《流体力学》孔口、管嘴及有压管流
水利讲义第六章孔口、管嘴出流以及有压管路
H
H
z2
p2
2V22
2g
hw12
1
2V22
2g
hw12
V2 2
令:
H
0V02
2g
H0
H0
2V22
2g
hw12
§6-4 短管的水力计算
hw12
hf
hm
L V22
d 2g
V22
2g
孔断面上各点的有效水头是一致的,且都等于上下游水位差, 所以在这种情况下,可不分大孔和小孔。
§6-1 液体经薄壁孔口的恒定出流
1-1、2-2 列伯诺里方程:
H1
p1
1V12
2g
1 H1
H2
p2
2V22
2g
hw
V1
而 hw
0
Vc 2 2g
se
Vc 2 2g
1
H0 2
①自由出流
水进入到管嘴后,同样形成收缩,
在收缩断面 c-c 处形成旋涡区,
对 o-o 和 b-b 列伯诺里方程:
H
pa
0V02
2g
pa
0 V 2
2g
hw
§6-2 液体经管嘴的恒定出流
式中 hw 为管嘴水头损失,
等于进口损失与收缩断面后的扩大损失之和(沿程损失忽略)。
即:hw
上式写为:
H
0V02
2g
cVc 2
2g
0
Vc 2 2g
( c
流体力学专题课程第七章孔口、管嘴出流与有压管流
ε=0.6f4 0.82
ε=1
(3) 与孔口的对比: 1> 公式形式相同,但系数不同: 2> H0 相同时,若A 也相同,则管嘴出流是孔口出流 量的1.32倍。
二、 收缩断面的真空
与自由出流一致
结论 1、流量公式:
QA 2gH0
2、自由式与淹没式对比: 1> 公式形式相同;
2> φ、μ基本相同,但 H0不同;
3> 自由出流与孔口的淹没深度有关, 淹没出流与上、下游水位差有关。
H v0
z
v0
v2
自由式:
H0 = H +
v02 2g
淹没式:
H0 =
z
+
v02 2g
-
v22 2g
pg AzA2 vg A 2 pg CzC2 vC g 22 vC g 2
pC pa
zAzCpA gpa2 vg A 2 12 vC g 2
H0——自由出流的作用水头
H0
1
vC2
2g
物理意义:促使流体克服阻力,流入大气的全部能量
特例 自由液面:PA=Pa,液面恒定:vA=0
H 0zAzCH
收缩断面流速
一、概念
1、孔口出流 ——容器壁上开孔,流体经容器壁上所开 小孔流出的水力现象,称孔口出流。
2、管嘴出流 ——在孔口上对接长度为3-4倍孔径的短管, 流体经容器壁上所接短管流出的水力 现象,称管嘴出流。
二、任务: 计算过流量Q。 三、依据:
(1)能量方程; (2)总流的连续性方程; (3)能量损失计算式。
vC
1
1
2gH 0 2gH 0
φ——孔口的流速系数,φ=0.97。
流体力学 水力学 第五章
7 H [H0 ] 9m 0.75
§5.3 有压管道恒定流 5.3.1 短管水力计算(Q、d、H) 有压流:水沿管道满管流动的水力现象。 特点:水流充满管道过水断面,管道内不存在自 由水面,管壁上各点承受的压强一般不等于大 气压强。
短管:局部水头损失和 速度水头在总水头损失 中占有相当的比重,计 算时不能忽略的管道. (一般局部损失和速度 水头大于沿程损失 的5% ~ 10%)。一般L/d 1000
1 vc c 0
v
2 0 0
2 gH 0 2 gH 0
v hw h j 2g p c pa
2 c
1 1 流速系数: c 0 1 0
1 1 流速系数: c 0 1 0
实验得: 0.97 ~ 0.98 1 推求: 0 2 1 1 0.06 2 0.97 1
2
d2
5.126m 2g
例5 3:如图所示圆形有压涵管,管长50m, 上下游水位差3m 沿程阻力系数为0.03,局部阻力系数:进口 1=0.5。 第一个转弯 2=0.71,第二个转弯 3=0.65,出口
4=1.0,要求涵管通过流量大约3m 3 / s, 试设计管径d。
2 1 1
2g
v
v
2 2 2
2 2 2
2g
hw
2g
hw
H0 H
v
2 1 1
2g
v
2 2 2
2g
hw
hw h f h j (
l v
v d 2g 2g
2
2
l
v ) d 2g
流体力学(孔口管嘴出流与有压管流)
二、本章重点掌握 1、孔口、管嘴恒定出流的水力计算。 2、有压管路恒定流动的水力计算。
§7-1
孔口出流
孔口出流分类 薄壁小孔口恒定出流 薄壁大孔口恒定出流 孔口非恒定出流
在容器壁上开孔,流体经孔口流出的现象,称孔口流出。 应用:给排水工程中水池放水,泄水闸孔等。
一、孔口出流分类
1、按孔口大小与其水头高度的比值分
式中µ――全部完善收缩时孔口流量系数; A――孔口面积; A0――孔口所在壁面的全部面积。 上式的适用条件是,孔口处在壁面的中心位置,各方向上影响 不完善收缩的程度近于一致的情况。 想一想:为什么不完善收缩、不完全收缩的流量系数较完善收 缩、完全收缩的流量系数大?
