《5.3.2命题、定理、证明》教案、导学案、同步练习.

合集下载

人教版七年级数学下册 5-3-2 命题、定理、证明 教案

人教版七年级数学下册 5-3-2  命题、定理、证明 教案

教学反思5.3平行线的性质5.3.2命题、定理、证明教学目标1. 了解命题的概念以及命题的构成.2. 知道什么是真命题和假命题,并会判断命题的真假.3. 理解什么是定理和证明.4. 初步体会命题在数学中的应用,感受数学语言的严谨性,培养学生的语言表达能力和归纳能力. 教学重难点重点:区分命题的题设和结论.难点:找出题设和结论不明显的命题的题设和结论;举反例判断一个简单命题是假命题.课前准备多媒体课件教学过程导入新课导入模式教师:在我们日常讲话中,经常会遇到这样的语句(多媒体展示),如:(1) 中华人民共和国的首都是北京;(2) 我们班的同学多么聪明;(3) 浪费是可耻的;(4)春天万物更新.在几何里,我们同样会有这样的语句,如:(1) 平行于同一条直线的两条直线平行;(2)对顶角相等.观察一下,它们有什么共同点,在语文学习当中,我们把这样的句子叫做什么语句呢?师生活动先让学生交流,然后学生代表回答.设计意图在教学过程中,将创设的问题情境和语文联系起来,不仅容易激发学生的好奇心,引起学生的学习兴趣,而且渗透了“学科间的整合”,提升了学生的核心素养.教师:像这样的判断句,在数学当中经常遇到,如(多媒体展示):板书(1) 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2) 等式两边都加上同一个数,结果仍是等式;(3) 对顶角相等;(4)如果两条直线不平行,那么同位角不相等.教师提问:你们能说一说这4个语句有什么共同点吗?学生在教师的引导下分析每个语句的特点,并能总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某一件事作出判断的.探究新知探究点一:命题的概念教师:像这些语句一样,判断一件事情的语句,叫做命题.现在同学们判断下列语句是不是命题.(1)两点之间,线段最短.(2)画出两条互相平行的直线.(3)过直线外一点,作已知直线的垂线.(4)a,b两条直线平行吗?(5)玫瑰花是动物.(6)若a2=b2,则a=b.一名学生判断回答,不对的题目,其他同学补充纠正.请同学们再举出“命题”的例子.师生共同判断,给予评价.教师归纳:判断语句是否为命题要紧扣两条:(1)命题必须是一个完整的句子,通常是陈述句,疑问句和命令性语句都不是命题;(2)必须对某一件事件作出肯定或否定的判断.这两条缺一不可.设计意图通过具体的实例,让学生了解命题.探究点二:命题的组成教师:观察黑板上的命题,思考:命题由哪几个部分组成?师生活动学生在明确命题概念的基础上分小组讨论命题的结构,让学生总结出命题的结构.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.教师:你们是怎样寻找题设和结论的.学生代表回答,教师引导得出结论:任何一个命题,都可以写成“如果……那么……”的形式.“如果”后面的是题设,“那么”后面的是结论.请大家指出“对顶角相等”这一命题的题设,结论,并写成“如果……,那么……”的形式.师生活动结合我们学习的这一章内容,找出命题(本章中学到的结论),并指出命题的题设、结论.设计意图充分发挥小组讨论的优势,让学生积极参与到学习过程中,让学生总结出命题的结构.探究点三:真命题与假命题教师:判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否正确.(1)如果两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(3)相等的角是对顶角;(4)任意两个直角都相等.学生独立思考,学生代表回答,其他同学纠正补充,最后总结结果:四个语句都是命题.命题(1)的题设是“两直线相交”,结论是“只有一个交点”;命题(2)的题设是“两条直线被第三条直线所截形成的同旁内角互补”,结论是“这两条直线平行”;命题(3)的题设是“两个角相等”,结论是“它们是对顶角”;命题(4)的题设是“两个角是直角”,结论是“它们相等”.其中(1)(2)(4)是正确命题,(3)是错误命题.教师总结:如果命题的题设成立,那么结论一定成立,像这样的命题称为真命题;如果命题的题设成立时,不能保证结论一定成立,像这样的命题称为假命题.判断一个命题是真命题,必须经过推理证实;判断一个命题是假命题,只需举出一个反例即可.设计意图通过分析语句,练习了找命题的题设和结论,更容易回答出命题的正确与否.探究点四:定理教师:请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果丨a l=lbl,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.师生活动学生代表回答,如果出现错误或不完整,请其他学生修正或补充,教师点评.教师归纳:上述问题中(1)(4)(5)的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.前面学过的一些图形的性质,都是真命题,例如“两条直线平行,同旁内角互补”等.教师追问:经过推理证明得到的真命题叫做定理.同学们能说出我们学过的定理有哪些吗?学生独立思考,然后回答,师生共同补充学过的定理.设计意图学生积极思考教师所提出的问题,练习怎样判断真、假命题.以上面问题中的真命题为切入点引出定理的概念.让学生回顾学过的定理,进一步加深对定理概念的理解.探究点五:证明教师:请同学们判断下列两个命题的真假,并思考如何判断命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.教师:命题1是真命题还是假命题?学生抢答:真命题.教师:你能将命题1所叙述的内容用图形语言表达出来吗?学生画出图1:教师:这个命题的题设和结论分别是什么呢?学生回答:题设:在同一平面内,一条直线垂直于两条平行线中的一条;结论:这条直线也垂直于两条平行线中的另一条.教师:你能结合图形用几何语言表述命题的题设和结论吗?学生回答:在同一平面内,若b〃c,a丄b,则a丄c.教师:请同学们思考如何利用已经学过的定义、定理来证明这个结论呢?已知:在同一平面内,b〃c,a丄b.求证:a丄c.证明:如图1,T a丄b(已知),・•・Z1=90°(垂直的定义).又b〃c(已知),・•・Z1=Z2(两直线平行,同位角相等).・•・—1=90°(等量代换).・•・a丄c(垂直的定义).教师:在很多情况下,一个命题的正确性需要经过一系列推理,才能做出判断,这个推理的过程叫做证明.刚才我们对命题1作出了判断,经过一系列的过程对命题1进行了证明,回顾一下,证明一个命题的正确性要分为几个步骤.学生思考交流,学生代表回答,其他同学补充,教师引导得出结论.要证明一个命题的正确性要分为三步:第一步,分析命题的题设和结论;第二步,根据命题画出图形,结合图形,根据题设写出已知,根据结论写出求证;第三步书写证明过程.教师:对于命题1这个真命题,经过了三步,我们证明了它的正确性,大命题2:相等的角是对顶角.教师:判断这个命题的真假.学生回答:假命题.教师:这个命题的题设和结论分别是什么?学生回答:题设:两个角相等;结论:这两个角互为对顶角.教师:我们知道假命题是在题设成立的前提下,结论不一定成立,你能否利用图形举例说明当两个角相等时它们不一定是对顶角的关系?学生画图回答:如图2所示,OC是Z AOB的平分线,Z1=Z2,但它们不是对顶角.教师总结:要证明一个命题是假命题,只要举一个反例即可.设计意图通过分析两个命题,让学生学会如何判断命题的真假,怎样来证明命题的真假.通过对命题1正确性的推理,来说明什么是证明.证明一个命题为真命题的步骤又有哪些?渗透了“推理”与“证明”的联系、区别•判断一个命题是假命题,只要举出一个反例就可以了.新知应用例1把命题“同位角相等”改写成“如果……那么……”的形式,并分别指出命题的题设和结论.学生代表回答,其他同学补充纠正,教师引导,得出结论.解:可以写成“如果两个角是同位角,那么这两个角相等”•题设是“两个角是同位角”,结论是“这两个角相等”.设计意图练习命题的改写以及分清命题的题设和结论.例2下列命题哪些是正确的,哪些是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加上同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.师生活动学生独立完成,并回答.解:(1)(4)错误,(2)(3)(5)正确.设计意图练习判断命题的正确与错误.例3完成下面的证明过程:Z1=Z2,Z C=Z D,求证:Z A=Z F.证明:TZ1=Z2(已知),Z2=Z3(),・•・Z1=(等量代换),・•・〃(),・•・Z C=Z4().又•・•Z C=Z D(已知),・•・Z D=Z4(),・•・DF〃AC(),・•・Z A=Z F().学生独立完成,并回答.如果错误,其他同学补充.答案:对顶角相等Z3BDCE同位角相等两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,内错角相等教师:除以上证明方法以外,还有其他的方法吗?请同学们独立思考,再交流相法.设计意图让学生熟悉证明的过程,会填写出一些证明的关键步骤和理由.通过不同方法的引导,拓展学生思维,逐步提高推理能力.课堂练习(见导学案“当堂达标”)参考答案l.A2.C3.若Za=50°,ZB=60°,则Za+ZB>90。

