削刃在基面上的投影与背离进给运动方向间的夹 角。 刀尖角:主切削刃和副切削刃在基面上的投影之间的夹角。 3、在切削平面内测量的角度有: 刃倾角:主切削刃与基面之间的夹角。
对比学习
01
车刀前角是前刀面与基面之间的夹角;
前角正负的判断依据的是前刀面与切削平面之间的夹角。
02
车刀后角是后刀面与切削平面之间的夹角;
后角正负的判断依据的是后刀面与基面之间的夹角。
03
刃倾角是车刀主切削刃与基面之间的夹角;
刃倾角正负的判断依据的是车刀刀尖位于主切削刃上的位置。
车刀主要几何角度的选择:
○ 刃倾角的选择
本节课知识小结:
一. 车刀材质 二. 工件材质 三. 加工性质
一. 重点:车刀主要几何角度的作用及正确 合理选择
二. 难点:确定车刀几何角度的辅助平面的 理解,车刀几何角度标注的理解
巩固练习:
在主截面内测得的角度有?之间存 在什么关系? 当前刀面与切削平面之间的夹 角小于90°时,前角为?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前角主要影响切削过程中的变形和摩擦、刀具强度,改变散热条件,影响刀具的耐用度。选择前角时,应该综合考虑材料和加工工艺的要求。一般认为,在刀具强度允许的条件下,尽量选用大前角。例如,高速钢的强度高、韧性好,硬质合金脆性大、怕冲击,因此,高速钢刀具的前角可比硬质合金刀具的前角大5°左右,陶瓷刀具的脆性更大,前角不能太大。另外,如果被加工的材料导热系数低,应该选择小前角车刀,以改善系统的散热效果,提高车刀的耐用度。特别需要说明的是,在加工高强度材料时,为了防止车刀的破损,常采用负前角,以提高车刀的使用寿命。
(三)主偏角的选择原则
主偏角主要影响刀具强度、耐用度和工艺系统加工的稳定性。一般认为,在工艺系统刚性不足时,常取较大主偏角,以减小切削力。加工高强度、高硬度材料时,取较小主偏角以提高刀具的耐用度。副偏角影响工件的表面质量和刀具强度,在系统不易产生振动和摩擦的条件下,应选择较小的副偏角。
四、如何选择科学合理的几何参数评价车刀的几何角度对车削工艺过程的影响,应该用辩证的观点去分析,同时还应该综合考虑车刀几何角度对切削过程中的切削力、切削热和刀具耐用度的影响,选择科学合理的几何参数。
(一)车刀前角选择原则
(二)主偏角Kr对刀具耐用度的影响
主偏角减小,增加了刀具强度,改善了刀具的散热条件,使刀具的耐用度升高。另外,适当减小副偏角Kr′还能降低摩擦,提高刀具强度,改善散热条件,使刀具耐用度升高。当然,随着主偏角Kr和副偏角Kr的减小,会使系统的切深抗力Fy增大,当系统刚性不足时,会引起振动而影响加工质量。
江间波浪兼天涌,塞上风云接地阴。句有可削,足见其疏;字不得减,乃知其密。问姓惊初见,称名忆旧容。如切如磋,如琢如磨。生当作人杰,死亦为鬼雄。 查看文章
合理选择车刀几何角度
2009-01-06 23:41
摘要:合理选择车刀几何角度,有利于改善加工条件,提高被加工工件质量,延长刀具与设备的使用寿命,本文从车刀几何角度对切削力、切削热和刀具耐用度影响等角度,分析车刀几何角度选择的一般原则。关键词:几何角度;切削力;切削热;
(一)前角ro对切削力的影响
前角ro增大,剪切角Φ随着增大,金属塑性变形减小,变形系数ξ减小,沿前刀面的摩擦力减小,因此切削力减小。但对于脆性材料而言,前角ro的变化则不会对车削力产生较大的影响,这是因为脆性材料在车削时,切屑变形和加工硬化都很小,变形抗力自然会随之减小。同时,实验还证明,前角ro的增大,对切削分力Fx、Fy的影响程度也不一样,当主偏角Kr较大时,对Fx的影响较明显,而当主偏角Kr较小时,则对Fy的降低幅度更大些。
三、车刀几何角度对刀具耐用度的影响
车刀在切削加工过程中,受切屑和工件表面的摩擦,使用一段时间后,它就会钝化,从而失去其切削的能力,这时就要对刀具进行重磨或更换刀片。刀具的耐用度就是用来衡量刀具连续切削时间长短的参量。它是指刀具从开始使用至达到磨损限度为止所用的切削时间,它是衡量刀具切削性能的重要指标。由于刀具几何角度对耐用度的影响较大,合理选择刀具几何角度,可以大幅度提高刀具的耐用度,因此刀具的耐用度也是衡量刀具几何角度先进与否的重要标志。
(二)主偏角Kr对切削温度的影响
主偏角Kr减小时,使切削宽度增大,切削厚度减小,切削变形和摩擦减轻,同时,切削宽度增大后,散热条件改善,又有利于降低切削温度。因此,当工艺系统刚性足够时,采用小的主偏角切削,是降低切削温度、提高刀具的耐用度的一个重要措施,尤其是切削难加工材料时效果更显著。