3、淹没出流
当液体通过孔口流到充满液体的空间称为淹没出流。 由于惯性作用,水流经孔口流束形成收缩断面c-c,然后扩大。 列出上、下游自由液面1-1和2-2的伯诺里方程。式中水头损 失项包括孔口的局部损失和收缩断面c-c至2-2断面流束突然扩大 局部损失。
大孔口的流量计算式与小孔口的相同,但大孔口的收缩系数较大, 因而流量系数也较大,见下表(教材表6-1,P189)。
大孔口的流量系数
收缩情况 全部、不完善收缩 底部无收缩,侧向有收缩 底部无收缩,侧向较小收缩 底部无收缩,侧向极小收缩
μ
0.70 0.65~0.70 0.70~0.75 0.80~0.90
2、孔口出流各项系数
边界条件的影响: 对于薄壁小孔口,试验证明,不同形状孔口的流量系数差别不 大。 孔口在壁面上的位置对收缩系数却有直接影响。 全部收缩是 全部收缩是当孔口的全部边界都不与容器的底边、侧边或液面 重合时,孔口的四周流线都发生收缩的现象;如图中I、Ⅱ两孔。 不全部收缩是不符合全部收缩的条件; 不全部收缩 如图中Ⅲ、Ⅳ两孔。 在相同的作用水头下,不全部收缩的 收缩系数 ε 比全部收缩时大,其流量系数
流体力学第7章 孔口 管嘴出流和有压管流
孔 A1 2 gh1 嘴 A2 2 g (h2 h3 )
4 4 0.000992 h1 0.000738 h2 h3 0.62
0.042 2 gh1 0.82
0.032 2 g (h2 h3 )
0.000992 h1 0.000738 h2 h3
主要内容:
薄壁孔口的恒定出流 液体经管嘴的恒定出流
孔口、管嘴的非恒定出流
短管的水力计算 长管的水力计算 管网的水力计算
7.1 薄壁孔口的恒定出流
在装有液体的容器壁上开一孔口,液流经过孔口流出的水力现 象称为孔口出流。 (1)孔口出流分类: d/H<0.1 小孔口出流 侧壁孔 按孔口断面上各点所受 d/H>0.1 大孔口出流 的作用水头是否相同分 底孔,小孔口出流 按孔口壁面厚度和形 状对出流的影响分 按液体出流时与周 围介质关系分 按作用的总水头是 否改变分 薄壁孔口出流 厚壁孔口出流 孔口自由出流 孔口淹没出流 孔口恒定出流
工程实际中,大孔口出流的计算可以近似采用小孔口的计算公 式。 Q A 2 gH 0
式中H0取为大孔口形心的水头,流量系数可以查表得到。
7.2 液体经管嘴的恒定出流
(1)定义、分类及流动特点:
管嘴实际上是以某种方式连接于薄壁孔口上的具有一定长度 的短管。 液体经由容器外壁上安装的长度约(3~4)倍管径的短管出流, 或容器壁的厚度为(3~4)孔径的孔口出流,称为管嘴出流。
(5)大孔口出流 大孔口出流断面上的流速分布不 均匀,流速系数φ较小,且大多 数属于不完善的非全部收缩,流 量系数较大。 大孔口可看成由很多小孔口组成。
利用小孔口出流计算公式,宽为dh的小孔口流量为 dQ μbdh 2gh
工程流体力学课件5孔口、管嘴出流及有压管流
H
0v02 2g
v2 2g
hw
忽略管嘴沿程损失,且令
H0
H
0v02
2g
则管嘴出口速度
v 1
2gH0 n 2gH0
Q vA n A 2gH0 n A 2gH0
其中ζ为管嘴的局部阻力系数,取0.5;则
流速系数 流量系数
n
1
1 0.82 <孔口 0.97 ~ 0.98 1 0.5
说明管嘴过流能力更强
l1, l2 ,1, 2 , n, 1, 2 , 3
求 泄流量Q, 画出水头线
3
Rd 4
R, n
C
1 n
1
R6
8g C2
1, 3 H
1
2 l1
2
l2
v
1
2gH
1
l d
1
2
1
出口断面由A缩小为A2
出口流速
v2
管内流速
v2