人教版数学七年级下册《5-3-2命题、定理、证明 》教案

人教版数学七年级下册《5-3-2命题、定理、证明 》教案

人教版数学七年级下册《5-3-2命题、定理、证明》教案一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的一章内容。

本章主要介绍命题、定理和证明的概念,要求学生理解命题的真假判断,了解定理的定义和证明过程,能够运用证明方法解决一些简单的数学问题。

二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、代数等基础知识,具备一定的逻辑思维能力。

但部分学生对于抽象的概念理解起来可能存在一定的困难,需要通过具体的例题和实践活动来加深理解。

三. 教学目标1.了解命题、定理的概念,理解命题的真假判断,掌握定理的定义和证明过程。

2.培养学生运用证明方法解决数学问题的能力。

3.培养学生的逻辑思维能力和团队合作能力。

四. 教学重难点1.命题、定理的概念及命题的真假判断。

2.证明方法的应用。

五. 教学方法1.讲授法:讲解命题、定理的概念,演示证明过程。

2.案例分析法:分析具体例题,引导学生运用证明方法解决问题。

3.小组合作法:分组讨论,共同完成证明任务。

六. 教学准备1.教材、PPT课件。

2.相关例题和练习题。

3.教学工具:黑板、粉笔。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些日常生活中的命题,如“明天会下雨”、“今天是星期天”等,引导学生思考这些命题的真假判断。

2.呈现(10分钟)讲解命题、定理的概念,解释命题的真假判断,通过PPT课件展示定理的定义和证明过程。

3.操练(10分钟)给出几个简单的例题,让学生尝试运用证明方法解决问题。

引导学生思考证明过程中的关键步骤,培养学生的逻辑思维能力。

4.巩固(10分钟)学生分组讨论,共同完成一个证明任务。

教师巡回指导,解答学生疑问。

5.拓展(10分钟)给出一个较复杂的证明题目,让学生独立完成。

鼓励学生运用所学知识,解决问题。

6.小结(5分钟)教师总结本节课的主要内容,强调命题、定理和证明的概念,以及证明方法的应用。

7.家庭作业(5分钟)布置一些有关命题、定理和证明的练习题,要求学生回家后独立完成。

人教版数学七年级下册5.3.2《 命题、定理、证明》同步练习 (含答案)

人教版数学七年级下册5.3.2《 命题、定理、证明》同步练习 (含答案)

人教版数学七下5.3.2《命题、定理、证明》同步练习一、选择题1.下列命题中是假命题的是( )A.同旁内角互补,两直线平行B.直线a⊥b,则a与b的夹角为直角C.如果两个角互补,那么这两个角一个是锐角,一个是钝角D.若a∥b,a⊥c,那么b⊥c2.命题“垂直于同一条直线的两条直线互相平行”的题设是()A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线3.下列命题中,真命题的个数为().①在同一平面内,两条直线被第三条直线所截,同位角相等;②两条平行线被第三条直线所截,同位角的平分线平行;③两条平行线被第三条直线所截,内错角的平分线平行;④两条平行线被第三条直线所截,同旁内角的平分线平行;⑤两条直线被第三条直线所截,形成4对同位角、2对内错角和2对同旁内角.A.4B.3C.2D.14.下列命题中,属于真命题的是()A.两个锐角之和为钝角B.同位角相等C.钝角大于它的补角D.相等的两个角是对顶角5.下列说法中,正确的是()A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角。

