费托合成Fischer-Tropsch synthesis

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

今天的報告內容 (固體表面化學反應)
1). Haber-Bosch NH3 Synthesis
2). Fischer-Tropsch synthesis
3). 2007年諾貝爾化學獎 CO + O2 oxidation on Pt surfaces 4). Methanol fuel cell
5). Structural change of catalystsurface induced by chemisorption
07.2006
Haber哈伯及Bosch分別於1918及1931年獲得諾貝爾化學獎。 每年生產 NH3 10000 萬吨 100 million tons
450o C and 300 bar ?
Ni-catalyst, 700C 20 bar 天然氣
CO + H2
O2, H2O 排除
為什么在放熱(性)的反应ΔH = - 46kJ/mol, 合 成溫度在 450o C?
CH4 Ni
Rd
Another important reaction is the
water gas shift reaction: H2O + CO → H2 + CO2
Although this reaction results in formation of unwanted CO2, it can be used to shift the H2:CO ratio of the incoming Synthesis gas. This is especially important for synthesis gas derived from coal, which tends to have a ratio of ~0.7 compared to the ideal ratio of ~2.
固體表面化學反應機制
從2007年諾貝爾化學獎談起---
國立中央大學物理系
蔡茂盛 M. S. Zei Ph.D 1971 Freie University Berlin, Germany, 在哈伯研究所 (Fritz-Haber-Institut)工作 35 年(1970 – 2004).
簡介如何用表面物理科學儀器-光電子顯微鏡(PEEM)、低/高能 電子繞射(LEED,RHEED)、電子能量損失光譜 (EELS)、掃瞄穿隧 顯微鏡(STM)等儀器,來觀察(測)一氧化碳CO在鉑單晶表面上的 氧化過程。由EELS得知分子態的氧在室溫下因在鉑表面的化學吸 附(chemisorption),導致分子鍵(Molecular bonding)的減弱, 使其解離成原子態氧(Oad),另由STM觀察原子態氧(Oad)及化學吸 附態的一氧化碳在鉑(III)表面上分別形成(2×2)-O,及c(4×2)-CO 構造的區域(domains),其氧化反應機制是兩吸附態的反應物 (reactants)在區域交界處(Domain boundaries)結合成二氧化碳 CO2。催化反應過程中,發現反應氣體分子在固體觸媒的化學吸附 ,導致固體表面原子結構的變化並非如同傳統觀念認為:「催化 劑只使化學反應加速,本身不會起任何變化」。 觸媒表面上的 原子在反應過程中,是不斷在移動中。觸媒表面原子的遷移性 (mobility)會因反應分子或離子的強吸附(Strong bonding)而導 致表面原子遷移性(mobility)的提高; (mobility-enhancement by chemisorption of atoms/ions)。
化學反應導致觸媒的 表面原子結構的變化
Kaiser Wilhelm Institut fur Physikalische Chemie und Elektrochemie
Fritz-Haber Institut der MaxPlanck-Gesellschaft
Ernst Ruska Abteilung Elektron-Mikroskopie
CO2 + 2 e + 2 H+ 2Pt
CH3OH
Pt

CO2 + 6 H+ + 6 e-
Catalyst decreasing the activation energy, facilitating chem. reaction
Ru-islands with regular lateral periodicity of around 20 A grown on Pt(111) surface
Ru-deposited
Pt(111) substrate surface
Ru-deposited layers
After Ru/Pt(111) towards CO electro-oxidation in HClO4 , disappearing the long range-order as demonstrated by RHEED
Fe
Structural transformation of the reconstructed Pt(100) surface
COad