A2 A
3
新增出口局部损失 3
v2
2gH
13
(
l d
1
2
)
A2 A
2
= =
H+h 0
h
v2
l v2
v2
( )
2g
d 2g
2g
1
用3-3断面作 下游断面
O1
H
v
23
h O 出口水头损失
按突扩计算 23
( z1
p1
1v12
2g
) (z3
p3 )
3v32
2g
h f 12
h j12 h j23
= = = = =
H+h
工程流体力学课件 第06章 孔口、管嘴出流及有压管流讲解
流量 系数
H 23
h O
23
c
1
1 l
d
淹没与自 由出流相 比,作用水 头不同,管 系流量系数 相同,局部 损失中不包 含 2-2 断 面 出 口损失。
简单管道水力计算特例——虹吸管及水泵
安装高度
提水高度
压水管
1
Zs
Z
安装高度
吸水管
Z 1
2 Zs
虹吸管是一种压力管,顶部2 弯 曲且其高程高于上游供水水面。其 顶部的真空值一般不大于7~8m水柱 高。虹吸管安装高度Zs越大,顶部真 空值越大。
圆柱形外管嘴的正常工作条件
H0
7m 0.75
9m
管嘴长度为(3-4)d
P121
§6—3 有压管道恒定流动的水力计算
z1
p1
g
1v12
2g
z2
p2
g
2v22
2g
hw12
实际流体恒 定总流能量
方程
hw12
hf 12 hj
沿程损失 局部损失
已能定量分析,原则上 解决了恒定总流能量方程 中的粘性损失项。
P119
一、管嘴出流的计算
计算特点: hf 0 出流特点:
1
H
0
d
在C-C断面形成收缩,然后再扩大,逐步充满
整个断面。
1
l (3 ~ 4)d
c2 0
c2
从 1→2 建立伯努利方程,有
H
0
0
0
0
v 2
2g
n
v2 2g
v
有压管流与孔口、管嘴出流
例5.1:水泵管路如图,铸铁管直径d=150mm,管长l=180m,管路上装有吸水网(无底阀)一个,全开截止阀一个,管半径与曲率半径之比为r/R=0.5的弯头三个,高程h=100m,流量Q=225m3/h,水温为20℃。 试求水泵的输出功率。
c值可按巴甫洛夫斯基公式计算: 式中:R—水力半径(米)。适用范围0.1≤R≤3 n—粗糙系数,视材料而定。 y—与n及R有关的指数。 对于一般输水管道,常取 y=1/6。曼宁公式: K可根据d、n查表选取。
05
Q2=25.72L/s
06
Q3=32.76L/s
07
并联水头损失:
08
【例】如图所示的具有并联、串连管路的虹吸管,已知H=40m, l1=200m,l2=100m,l3=500m,d1=0.2m,d2=0.1m,d3=0.25m,各管段均为正常管。求总流量Q。 【解】管1和管2并联,此并联管路又与管3串连,因此:H=hf2+hf3, 查表得:K1=341.0L/s,K2=53.72L/s,K3=618.5L/s, 总流量 Q=Q1+Q2,故Q2=0.1822Q 即40=0.002457Q,Q=127.6 升/秒
ζ0:孔口局部阻力系数
2、淹没出流
孔口出流淹没在下游水面之下。 由伯努利方程: 整理后得: 得: 孔口淹没出流的流速和流量均与孔口的淹没深度无关,也无“大”、“小”孔口的区别。 淹没孔口局部阻力系数
5.4管嘴出流
在孔口接一段长l=(3~4)d的短管,液流经过短管并充满出口断面流出的水力现象。 根据实际需要管嘴可设计成: 圆柱形:内管嘴和外管嘴 非圆柱形:扩张管嘴和 收缩管嘴。 圆柱形外管嘴定常出流 管嘴面积为A,管轴为基准面, 列0-0,b-b伯努利方程
5.2 管网的水力计算基础
流体力学(孔口管嘴出流与有压管流)
缩断面后,液体质点受重力作用而下落。