6.有下列四个命题:①相等的角是对顶角;②同位角相等;③两点之间,直线最短;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个7.下列命题中,真命题是()A.相等的角是直角B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有具只有一条直线8.已知下列命题:①对顶角相等;②垂直于同一条直线的两直线平行;•③相等的角是对顶角;④同位角相等,其中假命题有( )A.1个B.2个C.3个D.4个9.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行.其中假命题有( )A.1个B.2个C.3个D.4个10.下列语句不是命题的是()A.过直线外一点作直线的垂线B.三角形的外角大于内角C.邻补角互补D.两直线平行,内错角相等11.下列命题是假命题的是()A.同角的余角相等B.同旁内角互补C.对顶角相等D.在同一平面内,垂直于同一条直线的两条直线平行12.下列四个命题中:①在同一平面内,互相垂直的两条直线一定相交②有且只有一条直线垂直于已知直线③两条直线被第三条直线所截,同位角相等④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.其中真命题的个数为()A.1个B.2 个C.3个D.4个二、填空题13.下列命题中:①若∣a∣=∣b∣,则a=b;②两直线平行,同位角相等;③对顶角相等;④内错角相等,两直线平行.是真命题的是.(填写所有真命题的序号)14.把“两个邻角的角平分线互相垂直”写成“如果……,那么……”的形式为_______________.15.把命题“同角的补角相等”改成“如果...那么....”的形式16.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:.17.命题“同位角相等,两直线平行”中,条件是,结论是18.把命题“平行于同一直线的两直线平行”写成“如果…,那么…”的形式________.三、解答题19.已知命题:“如图,点B,F,C,E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并说明理由.20.如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.①结论:(1)________(2)________(3)________(4)________②选择结论(1),说明理由.参考答案1.答案为:C2.答案为:D.3.答案为:B4.答案为:C5.答案为:C6.答案为:A.7.答案为:D.8.答案为:C9.答案为:B10.答案为:A11.答案为:B12.答案为:A.13.答案为:②③④14.答案为:如果作两个邻补角的角平分线,那么这两条角平分线互相垂直15.答案为:如果两个角是同一个角的补角,那么这两个角相等.16.答案为:如果两条直线垂直于同一条直线,那么这两条直线平行.17.答案为:同位角相等;两直线平行.18.答案为:如果两条直线都与第三条直线平行,那么这两条直线互相平行19.解:这个命题是假命题.添加条件∠B=∠E使其成为真命题.理由:内错角相等,两直线平行.(添加条件不唯一)20.∠APC+∠PAB+∠PCD=360°;∠APC=∠PAB+∠PCD;∠PCD=∠APC+∠PAB;∠PAB=∠APC+∠PCD。

部编人教版七年级下册数学《命题、定理、证明》教案

部编人教版七年级下册数学《命题、定理、证明》教案

5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。

(二)整体感知以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.(三)教学过程创设情境,引出课题师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).例1 已知:如图1,,是截线,求证:.证明:∵(已知),∴(两直线平行,同位角相等).∵(对项角相等),∴(等量代换).这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.[板书]2.9 定理与证明探究新知1.命题证明步骤学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。

人教版初中数学七年级下册5.3.2《命题、定理、证明》教案

人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
五、教学反思
今天在教授《命题、定理、证明》这一章节时,我发现学生们对命题的概念接受得比较快,但是在理解定理和证明方法上遇到了一些困难。这让我意识到,虽然定理和证明在数学中非常重要,但它们的概念对学生来说可能比较抽象,需要更多的实际例证和练习来加深理解。
在讲解定理时,我尝试通过具体的例子来展示定理的形成和应用,但感觉效果并不如预期。我意识到,可能需要更多的生活实例或者图形辅助,让学生能够直观地感受到定理在解决问题时的作用。接下来,我会在准备教案时加入更多直观的教学素材,比如动画或者实物模型,以提高学生的兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句,它是数学逻辑推理的基础。定理则是经过严格证明的真命题,它在数学体系中扮演着重要的角色。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何通过已知的定理来证明一个新的命题,以及这个过程如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的结构和定理的应用这两个重点。对于难点部分,如证明方法的选择和使用,我会通过具体的例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的证明练习。这个练习将演示如何运用所学的证明方法来证实一个命题的正确性。
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
一、教学内容
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案:
1.理解命题的概念,能识别简单命题的结构。
2.学习定理的定义,了解定理在数学证明中的作用。

人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例

人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例
2. 引入定理的概念,通过讲解定理的定义和定理的证明过程,使学生理解定理的意义。
3. 详细讲解证明的方法和步骤,包括直接证明、反证法和归纳法等,让学生掌握证明的基本方法。
4. 通过示例题目,演示如何运用命题、定理和证明的知识解决问题,让学生理解学习的实际意义。
(三)学生小组讨论
1. 将学生分成小组,每组选择一个定理进行证明,并用自己的语言解释证明的每一步。
这些亮点体现了本节课在教学设计、教学方法和教学评价等方面的优秀之处,有助于提高学生的学习兴趣、培养学生的思维能力和团队合作能力,促进学生的全面发展。同时,这些亮点也是我作为特级教师在教学实践中不断探索和尝试的结果,希望能够为其他教师提供一定的借鉴和参考。
4. 总结归纳环节:在课程结束时,引导学生回顾和总结所学内容,帮助学生巩固知识,提高学生的记忆和理解能力。总结归纳环节能够使学生对学习内容有一个清晰的认识,增强学生对知识的系统性和整体性的理解。
5. 作业小结环节:布置与课程内容相关的作业,要求学生运用所学知识解决问题,培养学生的应用能力和实践能力。作业小结环节能够及时巩固所学知识,帮助学生检验自己的学习效果,同时也为教师提供了了解学生学习情况的机会,为下一步的教学提供参考。
3. 设计一些评估题目,检验学生对命题、定理和证明的掌握程度,及时发现和纠正学生的错误。
4. 注重对学生的形成性评价,关注学生的进步和努力,激发学生的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1. 利用生活实例引入命题的概念,例如:“如果今天是星期五,那么学校放假。”引导学生理解命题由题设和结论两部分组成。
2. 强调定理证明的重要性,以及定理证明在数学中的应用,使学生认识到学习定理证明的意义。
3. 总结学生在小组讨论中的表现,对学生的学习成果进行肯定和鼓励,激发学生的学习动力。