这些几何角度对车削过程影响很大,其中尤其以主偏角Kr、前角ro、后角ao和刃倾角λs的影响更为突出,科学合理地选择车刀的几何角度,对车削工艺的顺利实施起着决定性作用。下面就从车刀几何角度对切削力、切削热和刀具的耐用度的影响分析着手,本着使切削轻便、质量稳定,延长刀具使用寿命的宗旨,确定科学的车刀几何角度的一般性原则。
车刀几何角度是指车刀切削部分各几何要素之间,或它们与参考平面之间构成的两面角或线、面之间的夹角。它们分别决定着车刀的切削刃和各刀面的空间位置。根据“一面二角”理论可知,车刀的独立标注角度有六个,它们分别是:确定车刀主切削刃位置的主偏角Kr和刃倾角λs;确定车刀前刀面Ar与后刀面Aa的前角ro和后角ao;确定副切削刃及副后刀面Aa′的副偏角Kr′和副后角ao′。
度尽劫波兄弟在,相逢一笑泯恩仇。三山半落青山外,一水中分白鹭洲。一万年太久,只争朝夕。朝闻道,夕死可矣。
(二)车刀后角的选择原则
后角主要影响切削时的摩擦和刀具强度。当工件材料的强度、硬度较高时,宜取较小后角,以提高刀具强度;当工艺系统刚性较差时,应适当减小后角,防止系统产生振动;当加工精度要求较高时,应采用小后角。
(一)前角ro对切削温度的影响
前角增大,使切削力下降,切屑的变形和工艺系统的摩擦减轻,使产生的切削热减少,从而降低了切削温度。事实上,切削温度的高低不仅取决于工艺系统产生热量的多少,还受工艺系统散热条件的影响。实验证明,当车工的前角增大到16°左右时,由于车刀的楔角减少后使刀具的散热条件变差,切削温度反而有一些回升。
(二)主偏角Kr对切削力的影响
主偏角Kr的改变,使得切削面积的形状和切削分力Fxy的作用方向改变,从而使切削力也随之变化。实验证明,主偏角Kr增大,切削厚度也随之增大,切削变厚,切削层的变形减小,因此主切削力也随之减小,如图3所示。但当Kr增大到60°-75°后,Fz又随着Kr的增大而有所回升,这是因为此时刀尖圆弧所占的切削工作比例增大,使切屑变形和排屑阻力增大,又使主切削力Fz增大。根据切削力分解公式:Fy=FxycosKr;Fx=FxysinKr可知,主偏角Kr增大,使Fy减小,Fx增大,这有利于减轻工件的变形和系统的振动。因此,在工程上我们往往采用较大主偏角的车刀切削细长轴类零件,来减小径向分力Fy。
(三)刃倾角λs对切削力的影响
刃倾角λs对主切削力Fz影响很小,但对进给抗力Fx和切深抗力Fy的影响较大。当λs减小时,使刀具受到的正压力的方向发生了变化,从而改变了切削合力Fr及其分力Fxy的作用方向,使Fy增大,Fx减小。由此可见,从切削力角度分析,切削时不宜选用过大的负刃倾角,否则会增大Fy的作用而产生振动。
(四)车刀刃倾角的选择原则
刃倾角主要影响切屑的倾向和刀具的强度及其锋利程度。在无冲击的正常车削时,刃倾角一般取正值,如果切削时有间断冲击,选择负刃倾角能提高刀头强度,保护刀尖。当系统刚性不足时,不宜采用负刃倾角,否则会因为切深抗力Fy的增大,引起系统的振动而影响加工质量。
Hale Waihona Puke 二、车刀几何角度对切削热的影响
车削过程所消耗的能量,除了极少部分用以形成新表面和潜藏能以外,绝大部分都转换为热能,以切削热的形式表现出来,使工艺系统的温度升高。分析可知,车削时热量主要来源于切屑的变形功和前、后刀面的摩擦功。这些热量产生后又将通过切屑、工件、刀具和周围介质传出,使产热与散热达到动态平衡状态,此时工艺系统的切削温度就是稳态切削温度。影响切削热与切削温度的因素很多,这里分析车刀几何角度对其产生的影响。
一、车刀几何角度对切削力的影响
在金属切削时,刀具切入工件,将多余材料从工件上切除会产生强烈的力的作用,这些力统称为切削力。切削力主要来源于被加工材料在发生弹性和塑性变形时的抗力和刀具与切屑及工件表面之间的摩擦作用。根据切削力产生的作用效果的不同,可将切削力分解成三个相互垂直方向的分力。它们分别是:主切削力Fz,进给抗力Fx和切深抗力Fy,其中Fz是切削总力Fr沿主运动切向分解而得,是计算车刀强度,设计机床零件,确定机床功率的主要依据;Fx也叫轴向力,它是Fr沿工件轴向的分力,是设计进给机构,计算车刀进给功率所必需的;Fy也叫径向力,它是Fr沿着工件径向的分力,它不消耗机床功率,但是当机床或工艺系统刚度不足时,易引起振动。
(一)前角ro对刀具耐用度的影响
适当增大前角,有利于减少切削力,降低切削温度,使刀具的耐用度提高。但是,如果前角增大到一定值以后,会使刀刃强度下降,散热条件逐渐变差,而且刀刃易于产生破损,耐用度反而会下降。因此前角ro对刀具耐用度的影响呈山峰状,它的峰顶处前角值使刀具的耐用度最高,切削不同的材料时,刀具的耐用度达到最高时的前角值也不相同。