计算孔口出流流量(出流规律) 列出断面1-1和收缩断面c-c的伯诺里方程。
2 p0 0v0 pc c vc2 H hw g 2g g 2g
(1)
式中 p0=pc=pa
孔口出流在一个极短的流程上完成的,可认为流体的阻力损失
完全是由局部阻力所产生,即
数也相同。 但自由出流的水头H是水面至孔口形心的深度,而淹没出流的
水头H是上下游水面高差。因此淹没出流孔口断面各点的水头相同, 所以淹没出流没有“大”、“小”孔口之分。
问题1:薄壁小孔淹没出流时,其流量与 (C) 有关。
A、上游行进水头; B、下游水头;
C、孔口上、下游水面差; D、孔口壁厚。 问题2:请写出下图中两个孔口Q1和Q2的流量关系式(A1= A2)。(填>、< 或=)
将式(2)和式(3)代入式(1)得
2 2 pv pa pc c 1 v2 2 2 1 g g 2g
把式 v2 n 2gH0
代入上式得
2 pv c 1 2 2 2 1 H 0 g
l 太短,液流经管嘴收缩后,还来不及扩大到整个管断面,真
空区不能形成;或者虽充满管嘴,但因真空区距管嘴出口断面太近,
极易引起真空的破坏。
l 太长,将增加沿程阻力,使管嘴的流量系数μ相应减小,又达 不到增加出流的目的。 所以,圆柱形管嘴的正常工作条件是: ①作用水头H0≤9m ②管嘴长度l=(3~4)d 判断:增加管嘴的作用水头,能提高真空度,所以对于管嘴的 出流能力,作用水头越大越好。
2.小孔口自由出流与淹没出流的流量计算公式有何不同?
工程流体力学 第5章 管路管嘴
以0-0作为基准面,写出1-1和2-2断面的总流 伯努利方程 2 2 p a 1 v1 pa 2 v2 H 0 hl 2g 2g 上式中, v1
0
因为是长管,忽略局部阻力
2 2
2v h r 和速度水头 , 则 hl h f ,故 2g H hf (5.1)
5.1.2 长管的水力计算
对于一般输水管道,常取y =1/6,即曼宁公 式 1 1 c R6 (5.5) n 管壁的粗糙系数值随管壁材料、内壁加工 情况以及铺设方法的不同而异。一般工程 初步估算时可采用表5.1数值。
5.1.2 长管的水力计算
序号 1 壁面种类及状况 安装及联接良好的新制清洁铸铁 管及钢管;精刨木板
5.1.1 短管的水力计算
水泵的吸水管、虹吸管、液压传动系统的输油管 等,都属于短管,它们的局部阻力在水力计算时 不能忽略。短管的水力计算没有什么特殊的原则, 主要是如何运用前一章的公式和图表。
[例题5.1] 水泵管路如图5.1所示, 铸铁管直径d=150mm,管长 l=180m ,管路上装有吸水网(无 底阀)一个,全开截止阀一个,管 半径与曲率半径之比为 r/R=0.5 的 弯头三个,高程h=100m,流量 Q=225m3/h,水温为20℃。试求水 泵的输出功率。
5.2.2 并联管路
根据连续性方程,有 Q Q1 Q2 Q3 (5.11) 根据式(5.10)和式(5.11)可以解决并联管路水 力计算的各种问题。 强调 :虽然各并联管路的水头损失相等,但这只说 明各管段上单位重量的液体机械能损失相等。由 于并联各管段的流量并不相等,所以各管段上全 部液体重量的总机械能损失并不相等,流量大的 管段,其总机械能损失也大。
李玉柱流体力学课后题答案 第六章
第六章 孔口、管嘴出流与有压管流6-1 在水箱侧壁上有一直径50mm d =的小孔口,如图所示。
在水头H 的作用下,收缩断面流速为 6.86m/s C V =,经过孔口的水头损失0.165m w h =,如果流量系数0.61μ=,试求流速系数ϕ和水股直径c d 。