人教版七年级数学下册同步练习5.3.2 命题、定理、证明

人教版七年级数学下册同步练习5.3.2  命题、定理、证明

5.3.2 命题、定理、证明要点感知1 __________一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是__________,“那么”后面接的部分是__________.预习练习1-1下列语句中,是命题的是( )A.有公共顶点的两个角是对顶角B.在直线AB上任取一点CC.用量角器量角的度数D.直角都相等吗1-2 将“两点之间,线段最短”写成“如果……那么……”的形式:______________________________.要点感知2 题设成立,并且结论一定成立的命题叫做__________;题设成立,不能保证结论__________的命题叫做假命题.预习练习2-1下列命题中的真命题是( )A.锐角大于它的余角B.锐角大于它的补角C.钝角大于它的补角D.锐角与钝角之和等于平角要点感知 3 经过推理证实为正确并可以作为推理的依据的真命题叫做__________.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做__________.预习练习3-1如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∥AB.知识点1 命题的定义1.下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤知识点2 命题的结构2.命题的题设是__________事项,结论是由__________事项推出的事项.3.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是____________________.4.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.知识点3 命题的真假及证明5.下列命题中,是真命题的是( )A.若|x|=2,则x=2B.平行于同一条直线的两条直线平行C.一个锐角与一个钝角的和等于一个平角D.任何一个角都比它的补角小6.下列命题中,是假命题的是( )A.相等的角是对顶角B.垂线段最短C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线7.命题“两直线平行,内错角的平分线互相平行”是真命题吗?如果是,请给出证明;如果不是,请举出反例.8.下列说法正确的是( )A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.“具有相同字母的项称为同类项”是“同类项”的定义9.下列命题是假命题的是( )A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线10.下列三个命题:①同位角相等,两直线平行;②两直线和第三条直线相交,同位角相等;③过两点有且只有一条直线.其中真命题有( )A.0个B.1个C.2个D.3个11.把命题“同角的余角相等”改写成“如果……那么……”的形式,正确的是( )A.如果是同角,那么余角相等B.如果两个角相等,那么这两个角是同一个角的余角C.如果是同角的余角,那么相等D.如果两个角是同一个角的余角,那么这两个角相等12.“直角都相等”的题设是____________________,结论是____________________.13.对于下列假命题,各举一个反例写在横线上.(1)“如果ac=bc,那么a=b”是一个假命题.反例:______________________________;(2)“如果a2=b2,则a=b”是一个假命题.反例:______________________________.14.把“等角的余角相等”改写成“如果……那么……”的形式是______________________________,该命题是__________命题(填“真”或“假”).15.如图,已知:AB∥CD,∠B=∠D.求证:BC∥AD.16.把下列命题写成“如果……那么……”的形式,并判断其真假.(1)等角的补角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.17.(1)如图,请在AB∥CD,∠A=30°,∠CDA=30°三项中选择两个作为条件,一个作为结论,写一个命题:如果__________且__________,那么__________.(2)请说明你写的命题是真命题.18.如图所示,如果已知∠1=∠2,则AB∥CD,这个命题是真命题吗?若不是,请你再添加一个条件,使该命题成为真命题,并说明理由.挑战自我19.阅读下列问题后做出相应的解答.“同位角相等,两直线平行”和“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题.请你写出命题“角平分线上的点到角两边的距离相等”的逆命题,并指出逆命题的题设和结论.参考答案课前预习要点感知1判断题设结论预习练习1-1 A1-2如果有两点,那么在连接两点的所有线中,线段最短要点感知2真命题一定成立预习练习2-1 C要点感知3定理证明预习练习3-1 证明:∵BD平分∠ABC,∠ABD=55°,∴∠ABC=2∠ABD=110°.又∵∠BCD=70°,∴∠ABC+∠BCD=180°.∴CD∥AB.当堂训练1.A2.已知已知3.如果两条直线垂直于同一条直线,那么这两条直线平行4.(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同角的补角,那么它们相等.题设:两个角是同角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.5.B6.A7.是真命题,证明如下:已知:AB∥CD,BE,CF分别平分∠ABC和∠BCD.求证:BE∥CF.证明:∵AB∥CD,∴∠ABC=∠BCD.∵BE,CF分别是∠ABC,∠BCD的角平分线,∴∠2=12∠ABC,∠3=12∠BCD.∴∠2=∠3.∴BE∥CF.课后作业8.C 9.B 10.C 11.D 12.两个角是直角这两个角相等13.(1)3×0=(-2)×0(2)32=(-3)214.如果两个角是等角的余角,那么这两个角相等真15.证明:∵AB∥CD,∴∠B+∠C=180°.∵∠B=∠D,∴∠D+∠C=180°.∴BC∥AD.16.(1)如果两个角是两个相等的角的补角,那么这两个角相等.是真命题.(2)如果两个角不相等,那么这两个角不是对顶角.是真命题.(3)如果两个角相等,那么这两个角是内错角.是假命题.17.(1)AB∥CD ∠A=30°∠CDA=30°(2)∵AB∥CD,∠A=30°,∴∠CDA=∠A=30°.18.假命题,添加BE∥DF.∵BE∥DF,∴∠EBD=∠FDN.∵∠1=∠2,∴∠ABD=∠CDN.∴AB∥CD.19.逆命题:在角的内部到角两边距离相等的点在这个角的平分线上.题设:在角的内部到角两边距离相等的点;结论:在这个角的平分线上.。

5.3.2命题、定理、证明(教案)(共五篇)

5.3.2命题、定理、证明(教案)(共五篇)