CO2↑
(100)-hex
(100)-(1x1)
Pt(100)
COad + O2

CO2
CO-氧化反應呈現震盪現象的解釋 PCO ↓, ψ ↑
Ads. CO
H& fuel cell
(-) 氧分子在鉑上降 低活化能成原子態氧
Anode: CH3OH + H2O +Pt → CO2 + 6 H+ + 6 eH+
Cathode: 1/5 O2 + 6 H+ + 6 e→ 3 H2O
(-)
catalyst
Pt-O + H+ + e→Pt-OH Pt-OH + H+ + e→ Pt-H2O
Oscillation of CO oxidation on Pt-surface
Phys. Rev.Lett. 49(1982) 177
EELS Spectrum of ads. Oxygen on Pt(111) at 300 K
只出顯在300 oK
(Sub-Micron) 結構成像
Oscillation of CO oxidation on Pt surface
Satellite reflections show that the Ru adlayer with additional lateral periodicity of around 20 A is formed
Structural transformation of the reconstructed Pt(100) surface
C(4x2)-CO
Orientation change of the c(4x2)-damain
(2x2)-O
CO oxidation via Langmuir-Hinschelwood mechanism 其氧化反應機制是兩吸附態的反應物(reactants)在區 域交界處(Domain boundaries)結合成二氧化碳CO2
(+)
Pt-(CH3OH)ads → Pt-COads + 4 H+
+ 4 e-
Nafion
Surface reactions on catalyst surface
Anode:
Pt + CH3OH →
重奌在說明觸媒表面的功能
Pt-CO + 4 H+ + Pt + 4 e-
Pt-CO + Pt- H2O →
釕在鉑 (111) 表面上所形成的超結構在電解液中因 CO的氧化過程,導致釕在鉑(111)表面上所形成的超 結構明顯消失 (loss of the long-range order)[6]。 証明 Ru-原子的移動
RHEED patterns for Pt(111) covered by Ru (0.64 ML) deposit, showing satellite reflections indicated by arrows
以及鉑/釕因CO-在氧化反應所引起的結構變化
証明: 觸媒表面上的原子在反應過程中, 是不斷在移動中。 並非如同傳統觀念認為:「催化劑只使化學 反應加速,本身不會起任何變化」。
450oC
Desorption of the chemisorbed Nspecies on FeO
WGS = water gas用於由煤得到的 shift reaction 合成氣体
History Since the invention of the original process by the German researchers Franz Fischer and Hans Tropsch, working at the Kaiser Wilhelm Institute in the 1920s, many refinements and adjustments have been made, and the term "Fischer-Tropsch" now applies to a wide variety of similar processes (Fischer-Tropsch synthesis or Fischer-Tropsch chemistry). Fischer and Tropsch filed a number of patents, e.g. US patent no. 1,746,464, applied 1926, published 1930 [3]. The process was invented in petroleum-poor but coal-rich Germany in the 1920s, to produce liquid fuels. It was used by Germany and Japan during World War II to produce ersatz fuels. Germany's synthetic fuel production reached more than 124,000 barrels per day (19,700 m³/d) from 25 plants ~ 6.5 million tons in 1944.[4] After the war, captured German scientists recruited徵募( in Operation Paperclip continued to work on synthetic fuels in the United States in a United States Bureau of Mines program initiated by the Synthetic Liquid Fuels Act. In Britain, Alfred August Aicher obtained several patents for improvements to the process in the 1930s and 1940s, e.g. British patent no. 573,982, applied 1941, published 1945 [5]. Aicher's company was named Synthetic Oils Ltd. (There is no connection with the Canadian company of the same name.)
一氧化碳及氧在鉑金薄膜 表面上氧化過程所形成的 光電子顯微鏡 (PEEM) 圖 像,其中暗亮區域分別對 應於氧分子及一氧化碳在 鉑表面上的吸附區域。
STM images for CO + O2 oxidation on Pt(111)
Science 12 (1997) 1931
STM images
COad


↑ CO2
(100)-hex
Pt(100)
(100)(1x1) →
COad + O2 CO2
鉑單 晶面(100) 在CO- oxidation ; 由六面单胞(hexunit cell) 轉化成四面单胞(square unit cell, 1x1) 來囘 轉(變)化, 來解釋 陪同CO-氧化反應呈現的震盪現象
相关文档
最新文档