解:根据伯努利方程:22.51m 2c w V H h g=+= 流速系数0.9672c cV V V gHϕ=== 2c c Q A gH AV μ==,39.71mm cd = 6-2 图示一船闸闸室,闸室横断面面积2800m A =,有一高2m h =、宽4m b =的矩形放水孔。
该孔用一个速度0.05m/s v =匀速上升的闸门开启。
假设初始水头15m H =,孔口流量系数0.65μ=,孔口出流时下游水位保持不变。
试求(1)闸门开启完毕时闸室中水位降低值y ;(2)闸室水位与下游平齐所需要的总时间T 。
解:(1)闸门完全开启所用的时间:40s ht v== 此段时间内孔口的面积可用孔的平均面积来表示:24m A =因为40s T ==所以:2 3.796m H =,12 1.204m y H H =-=(2)闸门完全打开后,防水孔的面积:28m A bh '== 液面降到与下游液面平齐所需要的时间因为135.41s T '==所以175.41s T t T '=+=6-3 贮液箱中水深保持为 1.8m h =,液面上的压强070kPa p =(相对压强),箱底开一孔,孔直径50mm d =。
流量系数0.61μ=,求此底孔排出的液流流量。
解:根据伯努利方程:202p V h g gρ+= 215.9L/s 4Q d V πμ==6-4 用隔板将矩形水池中的水体分成左右两部分,如图所示,右半部分水面保持恒定,隔板上有直径10.1m d =的圆形孔口,位于右半部液面下1 4.8m H =处。
在左半部分的侧面与前一孔口相同的高度处开有直径20.125m d =的圆形孔口,当水池两半部分的水面稳定后,试求左半部水面高度计孔口出流流量。
工程流体力学 第六章 孔口、管嘴和有压管流.
2.流量比较
Q 孔口
A 2g
孔口 孔口
孔 H口
孔口 0.6 21
Q n
nA n 2gH n n 0.82
14
管流基本概念
简单管道是指管道直径不变且无分支的管道
复杂管道是指由两根以上管道组成管道系统。复杂管道又可 以分为串联管道、并联管道、分叉管道、沿程泄流管和管网。
短管是指管路中水流的流速水头和局部水头损失都不能忽 略不计的管道。
其中 K AC R
25
三、简单管道水力计算应用举例 1、虹吸管的水力计算
虹吸管是一种压力输水管道,顶部弯曲且其高程 高于上游供水水面。
虹吸管的工作原理图
26
虹吸灌溉
27
真空输水:世界 上最大直径的虹 吸管(右侧直径 1520毫米、左 侧600毫米),虹 吸高度均为八米, 犹如一条巨龙伴 游一条小龙匐卧 在浙江杭州萧山 区黄石垅水库大 坝上,尤为壮观, 已获吉尼斯世界 纪录 。
将产生汽化,破坏水流的连续性。故一般不使虹吸管
中的真空值大于7-8米。虹吸管应按短管计算。
31
例2:图示用直径d = 0.4m的钢筋混凝土虹吸管从河道向灌
溉渠道引水,河道水位为120m,灌溉渠道水位118m,虹
吸管各段长度为l1 = 10m,l2 =5m, l3 =12m,虹吸管进
口安装无底阀的滤网(ζ= 2.5),管道有两个60o的折角弯管 (ζ=0.55)。求:
0.03327 2.5 20.551.0
0.4
0.383
QcA 2gz
0.3830.7850.42 29.82 0.30m3 s
33
(2)计算虹吸管的最大安装高度 列河道水面和虹吸管下游转弯前过水断面的能量方程
流体力学 第七章 孔口、管嘴出流和有压管道 (2)
解:倒虹吸管一般作短管计算。本题管道出口淹没在水下;
而且上下游渠道中流速相同,流速水头消去。 因 所以 而
Q c A 2 gz c
d 4Q
d 2
4
2 gz
c 2 gz
c
1 l d