5.3.2命题、定理、证明(教案)(共五篇)第一篇:5.3.2 命题、定理、证明(教案)5.3.2 命题、定理、证明【知识与技能】1.知道什么叫做命题,什么叫真命题,什么叫做假命题,什么叫定理.2.理解命题由题设和结论两部分组成,能将命题写成“如果……那么……”的形式或“若……则……”的形式.【过程与方法】通过对若干个命题的分析,了解什么叫命题以及命题的组成,知道什么叫做真命题,什么做假命题,什么叫做定理.【情感态度】通过本节的学习使同学们明白命题在数学上的重要作用,不仅如此,命题在其它许多学科都有重要作用.【教学重点】命题的定义,命题的组成.【教学难点】命题的判断,真假命题的判断,命题的题设和结论的区分.一、情境导入,初步认识问题1 分析下列判断事情的语句,指出它们的题设和结论.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(2)两条平行线被第三条直线所截,同旁内角互补.(3)对顶角相等.(4)等式两边加同一个数,结果仍是等式.问题2 判断下列语句,是不是命题,如果是命题,是真命题,还是假命题.(1)画线段AB=5cm.(2)两条直线相交,有几个交点?(3)如果直线a∥b,b∥c,那么a∥c.(4)直角都相等.(5)相等的角是对顶角.【教学说明】全班同学合作交流,即先分组完成上面的两个问题,然后交流成果,最后得出正确的答案.二、思考探究,获取新知思考1.真命题与定理有什么样的关系.2.对题设和结论不明显的命题,怎样找出它们的题设和结论.【归纳结论】1.命题:判断一件事情的语句,叫做命题.2.命题由题设和结论两部分组成3.真命题与假命题:正确的命题叫真命题,错误的命题叫假命题.4.定理是经过推理证实的真命题,是在今后推理中经常作为依据的一种真命题.但不是所有经过推理证实的真命题都把它当作定理.对于题设和结论不明显的命题,应先将它改写成“如果……那么……”的形式或“若……则……”的形式.一般来说,如果前面的部分是题设,那么后面的部分是结论.将这种命题改写成“如果……那么……”的形式时,那么后面的部分一定要简单明了.三、运用新知,深化理解判断下列命题是真命题还是假命题,如果是假命题.举出一个反例.(1)若a>b,则a2>b2.(2)两个锐角的和是钝角.(3)同位角相等.(4)两点之间,线段最短.【教学说明】本环节让同学们分组讨论,在合作交流中深刻理解命题的组成和真假命题的判断.【答案】略.四、师生互动,课堂小结请几名学生口答,然后由教师归纳,可用电脑课件放映到屏幕上.1.布置作业:从教材“习题5.3”中选取.2.完成练习册中本课时的练习.本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真假命题.这节课一开始由教师提出问题,学生自学课本,让学生体验先学后教的理念,同时培养了学生的自学能力.第二篇:命题定理证明教案5、3命题定理证明教案学习目标:(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.(3)理解什么是定理和证明.(4)知道如何判断一个命题的真假.学习重点:对命题结构的认识.理解证明要步步有据一、自学基础:(看书20页---22页)1、对一件事情___________________的语句,叫做命题。

人教版七年级数学下册5.3.2命题、定理、证明教学设计

人教版七年级数学下册5.3.2命题、定理、证明教学设计
2.从以下题目中选择两题进行深入探讨,要求写出详细的解题过程和证明步骤:
a.证明:三角形的内角和等于180度。
b.证明:对角线相等的平行四边形是矩形。
c.证明:圆的任意直径垂直于圆的切线。
3.结合生活实际,自行设计一个包含命题、定理和证明的数学问题,并用所学的知识进行解答。要求问题具有一定的挑战性,能够体现学生对几何知识的综合运用。
4.强调证明过程中需要注意的问题,如逻辑严密、步骤清晰等。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个几何问题,要求学生运用所学的定理和证明方法解决问题。
2.学生在小组内展开讨论,共同探讨解决问题的方法,教师巡回指导,给予提示和帮助。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,使学生认识到数学的严密性和逻辑性。
2.增强学生对数学美的感知,激发学生对数学学科的兴趣和热爱。
3.培养学生勇于探索、善于思考的品质,使学生体验到数学探究的乐趣。
4.引导学生将所学知识应用于实际生活,认识到数学在现实生活中的重要性,增强学生的社会责任感。
5.创设轻松愉快的学习氛围,鼓励学生提问、表达,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握命题的概念,能够正确判断命题的真假。
2.熟悉基本的几何定理,并能运用定理解决实际问题。
3.学会运用逻辑推理进行证明,提高学生的逻辑思维能力。
4.能够将所学知识综合运用,解决复杂的几何问题。
(二)教学设想
1.创设情境,引入命题概念
-利用生活实例,如“两点之间线段最短”,引导学生理解命题的概念,并学会判断命题的真假。

人教版数学七年级下册5.3.2《命题、定理、证明》教学设计1

人教版数学七年级下册5.3.2《命题、定理、证明》教学设计1

人教版数学七年级下册5.3.2《命题、定理、证明》教学设计1一. 教材分析本节课的主题是“命题、定理、证明”,这是人教版数学七年级下册第五章第三节的内容。

在这一部分中,学生将学习到什么是命题,如何判断命题的真假,以及如何用定理来证明一个命题的正确性。

这是学生初步接触逻辑推理和数学证明的重要阶段,也是培养学生数学思维能力的关键环节。

二. 学情分析学生在之前的学习中已经接触过一些基本的数学概念和运算规则,具备一定的数学基础。

但是,对于命题、定理、证明这些较为抽象的数学概念,可能还存在一定的理解和应用困难。

因此,在教学过程中,需要注重引导学生理解这些概念的内涵和外延,以及如何运用这些概念来解决问题。

三. 教学目标1.了解命题、定理的概念,理解命题与定理之间的关系。

2.学会判断命题的真假,并能运用定理进行证明。

3.培养学生的逻辑思维能力和数学证明能力。

四. 教学重难点1.重点:命题、定理的概念,命题真假的判断,定理的证明。

2.难点:命题、定理之间的逻辑关系,证明方法的灵活运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流来获取知识。

2.利用实例和反例,让学生直观地理解命题的真假判断。

3.通过证明实例,让学生掌握定理的证明方法,并能够灵活运用。

六. 教学准备1.准备相关的教学PPT,内容包括命题、定理的定义,命题真假的判断,定理的证明等。

2.准备一些实际的数学问题,用于引导学生进行思考和讨论。

3.准备一些证明实例,用于让学生进行模仿和练习。

七. 教学过程1.导入(5分钟)通过一个简单的数学问题,引发学生对命题、定理、证明的思考。

例如:已知勾股定理,判断以下命题的真假:“所有的直角三角形都满足勾股定理”。

2.呈现(10分钟)介绍命题、定理的概念,以及命题真假的判断方法。

通过PPT展示相关的定义和判断方法,让学生理解和掌握。

3.操练(10分钟)让学生通过实际的例子来判断命题的真假。

(新人教版)数学七年级下册:5.3.2《命题、定理、证明》教案(两份)

(新人教版)数学七年级下册:5.3.2《命题、定理、证明》教案(两份)

《命题、定理、证明》教案一、学习目标:知识点: 1. 了解命题、定理和证明的概念,能区分命题的题设和结论2.能判断命题的真假3.能对命题的正确性进行证明重点:命题的判断及区分题设、结论难点:对命题的正确性进行证明二、合作探究:自学课本 21-23 页, 5 分钟内完成下列问题 .要求先自主学习,确有困难以组为单位,组长组织讨论解决,仍解决不了的可跨组讨论 .1.叫命题,命题是由和组成.2.数学中的命题常可以写成“如果,那么”的形式.“如果”后接的部分是,“那么”后接的部分是.3. 命题分为两种和如果题设成立,那么结论一定成立,这样的命题叫做如果题设成立,不能保证结论一定成立,这样的命题叫做4.有些命题的正确性是人们在长期实践中总结出来的,这样的真命题叫做写出我们学过的两个基本事实5.有些命题的正确性是经过推理证实的,这样的真命题叫做如:平行线判定定理平行线性质定理6.证明的根据可以是三、尝试应用:1、判断下列语句是不是命题?( 1)你吃饭了吗?()( 2)两点之间,线段最短.()( 3)请画出两条互相平行的直线.()( 4)过直线外一点作已知直线的垂线.()( 5)如果两个角的和是90o,那么这两个角互余 .()( 6)对顶角不相等 .()2、下列命题中的题设是什么?结论是什么?①如果两个角是邻补角,那么这两个角互补②如果 a>b,b>c,那么 a=c③ 对顶角相等④同位角相等3、下列语句是命题吗?如果是请将它们改写成“如果,那么”的形式.(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得 0(4)对顶角相等4、判断下列命题的真假 . 真的用“√”,假的用“×表示.( 1)一个角的补角大于这个角( )( 2)相等的两个角是对顶角()( 3)若A=B,则2A =2B()( 4)同旁内角互补()四、拓展提升:1.请同学们判断下列两个命题的真假,并思考如何判断命题的真假.命题 1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.命题 1 是真命题还是假命题?你能画出图形并用符号语言表述命题的题设和结论吗?请同学们思考如何利用已经学过的定义定理来证明这个结论呢?命题 2:相等的角是对顶角判断这个命题的真假这个命题题设和结论分别是什么?你能举出反例吗?(画出图形)五、知识小结:谈一谈本节课你的收获:《命题、定理、证明》教案【学习目标】1、掌握命题的概念,并能分清命题的组成部分.2、经历判断命题真假的过程,对命题的真假有一个初步的了解。

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计一. 教材分析《人教版数学七年级下册5.3.2-2<命题、定理、证明2>》这一节的内容,主要让学生了解命题、定理和证明的概念,掌握如何阅读和理解数学证明,培养学生的逻辑思维能力。

教材通过具体的例子,引导学生理解命题、定理和证明之间的关系,以及如何应用这些知识解决实际问题。

二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程和不等式等基础知识,对数学概念和逻辑推理有一定的认识。

但部分学生可能对抽象的数学概念理解起来较为困难,需要通过具体的例子和实际操作来加深理解。

同时,学生可能对证明的过程和方法还不够熟悉,需要通过练习和指导来提高。

三. 教学目标1.了解命题、定理和证明的概念,理解它们之间的关系。

2.学会阅读和理解数学证明,培养逻辑思维能力。

3.能够运用所学知识解决实际问题,提高解决问题的能力。

四. 教学重难点1.重点:命题、定理和证明的概念,以及如何阅读和理解数学证明。

2.难点:如何理解和运用证明的方法,解决实际问题。

五. 教学方法采用问题驱动法、案例分析和小组合作讨论相结合的方法。

通过具体的例子和实际操作,引导学生理解命题、定理和证明的概念,培养学生的逻辑思维能力。

同时,学生进行小组合作讨论,提高学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的教学案例和例子,用于引导学生理解和运用命题、定理和证明的知识。

2.准备小组合作讨论的问题和任务,引导学生进行实践操作。

七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引导学生思考如何用数学语言来描述这个问题,以及如何用逻辑推理来解决这个问题。

从而引出命题、定理和证明的概念。

2.呈现(10分钟)呈现相关的案例和例子,引导学生理解命题、定理和证明的概念。

通过讲解和示范,让学生了解如何阅读和理解数学证明。

3.操练(10分钟)学生分组进行练习,运用命题、定理和证明的知识来解决实际问题。

人教版数学七年级下册《5-3-2命题、定理、证明 》教学设计

人教版数学七年级下册《5-3-2命题、定理、证明 》教学设计

人教版数学七年级下册《5-3-2命题、定理、证明》教学设计一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的教学内容,主要包括命题、定理和证明的概念及其关系。