因为沿程阻力系数λ或谢才系数C都是d 的复杂函数,
因此需用试算法。
先假设d=0.8m,计算沿程阻力系数:
v 1 l 1 d
1 1 l d
2 gH 0
通过管道流量 Q
c
1
A 2 gH 0
c A 2 gH0
式中
l 1 d
称为管道系统的流量系数。
当忽略行近流速v时,流量计算公式变为 Q c A 2gH
2、淹没出流
列断面1-1和2-2能量方程
z 3 1 105 85 20m
hw14 为吸水管及压力管水头损失之和。已求得吸水管
水头损失为 0.22m,当压力管按长管计算时,整个管道的 水头损失为
hw14
Q 0.22 2 l K
2
压力管的流量模数
K A2C2 3.14 0.52 1 0.5 2 3 R2 ( ) 4 0.013 4
g
lB v zs (1 e b ) hv d 2g
即 而
lB v2 z s hv (a e b ) d 2g
2
lB v2 hv (1 e b ) d 2g
20 7 (1 0.024 0.5 0.365) 1 1.9852 6.24m 2 3.14 1 2 2 9.8( ) 4
2
流体力学5
1 1
如果在图示密闭的管道内, 可有:
H0
C
vC
1 11
2 p1
2 p1
0
p1 H0 g d
C
vC 0
Q vC AC A
2 p1
同理也适合孔口淹没出流时的情况
6
1
例1. 如图示, 在 = 860kg/m3 、 = 8.4 10--6 m2/s 的油管中, 加装一小阻尼器以降 低油的流速.已知D = 25.4mm , d = 5mm, 阻尼器两边的油压差p = 0.11105 Pa.
2. 孔口的边缘情况
孔口的边缘情况对出流的收缩会产生较大的 影响, 壁薄的孔口出流收缩较强烈, 收缩系数 较大, 如图(a)所示.而较圆滑的孔口出流收 缩不明显, 甚至接近1.0, 如图(b)所示.
a
b
8
3. 孔口相对容器边界的位置 按孔口相对容器边界的位置, 可将孔口分为全部收缩孔口和部分收缩孔口. 全部周界都离开容器的边界的孔口为全部收缩孔口, 否则称为部分收缩孔口. 图示中, 1、2两孔是全部收缩孔, 3、4两孔是部分收缩孔.
0.0052
4
4.9 6.158 10 5 m 3 / s
7
Q 6.158 105 4 v 0.1215 m / s 2 AD 0.0254
四. 小孔口的流动参数 小孔口的流量系数 取决于流速系数 和断面收缩系数 , 由实验可知在自 由出流和淹没出流的条件下这些系数都是相同的. 那么, 哪些因素可影响和 的大小? 1. 小孔的形状 不同形状的孔口, 其出流时的局部阻力和断面收缩情况有所不同, 从而影响流量 系数 的大小. 但是对于小孔口,实验表明, 孔口的形状对流量系数的影响并不 大, 自然也有小孔口的形状对流速系数和收缩系数的影响也是不大的.
孔口管嘴出流、有压管路基本概念
α V
2 01 01
2g
= H2 + 0 +
α 02V02
2g
2
+ hw
l V2 hw = (∑ λ + ∑ ζ ) d 2g
1 V= l λ +∑ ζ ∑ d 2 gH
Q = AV = c A 2 gH
Fluid Mechanics 流 体 力 学
例1:用虹吸管自钻井输水至集水池.如图所示,虹吸管长 l=lAB+lBC=30+40=70m,d=200mm.钻井至集水池间的恒定水位高差 H=1.60m.又已知λ=0.03,管路进口120弯头90°弯头及出口处的 局部阻力系数分别为ζ1=0.5,ζ2=0.2,ζ3=0.5,ζ4=1.0. 试求:(1)流经虹吸管的流量; (2)如虹吸管顶部B点的安装高度hB=4.5m ,校核其真空度.