本节课的内容是学生学习数学证明的基础,对于培养学生的逻辑思维和论证能力具有重要意义。

二. 学情分析学生在七年级上学期已经学习了基本的数学概念和运算,对于问题的解决有一定的基础。

但是,学生对于抽象的逻辑推理和证明过程可能存在理解上的困难,需要通过具体的事例和实践活动来帮助他们理解和掌握。

三. 教学目标1.了解命题、定理和证明的概念及其关系。

2.能够识别和判断一个数学命题是真还是假。

3.学会使用简单的逻辑推理和归纳推理写出简单的证明过程。

四. 教学重难点1.重点:命题、定理和证明的概念及其关系。

2.难点:证明过程的写法和逻辑推理的运用。

五. 教学方法采用问题驱动的教学方法,通过引导学生观察、思考和推理,激发学生的学习兴趣,培养学生的逻辑思维和论证能力。

同时,结合小组合作和讨论,促进学生之间的交流和合作。

六. 教学准备1.教学PPT:包括命题、定理和证明的概念及其关系的图片和示例。

2.练习题:包括判断命题真假和写证明过程的练习题。

3.小组合作的学习材料:包括相关的数学故事和案例。

七. 教学过程1.导入(5分钟)通过一个有趣的数学故事引入命题、定理和证明的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解命题、定理和证明的概念及其关系,通过示例让学生理解命题是陈述性语句,定理是经过证明的命题,证明是用来证实命题真假的过程。

3.操练(10分钟)让学生独立完成一些判断命题真假的练习题,并简要说明判断的依据。

通过小组讨论和分享,让学生理解不同的人可能会有不同的判断方法,但正确的判断应该基于逻辑推理和证明过程。

4.巩固(10分钟)让学生分组合作完成一些写证明过程的练习题。

在学生完成练习后,让各小组展示他们的证明过程,并解释他们的推理思路。

教学设计1:5.3.2 命题、定理、证明

教学设计1:5.3.2 命题、定理、证明

5.3.2 命题、定理、证明教学目标:理解定义、命题、真命题、假命题、定理、公理的含义,会区分命题的题设和结论.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.教学重点:定义、命题、公理、定理的概念及命题的组成.教学难点:会区分命题的题设和结论.教学过程设计活动一.创设问题情境引入在日常生活中,我们会遇到许多概念,假如不对这些概念下定义,别人就无法理解这些概念,以致无法进行正常的交流.同样,在数学学习中,要进行严格的论证,也必须首先对所涉及的概念下定义.本节我们就一起来学习——5.3.2命题、定理.(出示课题)活动二.共同探索获得新知1.体会定义.(1)大于90°小于180°的角叫做钝角.(2)含有一个未知数并且未知数的次数是1的整式方程叫做一元一次方程.同学们通过举例子,观察比较这些定义,发现定义在用词和语气上有什么特征?用词严密且严格,用肯定的语气,定义中一般要有“叫做”这个词.归纳:由于定义表达事物的根本特征,正确的定义能把被定义的事物与其他事物进行区分,因此定义必须是严密的.要用肯定的语气.避免使用含糊不清的术语,比如“一些”、“大概”、“差不多”等不能在定义中出现.2.得出命题.先请大家根据所学知识,判断下列句子是否正确.(1)如果两个角是对顶角,那么这两个角相等;(2)三角形的内角和是180°;(3)同位角相等.(学生根据已有的知识很快就进行了判断.句子(1)、(2)是正确的,句子(3)是错误的.)归纳:这些句子我们都可以判断他们是对或是错.象这样判断一件事情(它是正确的或是错误的)语句,叫做命题.正确的命题称为真命题,例如(1)、(2)、错误的命题称为假命题,例如:(3).3.课堂练习.下列句子哪些是命题?是命题的判断真假.(1)、猴子是动物的一种。

(2)、玫瑰花是动物。

(3)、美丽的天空。

(4)、动物都需要水。

(5)、负数都小于零(6)、过直线外一点做直线a的平行线。

人教版七年级数学(下)—教案:5.3.2命题、定理、证明优秀教学案例

人教版七年级数学(下)—教案:5.3.2命题、定理、证明优秀教学案例
3.教师对学生的学习成果进行肯定和鼓励,增强他们的自信心和自尊心。
4.针对学生的学习情况,调整教学策略,为下一节课的教学做好准备。
五、案例亮点
1.情境创设:本节课通过生活实例和多媒体展示,有效地激发了学生的学习兴趣,使他们能够主动参与到课堂学习中。情境创设不仅增强了学生对数学知识的理解,还提高了他们的学习积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发他们学习数学的内在动力。
2.培养学生的自信心和自尊心,让他们感受到自己在数学学习中的进步和成就。
3.引导学生认识到数学的严谨性和逻辑性,培养他们的思维品质和道德素养。
4.通过对命题、定理和证明的学习,使学生感受到数学的美丽和力量,提高他们对数学价值观的认识。
2.问题导向:教师在教学中提出了具有挑战性和引导性的问题,引导学生进行深入思考和探索。问题导向的教学策略使得学生在解决问题的过程中,能够不断提高自己的数学思维水平和解决问题的能力。
3.小组合作:教师组织学生进行小组讨论和合作,培养了他们的团队协作能力和沟通能力。小组合作使得每个学生都能在课堂上发挥自己的特长,提高了他们的自主学习能力和合作意识。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,培养他们的自我评价和自我调节能力。
2.组织学生进行互评和小组评价,让他们学会倾听他人的意见,提高他们的批判性思维。
3.教师对学生的学习成果进行肯定和鼓励,增强他们的自信心和自尊心。
4.结合学生的学习情况,调整教学策略,为下一节课的教学做好准备。
四、教学内容与过程
(二)问题导向
1.提出具有挑战性和引导性的问题,激发学生的思维活力,培养他们的解决问题的能力。
2.引导学生通过讨论和思考,逐步解决问题,让他们体验到解决问题的过程和成就感。

人教版七年级数学下册5.3.2《命题、定理、证明》教学设计

人教版七年级数学下册5.3.2《命题、定理、证明》教学设计

人教版七年级数学下册5.3.2《命题、定理、证明》教学设计一. 教材分析《命题、定理、证明》是人教版七年级数学下册第五章第三节的内容,主要介绍了命题、定理和证明的概念。

这部分内容是学生学习几何证明的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。

本节课的内容主要包括命题的定义、分类及定理的概念,以及证明的方法。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于基本的几何概念和性质有一定的了解。

但是,学生在证明方面的知识和能力还有待提高,因此,在教学过程中需要注重引导学生理解和掌握证明的方法和技巧。

三. 教学目标1.理解命题、定理和证明的概念,能够区分它们之间的联系和区别。

2.学会用几何语言表达命题和定理。

3.掌握证明的方法和技巧,能够运用所学的知识解决一些简单的几何问题。

四. 教学重难点1.重点:命题、定理和证明的概念及它们之间的联系和区别。

2.难点:证明的方法和技巧,以及如何运用所学的知识解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作探究的方式掌握命题、定理和证明的概念。

2.利用几何图形和实例,帮助学生直观地理解命题、定理和证明的联系和区别。

3.通过练习和案例分析,培养学生的证明能力和解决实际问题的能力。

六. 教学准备1.准备相关的几何图形和实例,用于讲解和展示。

2.准备一些练习题和案例,用于巩固和拓展所学知识。

七. 教学过程1.导入(5分钟)利用一个简单的几何问题引入命题、定理和证明的概念,激发学生的兴趣。

2.呈现(10分钟)讲解命题、定理和证明的定义及它们之间的联系和区别。

通过几何图形和实例,让学生直观地理解这些概念。

3.操练(10分钟)让学生分组讨论,分析一些给定的几何问题,尝试运用所学的命题、定理和证明方法解决问题。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固对命题、定理和证明的理解。

人教版七年级下册5.3.2命题、定理、证明教学设计

人教版七年级下册5.3.2命题、定理、证明教学设计

人教版七年级下册5.3.2命题、定理、证明教学设计一、教学目标1.理解命题、定理、证明的定义与本质;2.掌握命题、定理、证明的基本方法;3.培养学生正确的逻辑思维方式;4.提高学生的实际问题解决能力。

二、教学重点和难点1.命题、定理、证明的区别;2.掌握证明的基本方法和要素;3.发现并利用生活中的具体例子。

三、教学过程1.导入环节1.老师与学生对话,引导学生探讨“世界上有哪些真理?”;2.引出知识点——命题、定理、证明。

2.讲授环节(1)命题1.定义:能够判断真假的陈述句;2.给出多个例子,使学生彻底领悟命题的概念。

(2)定理1.定义:在一定条件下成立的命题;2.给出具体定理的例子,并与学生一起探讨它的证明方法。

(3)证明1.定义:利用已知的命题或定理,通过演绎推理来证明给定命题的正确性;2.讲解证明的基本方法和注意事项:–观察分析,找出已知条件、所求结论以及中间步骤;–运用基本运算法则和逻辑法则进行推理;–从已知条件出发,按照逻辑关系,步步深入推理,直至得到所求结论;–在证明中,要小心使用某些特殊的词句,比如“一定”、“必然”、“当且仅当”等。

3.实践环节1.老师出一些具体的例子,让学生按照证明的方法,证明其正确性;2.或者让学生先猜测一些规律,再通过证明来验证其是否成立。

4.总结环节1.结合今天的学习内容,带领学生发现:命题、定理、证明有哪些联系和区别;2.老师总结本节课的内容,帮助学生理顺知识脉络;3.常见错题集讲解,总结容易犯的错误。

四、教学评估1.课堂上通过观察和听取学生的解答来了解他们掌握的程度;2.布置课后作业,检验学生学习效果;3.半个月后,再对此知识点进行检测,检查学习效果是否稳定。

5.3.2命题定理证明教案人教版数学七年级下册

5.3.2命题定理证明教案人教版数学七年级下册

三、真假命题的概念(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)如果两个角互补,那么它们是邻补角;(3)两条平行线被第三条直线所截,同旁内角互补;(4)对顶角相等;(5)如果一个数能被2整除,那它也能被4整除;(6)等式两边加同一个数,结果仍是等式.正确的:(1)(3)(4)(6)错误的:(2)(5)真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:命题中题设成立时,不能保证结论一定成立,这样的命题叫做假命题.思考:如何判断此命题为假命题?如果两个角互补,那么它们是邻补角举反例如图:AB∥CD∥A+∥C=180°,因此∥A与∥C互补,但不是邻补角。

判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.思考:如何判断此命题为假命题?相等的角是对顶角如图,OC是∥AOB的平分线,∥1=∥2,但它们不是对顶角。

四、定理、证明我们学过的一些图形的性质,都是真命题。

其中有些命题是基本事实。

如“两点确定一条直线”“经过直线外一点有且只有一条直线与这条直线平行”等.它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据. 如“对顶角相等”“内错角相等,两直线平行”等在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.注意:证明的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,也可以是学过的定义、基本事实、定理等。

活动意图说明:教师活动4:例1:如图,已知b∥c,a⊥b. 求证a⊥c.证明:∥a∥b(已知)∥∥1=90°(垂直的定义)又b∥c(已知)∥∥1=∥2(两直线平行,内错角相等)∥∥2=∥1=90°(等量代换)∥a∥c(垂直的定义)活动意图说明:2.下列语句中,不是命题的是(D)A.如果a>b,那么b<aB.同位角相等C.垂线对最短D.反向延长射线OA3.把命题“相等的角是对顶角”写成“如果...那么...”的形式是__如果两个角相等,那么这两个角是对顶角_。

人教版数学七年级下册教案5.3.2《 命题、定理、证明》

人教版数学七年级下册教案5.3.2《 命题、定理、证明》

人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。

通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。

本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。

但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。

三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。

2.学会用逻辑推理的方法证明几何命题。

3.培养学生的空间想象能力和思维能力。

四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。

2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。

通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。

六. 教学准备1.教学PPT课件。

2.相关例题及练习题。

3.几何画图工具。

七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。

通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。

2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。

让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。

3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。

教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。

4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。

教师及时批改、讲解,巩固学生所学知识。

5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档