Fluid Mechanics 流 体 力 学
第三节 管嘴出流
一,圆柱形外管嘴出流 当圆孔壁厚δ等于3 4d时 或者在孔口处外接一段长l= 当圆孔壁厚δ等于3~4d时,或者在孔口处外接一段长l= 3~ 的圆管时,此时的出流称为圆柱形外管嘴出流, 4d 的圆管时,此时的出流称为圆柱形外管嘴出流,外接短管称 为管嘴. 为管嘴. 通过收缩断面形心引基准线0 列出A 通过收缩断面形心引基准线0-0,列出A-A及 a v 两断面的能量方程. B-B两断面的能量方程. p 2g
vc2 he = hm = ξ1 , 2g
H0
H C
0
d
0 C
2 2 vc pA pC α A vA 移项整理得: 移项整理得:αc + ξ1 ) = (Z A ZC ) + ( + γ 2g 2g
流体力学——8 孔口、管嘴出流和有压管流
H
孔口出流
dC
C
H 管嘴出流
H
C
d
有压管流
d1
d2
C
qv1
qv2
有压管流:沿管道满管流动的流动现象。
特点:无自由液面,流体压强一般不等于大气压强。
2021/4/25
3
8.1 孔口出流
8.1.1.孔口出流分类
自由出流
按d和H的比值不同分:
H
大孔口(d/H>0.1)、小孔口(d/H>0.1)
dC
C
根据壁厚是否影响射流形状分:薄壁孔口、厚壁孔口
v 0.6 ~ 1.0 m/s e
ve 1.0 ~ 1.4 m/s
枝状管网
各管段没有环形闭合的连接,管网内任一点只能由一
个方向供水,一旦在某一点断流则该点之后的各管段均受
到影响。
缺点:供水的可靠性差
特点
优点:节省管材、降低造价
枝状管网的水力计算,主要是确定水塔水面应有的高度或 水泵的扬程。
把距水源远、地形高、建筑物层数多、水头要求最高、通 过流量最大的供水点称为最不利点或控制点。
所以
H0
hw
c
v2 2g
平均流速
v 1
c
2gH0
若管道的过水断面面积为A,则通过管道的流量
Q vA c A 2gH0
式中, c
1
称为短管淹没出流的流量系数。
c
短管在自由出流和淹没出流情况下,流量计算公式的
形式及流量系数的数值是相同的,但作用水头的计算是
不同的,自由出流时作用水头为出口断面形心点上的总
v c
也2适g用H于0
大孔口,在估算大孔口流量时,应考虑上游流速水头,而且
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、简单管路
1 .定义: 2 .水力关系 d、Q沿程不变的管路,称为简单管路。
1
伯努利方程
1
H 0 0 0 0 0 hf H hf
上式说明:
0
, d , l
2 2
H
0
全部作用水头均消耗在沿程水头损失上。
ppt课件
19
§ 6.3 长管水力计算
Q d2
连续性方程
v
4
3 .关于 h f 的计算
l v2 hf SlQ 2 d 2g Q v 2 d 4
式中 S 8
g d
2
5
f , d 称为比阻。
ppt课件 20
§ 6.3 长管水力计算
四、串联管路
ppt课件
21
§ 6.3 长管水力计算
1 .定义:由d不同的若干段管顺次联接的管路,称为串联管路。
l (3 ~ 4)d
H
c
d
2
0
c
2
n 为管咀流速系数, n 0.82
1
ppt课件
10
§ 6.1 孔口、管嘴恒定出流
Q Av n A 2 gH
式中: n 为管咀流量系数, ★管嘴正常工作条件
n n 0.82
l 3 ~ 4d
H 9m
例题1
N e gHQ
Ne NX
• 转速 n
• 允许真空度
[hv ]
ppt课件 26
§ 6.4 离心式水泵的水力计算
三、工况分析
1. 水泵特性曲线
c vc2
1 H
c
d
0
0
式中:
为孔口流速系数,对于小孔口, 0.97
Ac A
c
l
Q Ac vc A 2 gH A 2 gH
1
式中: 、 分别为孔口收缩系数和流量系数,对于小孔口:
0.64, 0.62
ppt课件 7
§ 6.1 孔口、管嘴恒定出流
ppt课件
5
§ 6.1 孔口、管嘴恒定出流
一 .孔口出流的计算
计算特点:h f 0
1 H
收缩现象 出流特点:
c
d
0
0
1.自由式出流 从 1→C 建立伯努利方程,有
c
l
1
ppt课件
6
§ 6.1 孔口、管嘴恒定出流
vc2 H 00 00 0 2g 2g
vc 1 c 0 2 gH 2 gH 1 c 0
第 6 章 孔口、管嘴及有 压管流
ppt课件
1
第 6 章 孔口、管嘴及有压管流
★本章所用知识点
• 连续性方程
• 能量方程
• 沿程水头损失
• 局部水头损失 ★重点掌握 • 孔口、管嘴恒定出流的水力计算 • 有压管路恒定流动的水力计算
• 离心式水泵的水力计算
ppt课件 2
§ 6.0 概述
H
d
l
ppt课件 3
c
2
出流特点:
在C-C断面形成收缩,然后再扩大,逐步充满 整个断面。
ppt课件
9
§ 6.1 孔口、管嘴恒定出流
1
从 1→2 建立伯努利方程,有
v2 H 00 00 n 2g 2g 0 1 v 2 gH n 2 gH n 1 n n
式中:
v 2
ppt课件 11
§ 6.2 短管水力计算
★ 短管的定义
4
l 1000 d
一 、计算特点 二 、计算类型
hw hf hm
1 .已知H、d,求Q(校核) 2 .已知Q、d,求H(设计) 3 .已知Q、H,求d(设计)
ppt课件 12
§ 6.2 短管水力计算
三、实例分析
1. 水泵吸水管的水力计算 hv Q、d、l吸、、进、弯、 计算内容:已知
2. 淹没式孔口出流
从 1→2 建立伯努利方程,有
2 2 vc vc H1 0 0 H 2 0 0 0 se 2g 2g
1
H
2
H1
d
vc
1 0 se
H2
0
2
2 g H1 H 2 2 gH 0
(与自由式出流公式完全相同)
Q Qi qi
(流量关系) (能量关系)
hf hf hf hf
1 2 3
AB
例题4
ppt课件 24
§ 6.4 离心式水泵的水力计算
★泵是把机械能转化为液体能量的一种机械。 一、泵的构造简介
ppt课件
25
§ 6.4 离心式水泵的水力计算
二、主要参数
• 流量 Q
• 扬程 H (泵供给单位重量液体的能量) • 功率 • 输入功率(轴功率) N X • 输出功率(有效功率) • 效率
1 0 se
1
H H1 H 2
l
Q Ac vc A 2 gH (与自由式出流公式完全相同)
ppt课件 8
§ 6.1 孔口、管嘴恒定出流
3. 影响孔口收缩的因素
• 孔口形状
• 孔口位置
H
1
l (3 ~ 4)d
c
d
2
二、管嘴出流的计算
0
0
计算特点:
hf 0
1
ppt课件 15
§ 6.2 短管水力计算
我
国
最
大
的 倒 虹 吸 管
ppt课件 16
§ 6.2 短管水力计算
例题3
ppt课件
17
§ 6.3 长管水力计算
l 1000 d
★ 长管的定义 :
一、计算特点
1.
hw h f
v 2
0
2.
2g
二、计算类型(与短管相同)
ppt课件 18
§ 6.3 长管水力计算
2 .水力关系
H h f SlQ2 (能量关系) Qi Qi1 qi (流量关系)
ppt课件
22
§ 6.3 长管水力计算
五、并联管路
ppt课件
23
§ 6.3 长管水力计算
1 .定义:在两节点间并设两条以上的管路,称为并联管路,其目的 是提高供水的可靠性. 2 .水力关系
§ 6.0 概述
dH
dH
4
l 0 孔口 d
10 小孔口
10大孔口Leabharlann l 3 ~ 4 管嘴 d
l 4 管路 d
l 1000 短管 d
简单管路 复杂管路 枝状管网
l 1000 d
长管
串联管路
※复杂管路
并联管路
管网
ppt课件
环状管网
4
§ 6.1 孔口、管嘴恒定出流
• 工程实例
Hs
,求水泵安装高度
。
例题2
ppt课件 13
§ 6.2 短管水力计算
2. 虹吸水力计算
虹吸灌溉
ppt课件
14
§ 6.2 短管水力计算
真空输水: 世界上 最大直径的虹吸管
( 右侧直径 1520 毫
米、左侧 600 毫米 ), 虹吸高度均为八米,
犹如一条巨龙伴游
一条小龙匐卧在浙 江杭州萧山区黄石 垅水库大坝上,尤